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Abstract	

	

Microbial	 ecology	 seeks	 to	 describe	 the	 diversity	 and	 distribution	 of	

microorganisms	in	various	habitats	within	the	context	of	environmental	variables.	

High	throughput	sequencing	has	greatly	boosted	the	number	and	scope	of	projects	

aiming	 to	 study	and	analyse	 these	organisms,	with	ever-increasing	amounts	of	

data	being	generated.	Amplicon	based	taxonomic	analysis,	which	determines	the	

presence	of	microbial	taxa	in	different	environments	on	the	basis	of	marker	gene	

annotations,	 often	 uses	 percentage	 identity	 as	 the	 main	 metric	 to	 determine	

sequence	 similarity	 against	 databases.	 This	 data	 is	 then	 used	 to	 study	 the	

distribution	of	biodiversity	as	well	as	the	response	of	microbial	communities	to	

stressors.	 However,	 the	 16S	 rRNA	 gene	 displays	 varying	 degrees	 of	 sequence	

conservation	along	its	length	and	is	therefore	prone	to	provide	different	results	

depending	 on	 the	 part	 of	 16S	 rRNA	 gene	 used	 for	 sequencing	 and	 analysis.	

Furthermore,	 sequence	 alignment	 is	 primarily	 performed	 using	 the	 popular	

BLAST	sequence	alignment	tool,	which	incurs	a	great	computational	performance	

penalty	although	newer,	more	efficient	tools	are	being	developed.	A	new	approach	

that	is	fast	and	more	accurate	is	critically	needed	to	process	the	avalanche	of	data.	

Additionally,	 repositories	 of	 environmental	 metadata	 can	 provide	 contextual	

information	to	sequence	annotations,	potentially	enhancing	analysis	if	they	can	be	

incorporated	into	bioinformatics	pipelines.	The	overarching	aim	of	this	work	was	

to	 enhance	 the	 taxonomic	 annotation	 of	 bacterial	 sequences	 by	 developing	 a	

weighted	scheme	that	utilizes	inherent	evolutionary	conservation	in	the	bacterial	
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16S	rRNA	gene	sequences	and	by	adding	contextual,	environmental	information	

pertaining	to	these	sequences	in	a	systematic	fashion.	

	

In	 Chapter	 2,	 we	 sought	 to	 develop	 a	 new	 sequence	 similarity	 metric	 by	

quantifying	 evolutionary	 conservation	 within	 the	 bacterial	 16S	 rRNA	 gene	

sequences	via	Shannon	entropy	and	comparing	it	against	the	commonly	applied	

percentage	identity.	The	SILVA	16S	rRNA	reference	database	(Quast	et	al.,	2013)	

was	used	for	in-silico	comparison	between	both	approaches	by	way	of	emulating	

Illumina	 sequencing	 technology	 using	 simulated	 datasets.	 The	 new	 approach	

showed	better	taxonomic	annotation	capability	at	higher	taxa	levels	compared	to	

the	 percentage	 identity	metric,	 especially	 at	 family	 and	 class	 level.	 By	 directly	

utilizing	 the	 evolutionary	 conservation	 information	 available	 in	 bacterial	 16S	

rRNA	 gene	 sequences,	 the	 new	 approach	 provided	 an	 effective	 measure	 of	

sequence	 similarity.	This	 is	 especially	 important	given	 that	percentage	 identity	

metric	omits	this	information.	

	

In	Chapter	3,	the	aim	was	to	develop	a	new	bioinformatics	pipeline	based	on	the	

Shannon	entropy	metric	developed	in	Chapter	1.		Analysis	was	performed	on	real	

amplicon	datasets	belonging	to	 the	 sugarcane	biome	using	 the	new	pipeline	as	

well	 as	 an	 established	 pipeline.	 Furthermore,	 for	 the	 new	 pipeline,	 an	 OTU-

independent	 approach	 was	 followed	 to	 see	 if	 analysing	 each	 sequence	 could	

improve	 the	overall	performance	of	 the	 system.	Diversity	 results	were	used	 to	

compare	both	pipelines,	under	the	context	of	OTU-based	and	OTU	independent	

approaches.	 Results	 show	 that	 the	 new	pipeline	 is	 able	 to	 effectively	 delineate	

similar	ecological	patterns	as	established	pipelines.	For	OTU-based	approaches,	
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TaxaSE	illustrated	similar	alpha	diversity	and	beta	diversity	patterns	as	QIIME	at	

97%	OTU	similarity,	while	for	an	OTU-independent	approach;	TaxaSE	was	able	to	

provide	more	taxonomic	annotations	for	the	datasets.	

	

In	Chapter	4,	the	aim	was	to	develop	an	environmental	annotation	enhancement	

to	the	bioinformatics	pipeline	developed	in	chapter	3.	The	SEQenv	pipeline	was	

integrated	and	enhanced	via	development	of	an	environmentally	contextual	view	

of	ecological	annotation	using	an	extension.	While	SEQenv	only	provides	a	list	of	

environmental	 terms,	 the	 newly	 developed	 extension	 enabled	 a	 taxa	 centric	

approach	 to	 environmental	 annotations.	 This	 allowed	 for	 a	 contextual	 view	of	

abundance	 of	 taxa	 on	 an	 environmental	 term	 basis	 as	well	 as	 quantifying	 the	

distribution	of	various	environments	the	taxa	may	come	from.	The	results	show	

that	for	sequences	that	are	present	across	multiple	sub-habitats,	their	abundance	

varies	 significantly	 among	 them.	 Additionally,	 some	 taxa,	 which	 did	 not	

demonstrate	a	cosmopolitan	distribution,	were	found	to	be	present	in	a	few	sub-

habitats.	 The	 environmental	 annotation	 of	 these	 sequences	 was	 confirmed	 by	

previous	 literature	available	on	the	habitats	 for	 these	microbes.	Hence	the	new	

extension	 provided	 a	 more	 direct	 view	 of	 taxa	 distribution	 across	 various	

environments	 as	well	 as	 illustrated	 environmental	 distribution	 for	 each	 taxon,	

significantly	improving	upon	the	SEQenv	pipeline.		

	

Overall,	 the	new	pipeline	presented	 in	this	 thesis	provides	a	novel	approach	to	

annotate	bacterial	16S	rRNA	gene	sequences	by	way	of	combining	a	new	approach	

to	 taxonomic	 annotation	with	 contextual	 environmental	 information.	 The	 new	
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pipeline	 can	 be	 a	 valuable	 tool	 for	 biologists	 aiming	 to	 understand	microbial	

communities	in	a	more	effective	manner.	



	 1	

Chapter		1: 	 	 General	Introduction	

1.1	 Importance	of	Microbial	Community	Analysis	

	

Microbes	play	a	highly	important	role	in	sustaining	life	on	planet	Earth	performing	

functions	 such	 as	 driving	 nutrient	 cycles	 (Venter	 et	 al.,	 2004)	 and	 influencing	

human	 health	 conditions	 (Handelsman,	 2004).	 Furthermore,	 due	 to	 their	

versatility	and	resilience,	they	occupy	a	wide	variety	of	environments	which	range	

from	deep-sea	vents,	having	a	temperature	in	excess	of	300°C,	to	rocks	found	far	

deep	 beneath	 earth’s	 surface	 (Wooley,	 Godzik,	 &	 Friedberg,	 2010)	 and	 are	

ubiquitous	in	habitats	such	as	soil,	the	ocean	and	the	mammalian	gut.	Determining	

the	diversity	and	 taxonomic	 composition	of	microbial	 communities	 is	 a	 central	

task	in	every	project	that	aims	to	understand	the	impact	of	microbial	communities	

on	environmental	systems	and	the	factors,	which	control	microbial	diversity.		

	

Taxonomic	 profiling	 of	 microbial	 communities	 is	 used	 to	 examine	 the	 species	

composition	and	relative	abundance	of	the	various	bacteria	that	are	present	for	a	

given	habitat.	Despite	the	widespread	distribution	and	ecological	importance	of	

microbes,	very	little	is	known	about	their	biology,	given	that	only	a	small	fraction	

can	be	 cultured	under	 laboratory	 conditions	 (Nikolaki	&	Tsiamis,	2013)	where	

standard	culturing	techniques	account	only	for	1%	or	less	of	bacterial	diversity	in	

most	 environmental	 samples	 (Riesenfeld,	 Schloss,	 &	 Handelsman,	 2004).	

However,	 next	 generation	DNA	 sequencing	 technology	has	 greatly	 boosted	 the	

number	and	scope	of	ecological	projects	and	produces	a	huge	amount	of	microbial	



	 2	

data	without	the	need	of	culturing.		However,	it	produces	short	read	sequencing	

data	of	a	few	hundred	base	pairs	in	length.	This	illustrates	the	need	for	enhanced	

and	 fast	 approaches	 towards	 analysis	 but	 also	 appropriate	 taxonomical	

identification	 based	 on	 more	 discriminatory	 approach	 than	 current	 methods,	

especially	as	more	and	more	data	is	being	generated.	

	

1.2	 Taxonomic	Annotation	using	Conserved	Marker	Genes	

	

Measuring	 species	 diversity	 is	 often	 the	 first	 step	 towards	 understanding	 the	

microbial	community	present	in	an	environmental	sample.	Taxonomic	annotation	

helps	categorize	and	quantify	microbial	diversity	in	terms	of	species	richness	and	

relative	abundance	(Knights	et	al.,	2011),	using	diversity	indexes	such	as	Shannon	

diversity	and	Simpson	diversity	(Simpson,	1949;	Whittaker,	1972).	Researchers	

have	relied	on	the	16S	rRNA	gene,	a	1500	to	1600	bp	long	sequence,	the	usage	of	

which	was	pioneered	by	C.	R.	Woese,	due	to	 its	presence	across	all	prokaryotic	

species,	including	bacteria.	It	displays	enough	sequence	diversity	for	phylogenetic	

classification	 and	 assessing	 the	 genetic	 diversity	 of	 environmental	 samples	

(Woese,	1987).	The	gene	has	been	widely	used	for	sequencing	and	identification	

of	many	bacterial	isolates	and	to	profile	uncultured	microbial	communities	from	

diverse	 habitats	 (Gillian	 C.	 Baker,	 Gaffar,	 Cowan,	 &	 Suharto,	 2001;	 Grosskopf,	

Janssen,	 &	 Liesack,	 1998;	 McInerney,	 Wilkinson,	 Patching,	 Embley,	 &	 Powell,	

1995).	
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Given	 the	 immensely	 important	 role	microbes	 play	 in	 ecosystem	 function	 and	

biochemical	 cycles	 (Falkowski,	 Fenchel,	 &	 Delong,	 2008),	 various	 surveys	 of	

diversity	have	been	conducted	using	16S	rRNA	gene	sequences	to	elucidate	the	

impact	of	microbial	communities	on	their	environment	and	habitats.	This	includes	

exploration	 of	 the	 diversity	 and	 functional	 characteristics	 of	 soil	 microbial	

communities	 across	 various	 biomes	 (Noah	 Fierer	 et	 al.,	 2012)	 and	 the	

geographical	distribution	of	marine	bacterial	communities	(Ghiglione	et	al.,	2012).	

Furthermore,	changes	 in	environmental	 factors	such	as	 temperature	have	been	

shown	 to	 produce	 variation	 in	 the	 structure	 of	 bacterial	 communities	 in	 soil	

(Xiong	et	 al.,	 2014)	and	especially	permafrost	(Mackelprang,	 Saleska,	 Jacobsen,	

Jansson,	&	Taş,	2016),	where	an	increase	in	temperature	due	to	climate	change	

may	 likely	 result	 in	 significant	 losses	 in	soil	 carbon	 (McCalley	et	 al.,	 2014)	and	

therefore	reshape	the	environment	(Gibbons	&	Gilbert,	2015).			

	

Microbes	also	play	a	significantly	important	role	in	human	health.	Various	studies	

have	 been	 conducted	 to	 determine	 the	 composition	 of	 gut	microbiota	 and	 the	

impact	they	have	on	various	aspect	of	human	health.	They	have	been	shown	to	be	

crucial	 for	 protection	 against	 food	 allergies	 (Stefka	 et	 al.,	 2014)	 as	 well	 as	

autoimmune	 disorders	 (Hooper,	 Littman,	 &	 Macpherson,	 2012).	 Additionally,	

recent	research	has	revealed	the	role	gut	microbiome	play	in	development	of	the	

central	 nervous	 system	 (Sharon,	 Sampson,	 Geschwind,	 &	 Mazmanian,	 2016).	

Furthermore,	various	diseases	such	as	asthma	(von	Mutius,	2016),	and	rheumatic	

autoimmune	 diseases	 (Coit	 &	 Sawalha,	 2016)	 are	 directly	 impacted	 by	 the	

composition	 of	 the	 human	 microbiome,	 in	 addition	 to	 being	 an	 important	
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contributing	 factor	 to	 the	 development	 of	 gastric	 cancer	 (Wroblewski,	 Peek,	 &	

Coburn,	2016).		

	

The	tree	of	 life	where	the	phylogenetic	relationships	between	bacteria,	archaea	

and	 eukaryotes,	 are	 reconstructed	 based	 on	 the	 small	 ribosomal	 16S	 rRNA	 is	

shown	in	Figure	1-1	and	illustrates	the	evolutionary	relationship	between	these	

different	 kingdoms.	 	 Culture	 free	 16S	 rRNA	 gene	 sequence-based	 tools	 have	

significantly	expanded	our	view	of	microbial	diversity,	where	polymerase	chain	

reaction	 or	 PCR	 amplification	of	 16S	 rRNA	 gene	 sequences	 has	 provided	 great	

insight	into	our	understanding	of	microbial	communities,	as	it	enabled	sequencing	

of	those	microbial	genes,	which	are	as	yet	uncultivable	or	exist	in	extreme	habitats	

(G.	C.	Baker,	Smith,	&	Cowan,	2003).	
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Figure	1–1:	Phylogenetic	Tree	of	Life,	illustrating	the	three	main	branches	of		

Bacteria,	Archaea	and	Eucarya.	Reproduced	from	(Nair,	2012)	

	

1.2.1	 Amplicon	Sequencing	of	16S	rRNA	Gene	Sequences	

	

Ideally,	the	whole	16S	rRNA	gene	should	be	sequenced	for	the	study	of	sequences	

isolated	directly	from	the	environment,	also	known	as	ecogenomic	surveys,	but	

currently	 the	read	 length	of	next	generation	sequencing	technologies	precludes	
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this	approach	and	thus	most	surveys	aim	at	characterisation	of	selected	hyper-

variable	 regions	 as	 these	 can	 effectively	 distinguish	 between	 different	 taxa	

(Santamaria	et	al.,	2012),	due	to	the	fact	that	nucleotides	in	these	regions	change	

more	rapidly	between	sequences.	Nine	hypervariable	regions	(V1-V9)	are	present	

(Figure	1-2),	each	exhibiting	a	different	degree	of	sequence	diversity	and	no	single	

region	may	differentiate	among	all	bacteria	(Chakravorty,	Helb,	Burday,	Connell,	

&	Alland,	 2007).	Hence	 to	 analyse	 the	 taxonomic	 content	 of	 an	 environmental	

sample,	biologists	have	typically	used	amplicon	sequencing	in	which	a	particular	

variable	 region	 is	 amplified,	 as	 conserved	 regions	 in	 most	 bacterial	 DNA	

sequences	 flank	 these	 regions,	 which	 enables	 PCR	 amplification	 of	 target	

sequencing	using	primers.	DNA	fragments	of	the	16S	rRNA	gene	can	be	selectively	

amplified	 from	mixed	 DNA,	 leading	 to	 significant	 improvement	 in	 sequencing	

throughput	 (Amann,	 Ludwig,	 &	 Schleifer,	 1995),	 as	 only	 genes	 of	 interest	 are	

amplified	for	DNA	sequencing.		There	is	already	a	number	of	primers	being	used	

for	amplification	and	sequencing,	with	some	of	them	being	referred	as	universal	

primers	 as	 they	 provide	 coverage	 of	 a	 majority	 of	 16S	 rRNA	 gene	 sequences	

(Watanabe,	Kodama,	&	Harayama,	2001).		
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Figure	 1–2:	 16S	 rRNA	 gene	 composition	 where	 variable	 regions	 are	

highlighted	 in	grey	while	conserved	regions	of	 the	gene	are	 illustrated	 in	

green.	Reproduced	from	(Alimetrics)	

	

A	 second-generation	 sequencing	 system,	 the	 Illumina	 platform,	 is	 currently	

preferred	for	amplicon	sequencing	due	to	its	low	cost	and	deeper	coverage	with	

small	read	lengths,	going	up	to	250bp,	and	consequently	is	the	most	widely	used	

sequencing	 platform	 (Logares	 et	 al.,	 2014).	 	 Given	 that	 the	 read	 length	 is	

increasing	(Laver	et	al.,	2015),	addition	of	other	regions	for	analysis	may	become	

more	useful	as	more	 information	can	now	be	derived.	Other	second-generation	

sequencing	platforms	include	Ion	Torrent,	which	generates	a	read	length	of	200	

bp	and	more	(Quail	et	al.,	2012)	but	suffers	from	homopolymer	errors	and	Roche	

454,	which	generates	a	read	length	of	800	bp	or	more	(Loman	et	al.,	2012)	but	is	

expensive	to	run.	

	

Newer	 sequencing	 platforms	 have	 been	 developed,	 known	 as	 third	 generation	

sequencing	systems.	This	include	PacBio	that	can	produce	an	average	read	length	

of	2500bp	or	more,	and	some	longer	reads	reaching	10000bp	(Au,	Underwood,	

Lee,	&	Wong,	2012),	as	well	as	Oxford	Nanopore,	where	read	length	can	be	tens	of	
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kilobases	on	average	(Laver	et	al.,	2015).		However,	these	platforms	exhibit	a	high	

error	 rate,	 which	 can	 reach	 up	 to	 40%,	 and	 may	 require	 data	 from	 second-

generation	 sequencing	 system,	 such	 as	 Illumina	 to	 bring	 the	 error	 down	 to	 a	

respectable	 level,	 which	 then	 reduces	 their	 throughput.	 Hence,	 the	 Illumina	

platform	 is	 still	 applicable	 for	 sequencing	due	 to	 its	high	 throughput,	 very	 low	

error	rate	(2%)	and	for	use	in	assisting	third-generation	sequencing	technologies	

(Au	et	al.,	2012).	

	

1.2.2	 Reference	Databases	

	

Various	new	taxonomic	groups	have	been	discovered	as	a	result	of	ecogenomic	

surveys	(Hugenholtz,	Pitulle,	Hershberger,	&	Pace,	1998;	McInerney	et	al.,	1995;	

Nielsen	et	al.,	1999)	and	consequently	 the	list	of	16S	rRNA	gene	sequences	has	

been	growing,	with	many	of	16S	rRNA	reference	sequences	in	publically	available	

databases,	such	as	SILVA	(Quast	et	al.,	2013),	Ribosomal	Database	Project	(Cole	et	

al.,	 2014)	or	 Greengenes	 (DeSantis	 et	 al.,	 2006).	 Reference	 sequences	 are	DNA	

sequences	considered	as	representative	of	the	species	they	belong	to	and	typically	

follow	a	stringent	process	to	determine	their	validity.	These	databases	consist	of	

millions	of	sequences	and	are	being	readily	used	in	many	ecological	projects	to	

determine	the	taxonomic	diversity	of	given	environmental	samples	such	as	human	

intestinal	 ecosystem	 (Ritari,	 Salojärvi,	 Lahti,	&	 de	Vos,	 2015),	deep	 sea	 habitat	

(Sogin	et	 al.,	 2006)	and	soil	 (Johannes	Rousk	et	 al.,	 2010).	Both	aligned,	where	

reference	 sequences	 are	 aligned	 together,	 and	 non-aligned	 versions,	 where	
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reference	 sequences	 are	 provided	 without	 alignment,	 of	 these	 databases	 are	

available	from	them.	

	

SILVA	provides	quality	 checked	and	 regularly	updated	databases	of	both	 small	

(16S,	 18S)	 and	 large	 (23S,	 28S)	 ribosomal	 RNA	 gene	 sequences	 belonging	 to	

bacteria,	archaea	and	eukaryotes.		Two	subsets	are	available;	the	first	named	as	

SSU-Parc,	which	is	intended	for	biodiversity	analysis	and	SSU-Ref,	which	consists	

of	nearly	full-length	sequences,	is	intended	for	designing	probes	and	phylogenetic	

analysis	(Quast	et	al.,	2013;	Santamaria	et	al.,	2012).	The	database	is	built	upon	

the	ARB	software,	which	is	used	for	sequence	database	management	and	analysis	

(Ludwig	et	al.,	2004).	

	

Greengenes	 provides	 phylogenetic	 classification	 of	 16S	 rRNA	 gene	 sequences	

from	GenBank	(Benson	et	al.,	2012)	and	uses	taxonomy	from	NCBI	and	Ribosomal	

Database	 Project	 (Cole	 et	 al.,	 2014)	 as	 well	 as	 information	 provided	 by	

independent	 curators	 such	 as	 Phil	 Hugenholtz	 (Hugenholtz,	 2002),	 Wolfgang	

Ludwig	(Amann	et	al.,	1995),	and	Norman	Pace	(Pace,	1997).	The	database	has	

high	quality	sequences	and	is	compatible	with	ARB	software.		

	

The	 Ribosomal	 Database	 Project	 or	 RDP	 database	 provides	 another	 source	 of	

taxonomically	 annotated	 reference	 16S	 rRNA	 gene	 sequences,	 which	 are	 also	

available	 from	 International	 Nucleotide	 Sequence	 Database	 Collaboration	

(INSDC)	(Balvočiūtė	&	Huson,	2017).	The	database	consists	of	both	bacterial	and	

archaeal	 sequences	 with	 most	 of	 the	 sequences	 being	 incomplete,	 which	 are	

derived	 from	 sequencing	 PCR	 amplification	 products	 (Cole	 et	 al.,	 2014).	 Other	
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databases	include	NCBI	and	GenBank	(Benson	et	al.,	2012).	NCBI	provides	a	non-

curated,	 authoritative	 classification	of	 sequences	and	 taxonomy	which	 includes	

prokaryotic	 and	eukaryotic	species	 (Santamaria	et	 al.,	 2012).	The	 choice	of	 the	

database	is	dependent	on	the	tools	provided	as	well	as	the	quality	and	quantity	of	

sequences.	Considering	that	 the	taxonomy	may	differ	between	these	databases,	

the	 selection	 of	 database	 plays	 an	 extremely	 important	 role	 in	 downstream	

analysis.	Greengenes	and	SILVA	databases	are	most	prevalent	for	16S	rRNA	gene	

sequence	based	analysis.	

	

1.2.3	 Preprocessing	of	DNA	Sequence	Data	

	

Before	 accurate	 analysis	 can	 take	 place,	 the	 sequences	 need	 to	 undergo	

preprocessing	 to	 remove	 spurious	 data.	 This	 includes	 chimera	 detection	 and	

removal,	sequence	trimming	and	merging.	Chimeras	are	artificial	recombinants	

between	two	or	more	sequences	and	are	formed	during	PCR	amplification,	where	

prematurely	terminated	DNA	fragments	re-anneal	to	another	DNA.	Given	that	the	

presence	 of	 these	 sequences	 makes	 it	 difficult	 to	 differentiate	 between	 real	

sequences	 from	recombinants	as	 the	breakpoints	can	occur	at	any	location	and	

the	 next	 generation	 sequencing	 platform	 generate	 short	 sequences,	 making	 it	

harder	to	distinguish	the	chimera	from	its	parents.	 	Hence	an	overestimation	of	

microbial	 diversity	 is	 observed	 (M.	 Kim	 et	 al.,	 2013).	 Hence	 their	 removal	 is	

important	 for	 proper	 analysis.	 Popular	 tools	 include	 UCHIME	 (Edgar,	 Haas,	

Clemente,	 Quince,	 &	 Knight,	 2011),	 and	 ChimeraSlayer	 (Haas	 et	 al.,	 2011).	

Removal	of	chimera	is	hence	essential	for	downstream	analysis.	
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Raw	DNA	sequences	obtained	from	sequencing	machines	vary	in	per-base	quality,	

with	base-call	errors	being	observed	in	these	sequences.	The	quality	of	a	sequence	

is	determined	using	a	PHRED	score,	which	represent	the	probability	of	a	base	call	

error	at	every	nucleotide	base	in	the	sequence	and	is	observed	to	decrease	across	

the	length	of	the	sequence	read	(Shrestha	et	al.,	2014).		Various	tools,	such	as	Seqtk	

(Li,	2017),	QTrim	(Shrestha	et	al.,	2014)	and	Fastx	(Blankenberg	et	al.,	2010)	are	

used	 for	 trimming	 low	quality	bases	 from	 the	 sequences	and	are	 invaluable	 in	

reducing	erroneous	data.	

	

Next	generation	technologies	like	Illumina	sequencing	produce	paired-end	reads	

which	can	be	merged	together	to	form	a	longer	sequence.		The	overlapping	region	

between	these	reads	can	correct	for	sequencing	errors	and	improve	the	quality	of	

the	resulting	DNA	sequence	(J.	Zhang,	Kobert,	Flouri,	&	Stamatakis,	2014).	FLASH	

(Magoc	&	Salzberg,	2011)	and	PANDAseq	(Masella,	Bartram,	Truszkowski,	Brown,	

&	 Neufeld,	 2012)	 are	 some	 of	 the	 tools	 used	 for	 paired-end	 read	 merging.	

Furthermore,	downstream	analysis	also	benefit	 from	this	approach	as	accuracy	

improves	with	length	of	the	sequence.	

	

Lastly,	 newer	 noise	 reduction	methods	 can	 further	 reduce	 spurious	 reads	 and	

improve	downstream	analysis.	Some	of	these	tools,	such	as	DADA2	(Callahan	et	

al.,	 2016)	 can	 model	 and	 correct	 Illumina-sequenced	 amplicon	 errors.	 It	 can	

resolve	differences	of	as	little	as	a	single	nucleotide	and	produces	fewer	incorrect	

sequences	than	other	methods.		
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1.2.4	 Sequence	Aligners	

	

Sequence	alignment	is	an	integral	part	of	a	reference-based	taxonomic	annotation	

pipeline	where	alignment	is	performed	between	the	reference	database	and	query	

sequence.	As	reads	are	aligned	against	reference	sequences,	a	clearer	picture	of	

microbial	 species	 composition	 and	 abundance	 is	 realised	 (Reinert,	 Langmead,	

Weese,	&	Evers,	2015).		

	

One	of	the	earliest	aligners	used	was	the	BLAST	algorithm	(Altschul,	Gish,	Miller,	

Myers,	&	Lipman,	1990).	Useful	for	both	nucleotide	and	protein	sequences,	BLAST	

has	been	used	in	a	wide	variety	of	ecological	projects.	However,	the	advent	of	next-

generation	 sequencing	 has	 led	 to	 an	 avalanche	 of	 sequence	 data	 (Kostadinov,	

2011),	which	needs	to	be	analysed	in	a	fast,	effective	manner.	BLAST	was	found	to	

be	 not	 efficient	 enough	 to	 analyse	 these	 datasets	 and	 therefore	 new	 sequence	

aligners	continue	to	be	developed	(Reinert	et	al.,	2015).	These	aligners	are	many	

times	 faster	 than	 BLAST	 and	 are	 being	 readily	 used	 in	 various	 bioinformatics	

pipelines.	Notable	examples	include	Usearch	(Edgar,	2010),	bowtie2	(Langmead	

&	Salzberg,	2012)	and	BLAT	(Kent,	2002).		These	aligners	use	novel	approaches	

to	sequence	alignment,	by	way	of	k-mer,	which	are	small	substrings	of	length	k	

and	are	computationally	less	expensive	for	sequence	analysis,	and	indexing	based	

approaches	that	are	computationally	advantageous	(Mielczarek	&	Szyda,	2016).	

	

1.2.5	 The	Percentage	Identity	Metric	
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Given	 the	 large	 number	 of	 sequences	 being	 produced	 and	 the	 computational	

requirements	necessary	to	analyse	them,	a	preliminary	step	is	performed	where	

DNA	sequences	are	aligned	and	compared	and	those	sequences	that	are	similar	to	

each	 other	 are	 clustered	 together,	 and	 classified	 as	 belonging	 to	 the	 same	

operational	 taxonomic	 unit	 or	 OTU.	 Most	 software	 that	 perform	 taxonomic	

annotation	align	these	16S	rRNA	OTUs	against	database	reference	sequences	in	

which	the	sample	sequence	is	compared	with	taxonomically	annotated	reference	

sequences	 (Santamaria	 et	 al.,	 2012).	 Sequence	 similarity	 is	 determined	 by	 a	

percentage	identity	metric	where	sequences	are	scored	on	the	number	of	matches	

between	 reference	 and	 query	 sequences	 and	 penalised	 for	 any	 gaps	 in	 the	

alignment	(Edgar,	2010).	A	match	is	scored	where	the	specific	nucleotide	base	on	

both	 query	 sequence	 and	 reference	 sequence	match,	 and	 a	mismatch	 is	where	

these	are	different.	Insertions	and	deletions	are	accounted	by	gap	in	the	reference	

sequence	and	in	the	query	sequence	respectively.	In	this	context,	typically	99%	

sequence	similarity	is	considered	as	a	threshold	for	species	while	97%	similarity	

is	 for	 genus	 level,	 with	 family	 at	 95%,	 order	 at	 90%,	 class	 at	 85%	 and	 finally	

phylum	at	80%	(Drancourt	et	al.,	2000;	Lanzen	et	al.,	2012).	

	

1.2.6	 Popular	Taxonomic	Annotation	Pipelines	

	

Popular	 tools	 that	 perform	 taxonomic	 annotation	 of	 microbial	 communities	

include	 MG-RAST	 (Aziz	 et	 al.,	 2008),	 MEGAN	 (Huson,	 Richter,	 Mitra,	 Auch,	 &	

Schuster,	2009),	QIIME	(Caporaso	et	al.,	2010)	and	MOTHUR	(Schloss	et	al.,	2009).	

Almost	 all	 of	 these	 have	 traditionally	 been	 dependent	 on	 the	BLAST	 algorithm	
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(Altschul	 et	 al.,	 1990)	 for	 sequence	 alignment,	 although	 newer	 versions	 have	

begun	a	shift	to	other	algorithms	such	as	USEARCH	(Edgar,	2010)	and	BLAT	(Kent,	

2002),	 e.g.	MEGAN	can	use	DIAMOND	(Buchfink,	Xie,	&	Huson,	2015),	which	 is	

significantly	faster,	due	to	the	significantly	higher	computational	requirement	for	

BLAST	and	a	need	for	high	throughput.	

	

MG-RAST	provides	an	online	service	for	phylogenetic	and	functional	annotation	

of	 metagenomes.	 For	 rRNA	 sequences,	 the	 service	 uses	 the	 QIIME	 pipeline	

(Caporaso	 et	 al.,	 2010).	 	 MEGAN,	which	 stands	 for	 Metagenome	 analyser,	 is	 a	

stand-alone	 tool	 that	 is	 primarily	 aimed	 towards	 taxonomic	 annotation	 of	

metagenomes	and	uses	the	NCBI-NR	database	and	BLAST,	in	conjunction	with	a	

Lowest	Common	Ancestor	(LCA)	algorithm,	for	taxonomic	assignments	(Huson	et	

al.,	2009).	QIIME	or	Quantitative	Insights	Into	Microbial	Ecology	is	an	extensive	

suite	 of	 bioinformatics	 tools	 for	 analysis	 of	 microbial	 communities,	 which	

combines	 several	 taxonomic	 assignment	 tools	 like	 UPARSE	 and	 the	 RDP	

annotation	 tool	 (Caporaso	et	 al.,	 2010;	Cole	et	 al.,	 2014;	Edgar,	2013).	For	16S	

rRNA	gene	sequences,	the	Greengenes	database	(DeSantis	et	al.,	2006)	is	typically	

used	for	taxonomic	annotation,	although	other	databases	including	SILVA	(Quast	

et	al.,	2013)	are	also	available	for	QIIME.	A	wide	variety	of	statistical	analysis	can	

be	performed	in	the	software.	Lastly,	similar	to	QIIME,	MOTHUR	(Schloss	et	al.,	

2009)	 is	 another	 suite	 of	 bioinformatics	 tools	 for	 the	 annotation	 of	 taxonomic	

marker	genes	and	includes	a	variety	of	analysis	tools.	These	tools	primarily	use	

the	 percentage	 identity	 metric	 for	 sequence	 similarity	 measurements.	 Online	

services	may	be	slow	depending	on	the	usage.	Lastly,	environmental	annotation	

capability	is	not	available	under	these	pipelines.	
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1.2.7	 Phylogenetic	Placement	Algorithms	
	

Algorithms	such	as	pplacer	(Matsen,	Kodner,	&	Armbrust,	2010)	or	RAxML	EPA		

(Berger,	Krompass,	&	Stamatakis,	2011)	provide	means	to	explore	evolutionary	

origin	of	query	sequences	by	way	of	phylogenetic	placement.	By	utilizing	models	

of	rate	heterogeneity	among	sites	such	as	Gamma-distributed	rate	heterogeneity	

(Yang,	1994)	or	the	CAT	model	of	site-specific	character	frequencies	(Lartillot	&	

Philippe,	2004),	these	tools	are	able	to	determine	the	evolutionary	relations	of	the	

query	 sequences	 with	 other	 sequences	 in	 a	 phylogenetic	 tree	 and	 therefore	

perform	 fine-scale	 analysis	 of	 sequences	 for	 comparative	 and	 evolutionary	

information	using	a	phylogenetic	distance	metric	(Matsen	et	al.,	2010).	The	CAT	

model	 is	 faster	 and	 uses	 less	 memory	 than	 Gamma-distributed	 model,	 while	

producing	 slightly	 better	 Gamma	 likelihood	 values,	 making	 it	 computationally	

feasible	to	analyse	large	trees	(Stamatakis,	2006).	Quick	and	efficient,	these	tools	

are	able	to	place	thousands	of	query	sequences	onto	a	phylogenetic	tree	in	linear	

time	and	memory	complexity	and	hence	are	 suitable	 for	analysis	of	 large-scale	

metagenomic	datasets.		

