281 research outputs found

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods

    A novel algorithm for integrated control model using swarm robots for intruder detection and rescue schedules

    Get PDF
    Due to the development of computer controlled tools and expansion of integrated computing applications, more and more controller functions are turning to software implementations. A novel controlling algorithm is designed for continuous optimization tasks. However, they are used to thoroughly optimize and apply different areas. The most intelligent swarm algorithms have been designed for continuous optimization problems. However, they have been applied to discreet optimization and applications in different areas. This article gives experimental results on the control of swarm robots with the help of integrated control model (ICM), around its own axis. Such methodology is quite impressive in development of applications for surveillance, path planning, intruder and obstacle detection, model errors in communication to remove uncertainty. The ICM control design performance is based on comprehensive swarm robot model for the identification of actuators from testing data. The same ICM controllers are designed to be compared with the PID controllers in a variety of tests and collected feedback found 12.37%, 8.69% and 12.09% improved on the basis of thrust produced in the propellers for surveillance

    Model-predictive target defense by team of unmanned surface vehicles operating in uncertain environments

    Full text link

    A Model for Perimeter-Defense Problems with Heterogeneous Teams

    Full text link
    We develop a model of the multi-agent perimeter-defense game to calculate how an adaptive defense should be organized. This model is inspired by the human immune system and captures settings such as heterogeneous teams, limited resource allocations, partial observability of the attacking side, and decentralization. An optimal defense, that minimizes the harm under constraints of the energy spent to maintain a large and diverse repertoire, must maintain coverage of the perimeter from a diverse attacker population. The model characterizes how a defense might take advantage of its ability to respond strongly to attackers of the same type but weakly to attackers of diverse types to minimize the number of diverse defenders and while reducing harm. We first study the model from a steady-state perimeter-defense perspective and then extend it to mobile defenders and evolving attacker distributions. The optimal defender distribution is supported on a discrete set and similarly a Kalman filter obtaining local information is able to track a discrete, sometimes unknown, attacker distribution. Simulation experiments are performed to study the efficacy of the model under different constraints.Comment: 8 pages, 6 figure

    On the role and opportunities in teamwork design for advanced multi-robot search systems

    Get PDF
    Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Synthesis of formation control for an aquatic swarm robotics system

    Get PDF
    Formations are the spatial organization of objects or entities according to some predefined pattern. They can be found in nature, in social animals such as fish schools, and insect colonies, where the spontaneous organization into emergent structures takes place. Formations have a multitude of applications such as in military and law enforcement scenarios, where they are used to increase operational performance. The concept is even present in collective sports modalities such as football, which use formations as a strategy to increase teams efficiency. Swarm robotics is an approach for the study of multi-robot systems composed of a large number of simple units, inspired in self-organization in animal societies. These have the potential to conduct tasks too demanding for a single robot operating alone. When applied to the coordination of such type of systems, formations allow for a coordinated motion and enable SRS to increase their sensing efficiency as a whole. In this dissertation, we present a virtual structure formation control synthesis for a multi-robot system. Control is synthesized through the use of evolutionary robotics, from where the desired collective behavior emerges, while displaying key-features such as fault tolerance and robustness. Initial experiments on formation control synthesis were conducted in simulation environment. We later developed an inexpensive aquatic robotic platform in order to conduct experiments in real world conditions. Our results demonstrated that it is possible to synthesize formation control for a multi-robot system making use of evolutionary robotics. The developed robotic platform was used in several scientific studies.As formações consistem na organização de objetos ou entidades de acordo com um padrão pré-definido. Elas podem ser encontradas na natureza, em animais sociais tais como peixes ou colónias de insetos, onde a organização espontânea em estruturas se verifica. As formações aplicam-se em diversos contextos, tais como cenários militares ou de aplicação da lei, onde são utilizadas para aumentar a performance operacional. O conceito está também presente em desportos coletivos tais como o futebol, onde as formações são utilizadas como estratégia para aumentar a eficiência das equipas. Os enxames de robots são uma abordagem para o estudo de sistemas multi-robô compostos de um grande número de unidades simples, inspirado na organização de sociedades animais. Estes têm um elevado potencial na resolução de tarefas demasiado complexas para um único robot. Quando aplicadas na coordenação deste tipo de sistemas, as formações permitem o movimento coordenado e o aumento da sensibilidade do enxame como um todo. Nesta dissertação apresentamos a síntese de controlo de formação para um sistema multi-robô. O controlo é sintetizado através do uso de robótica evolucionária, de onde o comportamento coletivo emerge, demonstrando ainda funcionalidadeschave tais como tolerância a falhas e robustez. As experiências iniciais na síntese de controlo foram realizadas em simulação. Mais tarde foi desenvolvida uma plataforma robótica para a condução de experiências no mundo real. Os nossos resultados demonstram que é possível sintetizar controlo de formação para um sistema multi-robô, utilizando técnicas de robótica evolucionária. A plataforma desenvolvida foi ainda utilizada em diversos estudos científicos
    corecore