7 research outputs found

    Structured reporting of computed tomography in the staging of colon cancer: a Delphi consensus proposal

    Get PDF
    Background: Structured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports in colon cancer during the staging phase in order to improve communication between the radiologist, members of multidisciplinary teams and patients. Materials and methods: A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. Cronbach’s alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. Results: The final SR version was built by including n = 18 items in the “Patient Clinical Data” section, n = 7 items in the “Clinical Evaluation” section, n = 9 items in the “Imaging Protocol” section and n = 29 items in the “Report” section. Overall, 63 items were included in the final version of the SR. Both in the first and second round, all sections received a higher than good rating: a mean value of 4.6 and range 3.6–4.9 in the first round; a mean value of 5.0 and range 4.9–5 in the second round. In the first round, Cronbach’s alpha (Cα) correlation coefficient was a questionable 0.61. In the first round, the overall mean score of the experts and the sum of scores for the structured report were 4.6 (range 1–5) and 1111 (mean value 74.07, STD 4.85), respectively. In the second round, Cronbach’s alpha (Cα) correlation coefficient was an acceptable 0.70. In the second round, the overall mean score of the experts and the sum of score for structured report were 4.9 (range 4–5) and 1108 (mean value 79.14, STD 1.83), respectively. The overall mean score obtained by the experts in the second round was higher than the overall mean score of the first round, with a lower standard deviation value to underline greater agreement among the experts for the structured report reached in this round. Conclusions: A wide implementation of SR is of critical importance in order to offer referring physicians and patients optimum quality of service and to provide researchers with the best quality data in the context of big data exploitation of available clinical data. Implementation is a complex procedure, requiring mature technology to successfully address the multiple challenges of user-friendliness, organization and interoperability

    Taxonomic and environmental annotation of bacterial 16S rRNA gene sequences via Shannon entropy and database metadata terms

    Get PDF
    Microbial ecology seeks to describe the diversity and distribution of microorganisms in various habitats within the context of environmental variables. High throughput sequencing has greatly boosted the number and scope of projects aiming to study and analyse these organisms, with ever-increasing amounts of data being generated. Amplicon based taxonomic analysis, which determines the presence of microbial taxa in different environments on the basis of marker gene annotations, often uses percentage identity as the main metric to determine sequence similarity against databases. This data is then used to study the distribution of biodiversity as well as the response of microbial communities to stressors. However, the 16S rRNA gene displays varying degrees of sequence conservation along its length and is therefore prone to provide different results depending on the part of 16S rRNA gene used for sequencing and analysis. Furthermore, sequence alignment is primarily performed using the popular BLAST sequence alignment tool, which incurs a great computational performance penalty although newer, more efficient tools are being developed. A new approach that is fast and more accurate is critically needed to process the avalanche of data. Additionally, repositories of environmental metadata can provide contextual information to sequence annotations, potentially enhancing analysis if they can be incorporated into bioinformatics pipelines. The overarching aim of this work was to enhance the taxonomic annotation of bacterial sequences by developing a weighted scheme that utilizes inherent evolutionary conservation in the bacterial 16S rRNA gene sequences and by adding contextual, environmental information pertaining to these sequences in a systematic fashion

    A data-driven approach for quality assessment of radiologic interpretations

    No full text
    Given the increasing emphasis on delivering high-quality, cost-efficient healthcare, improved methodologies are needed to measure the accuracy and utility of ordered diagnostic examinations in achieving the appropriate diagnosis. Here, we present a data-driven approach for performing automated quality assessment of radiologic interpretations using other clinical information (e.g., pathology) as a reference standard for individual radiologists, subspecialty sections, imaging modalities, and entire departments. Downstream diagnostic conclusions from the electronic medical record are utilized as “truth” to which upstream diagnoses generated by radiology are compared. The described system automatically extracts and compares patient medical data to characterize concordance between clinical sources. Initial results are presented in the context of breast imaging, matching 18 101 radiologic interpretations with 301 pathology diagnoses and achieving a precision and recall of 84% and 92%, respectively. The presented data-driven method highlights the challenges of integrating multiple data sources and the application of information extraction tools to facilitate healthcare quality improvement

    A data-driven approach for quality assessment of radiologic interpretations

    No full text
    Given the increasing emphasis on delivering high-quality, cost-efficient healthcare, improved methodologies are needed to measure the accuracy and utility of ordered diagnostic examinations in achieving the appropriate diagnosis. Here, we present a data-driven approach for performing automated quality assessment of radiologic interpretations using other clinical information (e.g., pathology) as a reference standard for individual radiologists, subspecialty sections, imaging modalities, and entire departments. Downstream diagnostic conclusions from the electronic medical record are utilized as “truth” to which upstream diagnoses generated by radiology are compared. The described system automatically extracts and compares patient medical data to characterize concordance between clinical sources. Initial results are presented in the context of breast imaging, matching 18 101 radiologic interpretations with 301 pathology diagnoses and achieving a precision and recall of 84% and 92%, respectively. The presented data-driven method highlights the challenges of integrating multiple data sources and the application of information extraction tools to facilitate healthcare quality improvement
    corecore