	

However,	 these	 methods	 differ	 from	 traditional	 taxonomic	 annotation	

approaches,	 as	 they	 do	 not	 assign	 names	 to	 query	 sequences.	 Furthermore,	

phylogenetic	placement	is	designed	to	work	with	a	single	reference	phylogenetic	

tree,	built	using	a	single	alignment	and	hence	is	only	suitable	for	single	gene	based	

analysis.	
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1.3	 Environmental	Annotation	of	Sequences	

	

Microorganisms	are	genetically	diverse	and	occupy	every	known	habitat.	While	

taxonomic	annotation	tools	answer	the	question	“who	is	there?”	they	are	unable	

to	 provide	 environmental	 context	 for	 these	 taxonomic	 annotations.	 This	

information	 is	 especially	 important	 given	 that	 microorganisms	 are	 found	 in	 a	

variety	of	environments	(generalists),	while	others	occupy	a	specific	niche	defined	

by	key	environmental	parameters	(specialists)	(Kuenen,	1983;	Monard,	Gantner,	

Bertilsson,	Hallin,	&	Stenlid,	2016).	Understanding	how	the	environment	selects	

particular	taxa	and	the	diversity	patterns	that	emerge	as	a	result	of	environmental	

filtering,	 can	 dramatically	 improve	 our	 ability	 to	 analyse	 any	 environment	 in	

depth.	 Furthermore,	 this	will	 improve	 our	 knowledge	 on	 how	 the	 response	 of	

different	 taxa	 can	 impact	each	other	and	ecosystem	 functions,	 especially	 in	 the	

context	of	Baas-Becking	hypothesis,	which	states	that	everything	is	everywhere	

but	 the	 environment	 selects	 (Baas-Becking,	 1934;	 De	 Wit	 &	 Bouvier,	 2006).	

Members	 of	 rare	 taxa	 account	 for	most	 of	 the	 observed	 phylogenetic	 diversity	

(Sogin	et	al.,	2006),	and	become	more	abundant	if	the	environmental	conditions	

favour	 their	 growth	 (Shade	 et	 al.,	 2014).	 This	 is	 because	 the	 organisms	 can	

experience	conditions	that	are	not	optimal	for	their	growth	and	therefore	enter	in	

a	 state	of	 reversible	dormancy	 (Lennon	&	 Jones,	2011).	This	 leads	 to	microbes	

exhibiting	 biogeographic	 distribution	 patterns	 which	 differ	 from	 patterns	

observed	for	plants	and	animals	(Xia	et	al.,	2016).		

	

Most	of	the	work	investigating	microbial	biogeography	has	been	site-specific	and	

logical	 environmental	 factors,	 rather	 than	 geographical	 location,	may	 be	more	
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influential	on	microbial	diversity	(Fierer	&	Jackson,	2006).	Furthermore,	the	level	

of	nutrients	also	determines	the	growth	and	diversity	of	organisms	present	in	a	

habitat,	 such	 as	where	 certain	 taxa	 are	 observed	 on	 the	 basis	 of	 whether	 the	

microorganism	is	oligotrophic	or	copiotroph	in	nature	(Koch,	2001).	Copiotrophs	

have	 high	 growth	 rates	 when	 nutritional	 conditions	 are	 abundant	 while	

oligotroph	 demonstrate	 slower	 growth	 rate	 and	 may	 even	 outcompete	

copiotrophs	when	the	level	of	nutrients	available	is	low,	based	on	the	flexibility	

available	in	their	genomes	(Fierer,	Bradford,	&	Jackson,	2007).		

	

1.3.1	 Factors	Influencing	Microbial	Community	Composition	

	

Vellend	 (2010)	 proposed	 that	 mechanisms,	 which	 shape	 the	 composition	 and	

diversity	 of	 microbial	 communities	 could	 be	 divided	 into	 four	 classes	 termed	

speciation,	selection,	dispersal	and	ecological	drift.	Speciation	adds	more	species	

diversity	over	time,	selection	modifies	the	relative	abundance	of	taxa	on	the	basis	

of	 the	 survival	 and	 reproducibility	 capability	 of	 these	 species,	 dispersal	 of	

established	species	to	a	new	location	brings	change	in	the	community	composition	

depending	 on	 the	 local	 conditions	 and	 finally	 ecological	 drift	 where	 chance	

demographic	 fluctuations	 can	 lead	 to	 a	 change	 in	 species	 abundance	 (Hanson,	

Fuhrman,	Horner-Devine,	&	Martiny,	2012;	Vellend,	2010).	

	

While	various	environmental	factors	determine	the	bacterial	diversity	in	a	biome,	

key	factors	tend	to	be	better	predictors	of	microbial	diversity.	For	example,	soil	

pH	level	was	the	best	predictor	of	diversity	and	richness	in	various	soil	samples	
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collected	from	North	and	South	America	(Fierer	&	Jackson,	2006).	Furthermore,	

environmental	conditions	such	as	climatic	or	land	cover	characteristics	influence	

bacterial	 community	 structure	 as	well	 at	 regional	 and	 global	 scales	 (Xia	 et	 al.,	

2016).	 Environmental	 parameters	 drive	 the	 composition	 and	 structure	 of	

microbial	communities	in	all	habitats	(Jeffries	et	al.,	2011),	with	parameters	such	

as	soil	nutrient	availability	(Broughton	&	Gross,	2000),	salinity	and	pH	(Lozupone	

&	Knight,	2007;	Alban	Ramette	&	James	M.	Tiedje,	2007)	and	lastly	plant	diversity	

(Stephan,	Meyer,	&	Schmid,	2000)	have	also	been	found	to	influence	the	microbial	

community	 composition	 and	 diversity	 in	 soil	 ecosystems,	 suggesting	microbial	

communities	respond	to	multiple	environmental	factors.	These	factors	together	

define	a	niche	occupied	by	particular	species	or	community.	However,	the	science	

behind	niche	formation	and	community	assembly	remains	poorly	understood.	

	

A	 full	understanding	of	 the	role	of	environmental	drivers	of	microbial	diversity	

can	 only	 be	 realised	 if	 associated	 metadata	 related	 to	 geographical	 or	

environmental	information	can	be	exploited	(Alban	Ramette	&	James	M.	Tiedje,	

2007).	Knowing	just	the	taxonomy	of	the	species	present	may	not	be	enough,	given	

the	need	to	understand	the	niche	and	controlling	variables	of	microorganisms.	A	

complex	 combination	of	historical	 factors	such	as	dispersal	 limitation	and	past	

environmental	 conditions	 significantly	 influence	 present-day	 groupings	 of	

microbes	in	addition	to	overall	contemporary	habitat	characteristics	(Dinsdale	et	

al.,	2008)	as	well	as	changes	in	environmental	parameters.	Understanding	these	

parameters	 is	 critical	 to	 understand	 evolution,	 community	 assembly	 and	

microbial	ecology.	
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1.4	 Knowledge	Gaps	

	

Given	that	gene	sequences	evolve	under	evolutionary	constraints,	certain	portions	

of	 these	 sequences	 tend	 to	 be	 more	 variable	 than	 other,	 conserved	 regions	

(Woese,	 1987),	 henceforth	 considered	 as	 evolutionary	 conservation.	 While	

popular	bioinformatics	pipelines	are	being	used	for	many	ecological	projects,	they	

mainly	use	 the	percentage	 identity	metric	 for	determining	 sequence	 similarity.	

Metric	selection	has	a	significant	 impact	on	the	analysis	being	conducted,	as	all	

downstream	 analyses,	 including	 diversity	measurements,	 depend	 on	 sequence	

alignments	and	the	database	used.	While	hypervariable	regions	are	primarily	used	

to	differentiate	between	different	bacterial	species,	substantial	difference	is	also	

present	 in	 non-hypervariable	 regions	 of	 the	 16S	 rRNA	 gene	 (Stackebrandt	 &	

Goebel,	 1994),	 which	 can	 also	 play	 a	 role	 in	 differentiating	 between	 various	

bacteria.	Furthermore,	closely	related	species	that	differ	by	a	few	nucleotide	bases	

can	 be	 erroneously	 considered	 identical	 and	 may	 require	 comparing	 specific	

locations	on	the	16S	rRNA	gene	sequences	in	order	to	determine	their	differences	

thereby	significantly	reducing	taxonomic	resolution	at	species	or	sub-species	level	

(Fox,	Wisotzkey,	&	Jurtshuk,	1992).		Furthermore,	the	selection	of	the	primer	for	

amplicon	sequencing	and	the	targeted	variable	regions	also	directly	 impact	 the	

analysis	 of	 microbial	 communities,	 with	 different	 primers	 producing	 different	

abundances	of	 taxa	(Fredriksson,	Hermansson,	&	Wilen,	2013).	This	represents	

the	limitation	of	16S	rRNA	gene	sequence	analysis	and	therefore	there	is	a	great	

need	 to	 improve	 the	 analytical	 capabilities	 of	 any	 bioinformatics	 pipeline	 that	

aims	to	perform	taxonomic	annotation,	especially	at	the	lower	taxonomic	levels,	

with	respect	to	accuracy	and	throughput	of	the	analysis.		
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With	the	drive	to	enhance	the	analysis	of	microbial	community	data,	contextual	

information	 related	 to	 the	 environment	 they	 exist	 in,	 is	 lacking	 in	 popular	

pipelines.	This	information	can	be	transformative	in	understanding	the	microbes	

and	 the	 role	 they	 play	 in	 the	 environment	 in	 a	 more	 thorough	 fashion.	 How	

environmental	 parameters	 drive	 diversity	 patterns	 and	 how	 diversity	 is	

partitioned	 by	 habitat,	 provide	 a	 contextual	 view	 that	would	 otherwise	 not	 be	

observed	when	only	using	taxonomic	annotation.	Thus,	the	following	knowledge	

gaps	needs	to	be	addressed:		

	

• The	 percentage	 identity	 metric	 does	 not	 account	 for	 variability	 at	 any	

match	 or	 mismatch	 location	 and	 therefore	 does	 not	 fully	 exploit	 the	

evolutionary	 conservation	 and	 variability	 inherent	 in	 the	 gene	 (Woese,	

1987)	 as	 the	 degree	 of	 variability	 changes	 across	 these	 hypervariable	

regions	 (Figure	1-3).	The	Shannon	 index	here	denotes	Shannon	entropy	

values,	which	 quantifies	 the	 variability	 across	all	 nucleotides	 in	 the	 16S	

rRNA	gene	 sequences	and	were	 calculated	using	 frequencies	of	 the	 four	

nucleotides	and	gaps	(Seedorf,	Kittelmann,	Henderson,	&	Janssen,	2014).	

The	 evolutionary	 distance	 between	 sequences	 as	 determined	 by	

percentage	 identity	 is	 therefore	 an	 underestimation	 and	 results	 in	 less	

accurate	similarity	scoring	(Woese,	1987).	
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Figure	1–3:	 Per	base	 variability	present	 across	 the	whole	16S	 rRNA	gene	

quantified	using	Shannon-Index.	Reproduced	from	(Seedorf	et	al.,	2014)	

• While	geographical	data	can	be	used	for	microbial	sequences,	they	may	not	

be	representative,	as	similar	microbes	are	more	likely	to	found	in	the	same	

environments	 across	 different	 geographical	 locations	 (Fierer	 &	 Jackson,	

2006;	 Xia	 et	 al.,	 2016).	 As	 microbial	 communities	 respond	 to	 multiple	

environmental	 factors,	 new	 data	 obtained	 from	 next-generation	

sequencing	 along	 with	 contextual	 metadata	 provide	 an	 important	

opportunity	to	address	the	need	to	identify	the	origin	of	sequences	from	a	

particular	 environment	 or	 niche.	 Hence	 an	 effective	 approach	 to	

environmental	annotation	of	sequences	is	needed.		
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1.5	 Aims	and	Objectives	

	

To	address	the	above	knowledge	gaps,	the	overarching	aim	of	the	thesis	was	to	

develop	an	enhanced	bioinformatics	pipeline	 for	 taxonomic	and	environmental	

annotation	of	16S	rRNA	bacterial	sequences,	as	a	 lot	more	reference	sequences	

are	available	for	bacteria	than	archaea.	For	taxonomic	annotation,	a	novel	metric	

was	developed	to	replace	percentage	identity,	while	environmental	annotation	of	

the	sequences	was	achieved	using	the	SEQenv	pipeline	(Sinclair	et	al.,	2016)	and	

then	 extending	 it	 to	 provide	 taxa	 abundance	 within	 different	 environmental	

terms.	

	

Chapter	2	aimed	to	develop	a	new	sequence	similarity	measure	that	quantify	and	

utilizes	 the	 inherent	 evolutionary	 conservation	 within	 the	 16S	 rRNA	 gene	

sequence,	 which	 has	 not	 been	 utilized	 so	 far,	 in	 order	 to	 enhance	 taxonomic	

annotation.	This	chapter	examined	the	hypothesis	that	the	new	similarity	measure	

metric	based	on	Shannon	entropy	would	provide	more	robust	data	in	comparison	

to	 percentage	 identity	 for	 taxonomic	 annotation	 of	 sequences.	 The	 new	metric	

demonstrated	improved	annotation	capability	at	higher	taxa	levels.	The	objectives	

of	this	chapter	were:	

a) To	develop	a	new	sequence	similarity	measure,	which	utilized	evolutionary	

conservation	within	16S	rRNA	gene	sequences	directly.	

b) To	 determine	 if	 the	 new	 metric	 can	 be	 used	 instead	 of	 the	 industry	

standard	percentage	identity	measure	and	if	there	are	advantages	to	the	

new	approach.	
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Chapter	3	aimed	to	develop	a	taxonomic	annotation	pipeline,	which	could	use	the	

newly	developed	sequence	similarity	metric	described	in	chapter	2	and	to	test	the	

pipeline	on	real	amplicon	datasets	and	comparison	to	QIIME.	The	new	pipeline	

produced	comparable	ecologically	important	patterns.	Furthermore,	following	an	

OTU	independent	approach	provided	more	taxonomic	annotations	for	sequences.	

The	objectives	of	this	chapter	were:	

a) To	 develop	 a	 taxonomic	 pipeline	 on	 the	 basis	 of	 the	 novel	 metric	 for	

sequence	similarity	developed	in	chapter	2.		

b) To	 assess	 the	 applicability	 of	 the	 new	 pipeline	 on	 the	 analysis	 of	 real	

amplicon	datasets	belonging	to	samples	from	a	sugarcane	environment.	

c) To	 assess	 if	 similar	 ecological	 patterns	 in	 comparison	 to	 QIIME	 are	

generated	with	the	new	pipeline.	

	

Chapter	 4	 aimed	 to	 enhance	 the	 taxonomic	 annotation	 system	 developed	 in	

chapter	 3	with	 the	 integration	 of	 an	 extended	 SEQenv	 pipeline	 (Sinclair	 et	 al.,	

2016)	as	a	means	to	provide	environmental	annotation	of	16S	rRNA	sequences.	

The	extension	to	SEQenv	was	developed	to	provide	a	more	contextual	view	into	

the	 environmental	 annotation	 of	 these	 sequences.	 This	 would	 be	 relevant	 to	

biologists	determining	taxa	distributions	for	particular	environments	as	SEQenv	

itself	 generates	 a	 word	 cloud	 only	 at	 the	 dataset	 level,	 listing	 various	

environmental	 terms	 acquired	 from	 the	 analysis	 and	 hence	 is	 limited	 to	 the	

dataset	level.	This	chapter	tested	the	hypothesis	that	environmental	annotation	

could	enhance	analysis	of	microbial	communities	and	the	annotations	generated	

were	in	accordance	with	prior	knowledge	in	the	literature	about	the	habitats	the	

microbes	belong	to.	The	objectives	of	this	chapter	were:	
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a) To	integrate	SEQenv	into	the	taxonomic	annotation	system	developed	in	

chapter	3.	

b) To	 assess	 the	 enhanced	 SEQenv	 system	 on	 real,	 amplicon	 datasets	 to	

validate	 the	 software	 and	 determine	 if	 the	 environmental	 annotations	

were	in	accordance	with	literature.	

	

The	outcome	of	the	thesis	included	a	single	bioinformatics	pipeline	that	produced	

enhanced	 annotation	 of	 bacterial	 sequences	 by	 combining	 high-resolution	

taxonomic	 annotation	 with	 contextual	 environmental	 annotation,	 which	

differentiated	 it	 from	 other	 pipelines.	 This	 would	 serve	 as	 a	 significantly	

important	tool	for	any	biologist	aiming	to	understand	microbial	communities	in	a	

more	effective	manner.	
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Chapter		2: 	 	 Exploiting	 The	 Evolutionary	

Conservation	of	16S	rRNA	Gene	via	Shannon	Entropy	

	

2.1	 Introduction	

	

Microbes	underpin	key	ecosystem	services	such	as	primary	production,	climate	

regulation	(Handelsman,	2004)	and	elemental	cycles	(Venter	et	al.,	2004),	and	are	

capable	 of	 living	 in	 diverse	 environments	 (Wooley	 et	 al.,	 2010).	However	 very	

little	is	known	about	their	biology	as	only	a	small	fraction	can	be	cultured	under	

laboratory	 conditions	 (Nikolaki	 &	 Tsiamis,	 2013)	 whereby	 standard	 culturing	

techniques	account	 for	1%	or	 less	of	bacterial	diversity	 in	most	environmental	

samples	(Riesenfeld	et	al.,	2004).	

	

Ecogenomics	study,	which	seeks	to	understand	the	diversity	and	interactions	of	

microbes	in	their	natural	habitats	(Chapman,	Robalino,	&	F.	Trent	III,	2006),	is	a	

rapidly	growing	field	of	research	that	aims	at	studying	uncultured	organisms	via	

their	nucleic	acid	sequences	to	understand	the	true	diversity	of	microbes,	 their	

function	and	distribution	in	a	variety	of	environments	(Huson	et	al.,	2009).	Many	

environments	have	been	the	focus	of	ecogenomics	studies,	including	soil,	the	oral	

cavity,	 feces,	 and	 aquatic	 habitats	 (Riesenfeld	 et	 al.,	 2004).	 The	 field	 has	 been	

driven	by	the	advent	of	high	throughput	sequencing	where	genomic	information	

is	acquired	directly	from	the	microbial	communities	in	their	natural	environment,	

with	a	drastic	reduction	in	the	cost	of	sequencing	(Morgan	&	Huttenhower,	2014).		
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Culture	 independent	 studies	 have	 been	 used	 to	 characterise	 microbial	

communities	where	next-generation	sequencing	has	been	used	to	sequence	DNA	

from	 samples	 from	 complex	 environments	 and	 habitats.	 This	 requires	

preprocessing	steps	such	as	removal	of	noise	from	sequencing	data,	which	is	due	

to	wrong	base	calls,	substitution	errors	as	well	as	insertion	and	deletion	of	single	

bases	(Dohm,	Lottaz,	Borodina,	&	Himmelbauer,	2008).	Furthermore,	error	rates	

tend	 to	 increase	 along	 the	 read	 length	 for	 Illumina	 sequencing	 platform	 (Cox,	

Peterson,	&	Biggs,	2010),	while	newer	technologies	such	as	Oxford	nanopore	and	

PacBio	exhibit	error	patterns	of	context-specific	mismatches	and	homopolymer	

indels,	with	a	high	error	rate	that	can	reach	40%	in	some	cases	(Weirather	et	al.,	

2017).	This	 is	 then	 followed	 by	multiple	 sequence	 alignment	 for	generation	 of	

Operational	taxonomic	unit,	at	needed	similarity	such	as	97%	(Drancourt	et	al.,	

2000).	For	an	environmental	sample,	the	number	of	annotated	OTUs	and	relative	

abundances	are	considered	as	being	representative	of	actual	diversity,	however	

identification	of	total	diversity	requires	selection	of	an	appropriate	sample	size.	

For	this	purpose,	estimate	of	species	richness	such	as	rarefaction	curves	are	used	

(Barriuso,	Valverde,	&	Mellado,	2011).		

	

Sequencing	 of	 16S	 rRNA	 amplicons	 primarily	 uses	 short	 reads,	 representing	 a	

specific	region	of	a	gene	while	shotgun	sequencing	may	use	whole	length	of	the	

genome	 in	 small	 fragments,	 which	 can	 be	 analysed	 individually	 or	 used	 to	

construct	 overlapping	 contigs.	 Analysis	 requires	 a	 significant	 amount	 of	 time,	

typically	a	day	or	more	 for	 taxonomic	annotation	depending	on	computational	

resources.		
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The	 underlying	 scoring	 scheme	 behind	 sequence	 similarity	 is	 currently	

percentage	identity,	a	simple	distance	based	approach	which	doesn’t	fully	utilize	

the	 inherent	 variation	 in	 evolutionary	 conservation	 within	 16S	 rRNA	 gene	

sequences,	 as	 every	 base	 is	 considered	 equal	 with	 respect	 to	 matches	 and	

mismatches	and	positions	of	these	matches	and	mismatches	are	not	essential	(Fox	

et	al.,	1992;	Stackebrandt	&	Goebel,	1994).	This	is	important	in	the	context	that	

certain	regions	of	the	16S	rRNA	gene	sequences	are	considerably	variable	while	

others	 are	 relatively	 conserved,	 and	 the	 degree	 of	 variability	 is	 not	 constant	

(Chakravorty	et	al.,	2007;	Stackebrandt	&	Goebel,	1994),	due	to	the	fact	that	the	

16S	 rRNA	 gene	 undergoes	 evolutionary	 changes	 depending	 on	 various	

constraints,	which	 leads	to	some	portions	of	 the	sequence	to	be	highly	variable	

while	other	portions	to	be	conserved,	as	these	conserved	regions	are	important	

for	the	function	of	the	16S	rRNA.	(Hence	known	as	evolutionary	conservation).	C.	

R.	Woese	in	his	work	“bacterial	evolution”,	stated	that	the	distance	based	approach	

underestimates	the	true	evolutionary	distances	between	sequences	as	different	

nucleotide	positions	on	sequences	are	changing	at	different	rates	(Woese,	1987).	

These	represent	the	limitations	of	16S	rRNA	gene	sequence	analysis	primarily	due	

to	the	selection	of	percentage	identity	as	the	determinant	of	sequence	similarity.	

	

The	valuable	information	contained	within	the	16S	rRNA	gene	sequence	itself	can	

be	 utilized	 for	 better	 understanding	 of	 sequence	 similarity	 (Stackebrandt	 &	

Goebel,	1994)	and	to	achieve	a	more	effective	similarity	measure	than	the	current	

percentage	 identity,	 as	 discriminatory	 information	 is	 present	 in	 the	 16S	 rRNA	

gene	sequences	that	can	be	used	to	distinguish	between	various	sequences.	The	

evolutionary	 conservation	 within	 16S	 rRNA	 can	 be	 determine	 via	 Shannon	
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Entropy,	 which	 quantifies	 the	 uncertainty	 in	 a	 random	 variable	 and	 hence	 is	

appropriate	 to	 determine	 the	 variability	 in	 a	 nucleotide	 position.	 	 It	 allows	

quantitative	 assessment	 of	 variability	 across	 the	 whole	 of	 16S	 rRNA	 gene	

sequence	in	the	context	of	an	aligned	bacteria	database	and	can	in	turn	be	used	to	

develop	a	similarity	metric	that	can	be	more	applicable	to	taxonomic	annotation.	

In	fact,	C.	R.	Woese	(1987)	stated	that	determining	the	pattern	of	change	at	given	

positions	in	16S	rRNA	gene	sequence	may	optimise	analysis	(Woese,	1987).	It	has	

been	 utilized	 in	 other	 tools	 which	 utilize	 taxonomic	 marker	 genes	 such	 as	

oligotyping,	which	 looks	at	nucleotide	base	variation	within	an	 individual	OTU	

(Eren	 et	 al.,	 2013)	 by	 relying	 on	 entropy	 information	 generated	 through	 the	

analysis	of	sequences	that	were	initially	mapped	onto	the	same	taxon.	Minimum	

Entropy	 Decomposition	 or	 MED,	 extends	 oligotyping	 via	 development	 of	 an	

unsupervised	 algorithm,	 which	 partitions	 large	 datasets	 into	 ecologically	 and	

phylogenetically	useful	units	(Eren	et	al.,	2015).	In	contrast	to	oligotyping,	MED	

does	not	require	any	clustering	of	sequences	into	OTUs	or	user	supervision	and	

can	be	applied	to	whole	datasets	instead	of	only	closely	related	sequences.	Given	

the	potential	advantage	of	elucidating	diversity,	oligotyping	has	been	used	across	

various	 studies,	 including	 microbial	 biogeography	 (Cloutier,	 Alm,	 &	 McLellan,	

2015;	V.	T.	Schmidt	et	al.,	2014)	and	microbe	disease	linkage	(Eren	et	al.,	2011).	

However,	 these	tools	only	select	 few	nucleotide	positions	 in	variable	regions	of	

the	 16S	marker	 gene	 and	 hence	 may	 not	 be	 fully	 utilizing	 all	 of	 the	 available	

entropy	information	present.	

	

This	 study	 aims	 to	 address	 these	 issues	 by	 developing	 a	 novel	 approach	 to	

measure	 sequence	 similarity	 by	 directly	 using	 evolutionary	 conservation	
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information	via	Shannon	entropy.	This	can	then	be	used	to	enhance	taxonomic	

annotation	 as	 sequence	 similarity	 plays	 an	 important	 role	 in	 reference	 based	

taxonomic	annotation,	where	query	 sequences	are	 compared	against	 reference	

sequence	hits	on	the	basis	of	similarity	(Wooley	et	al.,	2010).	Given	that	most	of	

taxonomic	annotation	pipelines	such	as	QIIME	(Caporaso	et	al.,	2010),	MG-RAST	

(Aziz	et	al.,	2008)	and	MEGAN	(Huson,	Auch,	Qi,	&	Schuster,	2007)	are	dependent	

on	percentage	identity	for	sequence	similarity	measurements,	an	improvement	in	

this	context	would	result	in	better	downstream	analysis.	Therefore,	this	chapter	

examines	 the	 hypothesis	 that	 a	 new	metric	 based	 on	 Shannon	 entropy	 based	

similarity	measure	would	provide	more	robust	data	in	comparison	to	percentage	

identity	for	taxonomic	annotation	of	sequences.	

	

Furthermore,	newer	sequencing	technologies	such	as	PacBio	(Mosher	et	al.,	2014)	

and	Oxford	Nanopore	(Laver	et	al.,	2015)	can	now	enable	full	length	sequencing	

of	16S	rRNA	gene.	This	would	in	turn	make	the	new	approach	more	beneficial	as	

more	 of	 the	 evolutionary	 conservation	 information	 can	 be	 used	 for	 sequence	

similarity	measure	then	what	is	possible	at	the	moment.		
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2.2	 Materials	and	Methods	

	

2.2.1	 Shannon	Entropy	

	

To	 build	 upon	 existing	 algorithms	 for	 taxonomic	 identification	 we	 utilized	

Shannon	 Entropy.	 Every	 location	 in	 a	 DNA	 string	 can	 be	 taken	 as	 a	 random	

variable	having	the	aforementioned	nucleotide	values.	Entropy	is	a	measure	of	the	

uncertainty	 in	 a	 random	 variable.	 In	 this	 context,	 the	 term	 usually	 refers	 to	

Shannon	 entropy,	 which	 quantifies	 the	 expected	 value	 of	 the	 information	

contained	in	a	message	(Shannon,	2001).	For	DNA	sequences,	every	base	location	

can	be	considered	as	a	random	variable.	

	

In	order	to	calculate	Shannon	entropy	for	a	number	of	sequences,	the	following	

formula	is	used:	

	

The	base	of	the	Log	function	is	typically	2,	e	or	10,	though	any	positive	real	number	

not	equal	to	1	can	be	used.	p(x)	denotes	probability	of	a	variable	x.	In	this	context,	

x	can	be	A,	T,	C,	G,	N	and	other	nucleotides	as	well	as	gaps.	In	the	context	of	DNA	

sequences,	 a	 variable	 region	 may	 have	 multiple	 nucleotides,	 each	 with	 low	

probability	 of	 occurrence	while	 for	 conserved	 regions;	 a	 single	 nucleotide	 (i.e.	

adenine,	or	A)	may	have	the	highest	probability	with	the	remaining	nucleotides	

(i.e.	 C,	 G,	 T)	 having	 low	 probability.	 Hence,	 evolutionary	 conservation	 and	
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variability	within	 the	16S	 rRNA	gene	 sequence	 is	quantitatively	assessed	using	

this	approach.	

	

2.2.2	 Generation	of	Vector	Data	

	

An	aligned	database	of	16S	rRNA	sequences	was	used	to	quantitatively	assess	and	

calculate	entropy	across	the	whole	16S	rRNA	sequence.	It	is	a	common	practice	to	

ignore	hyper-variable	regions	when	generating	a	deep-level	phylogeny.	However,	

when	 assigning	 sequences	 to	OTUs	 or	 using	 phylogenies	 for	 community-based	

hypothesis	tests,	the	fine	level	of	detail	contained	within	these	variable	regions	is	

significant	and	should	not	be	removed	(Schloss,	2009).	Of	 the	available	aligned	

16S	rRNA	gene	reference	databases,	SILVA	Release	123	aligned	database	(Quast	

et	al.,	2013)	was	selected	as	it	contained	alignment	information	for	the	whole	of	

16S	rRNA	reference	sequences.	For	the	purpose	of	this	study,	only	the	bacterial	

16S	rRNA	sequences	were	used.	

	

The	database	was	taken	as	a	matrix	M	of	dimensions	m	x	n,	consisting	of	m	rows	

and	n	columns.	Each	row	is	an	aligned	reference	sequence	and	column	denotes	

locations	where	 a	 nucleotide,	 gap	 or	dot	occurs	 as	 shown	 in	 Table	 2-1.	 As	 the	

database	 represents	multiple	 sequence	 alignment	 of	 16S	 rRNA	genes,	 dots	 are	

used	 for	 padding	 before	 the	 start	 and	 after	 the	 end	 of	 a	 reference	 sequence	

depending	 on	 how	 the	 sequence	 was	 aligned	 against	 other	 sequences	 and	

therefore	 are	 not	 factored	 in	 any	 calculation,	 as	 they	 do	 not	 signify	 any	

information.	 Gaps	 however	 were	 accounted	 for,	 when	 calculating	 Shannon	
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entropy.	 To	 simplify	 calculations,	 ambiguous	 sequences	 that	 contained	

nucleotides	other	than	A,	T,	C	or	G	such	as	N	were	removed	from	the	database.	

	

Table	2-1:	Database	as	a	m	x	n	matrix	where	rows	are	sequences	and	

columns	represent	alignment	positions	

	 C1	 C2	 C3	 C4	 C5	 C6	 …	 Cn-1	 Cn	

R1	 .	 A	 T	 -	 A	 T	 …	 G	 .	

R2	 T	 A	 G	 C	 A	 A	 …	 G	 .	

R3	 .	 .	 A	 C	 T	 A	 …	 T	 .	

.	 .	 .	 .	 	 	 	 …	 	 	

.	 .	 .	 .	 	 	 	 …	 	 	

Rm	 A	 T	 T	 A	 A	 C	 …	 A	 .	

SE	 S1	 S2	 S3	 S4	 S5	 S6	 …	 Sn-1	 Sn	

	

	

Shannon	entropy	was	calculated	on	a	per	column	basis:	

• For	a	column	Cn	in	the	database	matrix	M:	

1) For	every	row,	check	the	nucleotide	or	gap	that	occurs	in	the	row.	

2) Increment	corresponding	sum	of	the	relevant	nucleotide	or	gap.	

3) When	all	rows	are	iterated	over,	store	the	sum	of	each	nucleotide	

and	gap.	

	

With	 this,	 Shannon	 entropy	 was	 calculated	 for	 every	 column	 in	 the	 following	

manner:	
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• For	every	column	in	the	aligned	database:	

1) The	probability	of	each	nucleotide	or	gap	was	calculated	by	dividing	

the	number	of	occurrences	of	 the	 specific	nucleotide	or	gap	over	

total	number	of	occurrences	of	all	nucleotides	and	gaps	as	shown	

below:	

	

P(ni)	=	Probability	of	nucleotide	ni	=	(	number	of	ni	)	/	(	total	number	

of	all	nucleotides	and	gaps	)	

	

2) The	 probability	 P(ni)	 generated	 for	 each	 nucleotide	 was	 then	

multiplied	with	its	natural	log,	Ln	(P(ni)).	

	

3) Shannon	entropy	of	a	column	was	then	calculated	as	the	sum	total	

of	 Shannon	 entropy	of	 every	 nucleotide	 and	 gap	 in	 the	 following	

manner.	

−"#(%
&

' &

) )% #(%&)	

Calculation	 of	 Shannon	 entropy	 for	 every	 column	 in	 this	manner	 resulted	 in	 a	

single	 large	 vector	 for	 the	 database,	 with	 each	 location	 storing	 the	 Shannon	

entropy	 of	 the	 respective	 column.	 Given	 that	 every	 reference	 sequence	 in	 the	

database	had	a	location	for	each	of	its	nucleotides,	the	location	of	every	nucleotide	

and	the	global	database	level	Shannon	entropy	vector	was	then	used	to	generate	

a	per	reference	sequence	Shannon	entropy	vector.	
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This	was	accomplished	in	the	following	manner:	

o As	every	 row	Rm	represented	a	reference	 sequence	 in	 the	matrix	M,	 the	

calculation	was	performed	by	iterating	over	every	column:		

1) A	per	reference	Shannon	entropy	vector	was	generated	by	storing	

entropy	 value	 of	 a	 column	Cn	 if	 a	 nucleotide	was	 present	 at	 this	

location.		

2) Gaps	were	ignored	in	this	process,	as	they	do	not	form	part	of	the	

sequence.	

	

As	an	example,	R3	reference	sequence	had	nucleotides	at	location/column	C3	–	C6	

…	 Cn-1	 as	 shown	 in	 Table	 1.	 The	 corresponding	 Shannon	 entropy	 vector	 was	

therefore	S3	–	S5,	…	Sn-1.	

	

In	this	manner,	the	Shannon	entropy	vectors	for	every	reference	sequence	were	

generated	and	stored	in	a	database	and	was	only	needed	to	be	performed	once.	

