2,864 research outputs found

    Stacked Convolutional and Recurrent Neural Networks for Music Emotion Recognition

    Get PDF
    This paper studies the emotion recognition from musical tracks in the 2-dimensional valence-arousal (V-A) emotional space. We propose a method based on convolutional (CNN) and recurrent neural networks (RNN), having significantly fewer parameters compared with the state-of-the-art method for the same task. We utilize one CNN layer followed by two branches of RNNs trained separately for arousal and valence. The method was evaluated using the 'MediaEval2015 emotion in music' dataset. We achieved an RMSE of 0.202 for arousal and 0.268 for valence, which is the best result reported on this dataset.Comment: Accepted for Sound and Music Computing (SMC 2017

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Dynamic difficulty awareness training for continuous emotion prediction

    Get PDF
    Time-continuous emotion prediction has become an increasingly compelling task in machine learning. Considerable efforts have been made to advance the performance of these systems. Nonetheless, the main focus has been the development of more sophisticated models and the incorporation of different expressive modalities (e.g., speech, face, and physiology). In this paper, motivated by the benefit of difficulty awareness in a human learning procedure, we propose a novel machine learning framework, namely, Dynamic Difficulty Awareness Training (DDAT), which sheds fresh light on the research - directly exploiting the difficulties in learning to boost the machine learning process. The DDAT framework consists of two stages: information retrieval and information exploitation. In the first stage, we make use of the reconstruction error of input features or the annotation uncertainty to estimate the difficulty of learning specific information. The obtained difficulty level is then used in tandem with original features to update the model input in a second learning stage with the expectation that the model can learn to focus on high difficulty regions of the learning process. We perform extensive experiments on a benchmark database (RECOLA) to evaluate the effectiveness of the proposed framework. The experimental results show that our approach outperforms related baselines as well as other well-established time-continuous emotion prediction systems, which suggests that dynamically integrating the difficulty information for neural networks can help enhance the learning process

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Sentiment analysis in non-fixed length audios using a Fully Convolutional Neural Network

    Get PDF
    .In this work, a sentiment analysis method that is capable of accepting audio of any length, without being fixed a priori, is proposed. Mel spectrogram and Mel Frequency Cepstral Coefficients are used as audio description methods and a Fully Convolutional Neural Network architecture is proposed as a classifier. The results have been validated using three well known datasets: EMODB, RAVDESS and TESS. The results obtained were promising, outperforming the state-of–the-art methods. Also, thanks to the fact that the proposed method admits audios of any size, it allows a sentiment analysis to be made in near real time, which is very interesting for a wide range of fields such as call centers, medical consultations or financial brokers.S

    Sentiment analysis in non-fixed length audios using a Fully Convolutional Neural Network

    Full text link
    In this work, a sentiment analysis method that is capable of accepting audio of any length, without being fixed a priori, is proposed. Mel spectrogram and Mel Frequency Cepstral Coefficients are used as audio description methods and a Fully Convolutional Neural Network architecture is proposed as a classifier. The results have been validated using three well known datasets: EMODB, RAVDESS, and TESS. The results obtained were promising, outperforming the state-of-the-art methods. Also, thanks to the fact that the proposed method admits audios of any size, it allows a sentiment analysis to be made in near real time, which is very interesting for a wide range of fields such as call centers, medical consultations, or financial brokers
    corecore