62 research outputs found

    Cognition-inspired 5G cellular networks: a review and the road ahead

    Get PDF
    Despite the evolution of cellular networks, spectrum scarcity and the lack of intelligent and autonomous capabilities remain a cause for concern. These problems have resulted in low network capacity, high signaling overhead, inefficient data forwarding, and low scalability, which are expected to persist as the stumbling blocks to deploy, support and scale next-generation applications, including smart city and virtual reality. Fifth-generation (5G) cellular networking, along with its salient operational characteristics - including the cognitive and cooperative capabilities, network virtualization, and traffic offload - can address these limitations to cater to future scenarios characterized by highly heterogeneous, ultra-dense, and highly variable environments. Cognitive radio (CR) and cognition cycle (CC) are key enabling technologies for 5G. CR enables nodes to explore and use underutilized licensed channels; while CC has been embedded in CR nodes to learn new knowledge and adapt to network dynamics. CR and CC have brought advantages to a cognition-inspired 5G cellular network, including addressing the spectrum scarcity problem, promoting interoperation among heterogeneous entities, and providing intelligence and autonomous capabilities to support 5G core operations, such as smart beamforming. In this paper, we present the attributes of 5G and existing state of the art focusing on how CR and CC have been adopted in 5G to provide spectral efficiency, energy efficiency, improved quality of service and experience, and cost efficiency. This main contribution of this paper is to complement recent work by focusing on the networking aspect of CR and CC applied to 5G due to the urgent need to investigate, as well as to further enhance, CR and CC as core mechanisms to support 5G. This paper is aspired to establish a foundation and to spark new research interest in this topic. Open research opportunities and platform implementation are also presented to stimulate new research initiatives in this exciting area

    Interference control and radio spectrum allocation in shared spectrum access

    Get PDF
    With demands on the radio spectrum intensifying, it is necessary to use this scarce resource as efficiently as possible. One way forward is to apply flexible authorization schemes such as shared spectrum access. While such schemes are expected to make additional radio resource available and lower the spectrum access barriers, they also bring new challenges toward effectively dealing with the created extra interference which degrades the performance of networks, limiting the potential gains in a shared use of spectrum. In this thesis, to address the interference issue, different spectrum access schemes and deployment scenarios are investigated.  Firstly, we consider licensed shared access where database-assisted TV white space network architecture is employed to facilitate the controlled access of the secondary system to the TV band. The operation of the secondary system is allowed only if the quality of service experienced by the incumbent users is preserved. Furthermore, the secondary system should benefit itself from utilizing the TV band in licensed shared access mode. One challenge for efficient operation of the licensed secondary system is to control the cross-tier interference generated at the TV receiver, taking into account the self-interference in the secondary system.  Secondly, we consider co-primary shared access where multiple operators share a part of their spectrum. This can be done in two different operational levels, users and cells. The user level is done in the context of D2D communications where two users subscribed to different operators can transmit directly to each other. The cell level allows spectrum sharing between two small cells, e.g., indoor and outdoor small cells, in a dense urban environments. The main challenges for such scenarios are to manage the cross-tier interference generated by other users or cells subscribed to different operators, and to identify the amount of radio spectrum each operator contributes.  There are several approaches to reduce the risk of interference, but they often come at a high price in terms of complexity and signaling overhead. In this thesis, we aim to propose low complexity mechanisms that take interference control and radio spectrum allocation into account. The proposed mechanisms are based on tractable models which characterize the effects of the fundamental design parameters on the system behavior in shared spectrum access. The models are leveraged to capture the statistic of the aggregate interference and its effects on the performance metrics

    コグニティブネットワークとヘテロジニアスネットワークの協調によるスペクトルの効率的利用に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 瀬崎 薫, 東京大学教授 浅見 徹, 東京大学教授 江崎 浩, 東京大学准教授 川原 圭博, 東京大学教授 森川 博之, 東京大学教授 相田 仁University of Tokyo(東京大学

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Techno-economic analysis of a 5G network in Spain

    Get PDF
    Information society and mobile society are two concepts that are both linked and undeniable. The first one refers to the necessity of high amount of information to develop most aspects of our lives, while the second one is related to the importance of mobile devices to get, analyse and use that information. In other words, every mobile device (that embraces not only mobile phones but also many other gadgets) has become a tool that shall interact with information. In order to fulfil those needs, technology has evolved, resulting into faster, more secure and more reliable networks. Needless to say, mobile networks are playing an indispensable role, as long as the society is evolving to a more and more mobile one, as above mentioned. Furthermore, new applications that had not been even imagined years ago must be fulfilled as well (i.e. smart cities). There are many industries that carry the weight of this progress. Companies of various sectors of our economy must develop each piece of the puzzle to ensure that the jigsaw is solved. Another important player should not be forgotten. The regulatory institutions and frameworks must coordinate all this investigations and progress in order to assure the universality, integrity and reachability of itself. The purpose of this document is to consider what the mobile communications needs of today’s society are, what they will be on a short, mid and long run, and how can they be solved. To face this task, the two main actors above mentioned will be taken into account. From the regulatory perspective, the proposals and law measures (i.e. IMT-2020 and new frequency allocations) must be considered, as well as the technical requirements for 5G generation, whether to be considered the subsequent evolution of LTE network or a new network, or even both. From the mobile companies’ point of view, a dense analysis on technical solutions to reach the above mentioned requirements will be followed by an economic analysis to discuss the profitability of the deployment of a 5G network. It must be understood that this study contemplates several scenarios, due to the different possibilities in terms of the spectrum policies and demand evolution in the forthcoming years. To this end, the several scenarios combined with the different cases of use must be taken into account, as well as many other KPIs. The coherent combination and analysis of all this parameters will reveal the requirements’ feasibility amongst varying scenarios.Ingeniería en Tecnologías de Telecomunicació

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions
    corecore