	

2.2.3	 Taxonomic	Annotation	Process	

	

The	 system	 flowchart	 is	 illustrated	 in	 Figure	 2-1,	 where	 USEARCH	 alignments	

(Edgar,	2010)	were	used	to	reconstruct	full	alignments	between	query	sequences	

and	 reference	 16S	 rRNA	 gene	 sequences.	 This	 determined	 precisely	 where	

matches,	mismatches	and	gaps	occurred	against	 a	 reference	 sequence.	Relative	
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entropy	 was	 then	 calculated	 using	 the	 vectors	 developed	 for	 each	 reference	

sequence	and	finally	each	query	read	was	scored.	

	

	

Figure	2–1:	System	process	diagram	where	data	 files	are	shown	in	green,	

processing	tasks	in	blue	and	results	in	purple	

	

The	process	is	described	as	below:	

1) Query	sequences	were	aligned	with	the	reference	SILVA	database.	The	

resultant	data	contained	complete	 information	of	alignment	between	

the	reference	and	query	sequences	as	well	as	the	location	of	alignments.	

2) Alignments	were	then	reconstructed	where	location	of	gaps,	matches	

and	mismatches	were	determined.	
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3) Shannon	entropy	for	each	query	sequence	and	the	matched	reference	

sequence	segment	was	calculated	using	the	stored	vectors	in	a	separate	

database.	

4) Finally,	 relative	 Shannon	 entropy	 score	 was	 calculated	 and	 query	

sequences	 were	 annotated	 with	 reference	 sequence	 taxonomic	

annotation.	

	

Shannon	 entropy	 for	 each	 alignment	 was	 then	 determined.	 Every	 reference	

sequence	 had	 a	 corresponding	 custom	 vector,	 or	 entropy	 vector.	 When	 an	

alignment	occurred,	 the	 input	read	aligned	at	a	certain	region	on	the	reference	

sequence.		

	

The	 Shannon	 entropy	 for	 the	 query	 or	 input	 read	 was	 then	 calculated	 in	 the	

following	manner:	

• For	an	input	read	Ii	having	length	m	that	aligned	to	a	reference	sequence	

Rj:	

1) The	location	of	matches	between	reference	sequence	and	input	read	

were	found.	

2) For	 every	match,	 the	 corresponding	 Shannon	 entropy	 value	was	

taken	 from	 the	 database	 using	 the	 location	 of	 the	 match	 on	 the	

reference	sequence.	

a. For	 example,	 if	 nucleotide	 D3	 on	 input	 read	 matches	

nucleotide	 Z7	 on	 reference	 sequence,	 the	 corresponding	

Shannon	entropy	value	is	S7.	
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Custom	vector,	Vj	

S1	 S2	 S3	 S4	 S5	 S6	 S7	 S8	 …	 Sn	

	

Reference	Sequence,	Rj	

Z1	 Z2	 Z3	 Z4	 Z5	 Z6	 Z7	 Z8	 …	 Zn	

	

Input	Read,	Ii	 	

D1	 D2	 D3	 D4	 …	 Dm	

	

Sn:	Entropy	value	at	location	n	

Zn:	Reference	sequence	nucleotide	Z	at	location	n	

Dm:	Input	read	nucleotide	D	at	location	m	

	

Next,	 reference	 read	 Shannon	 entropy	 was	 calculated	 using	 the	 segment	 of	

reference	sequence	included	in	the	alignment.	

	

2.2.4	 Relative	Shannon	Entropy	Score	

	

For	an	input	read	of	length	m,	reference	read	Shannon	entropy	is:	

	 ∑ +&
,
& 	=	SERef	

	 	

Where	“i”	is	the	location	of	start	of	alignment	and	“j”	is	the	end	of	alignment.	This	

denoted	the	total	sum	of	entropy	values	from	the	start	of	alignment	to	the	end	of	
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alignment.	 As	 Shannon	 entropy	 was	 originally	 calculated	 using	 five	 variables	

(nucleotides	 A,	 T,	 C,	 G	 and	 “gap”),	 the	 maximum	 possible	 Shannon	 entropy	 is	

1.609438	for	any	location.		

	

Calculating	input	read	Shannon	entropy	was	done	as	follows:	

	

	 ∑ +-
.
- 	=	SERead	

	

This	 denoted	 the	 total	 sum	of	 entropy	 values	 for	 all	 the	matches	 between	 the	

reference	sequence	and	input	read.	When	there	was	a	complete	matching	between	

references	 read	and	 input	 read,	 the	 total	 entropy	value	was	 the	same	between	

both.	In	the	case	of	mismatches	or	gaps,	the	number	of	matches’	decreases	which	

leads	to	lower	total	Shannon	entropy	value	for	the	input	read.	

	

Relative	Shannon	entropy	for	every	input	sequence	was	generated	in	the	following	

manner:	

1) Shannon	 entropy	 value	 on	 locations	 where	 a	 nucleotide	 mismatch	

occurred	between	the	reference	and	query	sequence	was	converted	to	a	

negative	value	for	query	sequence.		

2) Next,	 for	 both	 reference	 sequence	 and	 query	 sequence,	 the	 maximum	

Shannon	entropy	value	was	added	on	each	 location.	This	enabled	better	

segregation	of	sequences,	which	may	contain	mismatches,	as	the	penalty	of	

each	mismatch	as	well	as	addition	of	each	match	is	doubled	and	hence	the	

overall	score	difference	increases	for	closely	related	sequences.	
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3) Finally,	the	total	entropy	value	for	both	the	reference	sequence	segment	as	

well	 as	 the	 query	 sequence	 was	 calculated	 by	 adding	 values	 at	 every	

location.	

4) A	 relative	 entropy	 score	was	 then	 calculated	 by	 dividing	 total	 Shannon	

entropy	value	of	a	query	read	by	the	total	Shannon	entropy	value	of	 the	

reference	 read	 segment.	 As	 every	 reference	 sequence	 had	 a	 taxonomic	

annotation	associated	with	 it,	 the	matched	 input	 read	was	assigned	 this	

annotation.	

	

/0)12340	+6	+7890 = 	+6;<=> +6;<?@ 	

	

The	 relative	 Shannon	 entropy	 score	 also	 acts	 as	 the	 scoring	 system,	 replacing	

percentage	 identity	as	 the	sequence	similarity	metric.	The	score	was	calculated	

using	the	formula	below,	with	SE	Coverage	denoting	the	total	number	of	bases	in	

an	alignment.	This	also	factored	gaps	in	the	scoring	as	well.	

/01A	+7890 = +6;<=>
+6;<?@ ∗

+6	C84091D0
E)3D%F0%2	G0%D2ℎ	

	

Once	relative	entropy	had	been	scored	for	every	input	sequence,	the	results	were	

stored	in	a	text	file.	Furthermore,	the	system	was	based	on	a	best	scoring	approach	

whereby	 the	 single	 best	 alignment	 was	 used	 for	 each	 input	 read.	 That	 is,	 the	

reference	sequences	with	the	best	alignment	score	was	used,	instead	of	multiple	

alignments.	This	is	in	contrast	to	taxonomic	annotation	systems	such	as	MEGAN,	

which	use	a	least	common	ancestor	algorithm	whereby	each	read	is	assigned	to	
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the	lowest	common	ancestor	of	the	set	of	taxa	of	reference	sequences	that	the	read	

hits	in	the	comparison	(Huson	et	al.,	2007;	Huson	et	al.,	2009).		

	

2.2.5	 Validation	

	

Validation	of	the	system	was	performed	using	an	in-silico	approach.	MicroSim:	A	

motif-based	 next-generation	 read	 simulator	 developed	 by	 Schirmer	 et.	 al.	 was	

used	to	generate	amplicon	reads	from	reference	sequences	from	SILVA	database	

(Quast	 et	 al.,	 2013),	 simulating	 a	motif-based	 illumina	Miseq	 Fusion	 Golay	 V4	

Amplicon	250bp	 (DS78)	platform.	The	 simulator	provides	a	variety	of	profiles,	

targeting	 various	 amplicon	 and	 metagenomics	 based	 sequencing	 approaches.		

Amplicon	 sequencing	 was	 selected	 due	 to	 its	 prevalence	 in	 next-generation	

sequencing	based	taxonomic	annotation	projects.	

	

Mock	 communities	 of	 sequences	 were	 generated	 using	 the	 SILVA	 release	 123	

database	 (Quast	 et	 al.,	 2013).	 The	 dataset	 was	 used	 to	 validate	 the	 Shannon	

entropy	 based	 annotation	 approach	 and	 confirm	 that	 it	 is	 producing	 similar	

taxonomic	 annotation	 (thus	 community	 composition)	 compared	 to	 percentage	

identity	as	calculated	by	USEARCH	(Edgar,	2010).	As	the	taxa	assignments	of	the	

sequences	 selected	 to	 generate	 mock	 communities	 were	 already	 known,	 the	

following	metrics	were	used	in	the	validation	process:	

	

Recall:	

IJ
IJKLM
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Precision:	

IJ
IJKLJ

	

Accuracy:	

IJKIM
IJKLJKIMKLM

	

	

Where	TP	denotes	True	Positives,	FP	as	False	Positives,	TN	as	True	Negatives,	and	

FN	 as	 False	 Negatives	 (Fawcett,	 2006).	 These	 metrics	 are	 widely	 utilized	 for	

evaluation	 of	 classification	 systems	 and	 examples	 include	 studying	 association	

between	heart	failure	self-management	and	rehospitalisation	via	natural	language	

processing	(Topaz	et	al.,	2016),	pre-miRNA	precursor	identification	using	neural	

networks	(Jiang,	Zhang,	Xuan,	&	Zou,	2016)	and	automated	quality	assessment	of	

radiologic	interpretations	(Hsu,	Han,	Arnold,	Bui,	&	Enzmann,	2016).	

	

In	a	 classification	 system,	precision	 is	defined	as	 the	 ratio	of	 correctly	 labelled	

instances	of	a	class	that	are	retrieved,	divided	by	total	number	of	all	instances	that	

are	 labelled	 as	members	 of	 the	 class.	 In	 essence	 it	was	 the	 ratio	 of	 number	 of	

relevant	or	correctly	assessed	instances	(True	Positives)	to	the	total	number	of	

irrelevant	and	relevant	instances	(True	Positives	and	False	Positives).	Recall	is	the	

fraction	of	correctly	labelled	instances	that	are	retrieved.	In	other	words,	it	was	

the	 ratio	 of	 number	 of	 correctly	 labelled	 instances	 of	 a	 class	 retrieved	 (True	

Positives)	 to	 the	 total	 number	 of	 all	 instances	 belonging	 to	 that	 class	 (True	

Positives	 and	 False	 Negatives).	 Furthermore,	 a	 list	 of	 scoring	 thresholds	 was	

selected	 and	 at	 every	 threshold	 precision	 and	 recall	 were	 calculated	 for	 both	

percentage	identity	and	the	new	Shannon	entropy	based	metric.	Considering	that	
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typically	80%	is	considered	as	similarity	at	phylum	level,	hence	an	exponential	list	

of	 thresholds	 was	 selected	 to	 elucidate	 the	 difference	 in	 sequence	 similarity	

between	 Shannon	 entropy	 and	 percentage	 identity	 based	 metrics.	 The	 list	 of	

threshold	values	is	given	in	the	Table	2-2.	

	

Table	2-2:	List	of	thresholds	between	0	and	1	used	for	calculation	of	

precision	and	recall	

Thresholds	(between	0	and	1)	

1	

0.995	

0.99	

0.985	

0.98	

0.975	

0.97	

0.965	

0.96	

0.955	

0.95	

0.945	

0.94	

0.93	

0.9	

0.85	

0.8	

0.7	

0.6	

0.5	

0.4	

0.3	

0.2	

0.1	

0.0	

	

2.2.6	 Area	Under	The	Curve	
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To	perform	a	 comparison	between	percentage	 identity	and	a	Shannon	entropy	

based	approach,	the	area	under	the	curve	for	Precision/Recall	curve	metric	was	

used.	A	common	method	for	classifier	comparison,	a	higher	AUC	denotes	better	

classification	capabilities.	In	other	words,	between	two	classification	systems,	the	

classifier	having	a	higher	AUC	is	better	performing	than	the	other	as	it	produces	

better	classification	results.		

	

Additionally,	 the	metric	 is	 effectively	 threshold	 independent	 as	 the	 graph	 only	

illustrates	the	precision	and	recall	information.	This	is	especially	useful	given	that	

a	 wide	 variety	 of	 classification	 systems	 use	 different	 threshold	 levels	 for	

classification	purposes	(Fawcett,	2006).	The	list	of	precision	and	recall	values	for	

each	approach	was	then	used	to	calculate	area	under	the	curve	using	the	trapz	

function	in	R	(Tuszynski,	2014).		

	

2.2.7	 Generation	of	Whole	SILVA	Based	Dataset	

	

For	initial	system	validation,	20,000	amplicon	reads	were	generated	via	MicroSim	

using	 the	whole	of	 SILVA	database	version	123	 (Quast	et	 al.,	 2013).	The	 reads	

generated	 were	 then	 aligned	 against	 the	 reference	 database	 using	 USEARCH	

sequence	aligner	(Edgar,	2010).	Once	the	alignment	results	were	generated,	the	

taxonomic	 annotation	 system	 generates	 sequence	 annotation	 using	 the	 vector	

database	file	and	Silva	taxonomy.	Percentage	identity	scores	were	generated	by	

USEARCH	(Edgar,	2010).		
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2.2.8	 Generation	of	Removal	of	Whole	Genera,	Families	and	Class	Datasets	

	

Using	the	SILVA	database,	DNA	data	related	to	100	genera,	10	families	and	1	class	

were	 randomly	 selected	 and	 removed.	 Query	 sequences	 belonging	 to	 these	

removed	taxa	are	effectively	novel	to	the	remaining	sequences	in	the	database	and	

therefore	should	not	closely	match	any	of	the	taxa	retained	in	the	database.	This	

approach	 can	 be	 useful	 in	 understanding	 how	 the	 system	 reacts	 to	 novel	

sequences	that	may	present	themselves	in	real	datasets	to	which	the	database	is	

naive	(Lanzen	et	al.,	2012).	

	

The	 removed	 taxa	 are	 then	 used	 for	 random	 generation	 of	 sequences	 using	

MicroSim	with	the	 same	parameters	as	 for	whole	SILVA	based	dataset,	namely	

motif-based	 illumina	Miseq	Fusion	Golay	V4	Amplicon	250bp	 (DS78)	platform.	

This	ensured	consistency	across	all	datasets.	These	newly	generated	sequences	

were	then	aligned	against	the	reference	Silva	database	that	does	not	contain	these	

sequences.	 Finally,	 analysis	 was	 done	 to	 assess	 how	 the	 sequences	 are	 being	

annotated	and	a	precision	vs.	recall	curve	is	generated	for	both	Shannon	entropy	

and	percentage	identity	approaches.	

	

The	process	 followed	 for	 the	generation	of	 these	 sequences	and	annotations	 is	

detailed	below:	

Validation	Approach:	

1) 1	class,	10	families	and	100	genera	were	randomly	selected	out	of	the	

database.	It	is	important	to	note	here	that	because	taxa	were	removed	

randomly,	hence	another	member	of	the	level	higher	taxa	may	exist	in	
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the	database.	For	example,	if	genera	G1	and	G2	belong	to	the	family	F1,	

and	G1	was	randomly	removed	then	genera	G2	may	have	existed	in	the	

database.	

2) New	 reference	 databases	 were	 made	 which	 did	 not	 contain	 these	

selected	class,	families	or	genera.	These	class,	families	and	genera	were	

effectively	“novel”	sequences	to	these	new	databases.	

3) From	these	selected	taxa,	20000	amplicon	reads	were	generated	using	

MicroSim.	

4) These	 amplicon	 reads	 were	 then	 aligned	 against	 the	 new	 reference	

databases.		

5) Taxonomic	annotation	was	performed.	Here	the	approach	was	to	check	

the	 immediate	 higher-level	 annotation	 and	 how	 many	 sequences	

annotated	correctly	at	that	level.	For	example,	if	the	removed	taxa	was	

a	 family,	 then	 sequences	 were	 checked	 by	 testing	 how	 many	 were	

correctly	annotated	to	the	order	level,	additionally	including	sequences	

that	were	below	order	level	as	well	(genus	and	family).		

	

The	list	of	genera,	families	and	class	removed	from	the	SILVA	release	123	database	

are	given	in	Table	2-3.	

	

Table	2-3:	List	of	taxa	removed	at	genus,	family	and	class	level	from	SILVA	

database	

Genera	Removed	 Families	Removed	 Class	

Removed	
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Acetatifactor	

Actinobacillus	

Actinotignum	

Adlercreutzia	

Alkalitalea	

Amycolatopsis	

Arcobacter	

Balnearium	

Basfia	

Budvicia	

Butyrivibrio	

Caldisericum	

Campylobacter	

Chelonobacter	

Chroococcus	

Collinsella	

Cruoricaptor	

Delftia	

Desulfomicrobium	

Desulfurispira	

Eisenbergiella	

Enterobacter	

Epibacterium	

Eremococcus	

Methyloligella	

Naasia	

Neiella	

Nisaea	

Oceanobacter	

Oceanobacterium	

Oleibacter	

Pasteuria	

Planomicrobium	

Pleionea	

Pragia	

Quadrisphaera	

Rarobacter	

Rhizobacter	

Rhizobium	

Rhodobium	

Rhodonellum	

Roseobacter	

Rothia	

Rudaea	

Rudaibacter	

Solobacterium	

Spiribacter	

Spongiibacter	

Acidaminococcaceae	

Actinomycetaceae	

CHAB-XI-27	

Fervidicoccaceae	

Lactobacillaceae	

Lentisphaeraceae	

Microbacteriaceae	

Peptostreptococcaceae	

SM1B06	

nbr16a11	

Clostridia	
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Ferroglobus	

Flaviramulus	

Flavivirga	

Fluviicola	

Frischella	

Gaiella	

Gelria	

Geobacter	

Gleocapsa	

Haliea	

Halovenus	

Hamadaea	

Hellea	

Ideonella	

Ignicoccus	

Janibacter	

Jonesia	

Kineosphaera	

Kineosporia	

Leeia	

Limnobacter	

Lonsdalea	

Malikia	

Mameliella	

Spongiibacterium	

Telluria	

Terrabacter	

Terrimonas	

Thauera	

Thermoflexus	

Thermoproteus	

Thermus	

Thiofaba	

Thioploca	

Thioreductor	

Ureaplasma	

Vadicella	

Vibrio	

Volucribacter	

Waddlia	

Wandonia	

Wenxinia	

Woodsholea	

Xenococcus	

Xenophilus	

Yangia	

Zavarzinia	

Zhouia	
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Marinilabilia	

Methylobacter	

Methylobacterium	

Zymobacter	

	

	

2.2.9	 Toolset	Developed	

	

The	aforementioned	tasks	were	accomplished	by	developing	a	collection	of	tools	

and	scripts.	The	list	of	these	tools	and	scripts	alongside	their	description	is	listed	

in	Table	2-4.	

	

Table	2-4:	List	of	tools	and	scripts	

Script/Tool	 Description	

usearch_makeudb	 This	script	converts	FASTA	files	such	

as	 SILVA	 database	 to	 USEARCH	 UDB	

format	for	use	in	sequence	alignment.	

SILVA	reference	database	was	broken	

down	into	smaller	files	due	to	memory	

limitations	of	32-bit	USEARCH	aligner.	

usearch_align	 This	 script	 performs	 sequence	

alignment	 of	 datasets	 via	 USEARCH	

aligner	 with	 reference	 database	 in	

UDB	format.	
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reduceusoutput.jar	 Using	the	USEARCH	generated	results	

from	each	individual	UDB	file,	this	tool	

selects	 the	 alignments	 with	 highest	

percentage	identity	score	and	discards	

the	rest.	

SilvaUtils-*.jar	 A	set	of	tools	that	perform	a	variety	of	

tasks	 on	 the	 SILVA	 release	 123	

database.	From	the	fully	aligned	SILVA	

database,	 ambiguous	 reads	 and	

eukaryote	 sequences	 were	 removed,	

and	 suitable	 unaligned	 and	 aligned	

databases	 were	 generated.	

Additionally,	 RNA	 sequences	 were	

converted	 to	DNA	 sequences	 here	 as	

well.	

rdpse-s.jar	 This	 tool	 uses	 a	 fully	 aligned	 SILVA	

database	to	generate	entropy	information	

for	each	reference	sequence	and	stores	it	

in	a	text	file.		

	

The	 process	 is	 only	 needed	 to	 be	 done	

once.	

uploadvectoS3db.jar	 This	tools	stores	entropy	information	

generated	 for	 each	 reference	

sequence	via	 the	 rdpse-s.jar	 tool	 to	a	
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SQLITE3	database,	which	can	then	be	

used	 in	 generating	 Shannon	 entropy	

based	 scores	 for	 query	 sequences.	

This	 significantly	 enhanced	 the	

throughput	of	the	system.	

TaxaSE.jar	 The	 main	 Shannon	 entropy	 based	

taxonomic	 annotation	 system.	 The	

tool	 used	 a	 SQLITE3	 database	 file	

containing	 entropy	 information	 for	

reference	 sequences	 as	 well	 as	

alignment	 results	 generated	 from	

reduceusoutput.jar.	 The	 system	 then	

outputs	 Shannon	 entropy	 based	

results.		

Silva-slicer-*.jar	 A	set	of	tools	that	assists	in	removal	of	

taxa	 based	 validation	 approach.	 The	

SILVA	 database	 is	 broken	 or	 “sliced”	

on	the	basis	of	genus,	family	and	class	

level	from	which	taxa	can	be	removed	

and	new	databases	can	be	generated.	

singlethresholdvalidator.jar	 This	 tool	 assists	 in	 the	 validation	

process.	 The	 tool	 consisted	 of	 two	

parts,	which	calculated	precision	and	

recall	 for	 whole	 SILVA	 dataset	 and	
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removal	 of	 taxa	 based	 datasets	

respectively.	 The	 tool	 used	 a	 list	 of	

thresholds	 and	 iterated	 across	 them,	

calculated	both	precision	and	recall	at	

each	step.	

	

The	Shannon	entropy	based	results	as	

well	 as	 the	 original	 FASTA	 File	 and	

SILVA	 taxonomy	 data	 are	 used	 to	

determine	 whether	 each	 query	

sequence	is	annotated	correctly	as	per	

requirement.	
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2.3	 Results	

2.3.1	 Whole	SILVA	Based	Dataset	

	

For	 the	whole	SILVA	based	dataset,	 the	precision	vs.	recall	 curves	 for	Shannon	

entropy	 and	 percentage	 identity	 approaches	 is	 illustrated	 in	 Figure	 2-2.	 Both	

approaches	demonstrated	similar	performance.	Given	that	this	was	a	simulation	

of	 an	 Illumina	 sequencing	system,	 the	precision	varied	between	approximately	

0.967	and	0.964.		

	

	

Figure	 2–2:	 Precision	 vs.	 recall	 graph	 for	 whole	 SILVA	 dataset	 with	

percentage	identity	in	blue	and	Shannon	entropy	approach	in	red	
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The	 area	 under	 the	 curve	 for	 both	 approaches	 is	 given	 in	 Table	 2-4.	 Both	

approaches	generated	an	area	under	the	curve	of	0.599,	with	percentage	identity	

being	slightly	ahead	of	Shannon	entropy	based	approach.		

	

Table	2-5:	Area	under	the	curve	for	whole	SILVA	dataset	based	validation	

for	both	the	percentage	identity	and	Shannon	entropy	approach	

Area	Under	the	Curve	

Percentage	identity	 0.5992876	

Shannon	Entropy	 0.5991252	

	

2.3.2	 Removal	of	Whole	Genera,	Families	and	Class	

	

As	 with	 the	 aforementioned	 whole	 SILVA	 dataset	 based	 validation,	 the	

precision/curve	 of	 both	 Shannon	 entropy	 and	 percentage	 identity	 approaches	

closely	 match	 each	 other	 for	 removal	 of	 genera	 based	 dataset	 (Figure	 2-3).		

Precision	 started	 at	 less	 than	 0.5,	 diminishing	 as	 recall	 improved	 for	 both	

approaches.	

	



	 54	

	

Figure	2–3:	 Precision	 vs.	 recall	 graph	 for	 removal	 of	 genera	dataset	with	

percentage	identity	in	blue	and	Shannon	entropy	approach	in	red	

	

The	area	under	the	curve	calculated	for	both	approaches	are	shown	in	Table	2-6.	

Removal	 of	 genera	 based	 validation	 showed	 percentage	 identity	 slightly	

outperforming	our	Shannon	entropy	based	approach.	Given	that	this	was	a	test	of	

both	systems	on	novel	sequences,	precision	was	low	overall,	staying	below	0.5.	

	

Table	2-6:	Area	under	the	curve	for	removal	of	genera	based	validation	for	

both	percentage	identity	and	Shannon	entropy	approach	

Area	Under	the	Curve	for	Removal	of	Genera	based	Validation	

Percentage	identity	 0.3924979	

Shannon	Entropy	 0.3917333	
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The	 precision	 vs.	 recall	 curves	 for	 removal	 of	 families-based	 validation	 is	

illustrated	in	Figure	2-4.	For	most	of	the	graph,	the	precision	vs.	recall	curve	for	

Shannon	 entropy	 stayed	 above	 the	 precision	 vs.	 recall	 curve	 for	 percentage	

identity.	Precision	 for	both	curves	began	at	0.4	and	stayed	below	this	until	 full	

recall	was	achieved.	Table	2-6	lists	the	area	under	the	curve	for	both	approaches.			

	

	

	

Figure	2–4:	Precision	vs.	recall	graph	for	removal	of	 families	dataset	with	

percentage	identity	in	blue	and	Shannon	entropy	approach	in	red	
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Table	2-7:	Area	under	the	curve	for	removal	of	families	based	validation	

for	both	percentage	identity	and	Shannon	entropy	approach	

Area	Under	the	Curve	for	Removal	of	Families	based	validation	

Percentage	identity	 0.3448928	

Shannon	Entropy	 0.3493627	

	

The	precision	vs.	recall	curves	for	removal	of	class-based	validation	approach	is	

shown	in	Figure	2-5.	Precision	was	low	for	both	approaches,	staying	below	0.4.	

Furthermore,	the	areas	under	the	curve	for	both	approaches	followed	each	other	

closely.	

	

	

Figure	 2–5:	 Precision	 vs.	 recall	 graph	 for	 removal	 of	 class	 dataset	 with	

percentage	identity	in	blue	and	Shannon	entropy	in	red	
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The	 calculated	 area	 under	 the	 curve	 for	 both	 approaches	 showed	 a	 slight	

advantage	 towards	 Shannon	 entropy	 approach,	 which	 scored	 an	 AUC	 of	 0.348	

while	percentage	identity	achieved	0.347	(Table	2-8).	

	

Table	2-8:	Area	under	the	curve	for	removal	of	class	based	validation	for	

both	percentage	identity	and	Shannon	entropy	approach	

Area	Under	the	Curve	for	Removal	of	Class	based	validation	

Percentage	identity	 0.347263	

Shannon	Entropy	 0.3478349	

	

2.3.3	 Accuracy	

	

Accuracy	plots	for	both	approaches	were	generated	by	varying	the	thresholds	and	

calculating	accuracy	attained	at	each	threshold.	The	results	were	then	plotted	as	

a	 graph	 between	 calculated	 accuracy	 and	 the	 threshold	 used.	 Both	 the	 whole	

SILVA	and	removal	of	taxon-based	datasets	were	used.			

	

The	graph	of	accuracy	against	thresholds	for	whole	SILVA	dataset	is	illustrated	in	

Figure	2-6.	Accuracy	for	percentage	identity	rose	quickly	with	earlier	thresholds	

compared	 to	 Shannon	 entropy,	 where	 lower	 thresholds	 are	 needed	 to	 attain	

similar	 accuracy.	 At	 the	 threshold	 value	 of	 0.975,	 both	 approaches	 achieve	 the	
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maximum	accuracy	possible	and	the	graph	hits	a	plateau	afterwards,	keeping	the	

accuracy	unchanged.	

	

	

Figure	2–6:	Whole	SILVA	dataset	accuracy	graph	for	percentage	identity	in	

blue	and	Shannon	entropy	in	red	
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Figure	2–7:	 Removal	 of	 taxa	 accuracy	 graphs	with	 percentage	 identity	 in	

blue	and	Shannon	entropy	in	red	at	three	taxa	levels,	a)	genus,	b)	family	and	

c)	class	
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2.4	 Discussion	

	

The	 new	 Shannon	 entropy	 based	 sequence	 similarity	metric	 can	 be	 used	 as	 a	

replacement	of	industry	standard	percentage	identity.	The	new	approach	showed	

comparative	performance	for	whole	SILVA	dataset	and	slightly	lower	for	removal	

of	genus	validation	dataset.	However,	 it	 improved	upon	percentage	 identity	 for	

removal	of	families	and	classes	datasets.		

	

2.4.1	 Whole	Silva	Dataset		

	

Shannon	 entropy	 approach	 closely	 follows	 the	 Percentage	 identity	 based	

approach	 and	 therefore	 shows	 similar	 performance	 to	 the	 gold	 standard	

percentage	identity.	Given	the	similar	performance,	using	either	approach	would	

most	 likely	 to	produce	almost	same	results	when	tested	on	datasets	containing	

previously	described	16S	rRNA	gene	sequences.	

	

2.4.2	 Removal	of	Taxa	Dataset	

	

For	 removal	 of	 genus	 dataset,	 sequences	 were	 checked	 at	 family	 level.	 Both	

approaches	generated	almost	the	exact	same	result	in	this	case,	with	percentage	

identity	slightly	leading	over	Shannon	entropy	approach.		

	

However,	the	Shannon	entropy	based	approach	showed	improved	performance	

compared	to	percentage	identity	based	approach,	with	higher	AUC	in	the	case	of	
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removal	of	families	dataset.	For	removal	of	class	dataset,	sequences	were	checked	

at	 phylum	 level	 and	 while	 both	 approaches	 were	 similar	 in	 their	 capability,	

Shannon	entropy	based	approach	demonstrated	slightly	improved	performance.	

This	translates	into	better	annotation	of	novel	sequences	at	the	order	level	as	well	

as	phylum	level	compared	to	percentage	identity	based	approach	and	is	therefore	

much	 more	 effective	 at	 taxonomic	 annotation	 as	 novel	 sequences	 can	 be	

annotated	better	in	the	case	of	the	new	approach.	By	randomly	selecting	the	taxon	

to	be	removed	at	each	taxa	level	in	an	independent	fashion,	the	AUC	results	of	both	

approaches	are	a	good	indicator	of	their	performance	as	it	minimized	any	possible	

bias	 towards	 specific	 taxa	 groups.	 Later	 chapters	 in	 this	 study	 where	 more	

samples	and	replicates	are	included	also	illustrate	an	improvement	as	well.	Lastly,	

the	different	behavior	shown	by	the	precision	vs	recall	curves	for	removal	of	taxa	

may	 be	 due	 to	 a	 few	 factors,	 such	 as	 inaccurate	 taxonomic	 annotation	 in	 the	

reference	database,	low	quality	sequences	or	presence	of	polyphyletic	sequences.	

	

A	low	accuracy	was	achieved	in	the	removal	of	taxon	datasets	for	both	approaches.	

This	is	due	to	the	fact	that	these	sequences	are	effectively	novel	to	the	database	

and	hence	a	lower	accuracy	is	expected.	It	is	possible	that	popular	classifiers	such	

as	RDP	and	SILVA	may	also	have	similarly	lower	accuracy,	as	sequence	similarity	

based	 classifiers	 tend	 to	 perform	worse	when	 the	 query	 sequence	 is	 distantly	

related	to	the	sequences	in	the	database	(Matsen	et	al.,	2010).	Additionally,	any	

threshold	used	for	percentage	identity	approach	(Lanzen	et	al.,	2012)	may	not	be	

appropriate	for	Shannon	entropy	approach,	due	to	the	fundamental	difference	in	

the	scoring	of	query	sequences.	The	Shannon	entropy	approach	scores	differently	

compared	to	percentage	identity,	as	the	mismatch	penalty	depends	on	the	location	
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of	the	mismatch	and	the	associated	entropy	value	and	therefore	achieved	similar	

accuracy	 to	 percentage	 identity	 at	 a	 later	 threshold	 (Figure	 2-6	 and	 2-7).	

Additionally,	 the	 increase	 in	 accuracy	 with	 decreasing	 threshold	 differs	 for	

different	levels	of	taxa.	

	

Percentage	 identity	 is	 a	 distance-based	 approach	 where	 only	 the	 number	 of	

positions	where	sequences	differ,	is	used	to	calculate	a	similarity	score.	Because	

various	segments	of	16S	rRNA	gene	are	changing	at	different	rate,	evolutionary	

distances	between	sequences	are	not	captured	effectively	in	this	manner	and	in	

fact	are	underestimation	(Woese,	1987).	Furthermore,	it	also	suffers	from	lower	

taxonomic	 resolution	 especially	 at	 the	 species	 level,	 as	 sequences	 belonging	 to	

different	species	can	be	erroneously	considered	identical	as	only	the	number	of	

mismatches	is	counted	but	not	the	locations	where	these	mismatches	occur	(Fox	

et	 al.,	 1992).	 Unlike	 the	 aforementioned	 percentage	 identity,	 the	 new	 Shannon	

entropy	based	approach	effectively	captures	evolutionary	conservation	from	the	

16S	 rRNA	 gene	 sequences	 as	 every	 location’s	 degree	 of	 variability	 is	 directly	

determined	and	used	 in	the	new	scoring	scheme.	This	represents	advancement	

towards	 better	 similarity	 measurements	 and	 which	 is	 in	 accordance	 with	 the	

evolution	 of	 sequences	 (Woese,	 1987).	 The	 results	 illustrate	 better	 annotation	

capability	 at	 class	 and	 families	 level	 while	 being	 comparative	 to	 percentage	

identity	at	other	taxa	levels.	A	limitation	of	the	new	method	is	that	only	the	best	

alignment	was	taken.	The	impact	on	the	results	may	be	small	as	it	is	more	likely	

that	 the	 same	 taxonomic	 annotation	 is	 assigned	 to	 the	 query	 sequences	 as	 the	

whole	SILVA	dataset	illustrates	a	very	high	precision,	even	with	simulated	error	

in	reads.	Nonetheless,	it	is	possible	that	the	application	of	least	common	ancestor	
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on	 multiple	 alignments	 may	 yield	 better	 results,	 as	 this	 would	 allow	 for	

differentiating	between	assignments	that	are	very	closely	related.			

	

An	 alternative	 to	 quantifying	 evolutionary	 conservation	 via	 Shannon	 Entropy	

would	be	the	application	of	Stochastic	Context	Free	Grammar	based	tools	such	as	

SSU-align	 (Nawrocki,	Kolbe,	&	Eddy,	2009).	While	keeping	 the	model	 structure	

contact,	 the	 emission	 and	 transition	 probabilities	 can	 be	 trained	 for	 each	

taxonomic	 level,	 which	 is	 then	 used	 for	 developing	multiple	models.	 	 A	 query	

sequence	could	then	be	searched	against	all	models,	with	the	best	model	being	

selected.	Another	avenue	would	be	to	use	SCFG	based	tools	for	generating	better	

multiple	 sequence	 alignment	 of	 reference	 sequences	 (Brown,	 2000)	 to	 more	

accurately	determine	Shannon	entropy	at	each	location.	Lastly,	for	metagenomic	

datasets,	SCFG	based	homology	search	may	outperform	sequence	similarity	based	

tools	such	as	BLAST	(Yuan,	Lei,	Cole,	&	Sun,	2015).		

	

Given	 that	 the	vast	majority	of	 sequences	are	uncultivated	 (Huson	et	 al.,	 2007;	

Marcy	et	 al.,	 2007),	 there	 is	 a	higher	 likelihood	 that	 in	many	ecological	studies	

unknown	 sequences	 will	 be	 detected.	 The	 best	 possible	 annotation	 of	 these	

sequences	will	give	insight	into	the	inner	workings	of	the	environment,	even	if	the	

exact	 taxonomic	 annotation	 cannot	 be	 determined	 at	 finer	 taxonomic	 levels	

(Huson	et	al.,	2007).	For	this	reason,	new	approaches	must	be	able	to	handle	these	

sequences	 in	 an	 improved	 fashion	 and	 here	 the	 new	 Shannon	 entropy	 based	

approach	provides	improved	performance	over	the	industry	standard	percentage	

identity,	by	annotating	novel	sequences	better	at	higher	taxa	levels	such	as	family	
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and	class.	This	illustrates	the	advantage	of	using	Shannon	entropy	approach	over	

percentage	identity	metric.	

	

Additionally,	techniques	such	as	oligotyping	(Eren,	Borisy,	Huse,	&	Mark	Welch,	

2014)	have	already	utilized	Shannon	entropy	albeit	for	a	few	hundred	base	pairs.	

Shannon	 entropy	 is	 calculated	 across	 the	whole	 of	 16S	 rRNA	 gene	 in	 the	 new	

approach,	 enabling	 it	 to	 capture	 variability	 in	 the	 gene	much	more	 effectively.	

Furthermore,	using	a	fast	sequence	aligner	in	the	form	of	USEARCH	enables	quick	

and	high	throughput	taxonomic	annotation	where	large	datasets	can	be	quickly	

annotated	in	short	time	(Edgar,	2010).		

	

2.5	 Conclusion	

	

The	study	aimed	to	develop	a	novel	entropy	based	approach	that	can	replace	the	

percentage	 identity	 metric	 for	 sequence	 similarity	 where	 the	 evolutionary	

conservation	information	of	16S	rRNA	genes	are	directly	exploited	to	form	a	new	

high	resolution	scoring	method.	Most	popular	approaches	forgo	the	utilization	of	

this	 inherent	 information	 contained	 within	 the	 16S	 rRNA	 sequences,	 instead	

relying	on	a	measure	that	only	counts	mismatches	between	sequences.	Given	the	

variability	across	the	whole	of	16S	rRNA,	not	every	base	may	be	equally	important	

as	 variable	 locations	 are	 much	 more	 essential	 in	 differentiating	 between	

sequences	compared	to	conserved	regions	(Chakravorty	et	al.,	2007).	
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The	 approach	 is	 competitive	 enough	 that	 it	 can	 be	 used	 alongside	 commonly	

applied	percentage	identity	scoring	schemes.	The	new	approach	performs	slightly	

worse	 for	 whole	 SILVA	 and	 removal	 of	 genera	 based	 validation,	 although	 the	

performance	 is	 just	within	 reach	of	percentage	 identity.	Furthermore,	 Shannon	

entropy	based	approach	shows	improved	performance	for	removal	of	families	and	

class	based	validation.	This	is	especially	important	given	that	majority	of	bacterial	

sequences	 are	 not	 annotated,	 and	 more	 and	more	 novel	 sequences	 are	 being	

detected	 in	 almost	 all	 of	 the	 next-generation	 sequencing	 projects.	 Hence	 new	

approaches,	which	are	able	 to	annotate	novel	 sequences	at	various	 taxa	 levels,	

would	be	more	appropriate	and	Shannon	Entropy	based	approach	may	be	more	

suitable	for	this	purpose.	

	

The	SILVA	database	used	contained	more	than	1.2	million	fully	aligned	sequences.	

Increase	in	the	number	of	aligned	sequences	belonging	to	a	wide	variety	of	diverse	

bacteria	can	improve	the	capability	of	the	system,	as	full	alignment	of	16S	rRNA	

gene	sequences	are	the	central	focus	of	the	new	approach	described	here	and	an	

increase	 in	 the	 diversity	 present	 in	 the	 aligned	 database	 would	 improve	 the	

system	 due	 to	 generation	 of	 Shannon	 entropy	 information	 that	 captures	

variability	 in	 the	16S	rRNA	marker	gene	much	more	effectively.	Higher	quality	

sequences	 as	 well	 as	 species	 level	 information	 would	 no	 doubt	 lead	 to	 better	

taxonomic	annotation	as	well.		
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Chapter		3: 	 	 	TaxaSE:	Taxonomic	Annotation	via	

Shannon	Entropy	

	

3.1	 Introduction	

	

Advances	 in	 sequencing	 technology	 have	 led	 to	 an	 explosion	 in	 the	 amount	 of	

biological	 data	 being	 generated	 (Thorsen	 et	 al.,	 2016).	 Given	 the	 importance	

played	by	microbes	 in	 the	 inner	working	of	 the	environment	(Kirk	et	al.,	2004;	

Mackelprang	et	al.,	2016)	and	the	effects	on	human	health	(Stefka	et	al.,	2014;	von	

Mutius,	 2016),	 numerous	 studies	 are	 being	 conducted	 to	 elucidate	 the	 various	

mechanisms	 by	 which	 these	 microbes	 influence	 their	 surroundings	 (Gilbert,	

Jansson,	&	Knight,	2014).	As	a	 consequence,	bioinformatics	pipelines	aiming	 to	

characterize	microbial	community	composition,	have	been	developed	alongside	

various	 16S	 rRNA	 gene	 sequence	 databases,	 which	 serve	 as	 a	 reference	 set	 of	

sequences	for	microbial	taxonomic	analysis	(Santamaria	et	al.,	2012).		

	

Popular	 taxonomic	 annotation	 pipelines	 include	 MG-RAST	 (Aziz	 et	 al.,	 2008),	

MEGAN	(Huson	et	al.,	2007),	QIIME	(Caporaso	et	al.,	2010)	and	MOTHUR	(Schloss	

et	al.,	2009).	MG-RAST	(Aziz	et	al.,	2008)	is	an	online	service	for	phylogenetic	and	

functional	 annotation	 of	 metagenomes.	 MEGAN	 (Huson	 et	 al.,	 2007)	 is	 a	

standalone	tool,	primarily	geared	towards	taxonomic	annotation	of	metagenomes	

while	QIIME	(Caporaso	et	al.,	2010)	and	MOTHUR	(Schloss	et	al.,	2009)	are	suites	

of	bioinformatics	tools,	which	provide	a	flexible	workflow	for	analysis	of	microbial	

communities.	
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QIIME	or	Quantitative	Insights	into	Microbial	Ecology	(Caporaso	et	al.,	2010)	is	a	

popular	pipeline	package	used	in	various	ecological	projects.	It	packages	together	

commonly	used	algorithms	such	as	USEARCH,	a	sequence	aligner	(Edgar,	2010),	

BLAST	(Altschul	et	al.,	1990),		Denoiser	(Reeder	&	Knight,	2010)	or	AmpliconNoise	

(Quince	et	al.,	2009)	for	denoising	reads,	Uchime	(Edgar	et	al.,	2011)	for	chimera	

removal	and	also	includes	sequence	handling	and	statistical	tools.	Various	studies	

that	have	used	QIIME	for	analysis	include	studies	of	the	structure,	function	and	

diversity	 of	 the	 human	 microbiome	 (Human	 Microbiome	 Project,	 2012),	 gut	

microbiota	(Claesson	et	al.,	2012;	Turroni	et	al.,	2012),	soil	bacterial	communities	

(N.	 Fierer	 et	 al.,	 2012;	 Nacke	 et	 al.,	 2011;	 J.	 Rousk	 et	 al.,	 2010)	 and	 marine	

microbiota	(Mason	et	al.,	2012;	Zettler,	Mincer,	&	Amaral-Zettler,	2013).	For	most	

analysis,	QIIME	mainly	uses	the	UCLUST	(Edgar,	2010)	algorithm	for	clustering	

and	RDP	classifier	(Cole	et	al.,	2014)	for	taxonomic	assignment	purposes.	

	

The	 majority	 of	 taxonomic	 annotation	 systems,	 including	 QIIME,	 use	 OTU	 or	

operational	taxonomic	unit,	as	the	defining	concept	for	determining	community	

composition	 (He	 et	 al.,	 2015).	 Considered	 as	 a	 de	 facto	 standard	 approach	 to	

analysis,	 OTUs	 are	 formed	 by	 clustering	 sequences	 on	 the	 basis	 of	 a	 specified	

similarity	 threshold	 such	 as	 97%	 (Drancourt	 et	 al.,	 2000;	 Tikhonov,	 Leach,	 &	

Wingreen,	 2015).	 Taxonomic	 annotation	 is	 performed	 on	 the	 representative	

sequence	of	each	OTU,	and	all	the	sequences	within	the	OTU	are	assigned	the	same	

taxonomy	regardless	of	small	scale	differences	in	base	composition	between	them	

(Nguyen,	Warnow,	Pop,	&	White,	2016).	This	is	a	favorable	technique	as	picking	

representative	 OTUs	 from	 a	 list	 of	 sequences	 drastically	 cuts	 down	 on	
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computational	requirements	for	analysis.	This	gives	the	ability	to	quickly	perform	

fast	 annotation,	 in	 addition	 to	 providing	 abundance	 information	 of	 how	many	

reads	 form	 an	 OTU	 cluster	 (He	 et	 al.,	 2015;	Methé	 et	 al.,	 2012)	 and	 therefore	

allowed	for	rapid	analysis	of	large	datasets	(Nguyen	et	al.,	2016).		

	

However,	both	 taxonomic	annotation	and	OTU	generation	 suffers	 from	various	

limitations.	Being	a	non-evolutionary	based	distance	metric	(Nguyen	et	al.,	2016),	

the	percentage	identity	metric,	which	is	used	to	determine	sequence	similarity	for	

both	 taxonomic	 annotation	 and	 OTU	 generation,	 provides	 an	 inaccurate	

estimation	of	 evolutionary	distance	between	 two	sequences	 (Woese,	1987).	As	

only	the	number	of	mismatches	is	used	to	calculate	the	percentage	identity	metric,	

taxonomic	annotation	at	species	 level	also	suffers,	with	the	approach	unable	to	

differentiate	between	closely	related	species	or	strains	(Fox	et	al.,	1992).	

	

OTU	generation	methods	assume	that	all	16S	rRNA	genes	evolve	at	the	same	rate	

(Schloss	&	Westcott,	2011)	as	they	are	dependent	on	the	simple	distance	based	

metric	like	percentage	identity	and	hence	cannot	capture	the	variability	at	each	

nucleotide	position.	Furthermore,	OTUs	made	from	short	read	sequences	may	not	

be	as	reliable	in	estimating	species	richness	as	the	OTUs	formed	from	near	full-

length	sequences,	primarily	due	to	16S	rRNA	gene	exhibiting	different	degree	of	

variability	across	its	length	and	therefore	region	selection	plays	an	important	role	

in	accurately	estimating	microbial	diversity	(Minseok	Kim,	Morrison,	&	Yu,	2011).		

	

Additionally,	OTU	assignments	may	not	be	reliable	and	can	differ	on	the	basis	of	

the	 algorithm	 used	 (Tikhonov	 et	 al.,	 2015),	 with	 common	 OTU	 creation	
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approaches	 sometimes	 leading	 to	 inflation	 of	 species	 level	 diversity	 estimates	

(Edgar,	2013;	White	et	al.,	2010).	This	is	compounded	by	the	fact	that	certain	OTU	

construction	 techniques	 generate	 instable	 OTUs	 where	 the	 membership	 of	

sequences	changes	significantly	with	the	addition	of	new	sequences	or	samples	to	

the	 dataset.	 As	 a	 consequence,	 different	 set	 of	 OTUs	 are	 observed	 with	 each	

clustering	run	(He	et	al.,	2015).	Sequences	belonging	to	one	OTU	in	the	previous	

run	may	be	assigned	to	different	OTUs	in	the	next	run	and	sequences	belonging	to	

different	OTUs	may	be	merged	into	a	single	OTU.	This	has	a	significant	impact	on	

downstream	 diversity	 analysis	 including	 rarefaction	 curves,	 which	 determine	

how	much	diversity	was	captured	as	well	as	the	identification	of	individual	OTUs	

(He	 et	 al.,	 2015;	 Nguyen	 et	 al.,	 2016).	 Given	 that	 most	 taxonomic	 annotation	

pipelines	 regularly	 employ	 percentage	 identity	 based	 OTU	 clustering	 for	 any	

downstream	analysis,	these	pipelines	therefore	suffer	from	the	same	limitations	

as	 well.	 	 However,	 newer	 tools	 such	 as	 PhylOTU	 use	 phylogenetic	 distances	

instead	 of	 percentage	 identity	 to	 generate	 OTUs,	 though	 these	 are	 targeted	

towards	shotgun	metagenomics	datasets	(Sharpton	et	al.,	2011).	

	

This	 study	 aims	 to	 address	 these	 issues	 and	 overcome	 these	 limitations	 by	

developing	 a	 new	 taxonomic	 annotation	 pipeline,	 defined	 here	 as	 Taxonomic	

Annotation	via	Shannon	entropy	(the	TaxaSE	system),	which	employs	the	novel	

Shannon	entropy	based	sequence	similarity	measure	as	developed	in	Chapter	2.	

As	the	Shannon	entropy	based	approach	exhibits	better	performance	compared	

to	percentage	identity	in	some	instances,	based	on	Chapter	2’s	in-silico	analysis	on	

algorithm	 performance,	 therefore	 this	 would	 result	 in	 better	 taxonomic	

annotation	capability	compared	to	percentage	identity	based	approaches.	While	
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the	new	pipeline	can	be	used	for	annotation	of	OTUs,	the	limitations	associated	

with	OTU	generation	and	usage	can	be	resolved	by	following	an	OTU-independent	

approach	where	sequences	are	annotated	 individually.	This	would	result	 in	 the	

highest	 resolution	 annotation	 via	 a	 combination	 of	 an	 improved	 annotation	

algorithm	as	well	as	extracting	 intra-OTU	diversity,	compared	to	standard	97%	

OTU	similarity	approach,	which	obscures	fine-scale	variation.	This	requires	more	

computational	resources	but	the	system	is	able	to	attain	species	level	annotation.	

Hence,	 this	 chapter	 aimed	 to	 develop	 a	 taxonomic	 annotation	 pipeline,	 which	

could	use	the	newly	developed	sequence	similarity	metric	described	in	chapter	2	

and	to	test	the	pipeline	on	real	amplicon	datasets	and	in	comparison	to	another	

popular	pipeline,	QIIME.		

	

To	perform	an	exploration	of	TaxaSE’s	capabilities	towards	annotation	of	diverse	

microbial	sequences	and	its	value	for	application	in	ecological	studies,	comparison	

with	a	published	and	widely	applied	pipeline	 is	needed.	For	that	reason,	QIIME	

(Caporaso	et	al.,	2010)	is	selected	due	to	its	popularity	in	ecological	studies	and	

because	 it	 provides	 various	 tools	 for	 downstream	 analysis	 of	 taxonomic	

annotations	and	is	underpinned	by	similarity	based	annotations	via	the	popular	

USEARCH	sequence	aligner	(Edgar,	2010).	Furthermore,	TaxaSE	was	integrated	

into	 the	 QIIME	 workflow	 by	 specially	 developing	 tools	 that	 can	 convert	 the	

generated	results	into	a	QIIME	compatible	format.	This	will	greatly	enhance	the	

ability	to	compare	both	pipelines	as	well	as	integrating	QIIME	based	tools	and	the	

TaxaSE	system.	This	integration	has	long-term	benefits	as	the	TaxaSE	system	can	

be	deployed	quickly	in	ecological	studies	where	QIIME	is	already	being	used.		
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To	demonstrate	the	usefulness	of	this	approach,	we	applied	it	to	amplicon	datasets	

from	 specific	 habitats	 in	 order	 to	 generate	 meaningful	 results	 and	 capture	

diversity	patterns	in	a	similar	manner	to	QIIME.	 	
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3.2	 Materials	and	Methods	

3.2.1	 Pipeline	Development	

	

The	 TaxaSE	 pipeline	 was	 developed	 in	 the	 Java	 programming	 language	 and	

represented	a	collection	of	tools	and	scripts	developed	for	taxonomic	annotation	

and	integration	with	QIIME.	Description	of	the	tools	and	scripts	developed	and	the	

various	tasks	they	performed	are	listed	in	Table	3-1.	The	pipeline’s	development	

was	 based	 on	 handling	 different	 aspects	 of	 analysis	 by	modules	of	 scripts	 and	

tools,	and	the	workflow	used	is	as	follows:	

1) Sequence	 alignment:	 This	 uses	 USEARCH	 sequence	 aligner	 to	 generate	

alignments	between	reference	and	query	sequences.	As	the	free	version	of	

USEARCH	aligner	is	32bit	and	therefore	has	a	memory	limitation,	hence	the	

SILVA	database	was	broken	down	into	more	manageable	parts	and	scripts	

and	 Java	 tools	 were	 developed	 for	 using	 multiple	 reference	 files	 with	

USEARCH	and	generating	the	best	read.	

2) Shannon	Entropy	 read	 score	generator:	 This	was	 developed	 to	use	 best	

sequence	alignments	to	generate	a	Shannon	entropy	score	for	each	query	

sequence.	The	results	consisted	of	query	sequences	and	their	associated	

Shannon	entropy	read	scores	for	use	in	downstream	tools.	

3) Threshold	based	conversion:	This	was	developed	to	select	the	maximum	

taxonomic	annotation	level	of	query	sequences	on	the	basis	of	thresholds.	

The	result	 file	here	consists	of	query	sequences	and	the	 final	 taxonomic	

annotations	assigned	to	them.	
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4) QIIME	conversion:	Lastly,	this	enabled	the	conversion	of	TaxaSE	results	in	

a	flat	file	to	QIIME	compatible	format,	allowing	the	use	of	TaxaSE	within	

QIIME.	

	

The	pipeline	toolkit,	source	code,	associated	dataset	and	documentations	on	how	

to	run	it	for	analysis	is	available	publicly	at	HIE-Pub	(Ijaz,	2017).	

	

Table	3-1:	Lists	of	tools	and	scripts	developed	for	the	TaxaSE	pipeline.	

Script/Tool	 Description	

usearch_makeudb	 This	script	converts	SILVA	database	to	

USEARCH	 UDB	 format	 for	 use	 in	

sequence	 alignment.	 SILVA	 reference	

database	 was	 broken	 down	 into	

smaller	 files	 due	 to	 memory	

limitations	of	32-bit	USEARCH	aligner.	

usearch_align	 This	 script	 performs	 sequence	

alignment	 of	 datasets	 via	 USEARCH	

aligner	 with	 reference	 database	 in	

UDB	format	

reduceusoutput.jar	 USEARCH	generated	results	from	each	

individual	 UDB	 file.	 This	 tool	 selects	

the	alignment	with	highest	percentage	

identity	score	and	discards	the	rest.	
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TaxaSE.jar	 The	 main	 Shannon	 entropy	 based	

taxonomic	 annotation	 system.	 The	

tool	 used	 a	 SQLITE3	 database	 file	

containing	 entropy	 information	 for	

reference	 sequences	 as	 well	 as	

alignment	 results	 generated	 from	

reduceusoutput.jar.	 The	 system	 then	

outputs	 Shannon	 entropy	 based	

results.		

se_threshold_converter.jar	 This	tool	used	a	list	of	thresholds	in	a	

text	 to	 convert	 annotation	 to	 proper	

level	 in	 the	 results	 generated	 from	

TaxaSE.jar	tool.	

se_to_qiime.jar	 Using	 the	 information	 present	 in	

TaxaSE	results	file,	this	tool	generated	

QIIME	 compatible	 files,	 which	 can	

then	 be	 used	 within	 QIIME,	 pipeline	

itself	for	analysis.	

	

3.2.1	 Sampling	

	

Dr.	Kelly	Hamonts	at	HIE,	Western	Sydney	University,	 collected	 sugarcane	 leaf,	

stalk,	root	and	rhizosphere	soil	samples	in	November	2014	from	eight	sugarcane	

fields	growing	three	sugarcane	varieties	(KQ228,	MQ239	and	Q240)	near	Ingham,	
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Queensland,	Australia.	In	each	field,	3	stools	were	randomly	selected	and	samples	

were	 collected	 from	 2	 plants	 per	 stool.	 Samples	 were	 snap-frozen	 in	 liquid	

nitrogen	in	the	field,	transported	to	the	laboratory	on	dry	ice	and	stored	at	-80	oC.	

Frozen	sugarcane	tissue	samples	were	ground	using	mortar	and	pestle	and	DNA	

was	 extracted	 from	 the	 resulting	 powder	 using	 the	 MoBio	 PowerPlant	 DNA	

extraction	kit,	 following	 the	manufacturer’s	 instructions.	The	MoBIO	PowerSoil	

DNA	extraction	kit	was	used	to	extract	DNA	from	the	soil	samples.	Bacterial	16S	

rRNA	amplicon	sequencing	was	performed	by	the	NGS	facility	at	Western	Sydney	

University	using	Illumina	Miseq	(2x	301	bp	PE)	and	the	341F/805R	primer	set	for	

this	study.	

	

A	 total	 of	 158	 samples,	 belonging	 to	 these	 environments	 were	 analyzed	 for	

comparison	between	TaxaSE	and	 the	RDP	classifier,	 a	naïve	Bayesian	 classifier	

(Cole	 et	 al.,	 2014),	 as	 implemented	 in	 QIIME	 (Caporaso	 et	 al.,	 2010).	 The	

breakdown	of	the	samples	from	the	sugarcane	dataset	is	listed	in	Table	3-2.	Most	

samples	came	from	the	soil	environment,	 followed	by	stem	and	root,	while	 the	

rhizosphere	environment	had	the	least	number	of	samples.	

	

Table	3-2:	Sample	data	used	for	real	amplicon	dataset	analysis	

Environment	 Number	of	Samples	

Rhizosphere	 12	

Root	 45	

Soil	 54	

Stem	 47	
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Total	 158	

	

	

To	minimize	DNA	sequencing	artifacts	and	remove	chimeras	 from	the	datasets,	

the	following	preprocessing	procedure	was	followed	for	all	samples:	

1) Read	trimming:	

a. Sequences	were	trimmed	on	both	forward	R1	and	reverse	R2	reads	

removing	low	quality	regions	with	Phred	(Ewing,	Hillier,	Wendl,	&	

Green,	1998)	score	of	less	than	25	(Q25).	This	was	performed	using	

“seqtk”	tool	(Li,	2017).	

2) Paired-end	read	merging:	

a. After	 quality	 trimming,	 both	 forward	 and	 reverse	 reads	 were	

merged	using	FLASH	 (Magoc	&	Salzberg,	2011)	with	a	maximum	

overlap	set	to	200.	

3) Chimera	removal:	

a. Finally,	 the	 merged	 reads	 were	 analyzed	 for	 the	 presence	 of	

chimeras.	 This	 was	 accomplished	 using	 VSEARCH,	 a	 sequence	

aligner	and	RDP	(Cole	et	al.,	2014)	Gold	database	which	contained	

10,049	reference	sequences.	Subsequently,	chimeras	were	removed	

from	the	samples.	

3.2.2	 Comparison	Approaches	

	

In	order	to	properly	compare	the	new	TaxaSE	system	with	QIIME,	the	following	

two	approaches	were	taken:	
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1) OTU	Comparison:	OTUs	were	generated	from	each	of	the	four	habitats	at	

97%	 sequence	 similarity	 using	 UCLUST	 (Edgar,	 2010).	 Both	 QIIME	 and	

TaxaSE	systems	were	run	on	the	representative	sequences	of	these	OTUs	

and	diversity	results	were	compared.	This	was	done	to	determine	whether	

TaxaSE	could	be	used	as	an	integrated	16S	rRNA	gene	sequence	annotator	

for	OTU	based	analysis.	

a. Sample	 files	 belonging	 to	 different	 environments	were	 combined	

and	a	list	of	OTUs	were	generated	using	UCLUST	(Edgar,	2010).	This	

ensured	consistency,	as	similar	OTUs	could	then	be	compared.	

b. OTU	 tables	 were	 rarified	 to	 10000	 sequences	 to	 ensure	 even	

sampling	depth.	

c. RDP	classifier	(Cole	et	al.,	2005)	was	used	for	QIIME,	with	a	default	

confidence	parameter	of	0.8.	

d. Given	that	representative	sequences	were	based	on	the	97%	OTU	

similarity,	a	single	threshold	of	0.9	was	selected	for	TaxaSE	on	an	ad	

hoc	basis,	as	it	is	sufficiently	higher	for	annotation	of	OTUs.	This	is	

similar	to	how	RDP	classifier	in	QIIME	using	a	single	parameter	of	

0.8	for	annotation	purposes.	Furthermore,	the	selection	of	97%	OTU	

similarity	means	that	the	representative	sequence	to	be	annotated	

was	already	highly	similar	to	other	sequences	in	the	OTU.		

2) Distinct	Taxonomic	Annotations:	 Instead	of	OTUs,	 the	number	of	distinct	

taxonomic	annotations	was	used	as	the	metric	of	diversity.	To	illustrate	the	

comparison	between	annotating	sequences	 individually	with	OTU	based	

approaches,	the	following	steps	were	taken:	
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a. OTUs	were	generated	at	97%	and	99%	sequence	similarity	using	

QIIME.	Following	the	annotation	process	via	RDP	classifier,	OTUs,	

which	 had	 the	 same	 taxonomic	 annotations,	 were	 combined	

together	to	form	pseudo-OTUs.	

b. For	TaxaSE,	sequences	were	individually	annotated	and	similar	to	

QIIME,	 collections	 of	 sequences	 were	 combined	 together	 on	 the	

basis	of	having	 the	 same	 taxonomic	annotations	 to	 form	pseudo-

OTUs.	

c. The	OTU	tables	were	rarefied	to	10000	sequences	to	ensure	even	

sampling	depth.	

	

Furthermore,	the	following	steps	were	also	taken	to	ensure	consistency	between	

both	approaches:	

1) QIIME	specific	 SILVA	 (Pruesse	et	 al.,	 2007)	database	v119	was	used	 for	

QIIME	based	analysis.	For	the	TaxaSE	system,	SILVA	database	v123	was	

utilized	for	annotation	purposes.	

2) OTUs	 belonging	 to	 eukaryota	 and	 archaea	 were	 removed	 from	 QIIME	

results	 as	 the	primary	 comparison	between	both	 systems	was	based	on	

bacterial	taxonomic	annotations.	

	

Given	 that	 sequences	 were	 annotated	 individually	 in	 the	 distinct	 taxonomic	

annotation	 approach,	 a	 set	 of	 thresholds	 was	 selected	 for	 the	 TaxaSE	 system,	

which	 is	 listed	 in	 Table	 3-3.	 As	 from	 Chapter	 2,	 the	 Shannon	 entropy	 based	

similarity	 metric	 reached	 similar	 accuracy	 at	 a	 lower	 threshold	 compared	 to	

percentage	 identity.	 Furthermore,	 while	 the	 percentage	 identity	 metric	
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underestimates	evolutionary	distances	between	sequences,	the	Shannon	entropy	

based	 approach	 provided	 a	 more	 accurate	 assessment.	 Hence	 the	 threshold	

selected	 for	each	taxa	 level	were	selected	on	an	ad	hoc	basis	and	were	slightly	

lower	 than	 the	 corresponding	 thresholds	 for	 percentage	 identity,	 which	 are	

generally	taken	as	99%	for	species,	97%	for	genus,	95%	for	family,	90%	for	order,	

85%	for	class	and	80%	sequence	similarity	 for	phylum	(Drancourt	et	al.,	2000;	

Lanzen	et	al.,	2012).	

	

Table	3-3:	Thresholds	selected	for	the	TaxaSE	system	at	different	taxa	

levels	

Thresholds	 Assigned	Taxonomic	Level	

1	–	0.98	 Species	or	best	possible	annotation	

0.98	–	0.95	 Genus		

0.95	–	0.9	 Family	

0.9	–	0.85	 Order	

0.85	–	0.8	 Class	

0.8	–	0.75	 Phylum	
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3.2.3	 Diversity	Analysis	

	

For	 the	 aforementioned	 two	 approaches,	 the	 following	 diversity	 analysis	were	

performed:	

1) Alpha	 diversity	 analysis	 was	 implemented	 using	 QIIME’s	 inbuilt	

alpha_rarefaction.py	script.	

a. Alpha	 diversity	 is	 used	 to	 quantitatively	 analyze	 the	 species	

richness	in	a	habitat.	

b. Welch’s	t-test	was	used	to	determine	if	the	results	were	statistically	

significant.	

2) Beta	 diversity	 analysis	 was	 accomplished	 by	 using	 QIIME’s	

beta_diversity_through_plots.py	 script.	 Bray	 Curtis	 was	 taken	 as	 the	

distance	metric	and	beta	diversity	plots	were	generated	using	the	Emperor	

package	(Vázquez-Baeza,	Pirrung,	Gonzalez,	&	Knight,	2013).	

a. Beta	diversity	is	a	comparison	of	diversity	between	ecosystems	and	

is	 therefore	 a	 useful	 step	 for	 comparing	 different	 taxonomic	

annotation	pipelines.	

3) Quantitative	 comparison	 of	 both	 QIIME	 and	 TaxaSE	 pipelines	 was	

performed	 via	 ADONIS	 (Anderson,	 2001)	 and	 ANOSIM	 (CLARKE,	 1993)	

statistical	 tests.	 	 The	 compare_categories.py	 script	 was	 used	 for	 this	

purpose.	

a. ADONIS	 represents	 a	 non-parametric	 multivariate	 analysis	 of	

variance,	 which	 uses	 distance	 matrices	 such	 as	 the	 Bray	 Curtis	

metric	and	details	how	much	variance	is	described	by	a	categorical	

variable.		
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b. ANOSIM	represents	analysis	of	similarities	to	test	whether	group	of	

samples	is	statistically	different	based	on	a	categorical	variable.	
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3.3	 Results	

3.3.1	 OTU	Comparison	

3.3.1.1	 Alpha	Diversity	

	

For	OTU	comparison,	 the	rhizosphere	environment	showed	the	TaxaSE	system,	

using	Shannon	entropy	at	a	single	threshold	of	0.9	producing	the	greatest	number	

of	OTUs	at	3502	average	while	QIIME	generated	3482	average	as	 illustrated	 in	

Figure	3-1a.	Standard	error	for	observed	species	was	the	least	in	the	case	of	QIIME	

with	59.6	while	 TaxaSE	 generated	 a	 standard	error	of	63.5.	Welch’s	 t-test	was	

conducted	 to	 compare	 both	 approaches,	 where	 no	 significant	 difference	 was	

observed	 between	 QIIME	 	 (M=3482.09,	 SD=197.8)	 and	 TaxaSE	 (M=3502.3,	

SD=210.77);	t	(19)=0.2316,	p	=	0.8193.		

	

In	 the	 case	 of	 root	 environment,	 both	 approaches	 provided	 almost	 the	 same	

results	as	shown	in	Figure	3-1b.	QIIME	generated	a	slightly	higher	3452	average	

number	of	observed	species,	followed	by	TaxaSE	at	3448.	The	standard	error	for	

observed	species	was	also	similar,	with	QIIME	at	78.5	and	TaxaSE	at	79.	Welch’s	

t-test	 reported	 no	 significant	 difference	 between	QIIME	 (M=3452.4,	 SD=496.7)	

and	TaxaSE	(M=3448,	SD=499.9);	t	(77)	=	0.0393,	p	=	0.9688.	

	

For	the	soil	environment,	TaxaSE	slightly	lagged	behind	QIIME	and	generated	an	

average	observed	species	at	3811	as	shown	in	Figure	3-1c,	while	QIIME	generated	

3816.	 Observed	 species	 standard	 error	 for	 TaxaSE	 system	 was	 at	 80.5,	 while	

QIIME	 produced	 79.4.	 Welch’s	 t-test	 results	 showed	 no	 significant	 difference	
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between	QIIME	(M=3816.02,	SD=572.47)	and	TaxaSE	(M=3811.75,	SD=580.6);	t	

(101)	=	0.0378,	p	=	0.97.	

	

Lastly	for	the	stem	environment,	TaxaSE	provided	2071	as	the	average	observed	

species,	 followed	 by	 QIIME	 at	 2064	 (Figure	 3-1d).	 Standard	 error	was	 similar	

across	all	approaches,	with	QIIME	at	56.3	while	TaxaSE	produced	a	standard	error	

of	56.8.	Finally,	Welch’s	t-test	reported	no	significant	difference	between	QIIME	

(M=2064.8,	SD=382.07)	and	TaxaSE	(M=2071.3,	SD=385.4);	t	(89)	=	0.0815,	p	=	

0.9352.	

	

Overall,	TaxaSE	system	provided	taxonomic	annotation	for	that	largest	number	of	

OTUs	in	two	of	the	four	environments,	namely	rhizosphere	and	stem.	For	root	and	

soil,	the	new	pipeline	followed	QIIME	closely,	which	annotated	higher	number	of	

annotated	 OTUs.	 As	 no	 statistically	 significant	 differences	 were	 found	 for	 all	

environments	 between	 both	 TaxaSE	 and	 QIIME,	 therefore	 the	 new	 pipeline	

performed	at	a	similar	level	to	QIIME	for	annotation	of	OTUs.	
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Figure	3–1:	Observed	species	 for	OTU	comparison	at	97%	OTU	similarity	

with	a)	rhizosphere,	b)	root,	c)	soil	and	d)	stem.	QIIME	is	shown	in	blue	while	

TaxaSE	is	shown	in	orange.	Error	bars	represents	standard	error.	

	

Shannon	diversity	results	for	rhizosphere	environment	showed	similar	patterns	

between	QIIME	at	97%	OTU	similarity	and	TaxaSE	system	as	illustrated	in	Figure	

3-2a.	TaxaSE	scored	a	Shannon	diversity	average	of	10.039,	followed	closely	by	

QIIME	 at	 10.03.	 Standard	 error	 for	 Shannon	diversity	was	 also	 similar,	 where	

TaxaSE	 and	 QIIME	 scored	 standard	 error	 at	 0.1.	 Welch’s	 t-test	 reported	 no	
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significant	difference	between	QIIME	(M=10.03,	SD=0.333)	and	TaxaSE	(M=10.04,	

SD=0.334),	t	(19)	=	0.0678,	p	=	0.9466.	

	

Root	environment	samples	exhibited	similar	Shannon	diversity	results	between	

both	pipelines	as	well,	with	an	average	value	of	9.61	as	shown	in	Figure	3-2b.	The	

standard	error	observed	for	Shannon	diversity	came	up	slightly	higher	for	TaxaSE	

at	 0.126,	 while	 QIIME	 generated	 a	 standard	 error	 of	 0.125.	 No	 statistically	

significant	 difference	 was	 found	 by	 Welch’s	 t-test	 between	 QIIME	 (M=9.613,	

SD=0.792)	and	TaxaSE	(M=9.612,	SD=0.795),	t	(77)	=	0.0069,	p	=	0.9945.	

	

Soil	environment	results	follow	the	same	pattern	as	observed	for	rhizosphere	and	

root	environments.	TaxaSE	produced	an	average	Shannon	 index	of	10.26	while	

QIIME	generated	an	index	of	10.27	as	displayed	in	Figure	3-2c.	Standard	error	was	

slightly	higher	 in	 the	 case	of	TaxaSE	 at	0.098,	with	QIIME	coming	up	at	0.097.	

Welch’s	 t-test	 reported	 no	 significant	 difference	 between	 QIIME	 (M=10.27,	

SD=0.7)	and	TaxaSE	(M=10.26,	SD=0.708),	t	(101)	=	0.0725,	p	=	0.9423.	

	

Finally,	for	the	stem	environment,	TaxaSE	generated	a	Shannon	diversity	index	of	

6.35	 while	 QIIME	 produced	 6.34	 (Figure	 3-2d).	 Standard	 error	 was	 also	 very	

similar	with	TaxaSE	producing	a	standard	error	of	0.136	while	QIIME	generated	

0.135.	Here	as	well,	Welch’s	 t-test	showed	no	statistically	significant	difference	

between	 QIIME	 (M=6.342,	 SD=0.917)	 and	 TaxaSE	 (M=6.35,	 SD=0.92),	 t	 (89)	 =	

0.0463,	p	=	0.9632.	
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Overall,	 Shannon	 diversity	 results	 for	 all	 four	 environments	 illustrated	 similar	

behavior	between	QIIME	and	the	TaxaSE	system,	with	comparable	index	values	

and	error	rates	observed.	

	

	

	

Figure	3–2:	Shannon	diversity	 for	OTU	comparison	at	97%	OTU	similarity	

with	a)	rhizosphere,	b)	root,	c)	soil	and	d)	stem.	QIIME	is	shown	in	blue	while	

TaxaSE	is	shown	in	orange.	Error	bars	represent	standard	error.	

TaxaSE	performed	in	a	similar	manner	to	QIIME	based	approach	and	generated	

comparable	results,	where	TaxaSE	annotates	slighter	higher	number	of	OTUs	for	

rhizosphere	 and	 stem	 environments.	 Overall,	 no	 statistically	 significant	
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differences	were	found	between	TaxaSE	and	QIIME	and	hence	the	new	pipeline	

captured	 similar	 patterns	 as	 the	 QIIME/Uclust	 method	 and	 therefore	 can	 be	

effective	 in	generating	alpha	diversity	analysis.	 Soil	 environment	had	 the	most	

OTUs	as	well	as	a	higher	Shannon	diversity	 index,	 followed	by	rhizosphere	and	

root	environments.	In	contrast	to	these,	Stem	significantly	showed	less	diversity,	

with	a	 remarkably	 less	number	of	OTUs	generated	as	well	 as	a	 lower	Shannon	

diversity	index.	

	

3.3.1.2	 Beta	Diversity	

	

The	beta	diversity	plot	for	TaxaSE	using	97%	OTU	similarity	is	illustrated	in	Figure	

3-3a.	 Samples	 from	 stem	were	 segregated	 from	 the	 rest	 of	 the	 habitats,	 while	

samples	 from	root	and	soil	were	also	mostly	distinct	 from	each	other.	The	 first	

principle	coordinate	axis,	PC1,	explained	30.64%	of	the	variability.	

	

The	beta	diversity	plot	for	QIIME	at	97%	OTU	similarity	is	shown	in	Figure	3-3b.	

Similar	to	the	TaxaSE	beta	diversity	plot,	the	samples	from	stem	environment	are	

distinct	 from	 the	 rest	 of	 habitats	 with	 root	 and	 soil	 samples	 showing	 some	

segregation	 as	 well.	 Here	 as	 well,	 the	 first	 axis	 is	 able	 to	 explain	 30.64%	 of	

variability,	in	the	same	manner	as	TaxaSE	system.		

	

Both	 approaches	 showed	 a	 similar	 segregation	 of	 samples	 on	 the	 basis	 of	

environment,	where	the	segregation	pattern	were	similar	across	both	approaches,	

and	 PC1,	 PC2	 and	 PC3	 for	 both	 approaches	 explained	 a	 similar	 amount	 of	
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variability.	 With	 respect	 to	 beta	 diversity	 analysis,	 TaxaSE	 system	 provided	

similar	ecological	patterns	as	were	generated	by	QIIME.	

	

Figure	 3–3:	 Beta	 diversity	 principle	 coordinate	 analysis	 plots	 for	 OTU	

comparison	of	sugarcane	dataset	with	a)	TaxaSE	and	b)	QIIME.	Rhizosphere	

samples	are	shown	in	red,	root	in	blue,	soil	in	orange	and	stem	in	green.	
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3.3.1.3	 ADONIS	and	ANOSIM	

	

ADONIS	and	ANOSIM	tests	were	conducted	to	determine	how	much	variation	both	

QIIME	 and	 TaxaSE	 system	 explained,	 with	 the	 results	 listed	 in	 Table	 3-4	 for	

ADONIS.	TaxaSE	system	captured	the	same	variation	when	samples	are	grouped	

by	habitats	as	by	QIIME	and	therefore	 is	able	 to	capture	similar	patterns.	Here	

TaxaSE	 produced	 a	 R2	 value	 of	 0.37767	 while	 QIIME	 produced	 a	 R2	 value	 of	

0.3776.	

	

Table	3-4:	ADONIS	results	for	OTU	comparison	at	97%	similarity	between	

TaxaSE	and	QIIME	

TaxaSE	at	0.9	

	 Degree	 of	

freedom	

Sum	 of	

squares	

Mean	

Squares	

F-Model	 R2	value	 p-value	

Habitats	 3	 20.354			 6.7846			 29.331	 0.37767			 0.001	

Residuals	 145	 33.540			 0.2313	 	 0.62233								 	

Total	 148	 53.894																			 	 1.00000				 	

QIIME	

	 Degree	 of	

freedom	

Sum	 of	

squares	

Mean	

Squares	

F-Model	 R2	value	 p-value	

Habitats	 3	 20.352			 6.7841			 29.323	 0.3776			 0.001	

Residuals	 145	 33.547			 0.2314										 	 0.6224													

Total	 148	 53.899																			 	 1.0000					 	
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ANOSIM	results	for	both	pipelines	show	that	grouping	of	samples	on	the	basis	of	

environments	was	 strong	 for	 both	methods,	with	R-value	 that	was	 close	 to	 +1	

(Table	3-5).	Here	TaxaSE	generated	an	R-value	of	0.855	while	QIIME	produced	an	

R-value	of	0.8553.	

	

Table	3-5:	ANOSIM	results	for	OTU	comparison	at	97%	similarity	between	

TaxaSE	and	QIIME	

Approach	 p-value	 R-value	

TaxaSE	at	0.9	 0.001	 0.855043	

QIIME	 0.001	 0.855334	

	

3.3.2	 Distinct	Taxonomic	Annotations	

	

3.3.2.1	 Alpha	Diversity	

	

The	alpha	rarefaction	plots	(Figure	3-4)	 for	all	 three	approaches	show	that	 the	

TaxaSE	 system	 produced	 a	 higher	 number	 of	 observed	 species	 across	 all	 four	

environments	as	compared	to	both	QIIME	at	97%	OTU	similarity	and	QIIME	at	

99%	OTU	similarity.		

	

Samples	belonging	 to	stem	environments	were	 less	diverse	 than	 samples	 from	

rhizosphere,	root	and	soil	environments	based	on	the	number	of	observed	species,	

which	were	far	fewer.	
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Figure	3–4:	 Alpha	 rarefaction	 plots	 for	 distinct	 taxonomic	 annotations	 of	

sugarcane	dataset	using	a)	QIIME	at	97%,	b)	QIIME	at	99%	and	c)	TaxaSE.	

Rhizosphere	samples	are	shown	in	red,	root	as	blue,	soil	as	orange	and	stem	

as	green.	Error	bars	represent	standard	deviation.	
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For	rhizosphere	environment	samples,	TaxaSE	produced	the	highest	number	of	

distinct	 taxonomic	 annotations	 at	 807,	 while	 QIIME	 at	 99%	 OTU	 similarity	

produced	578	distinct	taxonomic	annotations	and	QIIME	at	97%	OTU	similarity	

coming	 up	 last	 at	 about	 515	 as	 illustrated	 in	 Figure	 3-5a.	 The	 standard	 error	

observed	was	highest	in	the	case	of	TaxaSE	system	with	30.05,	with	QIIME	at	99%	

OTU	similarity	at	15.89	and	lastly	QIIME	at	97%	OTU	similarity	at	12.3.		

	

Welch’s	t-test	showed	a	statistically	significant	difference	between	QIIME	at	97%	

OTU	 similarity	 (M=515.18,	 SD=40.79)	 and	 QIIME	 at	 99%	 OTU	 similarity	

(M=577.91,	SD=51.71),	t	(18)	=	3.1216,	p	=	0.0059.	Furthermore,	Welch’s	t-test	

also	 reported	 a	 statistically	 significant	 difference	 between	 QIIME	 at	 97%	OTU	

similarity	 (M=515.18,	 SD=40.79)	 and	 TaxaSE	 (M=807.64,	 SD=99.68),	 t	 (13)	 =	

9.0059),	p	=	0.0001.	Lastly,	the	difference	was	also	statistically	significant	between	

QIIME	 at	 99%	 OTU	 similarity	 (M=577.91,	 SD=51.71)	 and	 TaxaSE	 (M=807.64,	

SD=99.68),	 t	 (15)	 =	 6.7572,	 p	 =	 0.0001.	 All	 three	 approaches	 were	 therefore	

statistically	different	from	each	other,	with	TaxaSE	pipeline	generating	the	largest	

number	of	annotations.	

	

For	the	root	environment,	here	as	well	TaxaSE	produced	the	 largest	number	of	

distinct	taxonomic	annotations	at	890,	followed	by	QIIME	at	99%	OTU	similarity	

with	 593	 distinct	 annotations	 and	 lastly	 QIIME	 at	 97%	 OTU	 similarity	 at	 522	

(Figure	3-5b).	Standard	error	for	TaxaSE	stood	at	26.56,	while	QIIME	at	99%	had	

a	standard	error	of	16.33	and	lastly	QIIME	at	97%	had	14.89.		
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Welch’s	 t-test	 illustrated	 a	 statistically	 significant	 difference	 between	QIIME	 at	

97%	 OTU	 similarity	 (M=522,	 SD=92.96)	 and	 QIIME	 at	 99%	 OTU	 similarity	

(M=593.41,	 SD=102),	 t	 (75)	 =	 3.2315,	 p	 =	 0.0018.	 A	 statistically	 significant	

difference	was	observed	via	Welch’s	t-test	between	QIIME	at	97%	OTU	similarity	

(M=522,	 SD=92.96)	 and	TaxaSE	 (M=890.08,	 SD=167.99),	 t	 (61)	=	 12.0882,	p	 =	

0.0001.	Finally,	the	difference	was	also	statistically	significant	between	QIIME	at	

99%	OTU	similarity	(M=593.41,	SD=102)	and	TaxaSE	(M=890.08,	SD=167.99),	t	

(64)	 =	 9.514,	 p	 =	 0.0001.	 Similar	 to	 the	 results	 for	 rhizosphere	 environment,	

TaxaSE	pipeline	produced	the	highest	number	of	statistically	significant	distinct	

taxonomic	annotations.	

	

Soil	 showed	 similar	 pattern	 as	 with	 previous	 environments,	 with	 TaxaSE	

generating	higher	number	of	distinct	taxonomic	annotations	reaching	907,	while	

QIIME	at	99%	OTU	similarity	followed	it	at	697	annotations	and	QIIME	at	97%	

OTU	similarity	coming	up	last	at	574	distinct	annotations	(Figure	3-5c).	TaxaSE	

system	 had	 the	 highest	 standard	 error	 at	 29.99,	 while	 QIIME	 at	 99%	 OTU	

similarity	was	at	18.1	and	lastly	QIIME	at	97%	OTU	similarity	at	16.6.		

	

A	 statistically	 significant	 difference	 was	 observed	 via	 Welch’s	 t-test	 between	

QIIME	 at	 97%	OTU	 similarity	 (M=573.75,	 SD=119.67)	 and	QIIME	 at	 99%	OTU	

similarity	 (M=648.52,	 SD=130.54),	 t	 (101)	 =	 3.0445,	 p	 =	 0.003.	 A	 statistically	

significant	 difference	 was	 observed	 between	 QIIME	 at	 97%	 OTU	 similarity	

(M=573.75,	SD=119.67)	and	TaxaSE	(M=907.67,	SD=216.23),	t	(79)	=	9.7433,	p	=	

0.0001.	Finally,	the	difference	was	also	statistically	significant	between	QIIME	at	

99%	OTU	similarity	(M=648.52,	SD=130.54)	and	TaxaSE	(M=907.67,	SD=216.23),	
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t	(83)	=	7.3987,	p	=	0.0001.	Hence,	similar	to	aforementioned	environments,	soil	

habitat	produced	a	clear	lead	for	TaxaSE	pipeline.			

	

Stem	was	the	least	diverse	of	all	habitats,	and	while	TaxaSE	generated	a	higher	

number	 of	 distinct	 taxonomic	 annotations	 at	167,	 it	 also	 produced	 the	 highest	

standard	 error	 as	 well,	 at	 17.82	 (Figure	 3-5d).	 QIIME	 at	 99%	 OTU	 similarity	

generated	121	distinct	annotations	with	a	standard	error	of	11.03	while	QIIME	at	

97%	OTU	similarity	produced	101	distinct	annotations	with	a	standard	error	of	

9.004.		

	

The	difference	was	not	statistically	significant,	as	found	by	Welch’s	t-test	between	

QIIME	 at	 97%	 OTU	 similarity	 (M=101.19,	 SD=58.35)	 and	 QIIME	 at	 99%	 OTU	

similarity	 (M=120.71,	 SD=71.48),	 t	 (78)	 =	 1.3713,	 p	 =	 0.1742.	 However,	 a	

statistically	 significant	 difference	 was	 found	 between	 QIIME	 at	 97%	 OTU	

similarity	 (M=101.19,	 SD=58.35)	 and	TaxaSE	 (M=166.88,	 SD=114.08),	 t	 (59)	 =	

3.2905,	p	=	0.0017.	The	difference	was	statistically	significant	between	QIIME	at	

99%	OTU	similarity	(M=120.71,	SD=71.48)	and	TaxaSE	(M=166.88,	SD=114.08),	t	

(66)	=	2.2031,	p	=	0.0311.	In	contrast	to	previous	environments,	QIIME	at	97%	

OTU	similarity	and	QIIME	at	99%	OTU	similarity	performed	in	a	similar	manner	

here,	 although	 the	 new	 TaxaSE	 pipeline	 produced	 more	 distinct	 taxonomic	

annotations	 while	 being	 statistically	 different	 from	 either	 of	 these	 two	

approaches.		
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Figure	3–5:	Observed	species	for	distinct	taxonomic	annotation	comparison	

with	a)	rhizosphere,	b)	root,	c)	soil	and	d)	stem.	QIIME	at	97%	OTU	similarity	

is	shown	in	blue,	QIIME	at	99%	OTU	similarity	in	dark	blue	and	TaxaSE	in	

orange.	Error	bars	represent	standard	error.	Significance	levels	are	shown	

with	asterisks,	where	*	represents	p	<	0.05,	**		represents	p	<	0.01	and	***	

represents	p	<	0.001.	
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For	rhizosphere	samples,	TaxaSE	produced	the	highest	Shannon	diversity	index	

for	distinct	taxonomic	annotation	based	comparison,	with	a	value	of	7.7,	shown	in	

Figure	 3-6a.	 Furthermore,	 QIIME	 at	 99%	 OTU	 similarity	 produced	 a	 Shannon	

diversity	index	of	7.1	while	QIIME	at	97%	OTU	similarity	produced	6.9	as	Shannon	

diversity	 index.	 Standard	error	 for	TaxaSE	was	0.084,	with	QIIME	at	99%	OTU	

similarity	at	0.049	and	QIIME	at	97%	OTU	similarity	at	0.052.	

	

Welch’s	 t-test	 produced	 a	 statistically	 significant	 difference	 between	 QIIME	 at	

97%	OTU	similarity	(M=6.94,	SD=0.173)	and	QIIME	at	99%	OTU	similarity	(M=7.1,	

SD=0.163),	t	 (19)	=	2.146,	p	=	0.045.	The	difference	was	statistically	significant	

between	QIIME	at	97%	OTU	similarity	(M=6.94,	SD=0.173)	and	TaxaSE	(M=7.73,	

SD=0.277),	t	(16)	=	7.9947,	p	=	0.0001.	Lastly,	the	difference	was	also	statistically	

significant	between	QIIME	at	99%	OTU	similarity	(M=7.1,	SD=0.163)	and	TaxaSE	

(M=7.73,	SD=0.277),	t	(16)	=	6.5353,	p	=	0.0001.	

	

Samples	 from	 the	 root	 environment	 showed	 similar	 Shannon	 diversity	 index	

results	between	the	two	QIIME	methods	(Figure	3-6b),	with	TaxaSE	leading	with	

more	than	7.6,	followed	by	QIIME	at	99%	OTU	similarity	with	6.8	and	lastly	QIIME	

at	97%	OTU	similarity	at	6.6.	Standard	error	observed	was	highest	in	the	case	of	

QIIME	at	97%	OTU	similarity	with	0.104,	followed	by	QIIME	at	99%	OTU	similarity	

at	0.099	and	lastly	TaxaSE	at	0.093.	
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The	 difference	 was	 not	 statistically	 significant	 between	 QIIME	 at	 97%	 OTU	

similarity	 (M=6.628,	 SD=0.648)	 and	 QIIME	 at	 99%	 OTU	 similarity	 (M=6.829,	

SD=0.617),	t	(75)	=	1.4059,	p	=	0.1639.	However,	the	difference	was	statistically	

significant	 between	 QIIME	 at	 97%	 OTU	 similarity	 (M=6.628,	 SD=0.648)	 and	

TaxaSE	 (M=7.673,	 SD=0.59),	 t	 (75)	=	7.4996,	p	=	0.0001.	Finally,	Welch’s	 t-test	

reported	 a	 statistically	 significant	 difference	 between	 QIIME	 at	 99%	 OTU	

similarity	(M=6.829,	SD=0.617)	and	TaxaSE	(M=7.673,	SD=0.59),	t	(76)	=	6.2192,	

p	=	0.0001.	

	

TaxaSE	also	had	higher	Shannon	diversity	results	 for	soil	samples	compared	to	

QIIME	 at	 97%	and	QIIME	 at	 99%	 (Figure	 3-6c),	where	TaxaSE	 showed	higher	

diversity	 index	 at	 7.77	 than	 both	 QIIME	 methods,	 with	 QIIME	 at	 97%	 OTU	

similarity	 at	 7.1	 and	 QIIME	 at	 99%	 OTU	 similarity	 at	 7.3.	 The	 standard	 error	

observed	were	0.078	for	TaxaSE,	0.067	for	QIIME	at	99%	OTU	similarity	and	0.069	

for	QIIME	at	97%	OTU	similarity.	

	

Welch’s	 t-test	 illustrated	 that	 the	 difference	 was	 not	 statistically	 significant	

between	QIIME	at	97%	OTU	similarity	(M=7.08,	SD=0.499)	and	QIIME	at	99%	OTU	

similarity	 (M=7.266,	 SD=0.485),	 t	 (101)	 =	 1.9296,	 p	 =	 0.0565.	 However,	 the	

difference	 was	 statistically	 significant	 between	 QIIME	 at	 97%	 OTU	 similarity	

(M=7.08,	 SD=0.499)	 and	 TaxaSE	 (M=7.771,	 SD=0.559),	 t	 (100)	 =	 6.6509,	 p	 =	

0.0001.	Lastly,	the	difference	was	also	statistically	significant	between	QIIME	at	

99%	OTU	similarity	(M=7.266,	SD=0.485)	and	TaxaSE	(M=7.771,	SD=0.559),	t	(99)	

=	4.922,	p	=	0.0001.	
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Finally,	Shannon	diversity	 index	results	 for	all	three	methods	 for	stem	samples	

showed	TaxaSE	having	an	average	Shannon	diversity	of	2.7	while	QIIME	at	99%	

OTU	similarity	produced	2.4	and	finally	QIIME	at	97%	OTU	similarity	produced	

the	lowest	Shannon	diversity	at	1.7	(Figure	3-6d).	The	standard	error	observed	

were	0.131	for	TaxaSE,	0.01	for	QIIME	at	99%	OTU	similarity	and	0.104	for	QIIME	

at	97%	OTU	similarity.	

	

The	difference	was	statistically	significant	between	QIIME	at	97%	OTU	similarity	

(M=1.663,	SD=0.676)	and	QIIME	at	99%	OTU	similarity	(M=2.411,	SD=0.648),	 t	

(81)	 =	 5.1809,	 p	 =	 0.0001.	 Similarity,	 the	 difference	 was	 also	 found	 to	 be	

statistically	 significant	 between	 QIIME	 at	 97%	 OTU	 similarity	 (M=1.663,	

SD=0.676)	 and	 TaxaSE	 (M=2.727,	 SD=0.839),	 t	 (76)	 =	 6.3544,	 p	 =	 0.0001.	

However,	 the	difference	was	not	statistically	significant	between	QIIME	at	99%	

OTU	similarity	(M=2.411,	SD=0.648)	and	TaxaSE	(M=2.727,	SD=0.839),	 t	 (75)	=	

1.9165,	p	=	0.0591.	
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Figure	 3–6:	 Shannon	 diversity	 for	 distinct	 taxonomic	 annotation	

comparison	with	a)	rhizosphere,	b)	root,	c)	soil	and	d)	stem.	QIIME	at	97%	

OTU	similarity	is	shown	in	blue,	QIIME	at	99%	OTU	similarity	in	dark	blue	

and	 TaxaSE	 in	 orange.	 Error	 bars	 represent	 standard	 error.	 Significance	

levels	are	shown	with	asterisks,	where	*	represents	p	<	0.05,	**		represents	

p	<	0.01	and	***	represents	p	<	0.001.	 	
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3.3.2.2	 Beta	Diversity	

	

The	beta	diversity	plot	for	QIIME	at	97%	OTU	similarity	is	shown	in	Figure	3-7a.	

Stem	 samples	 were	 segregated	 from	 the	 samples	 belonging	 to	 other	

environments.	Furthermore,	root	and	soil	samples	displayed	some	segregation	as	

well.	The	first	principle	coordinate,	PC1	explained	a	variance	of	58.31%	in	the	case	

of	QIIME	at	97%	OTU	similarity.	

	

Beta	diversity	plot	for	QIIME	at	99%	OTU	similarity,	as	illustrated	in	Figure	3-7b,	

provided	a	similar	pattern	as	was	seen	for	QIIME	at	97%	OTU	similarity	(Figure	

3-7a).	 Stem	 samples	 were	 segregated	 from	 the	 other	 samples	 and	 the	 first	

principle	coordinate	explained	a	variance	of	57%,	slightly	lower	than	what	was	

observed	for	QIIME	at	97%	OTU	similarity.	

	

Finally,	the	beta	diversity	plot	for	the	TaxaSE	system	is	shown	in	Figure	3-7c	and	

here	 as	 well,	 stem	 samples	 were	 well	 segregated	 from	 other	 samples.	

Furthermore,	 soil	 samples	 were	 more	 densely	 packed	 along	 the	 first	 axis	 for	

TaxaSE	system	compared	to	either	of	the	QIIME	based	methods.	The	first	principle	

coordinate	axis,	PC1	explained	53.22%	of	variance,	the	lowest	between	all	three	

methods.	

	

	

	



	 101	

	

Figure	 3–7:	 Beta	 diversity	 principle	 coordinate	 analysis	 plots	 for	 distinct	

taxonomic	 annotation	 comparison	 of	 sugarcane	 dataset	with	 a)	 QIIME	 at	

97%	 OTU	 similarity,	 b)	 QIIME	 at	 99%	 OTU	 similarity	 and	 c)	 TaxaSE.	

Rhizosphere	samples	are	shown	in	red,	root	in	blue,	soil	in	orange	and	stem	

in	green.	
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3.3.2.3	 ADONIS	and	ANOSIM	

	

ADONIS	 results	 for	 the	 three	 methods	 as	 listed	 in	 Table	 3-6	 show	 a	 slightly	

different	pattern,	where	the	grouping	of	samples	on	the	basis	of	environment	was	

best	explained	by	QIIME	at	97%	OTU	similarity	with	a	R2	value	of	0.6797,	followed	

by	QIIME	at	99%	OTU	similarity	with	a	R2	value	of	0.671	and	lastly	TaxaSE,	with	a	

R2	 value	 of	 0.622.	 Overall,	 the	 ADONIS	 results	were	 similar	 between	 all	 three	

methods.	

	

Table	3-6:	ADONIS	results	for	distinct	taxonomic	annotation	comparison	

between	TaxaSE,	QIIME	at	99%	OTU	similarity	and	QIIME	at	97%	OTU	

similarity	

QIIME	at	97%	OTU	similarity	

	 Degree	 of	

freedom	

Sum	 of	

squares	

Mean	

Squares	

F-Model	 R2	value	 p-value	

Habitats	 3	 25.417			 8.4725			 99.008	 0.67965			 0.001	

Residuals	 140	 11.980			 0.0856										 	 0.32035								 	

Total	 143	 37.398																			 	 1.00000				 	

QIIME	at	99%	OTU	similarity	

	 Degree	 of	

freedom	

Sum	 of	

squares	

Mean	

Squares	

F-Model	 R2	value	 p-value	

Habitats	 3	 25.317			 8.4391			 95.371	 0.67145			 0.001	

Residuals	 140	 12.388			 0.0885										 	 0.32855								 	

Total	 143	 37.706																			 	 1.00000						 	

TaxaSE	
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	 Degree	 of	

freedom	

Sum	 of	

squares	

Mean	

Squares	

F-Model	 R2	value	 p-value	

Habitats	 3	 23.700			 7.9000			 76.743	 0.62186			 0.001	

Residuals	 140	 14.412			 0.1029										 	 0.37814								 	

Total	 143	 38.112																			 	 1.00000			 	

	

The	ANOSIM	results	illustrated	that	for	all	of	the	methods,	the	grouping	of	samples	

by	environments	 is	statistically	significant,	with	a	p-value	of	0.001	and	R-value	

closer	to	+1	(Table	3-7).	All	three	methods	generated	an	R-value	of	more	than	0.8,	

however	 TaxaSE	 produced	 a	 slightly	 lower,	 but	 still	 strong	 ANOSIM	 result	

compared	to	the	other	two	methods.			

	

Table	3-7:	ANOSIM	results	for	distinct	taxonomic	annotations	comparison	

between	TaxaSE,	QIIME	at	99%	OTU	similarity	and	QIIME	at	97%	OTU	

similarity	

ANOSIM	

Approach	 p-value	 R-value	

QIIME	at	97%	 0.001	 0.8528	

QIIME	at	99%	 0.001	 0.8558	

TaxaSE	 0.001	 0.8238	
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3.4	 Discussion	

	

TaxaSE	represents	an	advancement	in	taxonomic	annotation	compared	to	current	

approaches,	 with	 the	 utilization	 of	 a	 potentially	 more	 evolutionary	 correct	

sequence	 similarity	 measure	 and	 its	 application	 in	 a	 microbial	 taxonomic	

annotation	pipeline.		

	

Given	that	the	true	number	of	species	is	unknown	for	a	real	dataset,	a	comparison	

cannot	be	made	solely	on	the	basis	of	number	of	species	identified.	Nonetheless,	

the	system	showed	comparable	performance	 in	an	OTU	based	analysis,	while	a	

higher	 number	 of	 annotations	were	 generated	when	 an	OTU	 independent,	 per	

sequence	annotation	is	performed.	Given	that	TaxaSE	produced	similar	patterns	

with	respect	to	alpha	diversity	results,	the	new	pipeline	is	as	applicable	as	other	

pipelines	in	assessing	alpha	diversity	in	ecological	studies.		

	

The	microbial	 community	was	observed	 to	be	more	diverse	 in	 the	 case	of	 soil,	

rhizosphere	 and	 root	 habitats,	 which	 are	 expected	 to	 have	 a	 high	 degree	 of	

diversity	 (Kirk	 et	 al.,	 2004;	 Pinton,	 Varanini,	 &	 Nannipieri,	 2001).	 However,	

samples	from	the	stem	environment	were	far	less	diverse.	This	was	primarily	due	

to	 different	 species	 inhabiting	 plant	 stems,	 such	 as	 members	 of	 the	 Pantoea	

genera,	which	may	include	endophytic	microbes	that	are	beneficial	to	the	growth	

(Gouda,	Das,	Sen,	Shin,	&	Patra,	2016)	and	health	of	the	plant	(Miguel	et	al.,	2016)	

as	well	as	pathogenic	bacteria,	however	a	single	plant	species	may	play	as	a	host	

for	 only	 a	 limited	 number	 of	 microbes	 (Imam,	 Singh,	 &	 Shukla,	 2016).	
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Furthermore,	 the	 niche	 endophyte	 population	 is	 dependent	 on	 various	 factors	

such	as	host	species	and	environmental	conditions	(Gouda	et	al.,	2016).		

	

	

3.4.1	 OTU	Comparison	

	

TaxaSE	showed	comparable	performance	to	the	RDP	classifier	(Cole	et	al.,	2005)	

within	QIIME	(Caporaso	et	al.,	2010).	For	rhizosphere	and	stem	samples,	the	new	

pipeline	annotated	more	OTUs	compared	to	QIIME,	which	provided	slightly	more	

annotations	 for	 root	 and	 soil	 samples.	 Shannon	 diversity	 index	 were	 almost	

identical	for	all	four	habitats	across	both	pipelines.	

	

The	 beta	 diversity	 plots	 were	 almost	 identical,	 capturing	 the	 same	 ecological	

patterns.	 A	 limited	 separation	 is	 observed	 between	 soil,	 rhizosphere	 and	 root	

samples,	with	some	overlap	because	of	the	plant-soil	close	association	(Ke	&	Miki,	

2015).	Distinct	 differences	 in	microbial	 communities	 between	 rhizosphere	 and	

bulk	soil,	as	well	as	root	communities	that	are	influenced	by	plant	types	and	the	

variety	of	compounds	released	by	plant	roots	(Garbeva,	Veen,	&	Elsas,	2004)	may	

have	been	the	source	of	limited	separation	between	these	samples	as	well.			

	

For	ADONIS	statistical	test,	a	p-value	of	0.001	indicates	that	grouping	of	samples	

by	environments	 is	statistically	significant	at	an	alpha	of	0.05.	The	R2	value	 for	

TaxaSE	was	 0.37767,	which	was	 slightly	 higher	 than	 R2	 value	 for	 QIIME.	 This	
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would	 suggest	 that	 the	 new	 system	was	 slightly	 better	 at	 explaining	 variance.	

ANOSIM	results	were	similar	for	both	approaches.	

	

Overall,	 TaxaSE	 provided	 similar	 alpha	 diversity	 and	 beta	 diversity	 result	

compared	 to	 QIIME	 in	OTU	 based	 comparison	 and	 illustrates	 that	 TaxaSE	 is	 a	

useful	alternative	to	percentage	identity	based	annotation	approaches	currently	

employed	in	taxonomic	annotation.	

	

3.4.2	 Distinct	Taxonomic	Annotations	

	

For	all	four	datasets,	there	is	an	increase	in	the	number	of	observed	species	as	well	

as	Shannon	diversity	index	for	TaxaSE	system,	albeit	at	a	slightly	higher	standard	

error.	While	the	true	number	of	species	is	unknown,	TaxaSE	generated	a	higher	

number	of	taxonomic	annotations	compared	to	QIIME	based	approaches	across	

all	 four	 habitats.	 This	 illustrated	 the	 applicability	 of	 an	 OTU-independent	

approach	 as	 being	 an	 alternative	 method	 to	 industry	 standard	 OTU	 based	

methods.		Furthermore,	TaxaSE	is	again	capturing	similar	alpha	diversity	patterns	

and	the	results	generated	are	similar	to	QIIME’s	results.	

	

As	for	beta	diversity	analysis,	QIIME	at	97%	OTU	similarity,	QIIME	at	99%	OTU	

similarity	and	TaxaSE,	displayed	similar	patterns	and	were	able	to	differentiate	

between	different	habitats.	Furthermore,	similar	to	OTU	comparison,	here	as	well	

stem	 samples	were	 distinctly	 separated	 from	root,	 soil	 and	 rhizosphere	 for	 all	
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three	 methods.	 Thus,	 TaxaSE	 is	 well	 suited	 to	 identifying	 ecologically	 distinct	

microbial	assemblages.	

		

In	the	case	of	TaxaSE,	slightly	less	variability	was	accounted	by	the	first	axis,	PC1	

compared	to	QIIME	at	97%	OTU	similarity	and	99%	OTU	similarity.	This	may	be	

because	more	common	taxa	were	observed	for	TaxaSE	system	and	therefore	the	

ability	 of	 the	 system	 to	 explain	 variability	 on	 the	 basis	 of	 taxonomy	 fell	 as	 an	

increase	 in	 the	 number	 of	 variables	 leads	 to	 a	 reduction	 in	 the	 total	 variation	

explained	 (Nagelkerke,	 1991).	 	 A	 similar	 case	was	 observed	 between	QIIME	 at	

97%	OTU	 similarity	 and	QIIME	 at	 99%	OTU	 similarity	 as	 the	 latter’s	 first	 axis	

explained	slightly	less	variability	at	57%,	compared	to	former’s	58.31%.		

	

For	ADONIS	results,	QIIME	at	97%	OTU	similarity	explained	the	most	variance,	

followed	closely	by	QIIME	at	99%	OTU	similarity,	with	TaxaSE	explaining	the	least.	

The	results	correlate	inversely	with	the	number	of	distinct	taxonomic	annotations,	

where	 QIIME	 at	 97%	 OTU	 similarity	 produced	 the	 least	 number	 of	 distinct	

annotations	and	explained	 the	most	variance	and	TaxaSE	system	produced	the	

most	 number	 of	 distinct	 annotations	 but	 with	 low	 explanation	 of	 variance.	

Therefore,	given	that	the	ADONIS	test	described	how	much	variation	is	explained	

by	 grouping	 on	 the	 basis	 of	 location,	 less	 variation	 is	 being	 explained	 by	

approaches	with	a	higher	number	of	taxonomic	annotations.	This	may	be	because	

some	 taxonomic	 annotations	 were	 common	 across	 different	 habitats	 and	

approaches	 such	 as	 QIIME	 at	 99%	 and	 TaxaSE	 were	 able	 to	 extract	 these	

annotations	more	in	comparison	to	QIIME	at	97%.	

	



	 108	

The	system	has	certain	limitations	that	need	to	be	kept	in	view.	Considering	that	

TaxaSE	uses	only	the	best	alignment	as	part	of	analysis,	a	least	common	ancestor	

approach	may	be	more	suitable	 for	enhanced	performance.	The	best	alignment	

approach	may	also	limit	higher	resolution,	as	sequences	that	are	very	similar	to	

each	other	may	get	annotated	in	a	single	taxon,	and	therefore	multiple	alignments	

are	needed	to	elucidate	the	difference	between	these	sequences.	Using	SCFG	based	

tools	could	improve	the	system	performance	as	these	tools	are	more	equipped	to	

handle	distantly	related	taxon	compared	to	similarity	based	sequence	aligners.	

	

3.5	 Conclusion	

	

TaxaSE	represents	a	novel	approach	to	taxonomic	annotation	of	microbial	DNA.	

By	exploiting	evolutionary	conservation	present	in	the	16S	rRNA	gene	as	well	as	

directly	 analyzing	 sequences,	 it	 improves	 upon	 current	 methods	 that	 rely	 on	

percentage	identity	methods	while	using	an	OTU	based	approach.		

	

The	 OTU	 independent	 approach	 provides	 an	 alternative	 method	 to	 improving	

taxonomic	annotation.	While	 this	 comes	at	 the	expense	of	more	 computational	

time	and	requirement	of	higher	resources,	it	can	be	used	to	delve	deeply	into	finer	

level	of	taxa	levels	and	can	lead	to	improved	annotation	process	as	a	result.	Alpha	

diversity	 results	 also	 illustrate	 a	 similar	 picture	 where	 TaxaSE	 generated	 the	

highest	number	of	annotations	across	all	habitats	in	comparison	to	QIIME	based	

methods.	This	highlights	the	viability	of	the	new	approach.		
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As	computational	resources	are	getting	cheaper	and	more	readily	available,	 for	

finer	 resolution,	 this	 approach	 can	 be	 applied	 for	 ecological	 projects	 where	

samples	are	smaller	in	size.	The	results	of	applied	environmental	dataset	analysis	

demonstrate	 the	 application	 of	 using	 TaxaSE	 as	 an	 alternative	 to	 industry	

standard	pipelines	such	as	QIIME,	with	respect	to	OTU	based	comparison,	while	

demonstrating	comparable	performance	in	distinct	taxonomic	annotation	based	

approach.	With	the	ability	to	annotate	individual	sequences	using	a	novel	scoring	

approach	 based	 on	 Shannon	 entropy,	 TaxaSE	 represents	 a	 step	 forward	 in	

taxonomic	annotation	of	microbial	DNA	sequences.		

	

Furthermore,	by	 integrating	 in	QIIME,	TaxaSE	can	be	used	quickly	 in	microbial	

ecology	projects	to	enhance	the	resolution	of	annotation	and	explore	the	diversity	

within	each	OTU.	In	essence	this	would	require	minimum	effort	on	learning	the	

pipeline	 and	 generating	 ecologically	 important	 results.	 Future	 work	 for	 this	

pipeline	would	 include	more	 extensive	 benchmarking	 across	more	 habitats	 as	

well	 as	 different	 OTU	 algorithms	 present	 within	 QIIME	 and	 other	 taxonomic	

annotation	 tools	 particularly	 those	 incorporating	 entropy	 such	 as	 oligotyping	

(Eren	et	al.,	2013).	
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Chapter		4: 		 	 Assigning	 Environmental	 Terms	 to	

Sequences	using	SEQenv	

	

4.1	 Introduction	

	

Microbial	 communities	 play	 an	 essential	 role	 in	 the	 inner	 working	 of	 every	

environment	 on	 the	 planet.	 These	microorganisms	 are	 genetically	 diverse	 and	

occupy	every	known	habitat	where	they	participate	in	driving	nutrient	cycles	and	

form	the	basis	of	food	webs.	The	niche	of	these	organisms	however,	is	influenced	

by	 environmental	 characteristics	 especially	 in	 the	 context	 of	 the	Baas-Becking	

hypothesis	(Baas-Becking,	1934),	which	states	that,	“everything	is	everywhere	but	

the	 environment	 selects	 (De	 Wit	 &	 Bouvier,	 2006).”	 This	 determines	 relative	

abundance	and	patterns	in	diversity	of	microbial	communities.	

	

The	advent	of	next-generation	sequencing	technology	has	ushered	in	a	new	era	of	

ecological	analysis.	There	is	an	increasing	interest	in	comprehensive	description	

of	environmental	context	and	experimental	methods	used	for	sequencing	data,	In	

the	absence	of	this,	such	data	sets	would	be	of	less	value	for	comparative	studies	

or	 discovering	 linkages	 between	 genetic	 potential	 and	 the	 diversity	 and	

abundances	of	organisms	(Field	et	al.,	2008).	Furthermore,	a	full	understanding	of	

the	role	of	environmental	selection	of	microbial	diversity	can	only	be	realised	if	

associated	metadata	related	to	geographical	or	environmental	information	can	be	

exploited.	 Given	 that	 microbes	 affect	 the	 inner	 working	 of	 the	 environment	

directly	 via	 participating	 in	 various	 functional	 processes,	 environmental	 data	
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concerning	these	sequences	would	be	more	informative	when	understanding	the	

various	 factors	 that	 influence	 their	diversity	 (Lombardot	et	 al.,	 2006).	This	 can	

grant	the	ability	to	extract	patterns	that	may	not	be	visible	when	abundance	and	

diversity	data	is	viewed	in	isolation	and	without	context.		

	

To	that	end,	various	formal	specifications	and	guidelines	have	been	developed	to	

facilitate	 curation	 of	metadata	 in	 a	 standardised	 format	 such	 as	 the	minimum	

information	 about	 any	 sequence	 specifications	 (Yilmaz	 et	 al.,	 2011)	 by	 the	

Genomic	Standards	Consortium	(Field	et	al.,	2011).	Furthermore,	sequence	data	

submission	to	many	public	databases	including	GenBank	(Benson	et	al.,	2012)	and	

INSDC	 (Nakamura,	 Cochrane,	 &	 Karsch-Mizrachi,	 2013)	 as	 well	 as	 online	

bioinformatics	tools	like	MG-RAST	(Aziz	et	al.,	2008)	have	specific	metadata	fields	

for	 storing	 contextual	 information	 concerning	 the	 sequences.	 Moreover,	 large	

scale	projects	such	as	the	Earth	Microbiome	Project	(Gilbert	et	al.,	2014),	which	

aim	to	develop	a	global	catalogue	of	microbial	diversity,	store	contextual	metadata	

information	as	well.	

	

As	a	consequence	of	metadata	acquisition	and	availability,	newer	approaches	have	

been	 developed	 that	 utilise	 this	 information	 in	 a	 novel	 way.	 The	 foremost	 is	

microbial	 biogeography,	 which	 emerged	 to	 link	 microbial	 diversity	 with	

geographical	locations	and	aimed	to	determine	the	various	distribution	patterns	

of	microbes	(Martiny	et	al.,	2006).	However,	while	most	work	in	biogeography	has	

been	 habitat-specific,	 environmental	 factors	 rather	 than	geographical	 locations	

may	 be	 more	 influential	 on	 microbial	 diversity	 (Fierer	 &	 Jackson,	 2006)	 and	

represents	 the	 current	 limitation	 in	 these	 approaches.	 Other	 examples	 of	
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metadata	 use	 include	 visualization	 of	 phylogenetic	 trees	 with	 environmental	

context	 (Pirrung	 et	 al.,	 2011)	 and	 linking	 publicly	 accessible	 metadata	 to	

sequencing	 reads	 (Nayfach	&	Pollard,	2016;	Sunagawa	et	 al.,	 2015).	Hence,	 the	

addition	of	environmental	annotation,	which	serves	as	a	descriptor	of	the	habitat,	

to	taxonomic	identities	can	be	a	significant	improvement	to	analysis	capability	and	

provide	a	more	in-depth	approach	towards	understanding	microbial	communities	

rather	than	application	of	geographical	location	data,	as	is	the	case	with	microbial	

biogeography	(Fierer	&	Jackson,	2006).	

	

Before	applicable	environmental	annotation	can	be	performed	for	sequences,	a	

precise	 and	 consistent	 environmental	 description	 for	 the	 origins	 of	 these	

sequences	 and	 the	 samples	 they	 came	 from,	 is	 needed.	 To	 that	 end,	 the	

Environmental	 Ontology,	 or	 ENVO	 Ontology	 provides	 a	 structured,	 controlled	

vocabulary	in	a	hierarchical	list	of	descriptors,	which	can	then	be	used	to	organize	

environmental	data	in	a	coherent	and	unambiguous	manner	(P.	L.	Buttigieg	et	al.,	

2013).	 In	 essence,	 the	 ontology	 provides	 a	 list	 of	 standardized	 environment	

descriptors	 that	can	be	used	to	properly	explain	the	environment	or	habitat	as	

well	 as	 its	 noticeable	 features	 and	 has	 been	 adopted	 by	MG-RAST	 (Aziz	 et	 al.,	

2008),	 the	 iMicrobe	 project	 (Pier	 Luigi	 Buttigieg	 et	 al.,	 2016)	 and	 Earth	

Microbiome	Project	(Gilbert	et	al.,	2014).	

	

The	 NCBI-NT	 database	 provides	 a	 wealth	 of	 information	 with	 respect	 to	

environmental	 metadata.	 Sequences	 submitted	 to	 the	 database	 may	 contain	 a	

GenBank	 (Benson	et	 al.,	 2012)	metadata	 field	known	as	 isolation	 source,	which	

provides	the	environment	source	 from	where	the	organism	DNA	was	extracted	
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from	("The	GenBank	Submissions	Handbook	[Internet],"	2011-).	This	can	then	be	

exploited	 to	 label	 sequences	with	 the	necessary	environmental	 annotation	and	

can	 enable	 characterization	 of	 any	 ecological	 project	 with	 respect	 to	

environmental	terms	using	the	ENVO	ontology.		

	

SEQenv	 (Sinclair;	 Sinclair	 et	 al.,	 2016;	 Sinclair	 L,	 2016)	 is	 a	 new,	 cutting	 edge	

pipeline,	which	can	generate	environmental	information	for	sequences,	primarily	

using	the	isolation	sources	metadata	field	from	NCBI-NT.	The	pipeline	begins	by	

retrieving	highly	similar	sequences	from	the	NCBI-NT	database	using	the	BLASTN	

algorithm	 (Altschul	 et	 al.,	 1990).	 From	 the	 hits	 that	 match	 against	 the	 query	

sequences,	 text	 fields	 carrying	 environmental	 information	 such	 as	 isolation	

sources	found	in	the	metadata	are	extracted.	Given	that	isolation	sources	are	in	

the	form	of	short	English	sentences,	this	information	is	converted	into	the	nearest	

ENVO	 ontology	 terms	 (P.	 L.	 Buttigieg	 et	 al.,	 2013).	 Text	 mining	 is	 therefore	

performed	 on	 the	 extracted	 information,	which	 identifies	 ENVO	 terms	 such	 as	

“glacier”,	“soil”	or	“forest”.	The	pipeline	is	uniquely	placed	to	derive	environmental	

annotations	for	sequences	as	so	far,	no	automated	bioinformatics	pipeline	exists	

for	this	purpose.	Lastly,	the	pipeline	can	be	used	for	both	nucleotides	and	protein	

sequences	(Sinclair	et	al.,	2016).	However,	SEQenv	is	only	able	to	generate	a	list	of	

environmental	 terms	 on	 the	 basis	 of	 sample	 datasets	 and	 lacks	 a	 taxa	 centric	

approach	 to	 environmental	 annotations.	 Hence,	 environmental	 annotations	 at	

sequence	level	are	not	provided.	Such	information	is	critical	to	identify	niches	for	

particular	taxa	and	their	potential	role	in	driving	ecosystem	functions.	
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This	chapter	aims	to	address	these	deficiencies	by	 integrating	SEQenv	with	the	

TaxaSE	system	developed	in	Chapter	3	and	extending	the	pipeline	itself	by	way	of	

a	 taxa	 centric	 approach,	 which	 would	 be	 valuable	 to	 any	 biologist	 seeking	 to	

understand	the	various	taxa	present	in	the	habitat	and	which	environment	they	

originated	from,	enabling	a	more	thorough	analysis	of	which	taxa	are	abundant	in	

certain	 habitats	 and	 recovery	 of	patterns	 in	 taxon	 distribution	 across	different	

habitats	and	environmental	gradients.		

	

The	extension	consists	of	 two	parts,	each	providing	environmental	annotations	

under	a	different	context,	with	first	part	providing	taxa	abundance	on	a	per	term	

basis	while	the	second	part	lists	environmental	term	abundance	under	a	per	taxa	

context.	 This	 chapter	 therefore	 tested	 the	 hypothesis	 that	 environmental	

annotation	could	enhance	analysis	of	microbial	communities	and	the	annotations	

generated	were	 in	accordance	with	prior	knowledge	 in	the	literature	about	 the	

habitats	the	microbes	belong	to.	

	

Two	real	amplicon	datasets	belonging	to	distinct	biomes	were	selected	in	order	to	

determine	the	applicability	of	both	the	SEQenv	pipeline	and	the	newly	developed	

extension,	towards	environmental	annotation	of	datasets	belonging	to		different	

habitats.	Lastly	results	were	visually	illustrated	for	improved	readability.	This	was	

accomplished	 by	 illustrating	 the	 abundance	 of	 environmental	 terms	 or	 taxa	 in	

larger	 fonts,	 which	 was	 more	 effective	 at	 revealing	 the	 most	 essential	 and	

interesting	information	in	quick	fashion	and	therefore	identity	trends	or	patterns	

more	clearly	as	compared	to	listing	data	in	a	tabular	format.	
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4.2	 Materials	and	Methods	

	

4.2.1	 SEQenv	Pipeline	

	

The	SEQenv	pipeline	was	utilized	to	generate	environmental	annotations	for	the	

datasets	by	way	of	developing	a	global	matrix	of	sequences	and	environmental	

terms.	The	process	followed	by	SEQenv	is	given	as	below:	

	

1) For	every	OTU	in	a	list	of	query	OTUs,	BLASTN	was	used	to	search	against	

the	NCBI-NT	database.	By	default,	the	top	10	hits	for	each	OTU	are	stored.	

2) From	 the	 hits,	 isolation	 source	 metadata	 was	 extracted	 using	 the	 NCBI	

global	identifier.	

a. Genomes,	genes	and	sequences	submitted	to	NCBI	have	associated	

metadata	 available.	 Isolation	 source	 describe	 the	 geographical	

and/or	environmental	information	related	to	the	specific	sequence	

or	genome	that	was	submitted	to	NCBI.	

b. However,	 given	 that	 isolation	 sources	 are	 not	available	 for	 every	

sequence,	 either	 because	 no	 information	 was	 submitted	 or	 is	

available,	global	identifiers	that	do	not	have	this	information	were	

ignored.	

3) Isolation	 sources	 are	 small	 text	 fields	 containing	 short	 sentences	 that	

describe	the	environment	from	where	the	organism	was	isolated	from.	The	

ENVO	tagger	portion	of	the	SEQenv	pipeline	was	run	on	this	metadata	to	

extract	equivalent	ENVO	ontology	terms.	
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4) A	query	OTU	may	have	one	or	more	 isolation	sources	depending	on	the	

number	 of	 hits	 against	 NCBI-NT.	 The	 resultant	 ENVO	 terms	 were	

normalized	 for	 every	 query	 sequence.	 In	 essence,	 each	 sequence	 was	

described	by	a	set	of	ENVO	terms	and	their	associated	frequency,	and	for	

the	 whole	 dataset,	 a	 matrix	 of	 sequence-term	 was	 created.	 For	 each	

sequence,	the	ENVO	terms	were	normalised	by	assigning	weights	to	them.	

By	default,	 the	“flat”	approach	was	used,	where	weights	were	calculated	

according	to	raw	occurrence	counts.	This	ensured	that	no	environmental	

information	was	discarded	in	this	process.	

5) Finally,	at	sample	level,	the	terms	were	aggregated	but	weighted	by	OTU	

abundances	in	the	sample.	

	

An	example	of	this	is	illustrated	in	Figure	4-1.		
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Figure	4–1:	SEQenv	process	diagram	illustrating	the	various	steps	taken	to	generate	ENVO	terms	for	an	OTU.	Modified	from	

(Sinclair)	
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4.2.2	 Integration	with	TaxaSE		

	

Given	that	TaxaSE	followed	an	OTU	independent	approach,	new	tools	(as	listed	in	

the	appendix)	were	developed	here	to	select	unique	sequences	from	taxonomic	

annotation	results	that	can	then	be	given	to	SEQenv	pipeline	for	environmental	

tagging.	The	approach	followed	is	given	as	below:	

1) From	 the	 list	 of	 distinct	 taxonomic	 annotation	 results,	 a	 collection	 of	

sequences	was	selected	on	the	basis	of	a	genus	level	threshold.	

2) Relative	 abundances	 of	 the	 taxa	 were	 generated	 for	 every	 annotation	

result.	

3) Sequences	belonging	to	every	taxa	were	randomly	selected.	The	number	of	

sequences	selected	was	directly	proportional	to	the	relative	abundance	in	

the	collection	of	the	sequences.	For	example,	a	genus	with	higher	relative	

abundance	had	more	sequences	selected	from	it	compared	to	a	genus	with	

lower	relative	abundance.	As	SEQenv	pipeline	uses	BLAST,	this	was	done	

in	order	to	reduce	computational	resource	requirements.	

4) The	random	selection	ensured	that	a	wide	variety	of	sequences	were	used	

for	analysis	and	were	representative	of	the	sample	diversity.	

	

The	 integration	of	SEQenv	pipeline	 is	 illustrated	 in	Figure	4-2.	This	provided	a	

single	integrated	approach	for	both	taxonomic	and	environmental	annotation	of	

sequences.		
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Figure	4–2:	Integration	and	enhancement	of	SEQenv	system,	with	pipelines	

shown	in	green,	helper	tools	in	brown	and	data	files	in	black	

	

4.2.3	 Per	Environment	Term	Taxa	Abundance	

	

A	 taxon	 abundance	 or	 contribution	 to	 each	 environment	 terms	 provides	more	

detailed	 information	 and	 can	 help	 understand	 which	 sequences	 may	 be	 more	

important	in	contributing	to	a	particular	environment.	Building	upon	the	current	

version	 of	 SEQenv	 (Sinclair	 L,	 2016)	 by	 extracting	 taxa	 abundance	 for	 a	 given	

environmental	 term,	 allows	 for	 the	 opportunity	 for	 detailed	 analysis	 of	 the	

partitioning	of	diversity	across	habitats	within	the	context	of	the	samples	being	

analysed.	
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SEQenv	results	consist	of	a	global	matrix	between	sequences	and	their	associated	

environment	terms.	Given	that	taxonomic	annotation	information	is	present	for	

these	sequences	via	the	TaxaSE	system,	a	per	environment	term	taxa	abundance	

result	can	therefore	be	generated.	In	essence,	for	every	environment	term,	a	list	of	

ranked	taxa	is	produced.	The	ranking	of	these	taxon	is	dependent	upon	how	much	

they	contributed	to	the	specific	term.		

1) For	every	environment	term,	select	the	sequences	that	contribute	towards	

it.	These	were	taken	from	SEQenv	results.	

2) For	 each	 of	 these	 sequences,	 the	 associated	 taxonomic	 annotation	

information	was	recovered	from	TaxaSE	results.	

3) If	 one	or	more	sequences	belong	 to	 the	same	taxonomic	annotation,	 the	

contribution	by	each	sequence	was	added	together.	

4) Taxonomic	 annotations	were	 then	 ranked	 according	 to	 how	much	 they	

contributed	to	the	environment	term.	

	

For	 the	most	 abundant	 environment	 terms,	word	 clouds	were	 then	 generated.	

These	word	clouds	represent	the	taxonomic	annotation	in	the	descending	order	

of	magnitude	with	respect	to	how	much	each	annotation	contributed	to	the	term.	

It	is	important	to	note	here	that	a	sequence	can	have	multiple	isolation	sources,	

and	 therefore	 can	 come	 from	 a	 variety	 of	 environments.	 While	 there	 may	 be	

repeats	of	taxonomic	annotations,	the	magnitude	is	dependent	on	the	contribution	

factor	for	each	term	and	thus	can	be	used	to	determine	how	much	individual	taxa	

contribute	to	the	signature	of	specific	environments.		
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4.2.3	 Per	Taxa	Environment	Term	Abundance	

	

Relating	 environmental	 information	 to	 sequences	 in	 a	 direct	 fashion	 would	

improve	 our	 understanding	 of	 how	 they	 are	 distributed	 across	 various	

environments	 and	 would	 be	 a	 valuable	 asset	 for	 any	 biologist	 aiming	 to	

understand	the	natural	habitats	and	niche	specificity	of	 these	microbes.	Hence,	

using	the	same	global	matrix	acquired	from	SEQenv,	a	list	of	sequences	and	the	

environments	they	belong	to	was	created	in	the	following	manner:	

	

1) A	 list	 of	 environmental	 terms	 for	 every	 sequence	 was	 generated	 from	

SEQenv	results.	

2) Taxonomic	 annotation	 information	 from	 TaxaSE	 system	 results	 was	

recovered	and	the	sequences	were	assigned	the	corresponding	taxonomy.	

3) If	one	or	more	sequences	had	the	same	taxonomy,	the	contribution	by	each	

environmental	term	was	added	together.	

4) Environmental	 terms	 were	 then	 ranked	 according	 to	 how	 much	 they	

contributed	to	the	taxa.	

	

Results	were	 stored	 in	 a	 text	 file,	which	 listed	 the	 sequences	 by	 abundance	 in	

descending	order.	For	selected	four	taxa,	pie	charts	were	then	used	to	illustrate	

the	 various	 environments	 in	 which	 taxa	 may	 exist.	 Similar	 to	 per	 term	 taxa	

abundance,	 a	 sequence	 can	 have	 multiple	 isolation	 sources	 and	 therefore	 can	

come	from	multiple	environments,	the	ranking	of	which	depends	on	how	much	

each	environmental	term	contributes	to	the	sequence.	
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4.2.4	 Datasets	

	

In	 order	 to	 illustrate	 the	 effectiveness	 of	 SEQenv	 system	when	 combined	with	

TaxaSE	 in	determining	environmental	 information	 related	 to	 sequences	and	 to	

show	 its	 applicability,	 datasets	 belonging	 to	 distinct	 and	 diverse	 biomes	were	

selected.	These	datasets	 included	soil,	 rhizosphere	and	plant	microbiome	 from	

sugarcane	 (Saccharum	 spp.)	 sequenced	 by	 Dr.	 Kelly	 Hamonts	 at	 HIE,	Western	

Sydney	University,		and	samples	from	two	distinct	marine	sub	habitats	(Jeffries	et	

al.,	2015).	These	were	the	same	datasets	as	used	in	Chapter	3	of	this	study.	The	

number	of	sequences	selected	from	these	datasets	is	given	in	Table	4-1.	

	

Table	4-1:	Datasets	selected	for	analysis	with	enhanced	SEQenv	system	

Habitat	 Sub	habitat		 Total	number	of	sequences	

Sugarcane	 Rhizosphere	 3000	

Soil	 3000	

Stem	 3000	

Root	 3000	

Marine	 Coral	Atoll	 1500	

Southern	Ocean	 1500	

	

SEQenv	version	1.1.0	was	run	with	default	parameters	with	these	sequences	using	

BLASTN.	The	parameters	and	the	values	used	are	listed	in	Table	4-2.		
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Table	4-2:	Parameters	used	for	SEQenv	analysis.	

SEQenv	Parameters	

Parameter	 Information	 Default	value	used	

--min_identity	 Minimum	 identity	 in	 similarity	

search.	

0.97	

--min_coverage	 Minimum	 query	 coverage	 in	

similarity	search.	

0.97	

--proportional	 Should	we	divide	the	counts	of	every	

input	 sequence	 by	 the	 number	 of	

envo	terms	that	were	associated	to	it.	

True	

--search_db	 The	 path	 to	 the	 database	 to	 search	

against.	

nt	

--max_targets	 Maximum	 number	 of	 reference	

matches	in	similarity	search.	

10	

--seq_type	 Either	`nucl`	or	`prot`.	 nucl	(nucleotide)	

--search_algo	 Either	'blast'	or	'usearch'.	 blast	

--e_value		 Minimum	 e-value	 in	 similarity	

search.	

0.0001	

	

In	 the	 context	 of	 this	 study,	 analysis	 of	 the	 datasets	 was	 divided	 into	 three	

sections:	

• Per	 Habitat	 Environmental	 Terms:	 This	 represents	 the	 environmental	

terms	as	generated	by	the	main	SEQenv	pipeline.	

• Per	 Environmental	 Term	Taxa	Abundance:	This	 represent	 the	 taxonomic	

abundance	 as	 generated	 by	 the	 first	 part	 of	 the	 new	 extension	 to	 the	

SEQenv	pipeline.		Furthermore,	SEQenv	results	for	each	sub-habitat	from	
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the	 aforementioned	 datasets	 were	 aggregated	 and	 Per	 Term	 Taxa	

Abundance	results	were	then	generated	from	the	resultant	information.	

• Per	 Taxa	 Environmental	 Term	 Abundance:	 This	 represents	 the	

environmental	terms	abundance	on	a	per	taxa	basis,	as	generated	by	the	

second	 part	 of	 the	 new	 extension	 to	 SEQenv	 pipeline.	 Similar	 to	 per	

environmental	term	taxa	abundance,	SEQenv	results	for	each	sub-habitat	

were	aggregated.	

	

4.2.5	 Word	Cloud	Generation	

	

Given	that	the	SEQenv	pipeline	is	under	development,	the	latest	version	does	not	

have	the	ability	to	generate	a	word	cloud	to	represent	the	relative	abundance	of	

environmental	 terms	 or	 per	 term	 taxa	 abundance,	 which	 necessitated	 the	

development	of	an	additional	word	generation	tool	to	integrate	this	into	TaxaSE.		

	

Environmental	terms	or	taxa	were	illustrated	on	the	strength	of	their	abundances,	

with	 higher	 abundance	 producing	 a	 larger	 font	 size.	 Colours	 were	 randomly	

selected	 to	 improve	 readability	 against	 a	 white	 background,	 while	 a	 circular	

pattern	 was	 used	 for	 illustration	 purposes.	 Additionally,	 for	 per	 term	 taxa	

abundance	word	clouds,	instead	of	full	taxonomic	annotations,	the	lowest	two	taxa	

levels	were	used	to	illustrate	the	taxon	found.	Table	4-3	also	describes	the	word	

cloud	java	tool.	
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4.2.6	 List	of	Tools	

	

The	 extension	 to	 the	 SEQenv	 pipeline	 was	 developed	 in	 Java	 programming	

languages	and	was	represented	by	a	collection	of	tools.	The	list	of	tools,	including	

word	cloud	generation	and	their	description	is	listed	in	Table	4-3.		

	

Table	4-3:	List	of	tools	

Tool	 Description	

seqenv-selector.jar	 This	 tool	 selects	 sequences	 based	 on	

taxonomic	annotation	and	abundance	

data	present	in	TaxaSE	system	results.	

seqenv-abd.jar	 This	 tool	 aggregates	 the	 results	 on	

SEQenv	 pipeline	 on	 a	 per-term	 basis	

and	generates	a	list	of	most	abundant	

environmental	terms.	

seqenv-cloud-gen.jar	 As	the	current	version	of	SEQenv	does	

not	 provide	 word	 cloud	 generation	

functionality,	 this	 tool	was	developed	

to	illustrate	the	pipeline	results.	

seqenv-rev.jar	 These	tools	represent	the	extension	to	

the	 SEQenv	 pipeline.	 By	 using	 the	

TaxaSE	 annotation	 information	 and	

SEQenv	 results,	 this	 tool	 is	 able	 to	

generate	 both	 per	 term	 taxa	
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abundance	 and	 per	 taxa	 term	

abundance	results.	
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4.3	 Results	

4.3.1	 Per	Habitat	Environmental	Terms	

4.3.1.1	 Sugar	Cane	Dataset	

	

The	environmental	terms	for	the	sugarcane	dataset	are	illustrated	in	Figure	4-3.	

Samples	belonging	to	rhizosphere	showed	the	environmental	term	“soil”	as	being	

the	most	prevalent	(Figure	4-3a).	Other	similar	terms	were	also	observed,	such	as	

“rhizosphere”,	“forest	soil”,	“prairie”	and	“agricultural	soil”.	Of	importance	was	the	

occurrence	of	the	environmental	terms	such	as	“activated	sludge”,	“garden”	and	

“contaminated	 soil”	 as	more	 taxa	with	 these	metadata	were	prevalent	 in	 these	

datasets.	SEQenv	was	unable	to	generate	environmental	terms	for	the	ENVO	IDs	

1000196,	which	stood	for	“coniferous	forest	biome”,	446,	which	was	“terrestrial	

biome”	and	lastly	447,	which	was	“marine	biome”.		This	may	be	due	to	limitation	

in	the	SEQenv	pipeline.	

	

The	list	of	environment	terms	for	soil	samples	were	also	similar	to	rhizosphere	

samples,	 with	 the	 “soil”	 term	 being	 the	 most	 significant	 environmental	 term	

observed	(Figure	4-3b).	However,	 “forest	soil”	was	observed	relatively	strongly	

here	compared	to	rhizosphere	results.	Similar	to	rhizosphere	results,	SEQenv	was	

unable	to	convert	a	few	ENVO	IDs	to	their	corresponding	environmental	terms.	

These	included	447,	which	was	“marine	biome”,	1000181,	which	was	“mangrove	

biome”,	428,	which	was	simply	“biome”	and	2030,	which	was	“aquatic	biome”.		
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For	the	stem	samples,	 the	environmental	 term	“garden”	was	strongly	observed	

compared	to	other	terms,	with	exception	of	“soil”	(Figure	4-3c).	Other	important	

terms	 included	 “forest	 soil”,	 “biofilm”	 and	 “garden	 soil”.	 A	 few	 environmental	

terms	 were	 not	 properly	 generated.	 These	 include	 1000196,	 which	 stood	 for	

“coniferous	forest	biome”,	1000047,	which	was	“mediterranean	sea	biome”,	447,	

which	was	“marine	biome”	and	finally	1000181,	which	was	“mangrove	biome”.	

	

Lastly,	the	root	samples	showed	similarity	to	both	soil	and	rhizosphere	samples,	

as	the	environmental	term	“soil”	was	the	most	observed	term	in	these	three	sub-

habitats	(Figure	4-3d).	As	illustrated	in	the	ANOSIM	results	for	TaxaSE	in	Chapter	

3,	where	the	grouping	of	samples	by	environment	were	statistically	significant,	

these	three	sub-habitats	were	close	to	each	in	taxonomic	makeup	and	therefore	

would	contain	sequences	that	would	have	an	environmental	term	of	“soil”	as	the	

isolation	source.		Similarly,	beta	diversity	plot	for	TaxaSE	also	illustrate	samples	

from	these	sub-habitats,	while	grouped	together	individually,	were	closer	to	each	

other	compared	to	samples	from	stem	sub-habitat.	While	the	plots	show	similar	

list	of	 environmental	 terms,	with	 exception	of	 the	 few	most	 strongly	observed	

terms,	 the	 ranking	 of	 the	 terms	 themselves	 vary	 across	 these	 habitats.	

Undetermined	ENVO	IDs	included	446,	which	was		“terrestrial	biome”,	447,	which	

was	 “marine	biome”,	1000196,	which	was	 “coniferous	 forest	biome”	and	2030,	

which	was	“aquatic	biome”.	

	

Overall,	 the	 environmental	 term	 “soil”	 was	 prevalent	 across	 all	 sub-habitats,	

however	other	terms	were	ranked	differently.	Stem	sub-habitat	was	more	unique	

compared	to	soil,	rhizosphere	and	root.	
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Figure	 4–3:	 Environmental	 terms	 generated	 for	 the	 sub-habitats	 a)	

rhizosphere	 b)	 soil	 c)	 stem	 and	 d)	 root.	 More	 abundant	 terms	 are	

highlighted	with	larger	font.	

	

	

The	top	10	environmental	terms	ranked	according	to	their	abundances	for	each	

sub-habitat	 is	 listed	 in	 Table	 4-4,	 with	 the	 differences	 between	 sub-habitats	

highlighted	in	bold.	 	The	unique	terms	here	are	those	environmental	terms	that	

only	exist	in	the	specific	sub-habitat.	
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Table	4-4:	Top	10	environmental	terms	observed	in	sub-habitats	from	the	

sugarcane	dataset,	sorted	in	a	descending	order	of	abundance	and	unique	

terms	highlighted	in	bold.	

	 Sub-habitats	

Rank	 Soil	 Rhizosphere	 Root	 Stem	

1	 soil	 soil	 soil	 soil	

2	 forest	soil	 forest	soil	 forest	soil	 garden	

3	 rhizosphere	 rhizosphere	 rhizosphere	 glacier	

4	 paddy	field	soil	 forest	 forest	 ground	water	

5	 rice	field	 paddy	field	soil	 paddy	field	soil	 forest	soil	

6	 forest	 pasture	 sediment	 biofilm	

7	 pasture	 volcanic	field	 rice	field	 rhizosphere	

8	 cultivated	

habitat	

rice	field	 pasture	 pasture	

9	 sediment	 subtropical	 biofilm	 agricultural	soil	

10	 subtropical	 cultivated	

habitat	

cultivated	habitat	 mud	

	

	

4.3.1.2	 Marine	Dataset	

	

For	the	coral	atoll	marine	samples,	the	environmental	term	“sea	water”	was	the	

most	observed	term,	with	“sea”	coming	up	after	that	(Figure	4-4a).	A	few	other	

terms	of	importance	include	“bay”,	“coral	reef”,	“ocean”	and	“sediment”.	Similar	to	

samples	 from	 sugarcane	 dataset,	 SEQenv	 was	 unable	 to	 determine	 the	
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environmental	term	for	the	IDs	428,	which	was	“biome”,	447,	which	was	“marine	

biome”	and	1000047,	which	was	“mediterranean	sea	biome”.	

	

Southern	ocean	samples	also	showed	a	similar	list	of	environmental	term	(Figure	

4-4b).	Here	as	well	“sea	water”	and	“sea”	terms	were	the	most	observed,	however	

“brine	 pool”	was	 relatively	 strongly	 observed	 here	 compared	 to	 samples	 from	

coral	atoll.	The	list	of	ENVO	IDs	not	mapped	onto	the	proper	environmental	terms	

included	447,	which	was	“marine	biome”	and	1000048,	which	is	“ocean	biome”.	
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Figure	4–4:	Environmental	terms	for	the	marine	sub-habitats	a)	Coral	Atoll	

and	b)	Southern	Ocean.	More	abundant	 terms	are	highlighted	with	 larger	

font.	
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While	 both	marine	 samples	 showed	 a	 similar	 list	 of	 environment	 terms,	 these	

differed	in	the	ranking	of	the	terms	themselves,	which	is	illustrated	in	Table	4-5.	

Here,	the	ranking	of	top	level	environmental	terms	was	the	same	for	both	coral	

atoll	 and	 southern	 ocean	 samples,	 however	 differences	 were	 observed	 in	 the	

lower	ranked	terms	where	“coral	reef”	was	observed	for	coral	atoll	samples	while	

southern	ocean	had	environmental	terms	like	“Mediterranean”	and	“marine	bulk	

water”,	which	were	absent	in	coral	atoll	samples.	

	

Table	4-5:	Top	10	environmental	terms	observed	in	sub-habitats	from	

marine	dataset,	sorted	in	a	descending	order	and	unique	terms	highlighted	

in	bold	

	 Sub-habitats	

Rank	 Coral	Atoll	 Southern	Ocean	

1	 sea	water	 sea	water	

2	 sea	 sea	

3	 reef	 ocean	

4	 ocean	 brine	pool	

5	 surface	water	 bay	

6	 bay	 surface	water	

7	 coast	 mediterranean	

8	 brine	pool	 reef	

9	 tropical	 marine	bulk	water	

10	 coral	reef	 coast	
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4.3.2	 Per	Environment	Term	Taxa	Abundance	

4.3.2.1	 Sugarcane	Dataset	

	

While	the	environment	terms	“Soil”	and	“Forest	Soil”	were	similar,	the	sequences	

that	contribute	to	these	terms	differed	(Figure	4-5a	and	4-5b	respectively).	This	

was	quite	apparent	in	the	differences	between	both	word	clouds	where	the	most	

abundant	 taxa	 for	 “soil”	 term	 included	 Acidothermus	 and	 Chloroplast	 while	

Variibacter	and	Acidobacteriaceae	were	more	strongly	related	to	the	“forest	soil”	

term.		

	

“Rhizosphere”	environmental	term	had	Burkholderia	as	being	the	most	abundant	

taxa	while	Acidothermus	was	almost	non-existent	in	this	case	as	shown	in	Figure	

4-5c.	 Burkholderia	 was	 followed	 by	 Catenulispora	 sp.	 Neo1,	 Acidobacteriaceae	

(Subgroup	 1)	 and	 Dyella.	 Xanthomonadaceae	 and	 Catennulispora	 were	 also	

observed,	though	at	a	lower	abundance.		

	

The	“garden”	environmental	term	had	distinct	taxa,	which	were	not	observed	in	

other	 environmental	 terms	 (Figure	 4-5d).	 Members	 of	 Pantoea	 genus	 were	

strongly	observed	here,	while	being	absent	in	other	environmental	terms.	
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Figure	4–5:	Per	Term	Taxa	Abundance	for	the	environmental	terms	a)	soil	

b)	 forest	 soil	 c)	 rhizosphere	 and	 d)	 garden.	 More	 abundant	 taxa	 are	

highlighted	with	larger	font.	

	

“Contaminated	soil”	term	is	an	example	of	significantly	different	collection	of	taxa	

(Figure	 4-6a).	 While	 not	 listed	 in	 the	 top	 10	 environmental	 terms	 for	 the	

sugarcane	 dataset,	 it	 and	 “waste”	 environmental	 term	 consists	 of	 important	

collection	of	taxa	that	may	be	relevant	to	biologists	studying	these	specific	taxa.	

Here,	Sphingomonas,	Pseudomonas	 and	Undibacterium	were	more	 abundant,	 in	

that	order.		
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For	the	“waste”	environmental	term,	Acidothermus	was	the	most	observed	taxa,	

followed	by	Acidobacteriaceae	(Subgroup	1)	(Figure	4-6b).	Additionally,	members	

of	Chitinophagaceae	family	were	also	seen	under	this	environmental	term.	
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Figure	 4–6:	 Per	 Term	 Taxa	 Abundance	 for	 environmental	 terms	 a)	

contaminated	soil	and	b)	waste.	More	abundant	taxa	are	highlighted	with	

larger	font.	
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4.3.2.2	 Marine	Dataset	

	

Prochlorococcus	dominated	the	taxa	abundance	for	the	environmental	term	“sea	

water”	(Figure	4-7a).	The	other	taxa	such	as	SAR11	clade	and	SAR86	clade	were	

also	observed,	though	at	lower	abundances.	On	the	other	hand,	while	similar	taxa	

were	observed	for	the	environmental	term	“sea”,	the	relative	abundance	of	these	

taxa	were	 significantly	 different	 (Figure	 4-7b).	SAR11	 clade	 and	Synechococcus	

became	 more	 abundant,	 while	 Prochlorococcus	 was	 observed	 to	 be	 far	 less	

prominent	than	what	was	observed	for	the	environmental	term	“sea	water”.			

	

“Ocean”	 environmental	 term	 showed	 Chloroplast	 becoming	 more	 abundant	

compared	 to	per	 term	 taxa	abundance	 for	 “seawater”	and	 “sea”	environmental	

terms	 (Figure	 4-7c).	 Similar	 behaviour	 was	 seen	 for	Marinimicrobia	 (SAR406	

clade)	 as	 well,	 which	 was	 very	 low	 in	 abundance	 in	 the	 aforementioned	

environmental	terms.	

	

SAR86	Clade	and	Prochlorococcus	jointly	dominated	the	“Brine	Pool”	environment	

term	(Figure	4-7d).	Furthermore,	a	few	taxa	such	as	SAR324	clade	(Marine	group	

B)	and	Alteromonas	were	also	observed,	although	at	a	very	low	abundance.	Species	

diversity	was	observed	to	be	quite	low	in	this	case	as	only	a	few	taxa	contributed	

to	this	environment	term.	Overall,	most	of	the	taxa	belonged	to	Proteobacteria	and	

Cyanobacteria	phyla.	
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Figure	4–7:	Per	Term	Taxa	Abundance	for	the	environmental	terms	a)	sea	

water	b)	sea	c)	ocean	and	d)	brine	pool.	More	abundant	taxa	are	highlighted	

with	larger	font.	

	

4.3.3	 Per	Taxa	Environmental	Term	Abundance	

	

4.3.3.1	 Sugarcane	Dataset	

	

Per	 taxa	 environmental	 term	 relative	 abundance	 for	 Acidothermus	 and	

Burkholderia	 are	 illustrated	 in	Figure	4-8.	While	 the	environmental	 term	 “soil”	

dominated	the	list	of	terms	for	both	genera,	52.6%	for	Acidothermus	and	45.7%	

for	Burkholderia,	differences	were	observed	for	the	lower	ranked	terms.		
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“Forest	soil”	was	the	second	most	observed	term	for	Acidothermus	at	9.9%	(Figure	

4-8a),	however	for	Bulkholderia	the	term	“rhizosphere”	was	observed	higher	than	

“forest	soil”,	accounting	for	a	significant	portion	of	the	environment	terms	at	20%	

and	“forest	soil”	term	accounting	for	10%	here,	similar	to	Acidothermus.	

	

The	 terms	 “woodland”,	 “waste”	 and	 “rice	 field”	 were	 ranked	 higher	 for	

Acidothermus	 (Figure	 4-8a)	 as	well,	 at	 5.5%,	 4.9%	 and	 4.8%	 respectively.	 For	

Bulkholderia,	the	“waste”	term	was	not	in	the	top	6	environmental	terms	(Figure	

4-8b),	and	furthermore	the	terms	“woodland”	and	“rice	field”	were	not	observed	

at	all	for	this	genus.		

	

“Field	soil”,	“peat	swamp”	and	“sludge”	environmental	terms	were	observed	for	

Bulkholderia	at	3.1%,	2.6%	and	2.1%	respectively,	however	they	were	absent	from	

the	collection	of	top	6	terms	for	Acidothermus.		Lastly,	the	remaining	collection	of	

environmental	terms	came	at	15.5%	for	Acidothermus	and	16.4%	for	Bulkholderia.		

	

Overall,	 distinct	 differences	 were	 observed	 between	 both	 genera.	 	 For	

Acidothermus,	with	exception	of	the	most	abundant	“soil”	term,	others	gradually	

decreased	 in	 how	much	 they	 accounted	 for	 in	 the	 list	 of	 environmental	 terms.	

However,	Bulkholderia	showed	the	gradual	decrease	after	the	third	ranked	“forest	

soil”	term.	
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Figure	 4–8:	 Per	 Taxa	 Term	 Abundance	 for	 a)	 Acidothermus	 and	 b)	

Bulkholderia.	Top	6	environmental	terms	are	illustrated	with	the	pie	chart.	

	

4.3.3.2	 Marine	Dataset	

	

The	 per	 taxa	 term	 abundance	 pie	 charts	 for	 the	 genus	 Prochlorococcus	 and	

Synechococcus	 are	 illustrated	 in	 Figure	 4-9.	 For	 Prochlorococcus,	 the	

environmental	 terms	 “sea	water”	was	 the	most	 observed	 term,	 accounting	 for	
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73.35%	of	environmental	 terms,	an	overall	majority	(Figure	4-9a),	which	came	

down	to	third	rank	for	Synechococcus,	at	26.5%.		

	

Furthermore,	“reef”	was	observed	strongly	for	Synechococcus	at	27%,	however	the	

term	was	absent	in	the	top	4	list	for	Prochlorococcus.	Furthermore,	“ocean”	term	

was	present	 for	Prochlorococcus	 at	1.49%.	Other	differences	 included	 the	 term	

“brine	 pool”	 at	 9.17%	 for	 Prochlorococcus,	 although	 it	 was	 absent	 for	

Synechococcus.	 Lastly,	 “coast”	 environmental	 term	 was	 observed	 only	 for	

Synechococcus	at	2.7%.	

	

Overall,	 environmental	 term	distribution	was	different	between	both	genera.	A	

single	“Sea	water”	 term	dominated	Prochlorococcus	 list	of	environmental	 terms	

while	Synechococcus	saw	three	terms	accounting	for	most	of	the	environmental	

terms	observed,	on	an	almost	equal	 level	 and	where	 “reef”	 term	was	distinctly	

observed	for	Synechococcus.	
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Figure	 4–9:	 Per	 Taxa	 Term	 Abundance	 for	 a)	 Prochlorococcus	 and	 b)	

Synechococcus.	 Top	 4	 environmental	 terms	 are	 illustrated	 with	 the	 pie	

chart.	
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4.4	 Discussion	

	

Sequence	annotation	can	now	be	enhanced	with	environmental	data,	by	way	of	

exploiting	 information	 available	 in	 associated	 metadata	 in	 databases	 such	 as	

NCBI-NT.	 This	 can	 in	 turn	 provide	 a	 more	 in-depth	 view	 into	 the	 microbial	

community	and	a	more	effective	approach	towards	analysis	for	many	ecological	

projects.	

	

The	 analysis	 of	 the	 various	 habitats	 illustrates	 the	 effectiveness	 of	 the	 new	

extension	 to	 SEQenv.	 Significant	 patterns	 emerge	 where	 distinct	 taxa	 were	

strongly	observed	on	the	basis	of	the	environment	origin.			By	effectively	linking	

observed	 taxa	 to	 environmental	 terms,	 the	 system	 produces	 an	 ecologically	

important	perspective	into	the	analysis	of	16S	rRNA	gene	sequences	and	enables	

a	more	thorough	approach	to	environmental	annotation	of	sequences,	aiding	in	

interpretation	of	taxonomic	annotation.	

	

Cases	were	 found	where	 the	 SEQenv	 pipeline	 (Sinclair	 L,	 2016)	was	 unable	 to	

resolve	the	environmental	term	at	a	deeper	level,	such	as	for	the	environmental	

terms	“soil”	and	“sea”.	Given	that	“soil”	 term	exists	at	a	higher	 level	 than	other	

terms	such	as	“forest	soil”	in	ENVO	ontology	(P.	L.	Buttigieg	et	al.,	2013),	it	is	more	

likely	that	the	isolation	sources	for	these	sequences	were	not	detailed	enough	to	

determine	the	precise	environment	they	were	 isolated	 from.	SEQenv	selected	a	

higher	level	of	environment	term	instead,	as	the	metadata	could	not	provide	more	

specific	details	about	the	environment.	Additionally,	some	ENVO	IDs	could	not	be	
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resolved	to	the	proper	environmental	terms,	which	may	be	a	limitation	of	the	tool	

as	some	of	these	IDs	were	similar	across	various	sub-habitats.	

	

4.4.1	 Per	Habitat	Environmental	Terms	

4.4.1.1	 Sugarcane	Dataset	

	

While	 the	 results	 for	 root	 sub-habitat	 were	 similar	 to	 soil	 and	 rhizosphere,	

differences	 were	 observed	 for	 the	 presence	 of	 environmental	 terms	 such	 as	

“sediment”	and	“biofilm”,	which	were	ranked	higher.	This	might	be	because	of	the	

taxa	that	belonged	to	these	terms	was	more	abundant	in	the	root	habitat	due	to	

plant-soil	close	association	(Garbeva	et	al.,	2004).	Furthermore,	biofilms	play	an	

important	 role	 in	 plant-microbial	 interactions	 in	 the	 rhizosphere	 (Danhorn	 &	

Fuqua,	2007).	Additionally,	“forest	soil”	environmental	term	was	relatively	more	

prominent	for	soil	samples	compared	to	rhizosphere	results	and	this	might	be	due	

to	difference	in	abundance	of	taxa	that	are	more	prevalent	in	forest	soils,	which	

are	located	further	away	from	the	phytobiome	system	(Garbeva	et	al.,	2004).		

	

The	differences	between	stem	samples	and	others,	which	was	driven	by	 terms	

such	as	“garden”,	“glacier	water”	and	“ground	water”	can	be	explained	by	these	

terms	being	driven	by	taxa	unique	to	the	stem	habitat	and	likely	to	be	endophyte	

in	nature.	 	These	taxa	 live	within	the	plant	biomass	 in	a	symbiotic	relationship	

(Gouda	et	al.,	2016)	and	therefore	observed	in	the	samples	taken	from	the	stem.	

This	may	 be	 a	 result	 of	 comparatively	 lower	number	 of	 sequences	 from	 these	

habitats	exist	in	the	database.	Nonetheless,	given	that	SEQenv	(Sinclair	L,	2016)	
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acquires	isolation	sources	based	on	the	sequences	in	the	dataset,	the	differences	

in	 species	 found	 in	 the	 stem	samples	 compared	 to	other	 samples	 led	 to	strong	

difference	 in	 environmental	 based	 tagging.	 Furthermore,	 as	 the	 stem	 samples	

were	taken	from	the	stem	of	sugarcane	plants,	the	ranking	of	environmental	terms	

in	this	case	are	a	good	representative	of	the	type	of	the	environment	the	microbial	

sequences	 came	 from.	 This	 highlights	 the	 value	 of	 SEQenv	 in	 discriminating	

between	habitats.		

	

4.4.1.2	 Marine	Dataset	

	

While	most	of	 the	 environmental	 terms	observed	 for	 the	 two	different	marine	

based	 sub-habitats	 were	 similar,	 the	 ranking	 of	 the	 terms	 themselves	 were	

different	and	some	environmental	terms	were	uniquely	observed	such	as	“coral	

reef”	 environmental	 term	 for	 coral	 atoll	 sample,	 due	 to	 differences	 in	 the	

environment	between	these	two	sub-habitats	and	the	variation	in	taxa	abundance	

that	comes	with	it	(Jeffries	et	al.,	2015).	Some	microbial	communities	in	coral	reef	

systems	 exist	 in	 a	 symbiotic	 relationship	 with	 coral	 polyps,	 playing	 a	 role	 in	

nutrient	 cycling	 as	 well	 as	 assisting	 in	 disease	 resistance	 for	 these	 organisms	

(Garren	&	Azam,	2012).	Therefore,	taxa	belonging	to	this	environment	are	more	

likely	 to	be	observed	for	coral	atoll	samples.	“Marine	bulk	water”	was	uniquely	

observed	for	southern	ocean	samples	while	being	absent	for	coral	atoll	samples,	

due	to	the	environmental	characteristic	of	the	ocean	waters	and	the	taxa	that	are	

prevalent	in	it.		
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For	all	 the	datasets	used	 for	analysis,	 it	was	apparent	 that	SEQenv	was	able	 to	

determine	intra-habitat	differences	and	patterns	even	at	environmental	term	level	

of	information.		

	

4.4.2	 Per	Environment	Term	Taxa	Abundance	

	

As	 seen	 in	 the	word	clouds	 for	 the	habitats,	 certain	environmental	 terms	were	

more	strongly	observed	compared	to	others.	Underpinning	this	pattern	is	the	taxa	

abundance,	which	contributed	to	their	ranking.	The	Per	Environmental	Term	Taxa	

Abundance	approach	was	able	to	provide	a	more	taxa	centric	explanation	of	these	

patterns,	which	could	not	be	explained	solely	by	SEQenv	(Sinclair	L,	2016).	

	

Per	 Environmental	 Term	 Taxa	 Abundance	 showed	 distinct	 patterns	 of	 taxa	

abundances	 across	 various	 environmental	 terms.	 Taxa	 more	 prevalent	 in	 one	

term	were	less	abundant	in	another.	Certain	taxa	had	low	abundances,	however	

depending	on	the	environmental	factors	these	taxa	can	become	more	abundant	if	

the	conditions	are	beneficial	towards	their	growth.	

	

4.4.2.1	 Sugarcane	Dataset	

	

The	difference	in	the	abundance	of	taxa	between	“rhizosphere”	and	“soil”	terms	

illustrate	that	while	some	taxa	were	common	across	different	environment,	the	

abundances	observed	were	different.	
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Acidothermus,	which	was	strongly	observed	in	the	“soil”	environment	term,	is	a	

thermophilic,	acidophilic,	cellulolytic	bacterium,	prevalent	in	acidic	environments	

(Mohagheghi,	 Grohmann,	 Himmel,	 Leighton,	 &	 Updegraff,	 1986),	 while	

Acidobacteriaceae	 as	observed	more	 in	 the	 “forest	 soil”	 environment	 term,	 is	 a	

family	of	Acidobacteria	which	are	ubiquitous	in	soil	environment	(Quaiser	et	al.,	

2003).	

	

The	“garden”	environment	term	was	significantly	different	 from	other	terms	 in	

the	 case	of	 the	sequences	 that	 contributed	 to	 it	where	 “Pantoea”	was	 the	most	

abundant	taxa	observed.	 It	 is	well	known	that	Pantoea	Spp.	 lives	 in	many	plant	

tissues	both	as	 commensal	 and	 in	 some	cases	as	pathogens	 (Pataky,	Michener,	

Freeman,	Weinzierl,	&	Teyker,	2000).	

	

Members	of	the	Sphingomonas	genus	were	observed	for	the	environmental	term	

“contaminated	soil”	and	bacteria	belonging	to	this	genus	is	well	known	to	have	the	

ability	to	degrade	chemicals	in	contaminated	soil	as	it	is	one	of	the	best	known	

genera	 for	 biodegradation	 of	 chemical	 contaminants	 (Alvarez	 et	 al.,	 2012;	 S.	

Schmidt	 et	 al.,	 1992;	 Ye,	 Siddiqi,	Maccubbin,	 Kumar,	&	 Sikka,	 1995).	 The	most	

prevalent	 species	 of	Sphingomonas	was	 observed	 to	 be	 an	 “uncultured	marine	

bacterium”.	The	presence	of	this	bacterium	here	may	be	due	to	this	taxon	being	

prevalent	in	both	contaminated	soil	and	marine	habitats.	

	

Lastly,	while	taxa	that	contributed	to	the	terms	such	as	“contaminated	soil”	and	

“waste”	were	not	as	abundant	as	the	aforementioned	terms	like	“soil”,	“forest	soil”	

or	 “garden”,	 they	 were	 nonetheless	 very	 important	 as	 they	 provided	 taxa	
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abundances	under	a	 specific	 environmental	 context.	Therefore,	 for	studies	 that	

may	aim	towards	a	specific	goal	in	mind,	such	as	bioremediation,	this	may	help	in	

targeting	sequences	that	come	from	relevant	environments	

	

4.4.2.2	 Marine	Dataset	

	

Overall,	Marine	habitats	showed	an	interesting	collection	of	taxa	that	come	from	a	

variety	of	marine	environments.		Similar	to	the	sugarcane	dataset,	while	the	list	of	

sequences	contributing	to	each	environment	may	seem	similar	at	first,	there	were	

exceptions	 where	 unique	 sequences	 were	 observed	 to	 be	 more	 abundant	 in	

specific	 environments.	 Furthermore,	 the	 ranking	 itself	 varied	 across	 every	

environmental	 term.	Additionally,	 similar	 to	 the	differences	observed	 for	 “soil”	

and	 “forest	 soil”	 environmental	 terms	 in	 the	 sugarcane	 dataset,	 “sea”	 and	

“seawater”	exhibited	the	same	pattern	with	respect	to	the	taxa	observed.		

	

Prochlorococcus,	which	was	observed	 in	multiple	 environmental	 terms	such	 as	

“sea	water”,	 “sea”	 and	 “ocean”	 in	 different	 abundances,	 is	 a	 very	 small	marine	

cyanobacteria,	which	is	one	of	the	most	abundant	photosynthetic	organism	on	the	

planet	(Partensky,	Hess,	&	Vaulot,	1999),	while	bacteria	belonging	to	SAR11	clade	

are	accountable	for	methane	dissolved	in	the	oceans	(Carini,	White,	Campbell,	&	

Giovannoni,	2014).	They	are	cosmopolitan	and	abundant	across	marine	habitats,	

particularly	SAR11,	which	is	the	main	marine	bacterium	and	was	present	for	most	

environment	terms	at	different	abundances.		
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Synechococcus	 is	 a	 unicellular	 cyanobacteria	 that	 is	 prevalent	 in	 the	 marine	

environment	and	has	been	shown	to	dominate	in	this	system	(Jeffries	et	al.,	2015).	

It	was	present	 for	 the	environmental	 terms	 “sea”	and	 “sea	water”,	while	being	

absent	in	top	10	ranked	list	of	taxa	for	the	“ocean”	term.	SAR86	Clade,	members	of	

which	 are	 aerobic	 chemoheterotroph	 (Dupont	 et	 al.,	 2012),	 and	 the	

aforementioned	Prochlorococcus	jointly	dominated	the	“Brine	Pool”	environment	

term.		

	

The	per	environment	term	taxa	abundance	provided	a	more	concise	and	relevant	

view	 of	 the	 environmental	 annotations.	 Linking	 sequences	 to	 environmental	

terms	in	such	a	manner	would	be	more	suitable	than	a	list	of	environmental	terms	

that	 SEQenv	 provides.	 This	 enhancement	 significantly	 improved	 the	 analysis	

capability	of	SEQenv	system	and	provided	a	novel	approach	to	contextual,	 taxa	

based	environmental	annotation,	which	was	originally	not	present	in	the	SEQenv	

pipeline.	Furthermore,	the	integration	developed	here	enabled	a	more	thorough	

approach	 towards	16S	 rRNA	sequence	analysis	 and	offers	a	 single	pipeline	 for	

both	taxonomic	and	environmental	annotation	of	sequences.	

	

4.4.3	 Per	Taxa	Environmental	Term	Abundance	

	

Following	up	on	per	term	taxa	abundance,	similar	patterns	were	observed	for	per	

taxa	 term	 abundance	 where	 certain	 environmental	 terms	 were	 dominant	 for	

specific	 genus.	 The	 per	 taxa	 environmental	 term	 abundance	 provided	 a	 taxa	
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centric	approach	toward	environmental	annotations	and	listed	the	many	habitats	

under	which	a	taxon	may	be	found.	

	

Terms	such	as	“sea”	and	“soil”	are	more	prevalent	due	to	the	limitations	associated	

with	the	SEQenv	pipeline	or	the	meta	data	for	these	sequences	were	not	specific	

enough	with	respect	to	the	environments	they	were	isolated	from.	

4.4.3.1	 Sugarcane	Dataset	

	

In	accordance	with	per	term	taxa	abundance	result	for	“soil”	environment	term,	

“soil”	dominated	the	list	of	terms	for	Acidothermus,	which	is	a	thermophilic	and	

acidophilic	microbe	that	is	found	in	acidic	environment	(Mohagheghi	et	al.,	1986).	

Other	terms	such	as	“forest	soil”	or	“woodland”	point	towards	these	environments	

being	favourable	to	its	growth,	as	it	has	been	observed	in	samples	collected	from	

forest	environment	(J.-S.	Kim	et	al.,	2015;	Meng	et	al.,	2013).		

	

Burkholderia	 occupies	 a	 variety	 of	 environmental	 niches	 (Compant,	 Nowak,	

Coenye,	 Clément,	 &	 Ait	 Barka,	 2008)	 including	 soil	 (Janssen,	 2006)	 and	 some	

strains	 of	 this	 genus	 can	 cause	 diseases	 for	 humans	 and	 animals	 (Coenye	 &	

Vandamme,	 2003).	 Furthermore,	 the	 bacterium	 is	 observed	 to	 be	 prevalent	 in	

rhizosphere	environment	for	plants	(Caballero-Mellado,	Onofre-Lemus,	Estrada-

de	 Los	 Santos,	 &	 Martinez-Aguilar,	 2007),	 which	 may	 be	 the	 reason	 why	 the	

environmental	 term	“rhizosphere”	was	strongly	observed	for	 it	as	compared	to	

Acidothermus.	 Finally,	 the	 presence	 of	 the	 term	 “sludge”	 maybe	 be	 due	 to	 its	

potential	and	application	for	biodegradation	(L.	Zhang	et	al.,	2013).	Overall,	this	
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data	supports	 the	widespread	distribution	 in	plant	rhizosphere	of	 these	taxa	 in	

multiple	niches.	

	

4.4.3.2	 Marine	Dataset	

Prochlorococcus,	one	of	the	most	abundant	organism	on	the	planet	(Partensky	et	

al.,	1999),	is	typically	observed	in	oligotrophic	oceans	where	nutrients	availability	

is	 poor,	 in	 contrast	 to	 Synechococcus	 that	 favours	 nutrient	 rich	 environment	

(Whitton,	2012).	Hence	terms	such	as	“ocean”	and	“brine	pool”	points	 towards	

prevalence	of	Prochlorococcus	in	these	environments.		

	

The	list	of	terms	for	Synechococcus	includes	“reef”	and	“coast”	which	are	nutrient	

rich	environments	compared	to	oceans.	In	fact,	the	bacterium	has	been	observed	

to	 be	 present	 in	 high	 abundance	 at	 coral	 reefs	 especially	 during	 summer	 time	

(Moriarty,	Pollard,	&	Hunt,	1985)	as	well	as	coastal	regions	such	as	the	Portuguese	

coast	(Martins,	Pereira,	Welker,	Fastner,	&	Vasconcelos,	2005).	

	

Overall,	 the	 enhancement	 provided	 robust	 data	 on	 taxa-specific	 distribution	 in	

different	habitats	and	highlights	 the	usefulness	of	 this	approach	for	delineating	

the	niches	potentially	occupied	by	specific	taxa,	in	this	case	supporting	the	known	

distribution	 of	 these	 abundant	 marine	 autotrophs,	 which	 drive	 primary	

production	(Christaki,	Jacquet,	Dolan,	Vaulot,	&	Rassoulzadegan,	1999).	

	

4.5	 Conclusion	
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SEQenv	 represents	 a	 novel	 method	 of	 augmenting	 sequence	 analysis	 with	

environmental	metadata.	Given	the	need	for	improved	analysis,	pipelines	that	can	

integrate	 taxonomic	 and	 environmental	 data	 are	 becoming	 increasingly	

important.		

	

By	 integrating	 SEQenv	 with	 TaxaSE	 and	 extending	 the	 functionality	 through	

generation	of	per	environment	taxa	abundance	as	well	as	per	taxa	term	abundance	

data,	 the	 improved	 SEQenv	 offers	 unique	 insights	 and	 contributes	 to	 the	

expanding	 repertoire	of	next-gen	 sequence	analysis	pipelines.	This	enables	 the	

extended	pipeline	to	provide	environmental	annotations	in	a	variety	of	contexts.		

	

Furthermore,	 by	 directly	 producing	 environmental	 source	 information	 for	

sequences	in	the	dataset,	it	can	greatly	help	biologists	aiming	to	understand	the	

biogeography	of	microbes.	Given	that	more	and	more	sequences	and	genomes	are	

being	 submitted	 to	 the	NCBI	database,	 along	with	associated	metadata	 such	as	

isolation	sources,	the	capabilities	of	the	pipeline	would	improve	in	the	future.	

	

The	combination	of	enhanced	taxonomic	annotation,	coupled	with	environmental	

annotation	 presents	 a	 unique	 approach	 to	 microbial	 16S	 rRNA	 analysis.	 The	

system	is	capable	of	accurately	annotating	environmental	 information	to	query	

sequences	and	enhancement	done	to	SEQenv,	which	links	taxa	to	environmental	

keywords,	 enhances	 the	applicability	of	 this	pipeline.	This	enhancement	would	

play	a	greater	role	in	helping	ecologists	understand	the	diversity	patterns	present	

across	diverse	 habitats	 and	will	 lead	 to	 a	 holistic	 approach	 towards	 ecological	

projects.		
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Chapter		5: 	 	 Final	Conclusion	and	Future	Work	

5.1	 Conclusion	

	

Given	the	need	for	enhanced	analysis	tools	for	microbial	projects,	the	overall	aim	

of	 this	 thesis	 was	 to	 develop	 a	 new	 system	 that	 would	 fulfil	 the	 need	 of	 a	

researcher	aiming	to	investigate	amplicon	datasets	in	a	more	thorough	fashion.	

Annotation	 of	 the	 16S	 rRNA	 gene	 is	 the	 standard	 approach	 for	 taxonomic	

annotation	 of	 bacterial	 sequences,	 where	 sequence	 similarity	 determines	

assignment	of	taxonomy.	However,	given	that	 the	16S	rRNA	gene	contains	nine	

regions	of	variability	that	can	serve	to	annotate	a	given	sequence	better,	there	is	a	

need	to	exploit	this	hypervariable	information,	as	the	current	methods	so	far	do	

not	account	for	it.		

	

Additionally,	environmental	annotation	can	dramatically	enhance	our	knowledge	

of	microbial	world,	their	niche	and	distribution.	Contextual	information,	especially	

environmental	 data	 can	 provide	 a	 lot	 more	 detail	 about	 sequences	 that	 may	

otherwise	be	left	out	of	the	analysis.	Given	the	importance	of	the	roles	microbes	

play	in	the	environment	they	reside	in	as	well	as	the	various	processes	they	carry	

out,	 extracting	 environmental	 information	 about	 these	 bacteria	 would	

significantly	enhance	the	analysis	capability	of	any	system.	The	most	important	

findings	of	the	study	were:	

• Evolutionary	 conservation	within	 the	 16S	 rRNA	 gene	was	 exploited	 via	

Shannon	Entropy	for	taxonomic	annotation,	providing	a	novel	method	for	

development	of	a	new	pipeline.	In-silico	analysis	illustrated	that	the	new	
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weighted	scheme	built	on	Shannon	entropy	 is	comparable	to	percentage	

identity,	 while	 showing	 better	 performance	 at	 higher	 taxon	 levels	 and	

given	that	a	vast	majority	of	sequences	remain	uncultured	and	unknown,	

this	 would	 improve	 the	 ability	 of	 the	 system	 to	 annotate	 an	 unknown	

sequence	much	more	effectively.	The	use	of	a	sequence	similarity	metric	

that	utilizes	evolutionary	conservation	within	16S	rRNA	gene	sequences	

and	 consequently	 improves	 on	 annotation	 of	 novel	 sequences	 at	 higher	

taxa	level	makes	this	approach	different	from	standard	percentage	identity	

based	methods.	

	

• A	new	bioinformatics	pipeline,	the	TaxaSE	system,	was	developed	using	the	

Shannon	entropy	based	weighted	approach	as	its	foundation.	Both	TaxaSE	

and	QIIME	were	used	to	analyse	a	large	dataset	of	samples	from	sugarcane	

microhabitats,	 consisting	 of	 samples	 from	 various	 habitats.	 The	 results	

showed	 that	 the	 new	 pipeline	was	 able	 to	 generate	 similar	 ecologically	

relevant	results	for	both	alpha	diversity	and	beta	diversity	based	analysis.	

The	system	can	be	used	for	annotating	OTUs	or	perform	single	sequence	

annotation	at	the	cost	of	computational	time.	Furthermore,	as	tools	were	

developed	to	integrate	the	pipeline	within	QIIME,	researchers	can	use	the	

new	system	readily.	The	OTU	independent	approach	 is	an	alternative	to	

OTU	based	methods,	which	can	be	used	to	determine	taxonomic	annotation	

on	a	per	sequence	basis.	

	

• Environmental	 annotation	 of	microbial	 sequences	was	 performed	 using	

the	extended	SEQenv	pipeline.	The	results	were	generated	as	word	clouds,	
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which	 help	 visualising	 the	 results	much	more	 effectively	 as	well	 as	 pie	

charts	to	illustrate	environmental	data	more	appropriately	for	sequences.	

The	extension	to	SEQenv	was	able	to	provide	a	concise,	relevant	view	into	

the	 distribution	 of	 taxa	 across	 different	 environment	 terms.	 The	

discriminating	taxa	were	ecologically	relevant	to	the	specific	habitats	the	

new	 system	 is	 able	 to	 generate	 valid	 environmental	 annotations.	

Furthermore,	 providing	 environmental	 terms	 for	 sequences	 in	 a	 direct	

fashion	 would	 enable	 a	 more	 thorough	 and	 comprehensive	 approach	

towards	microbial	analysis,	which	integrates	niche	terms	and	taxonomic	

annotations	 in	 the	 same	 pipelines.	 Considering	 that	 at	 the	 moment,	

taxonomic	 annotation	 pipelines	 do	 not	 produce	 environmental	

annotations,	 this	 approach	 provides	 a	 better	 picture	 of	 bacterial	

communities	in	the	eco-system,	both	taxonomically	and	environmentally.	

	

The	combined	pipeline,	consisting	of	TaxaSE	and	expanded	SEQenv,	provided	a	

single	approach	for	taxonomic	annotation	of	bacterial	sequences,	enhanced	with	

environmental	information.	By	way	of	a	novel	approach	of	exploiting	evolutionary	

conservation	 within	 16S	 rRNA	 gene	 for	 taxonomic	 annotation	 as	 well	 as	

generating	environmental	data	for	these	sequences	through	an	extended	SEQenv	

pipeline,	a	more	thorough	analysis	of	ecological	projects	can	be	conducted.	Thus,	

the	new	the	pipeline	 is	a	novel	and	sophisticated	tool	and	can	greatly	augment	

research	seeking	to	enhance	our	understanding	of	microbes	and	the	 important	

roles	 they	play	 in	 the	environment.	Given	the	need	for	more	thorough	analysis,	

pipelines	 such	 as	 the	 one	 described	 here	would	 be	 an	 important	 addition	 in	 a	

biologist’s	arsenal	of	bioinformatics	tools.	
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5.2	 Future	work	

In	addition	to	bacterial	16S	rRNA	gene	sequences,	the	Shannon	entropy	approach	

to	 quantitatively	 accessing	 evolutionary	 conservation	 can	 be	 applied	 on	 other	

types	of	sequences	where	fully	aligned	databases	are	available,	including	archaea	

16S	rRNA	gene	sequences,	which	would	require	a	rebuilding	of	entropy	vectors	

and	few	changes	in	other	tools	in	the	pipeline,	as	well	as	proteins,	as	they	also	have	

variable	and	conserved	regions.	However,	this	would	necessitate	larger	changes	

to	be	done	across	the	pipeline.	Overall,	this	would	enable	the	characterization	of	

sequence	 divergence	 in	 a	 more	 effective	 manner	 and	 can	 perhaps	 be	 used	 to	

improve	 taxonomic	 placement	 of	 new	 sequences	 as	 well	 as	 develop	 similar	

systems	 for	 protein	 annotation.	 Furthermore,	 while	 the	 TaxaSE	 pipeline	 was	

developed	for	analyzing	amplicon	datasets,	in	future	it	may	be	extended	to	work	

on	whole	genome	shotgun	datasets	by	extracting	short	reads	which	belong	to	16S	

rRNA	gene	sequences.	Various	tools	are	already	available	that	can	generate	a	list	

of	sequences	that	may	be	16S	rRNA	gene	sequences.		

	

Phylogenetic	placement	algorithms	such	as	pplacer	or	EPA	can	augment	diversity	

analysis	 of	 microbial	 community.	 A	 combination	 of	 both	 taxonomic	 and	

phylogenetic	analysis	would	provide	a	more	comprehensive	understanding	of	the	

origins	 of	 unknown	 sequences.	 This	 would	 enable	 better	 characterization	 of	

microbial	community	composition	and	may	in	fact	help	in	determining	the	content	

of		“microbial	dark	matter”.	
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Future	 work	 on	 environmental	 annotations	 could	 focus	 on	 developing	 a	

comprehensive	 database	 of	 sequences	 and	 the	 environments	 they	 belong	 to,	

which	 covers	 all	 OTUs	 present	 in	 public	 databases.	 Chapter	 4	 highlights	 the	

usefulness	of	this	approach	within	a	specific	database,	which	can	then	be	extended	

to	cover	a	whole	range	of	reference	sequences.	This	can	then	act	as	a	repository	

and	 would	 be	 useful	 in	 many	 ecological	 projects,	 enabling	 characterization	 of	

microbes	on	a	global	level	under	the	context	of	environments	they	reside	in.	While	

current	 work	 was	 on	 16S	 rRNA	 gene	 sequences,	 SEQenv	 can	 run	 on	 other	

sequences	as	well,	such	as	nucleotide	or	protein.	The	extension	developed	here	

can	 be	 used	 in	 the	 formation	 of	 the	 aforementioned	 database.	 Additionally,	 a	

multitude	 of	 datasets	 could	 be	 analyzed	 to	 see	 how	 taxonomy	 is	 globally	

partitioned	by	habitats.	Furthermore,	if	sampling	was	done	over	a	large	time	span,	

environmental	annotations	at	each	time	step	can	be	generated,	which	can	then	

elucidate	how	environmental	conditions	affected	the	eco	system	up	to	the	present	

day	 and	 the	 resultant	 microbial	 community	 present	 in	 the	 environment,	 as	

environmental	annotation	of	a	current	dataset	can	only	provide	a	single	snapshot.	

Lastly,	the	pipeline	could	be	enhanced	even	more	by	incorporating	extraction	of	

numeric	information	such	as	pH,	by	way	of	performing	text-mining	onto	research	

articles	as	well	as	dataset	metadata	and	can	augment	environment	annotation	by	

providing	environmental	variables	that	can	influence	the	abundance	of	taxon.	

	

Overall,	 by	 enhancing	 the	 resolution	 of	 annotations	 and	 understanding	 the	

distribution	 of	 taxa	 across	 niches,	 next	 generation	 sequencing	 can	 realize	 its	

potential	 to	 understand	 biodiversity	 and	 the	 underlying	 mechanisms	 that	

generate	and	sustain	it.	
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Appendix		A. 	

	

Chapter	 4	 Table	 A-1:	 Top	 20	 ranked	 environment	 terms	 and	 associated	

aggregated	 values	 generated	 for	 rhizosphere	 samples	 from	 sugarcane	

dataset		

Sugarcane	-	Rhizosphere	

Rank	 Environment	Term	 Total	

1	 soil	 1144.7871	

2	 forest	soil	 337.72467	

3	 rhizosphere	 106.670784	

4	 forest	 94.84745	

5	 paddy	field	soil	 52.98755	

6	 pasture	 47.228493	

7	 volcanic	field	 37.7277	

8	 peat	soil	 34.457375	

9	 rice	field	 31.99949	

10	 sediment	 31.244991	

11	 subtropical	 30.482468	

12	 cultivated	habitat	 27.738499	

13	 waste	 26.490353	

14	 woodland	 21.617014	

15	 grassland	soil	 20.789787	

16	 prairie	 19.62367	
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17	 lake	 19.454222	

18	 biofilm	 18.735514	

19	 peat	swamp	 18.695932	

20	 field	soil	 18.084253	

	

Chapter	 4	 Table	 A-2:	 Top	 20	 ranked	 environment	 terms	 and	 associated	

aggregated	values	generated	for	soil	samples	from	sugarcane	dataset	

Sugarcane	-	Soil	

Rank	 Environment	Term	 Total	

1	 soil	 1124.0039	

2	 forest	soil	 260.48883	

3	 rhizosphere	 109.118256	

4	 paddy	field	soil	 77.9765	

5	 forest	 71.975075	

6	 pasture	 58.9166	

7	 rice	field	 55.88218	

8	 cultivated	habitat	 49.58408	

9	 sediment	 36.56245	

10	 subtropical	 34.88536	

11	 red	soil	 31.142296	

12	 prairie	 29.37707	

13	 agricultural	soil	 28.012053	

14	 field	soil	 26.450457	

15	 grassland	soil	 26.256002	

16	 biofilm	 25.316757	
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17	 peat	soil	 22.257133	

18	 volcanic	field	 20.662825	

19	 lake	 20.261036	

20	 waste	 19.986427	

	

Chapter	 4	 Table	 A-3:	 Top	 20	 ranked	 environment	 terms	 and	 associated	

aggregated	values	generated	for	stem	samples	from	sugarcane	dataset	

Sugarcane	-	Stem	

Rank	 Environment	Term	 Total	

1	 soil	 617.45306	

2	 garden	 269.33344	

3	 glacier	 59.549744	

4	 forest	soil	 52.138023	

5	 rhizosphere	 47.685837	

6	 biofilm	 47.152836	

7	 ground	water	 43.154423	

8	 pasture	 28.458822	

9	 agricultural	soil	 25.406353	

10	 mud	 22.94665	

11	 1000047	 21.116476	

12	 sediment	 16.962046	

13	 forest	 15.388543	

14	 waste	water	 14.882552	

15	 sea	water	 14.309931	

16	 rice	field	 14.2581625	
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17	 activated	sludge	 13.9015465	

18	 lake	 13.097423	

19	 paddy	field	soil	 12.0954685	

20	 sea	 9.209969	

	

Chapter	 4	 Table	 A-4:	 Top	 20	 ranked	 environment	 terms	 and	 associated	

aggregated	values	generated	for	root	samples	from	sugarcane	dataset	

Sugarcane	-	Root	

	

Rank	 Environment	Term	 Total	

1	 soil	 1200.9491	

2	 forest	soil	 205.77882	

3	 rhizosphere	 158.56563	

4	 forest	 62.163578	

5	 paddy	field	soil	 39.534786	

6	 sediment	 36.42738	

7	 pasture	 34.83387	

8	 biofilm	 32.352753	

9	 rice	field	 31.301132	

10	 lake	 28.31774	

11	 waste	 27.948946	

12	 volcanic	field	 27.603746	

13	 subtropical	 25.325792	

14	 cultivated	habitat	 24.647427	

15	 wetland	 22.573952	

16	 field	soil	 22.43901	
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17	 peat	soil	 21.702671	

18	 agricultural	soil	 19.782148	

19	 prairie	 19.146938	

20	 grassland	soil	 17.527967	

	

Chapter	 4	 Table	 A-5:	 Top	 20	 ranked	 environment	 terms	 and	 associated	

aggregated	values	generated	for	coral	atoll	samples	from	marine	dataset	

Marine	–	Coral	Atoll	

Rank	 Environment	Term	 Total	

1	 sea	water	 697.5574	

2	 sea	 289.85495	

3	 reef	 117.38839	

4	 ocean	 53.56404	

5	 surface	water	 40.464886	

6	 bay	 35.168877	

7	 coast	 34.080147	

8	 brine	pool	 22.126064	

9	 tropical	 22.05261	

10	 coral	reef	 18.642195	

11	 ocean	water	 12.49691	

12	 continental	slope	 9.513588	

13	 coastal	water	body	 9.373184	

14	 mediterranean	 9.247752	

15	 marine	bulk	water	 9.209189	

16	 447	 5.0332727	
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17	 marine	habitat	 4.3730197	

18	 coastal	water	 4.145986	

19	 lake	 4.030988	

20	 basalt	 3.9079504	

	

Chapter	 4	 Table	 A-6:	 Top	 20	 ranked	 environment	 terms	 and	 associated	

aggregated	 values	 generated	 for	 southern	 ocean	 samples	 from	 marine	

dataset	

Marine	-	Southern	Ocean	

	

Rank	 Environment	Term	 Total	

1	 sea	water	 425.54196	

2	 sea	 349.8343	

3	 ocean	 152.75682	

4	 brine	pool	 99.63226	

5	 bay	 65.48789	

6	 surface	water	 33.011257	

7	 mediterranean	 24.882048	

8	 reef	 22.065239	

9	 marine	bulk	water	 17.266914	

10	 coast	 13.879977	

11	 447	 10.897329	

12	 lake	 10.758537	

13	 marine	habitat	 10.70642	

14	 ocean	water	 9.395881	

15	 tropical	 9.020766	
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16	 basalt	 7.803199	

17	 continental	slope	 7.773911	

18	 coral	reef	 5.1999903	

19	 hydrothermal	vent	 4.946499	

20	 upwelling	 4.451309	

	

Chapter	4	Table	A-7:	Top	20	ranked	 list	of	 taxa	and	associated	aggregate	

values	observed	for	the	environmental	term	“soil”	in	the	sugarcane	dataset	

Sugarcane	-	Soil	Term	

	

Rank	 Taxa	 Total	

1	 Bacteria;Actinobacteria;Actinobacteria;Frankiales;Acidotherm

aceae;Acidothermus;	

165.0306	

2	 Bacteria;Cyanobacteria;Chloroplast;uncultured	eukaryote		 127	

3	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;B

urkholderiaceae;Burkholderia;uncultured	bacterium		

96.839264	

4	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;	

89.18057	

5	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;B

urkholderiaceae;Burkholderia;	

79.01076	

6	 Bacteria;Cyanobacteria;Chloroplast;Lolium	perenne		 70	

7	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 3;Unknown	

Family;Candidatus	Solibacter;	

57.734806	

8	 Bacteria;Actinobacteria;Thermoleophilia;Gaiellales;unculture

d;	

56.530354	

9	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhiz

obiales	Incertae	Sedis;Rhizomicrobium;	

54.74491	
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10	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Bra

dyrhizobiaceae;Bradyrhizobium;uncultured	bacterium		

53.16674	

11	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	Acidobacteria	

bacterium		

50.429787	

12	 Bacteria;Cyanobacteria;Chloroplast;	 44.5	

13	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;uncultured;	

43.65489	

14	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	bacterium		

43.36269	

15	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;DA111;	

42.765457	

16	 Bacteria;Planctomycetes;Planctomycetacia;Planctomycetales;

Planctomycetaceae;uncultured;	

38.10091	

17	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;

Oxalobacteraceae;Massilia;uncultured	bacterium		

36.15	

18	 Bacteria;Actinobacteria;Acidimicrobiia;Acidimicrobiales;	 35.50737	

19	 Bacteria;Cyanobacteria;Chloroplast;Hordeum	 vulgare	 subsp.	

vulgare	(domesticated	barley)		

35	

20	 Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadal

es;Sphingomonadaceae;Sphingomonas;uncultured	bacterium		

34.26905	

	

Chapter	4	Table	A-8:	Top	20	ranked	 list	of	 taxa	and	associated	aggregate	

values	observed	for	the	environmental	term	“forest	soil”	 in	the	sugarcane	

dataset	

Sugarcane	-	Forest	Soil	Term	
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Rank	 Taxa	 Total	

1	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;	

56.819992	

2	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Xant

hobacteraceae;Variibacter;uncultured	bacterium		

38.81915	

3	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	bacterium		

33.71271	

4	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	2;	 33.70088	

5	 Bacteria;Actinobacteria;Actinobacteria;Frankiales;Acidotherm

aceae;Acidothermus;	

31.116476	

6	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;B

urkholderiaceae;Burkholderia;uncultured	bacterium		

22.848839	

7	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhiz

obiales	Incertae	Sedis;Rhizomicrobium;	

22.621468	

8	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 3;Unknown	

Family;Candidatus	Solibacter;	

21.82482	

9	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 3;Unknown	

Family;Candidatus	Solibacter;uncultured	bacterium		

21.39969	

10	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	Acidobacteria	

bacterium		

18.592148	

11	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;B

urkholderiaceae;Burkholderia;	

17.27621	

12	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadales	Incertae	Sedis;Acidibacter;	

14.721128	
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13	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;Chitinophaga;	

13.992879	

14	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Xant

hobacteraceae;Variibacter;	

13.323421	

15	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;uncultured;	

12.74283	

16	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 2;uncultured	

bacterium		

12.4988	

17	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Acetobacteraceae;uncultured;	

12.386102	

18	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);Telmatobacter;uncultured	bacterium		

11.883281	

19	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;alph

aI	cluster;	

11.243621	

20	 Bacteria;Actinobacteria;Thermoleophilia;Gaiellales;unculture

d;	

10.9536	

	

Chapter	4	Table	A-9:	Top	20	ranked	 list	of	 taxa	and	associated	aggregate	

values	observed	for	the	environmental	term	“rhizosphere”	in	the	sugarcane	

dataset	

Sugarcane	-	Rhizosphere	Term	

Rank	 Taxa	 Total	

1	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;B

urkholderiaceae;Burkholderia;	

34.710728	

2	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;B

urkholderiaceae;Burkholderia;uncultured	bacterium		

11.230921	
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3	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;S

phingobacteriaceae;Mucilaginibacter;	

11.0611	

4	 Bacteria;Actinobacteria;Actinobacteria;Catenulisporales;Caten

ulisporaceae;Catenulispora;Catenulispora	sp.	Neo1		

10.61667	

5	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;	

8.643299	

6	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadaceae;Dyella;	

8.116631	

7	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;B

urkholderiaceae;Burkholderia;Burkholderia	 kururiensis	

subsp.	kururiensis		

8	

8	 Bacteria;Actinobacteria;Actinobacteria;Catenulisporales;Caten

ulisporaceae;Catenulispora;	

6.9712152	

9	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;B

urkholderiaceae;Burkholderia;Burkholderia	sp.	USM		

6.5	

10	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);Acidicapsa;	

6.49994	

11	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadaceae;Rhodanobacter;	

6.1726	

12	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Phyl

lobacteriaceae;Mesorhizobium;Mesorhizobium	plurifarium		

6	

13	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);Acidicapsa;Acidicapsa	sp.	CE1		

5.91661	

14	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	Acidobacteria	

bacterium		

5.7277694	
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15	 Bacteria;Planctomycetes;Phycisphaerae;WD2101	 soil	

group;uncultured	bacterium		

5.365153	

16	 Bacteria;Actinobacteria;Thermoleophilia;Gaiellales;unculture

d;	

5.256879	

17	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;DA111;	

5.1761904	

18	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadales	Incertae	Sedis;Acidibacter;	

5.028715	

19	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Bra

dyrhizobiaceae;Bradyrhizobium;uncultured	proteobacterium		

5	

20	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 3;Unknown	

Family;Candidatus	Solibacter;	

4.6012993	

	

Chapter	4	Table	A-10:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	 observed	 for	 the	 environmental	 term	 “garden”	 in	 the	 sugarcane	

dataset	

Sugarcane	-	Garden	Term	

	

Rank	 Taxa	 Total	

1	 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteria

les;Enterobacteriaceae;Pantoea;uncultured	bacterium		

160.33334	

2	 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteria

les;Enterobacteriaceae;Pantoea;	

58.666687	

3	 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteria

les;Enterobacteriaceae;Pantoea;Pantoea	stewartii		

33	

4	 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteria

les;Enterobacteriaceae;Pantoea;Pantoea	sp.	NG8		

14.666738	
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5	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadaceae;Stenotrophomonas;uncultured	

bacterium		

4	

6	 Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonad

ales;Moraxellaceae;Acinetobacter;Acinetobacter	sp.	C008		

3	

7	 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteria

les;Enterobacteriaceae;Tatumella;uncultured	bacterium		

2	

8	 Bacteria;Actinobacteria;Actinobacteria;Streptomycetales;Stre

ptomycetaceae;Streptacidiphilus;Streptacidiphilus	sp.	5-20		

1.91665	

9	 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteria

les;Enterobacteriaceae;Pantoea;gamma	 proteobacterium	

symbiont	of	Plautia	stali		

1	

10	 Bacteria;Proteobacteria;Gammaproteobacteria;Enterobacteria

les;Enterobacteriaceae;Enterobacter;	

0.66666	

11	 Bacteria;Actinobacteria;Actinobacteria;Streptomycetales;Stre

ptomycetaceae;Streptacidiphilus;	

0.58333004	

12	 Bacteria;Gemmatimonadetes;Gemmatimonadetes;Gemmatimo

nadales;Gemmatimonadaceae;uncultured;	

0.555989	

13	 Bacteria;Gemmatimonadetes;Gemmatimonadetes;Gemmatimo

nadales;Gemmatimonadaceae;uncultured;uncultured	

Gemmatimonas	sp.		

0.54545397	

14	 Bacteria;Proteobacteria;Deltaproteobacteria;GR-WP33-30;	 0.5	

15	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 3;Unknown	

Family;Candidatus	Solibacter;uncultured	bacterium		

0.4	

16	 Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;Mit

ochondria;	

0.33333	
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17	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 3;Unknown	

Family;Candidatus	Solibacter;	

0.29167	

18	 Bacteria;Actinobacteria;Actinobacteria;Pseudonocardiales;Pse

udonocardiaceae;Pseudonocardia;	

0.25	

19	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	2;	 0.181818	

20	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	 (Subgroup	 1);Acidobacterium;uncultured	

bacterium		

0.16667	

	

Chapter	4	Table	A-11:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	 observed	 for	 the	 environmental	 term	 “forest”	 in	 the	 sugarcane	

dataset	

Sugarcane	-	Forest	Term	

	

Rank	 Taxa	 Total	

1	 Bacteria;Actinobacteria;Actinobacteria;Frankiales;Acidotherm

aceae;Acidothermus;	

21.23047	

2	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;uncultured;	

10.50042	

3	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);Acidicapsa;	

7.8333206	

4	 Bacteria;Proteobacteria;Betaproteobacteria;SC-I-84;	 5.7622795	

5	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;uncultured;	

5.54168	

6	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;uncultured;uncultured	bacterium		

4.95	
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7	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 3;Unknown	

Family;Candidatus	Solibacter;	

4.6916895	

8	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Acetobacteraceae;uncultured;	

4.266098	

9	 Bacteria;Actinobacteria;Actinobacteria;Micromonosporales;M

icromonosporaceae;Actinocatenispora;	

4.1666603	

10	 Bacteria;Proteobacteria;Deltaproteobacteria;Myxococcales;Po

lyangiaceae;Sorangium;	

4.0830398	

11	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;	

3.991361	

12	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	Acidobacteria	

bacterium		

3.694446	

13	 Bacteria;Acidobacteria;Holophagae;Subgroup	7;	 3.67977	

14	 Bacteria;Proteobacteria;Deltaproteobacteria;Myxococcales;Ha

liangiaceae;Haliangium;	

3.65834	

15	 Bacteria;Gemmatimonadetes;Gemmatimonadetes;Gemmatimo

nadales;Gemmatimonadaceae;uncultured;	

3.4706302	

16	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	2;	 3.4128518	

17	 Bacteria;Planctomycetes;Planctomycetacia;Planctomycetales;

Planctomycetaceae;uncultured;	

3.31984	

18	 Bacteria;Planctomycetes;Phycisphaerae;WD2101	 soil	

group;uncultured	bacterium		

3.2576318	

19	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Rhodospirillales	Incertae	Sedis;Reyranella;	

3.19286	
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20	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadales	Incertae	Sedis;Acidibacter;	

3.1626148	

	

Chapter	4	Table	A-12:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	 observed	 for	 the	 environmental	 term	 “paddy	 field	 soil”	 in	 the	

sugarcane	dataset	

Sugarcane	-	Paddy	Field	Soil	Term	

Rank	 Taxa	 Total	

1	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;	

11.78251	

2	 Bacteria;Actinobacteria;Thermoleophilia;Gaiellales;unculture

d;	

7.499279	

3	 Bacteria;Actinobacteria;Thermoleophilia;Gaiellales;unculture

d;uncultured	bacterium		

6.7321906	

4	 Bacteria;Actinobacteria;Actinobacteria;Frankiales;Acidotherm

aceae;Acidothermus;	

6.449308	

5	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadales	Incertae	Sedis;Acidibacter;	

5.440577	

6	 Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Cytophagace

ae;uncultured;	

4.68334	

7	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhiz

obiales	Incertae	Sedis;Rhizomicrobium;	

4.5500298	

8	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;uncultured;	

4.46904	

9	 Bacteria;Proteobacteria;Deltaproteobacteria;Myxococcales;Cy

stobacteraceae;Anaeromyxobacter;	

4.30953	
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10	 Bacteria;Proteobacteria;Betaproteobacteria;SC-I-84;	 4.273829	

11	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;Chitinophaga;	

3.5833201	

12	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	Acidobacteria	

bacterium		

3.5	

13	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	bacterium		

3.26786	

14	 Bacteria;Proteobacteria;Deltaproteobacteria;Myxococcales;Ha

liangiaceae;Haliangium;	

3.26469	

15	 Bacteria;Proteobacteria;Betaproteobacteria;Nitrosomonadale

s;Nitrosomonadaceae;uncultured;	

3.12738	

16	 Bacteria;Acidobacteria;Acidobacteria;Subgroup	 3;Unknown	

Family;Candidatus	Solibacter;	

3.058124	

17	 Bacteria;Planctomycetes;Planctomycetacia;Planctomycetales;

Planctomycetaceae;Planctomyces;	

3.0485947	

18	 Bacteria;Actinobacteria;Actinobacteria;Corynebacteriales;Myc

obacteriaceae;Mycobacterium;Mycobacterium	sp.	QIA-36		

3	

19	 Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonad

ales;Geobacteraceae;Geobacter;	

2.8666701	

20	 Bacteria;Gemmatimonadetes;Gemmatimonadetes;Gemmatimo

nadales;Gemmatimonadaceae;uncultured;	

2.8476589	
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Chapter	4	Table	A-13:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	 observed	 for	 the	 environmental	 term	 “contaminated	 soil”	 in	 the	

sugarcane	dataset	

Sugarcane	-	Contaminated	Soil	Term	

Rank	 Taxa	 Total	

1	 Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadal

es;Sphingomonadaceae;Sphingomonas;uncultured	 marine	

bacterium		

2.66666	

2	 Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonad

ales;Pseudomonadaceae;Pseudomonas;uncultured	bacterium		

2	

3	 Bacteria;Proteobacteria;Betaproteobacteria;Burkholderiales;

Oxalobacteraceae;Undibacterium;bacterium	PH2(2012)		

1.9999801	

4	 Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadal

es;Sphingomonadaceae;Sphingomonas;uncultured	

Kaistobacter	sp.		

1.55	

5	 Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadal

es;Sphingomonadaceae;Sphingomonas;	

1.45237	

6	 Bacteria;Actinobacteria;Actinobacteria;Kineosporiales;Kineos

poriaceae;Quadrisphaera;	

1.33333	

7	 Bacteria;Actinobacteria;Actinobacteria;Frankiales;Acidotherm

aceae;Acidothermus;uncultured	bacterium		

1.2	

8	 Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonad

ales;Pseudomonadaceae;Pseudomonas;	

1	

9	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Acetobacteraceae;uncultured;uncultured	 Acetobacteraceae	

bacterium		

0.95	
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10	 Bacteria;Verrucomicrobia;OPB35	 soil	 group;uncultured	

Verrucomicrobia	subdivision	3	bacterium		

0.85716	

11	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Acetobacteraceae;uncultured;	

0.8373	

12	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Hyp

homicrobiaceae;Hyphomicrobium;uncultured	bacterium		

0.81667	

13	 Bacteria;Chloroflexi;KD4-96;	 0.79222	

14	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;DA111;	

0.750003	

15	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadaceae;Dyella;	

0.7143	

16	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhiz

obiaceae;Rhizobium;	

0.66666996	

17	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadaceae;Rhodanobacter;	

0.64286	

18	 Bacteria;Proteobacteria;Alphaproteobacteria;Sphingomonadal

es;Sphingomonadaceae;Sphingomonas;unidentified	 marine	

bacterioplankton		

0.6	

19	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Beij

erinckiaceae;Beijerinckia;Beijerinckia	doebereinerae		

0.58334	

20	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Xant

hobacteraceae;Variibacter;	

0.58333004	
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Chapter	4	Table	A-14:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	 observed	 for	 the	 environmental	 term	 “waste”	 in	 the	 sugarcane	

dataset	

Sugarcane	-	Waste	Term	

	

Rank	 Taxa	 Total	

1	 Bacteria;Actinobacteria;Actinobacteria;Frankiales;Acidotherm

aceae;Acidothermus;	

15.420239	

2	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;uncultured	Acidobacteria	

bacterium		

7.2555456	

3	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;uncultured;	

6.1944404	

4	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);Granulicella;	

3.7135706	

5	 Bacteria;Acidobacteria;Acidobacteria;Acidobacteriales;Acidob

acteriaceae	(Subgroup	1);uncultured;	

3.400835	

6	 Bacteria;Bacteroidetes;Sphingobacteriia;Sphingobacteriales;C

hitinophagaceae;Chitinophaga;	

3.2761998	

7	 Bacteria;Verrucomicrobia;Spartobacteria;Chthoniobacterales;

Chthoniobacteraceae;Chthoniobacter;	

3.0954542	

8	 Bacteria;Actinobacteria;Actinobacteria;Glycomycetales;Glyco

mycetaceae;Glycomyces;Glycomyces	algeriensis		

1.9166502	

9	 Bacteria;Planctomycetes;Planctomycetacia;Planctomycetales;

Planctomycetaceae;uncultured;	

1.85	

10	 Bacteria;Proteobacteria;Gammaproteobacteria;Xanthomonad

ales;Xanthomonadales	Incertae	Sedis;Acidibacter;	

1.652859	
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11	 Bacteria;Planctomycetes;Planctomycetacia;Planctomycetales;

Planctomycetaceae;Planctomyces;	

1.43571	

12	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Rhodospirillaceae;uncultured;	

1.34286	

13	 Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonad

ales;Pseudomonadaceae;Pseudomonas;Pseudomonas	

oryzihabitans		

1.33333	

14	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Acetobacteraceae;uncultured;uncultured	bacterium		

1.33332	

15	 Bacteria;Actinobacteria;Actinobacteria;Frankiales;Acidotherm

aceae;Acidothermus;uncultured	bacterium		

1.2833301	

16	 Bacteria;Proteobacteria;Gammaproteobacteria;Pseudomonad

ales;Pseudomonadaceae;Pseudomonas;Pseudomonas	sp.	PPF-

2		

1	

17	 Bacteria;Actinobacteria;Actinobacteria;Glycomycetales;Glyco

mycetaceae;Glycomyces;	

0.99999	

18	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhizobiales;Rhiz

obiales	Incertae	Sedis;Rhizomicrobium;	

0.97499996	

19	 Bacteria;Actinobacteria;Thermoleophilia;Solirubrobacterales;

480-2;	

0.78572	

20	 Bacteria;WD272;uncultured	bacterium		 0.76668	

	

Chapter	4	Table	A-15:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	 observed	 for	 the	 environmental	 term	 “seawater”	 in	 the	 marine	

dataset	

Marine	-	Seawater	Term	
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Rank	 Taxa	 Total	

1	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Pr

ochlorococcus;	

466.62323	

2	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	1;	

122.371796	

3	 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillal

es;SAR86	clade;	

120.725784	

4	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Sy

nechococcus;	

101.50537	

5	 Bacteria;Cyanobacteria;Chloroplast;	 67.342094	

6	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales

;Rhodobacteraceae;uncultured;	

33.00002	

7	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;	 31.138363	

8	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	2;	

18.230541	

9	 Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;SA

R116	clade;	

16.58454	

10	 Bacteria;Marinimicrobia	(SAR406	clade);	 14.2154875	

11	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	clade;	 11.03702	

12	 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillal

es;Oceanospirillaceae;Pseudospirillum;	

10	

13	 Bacteria;Actinobacteria;Acidimicrobiia;Acidimicrobiales;OM1	

clade;Candidatus	Actinomarina;	

8.649969	

14	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9	

marine	group;	

8.299818	
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15	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Cryom

orphaceae;Owenweeksia;	

8.2142	

16	 Bacteria;Proteobacteria;Deltaproteobacteria;SAR324	

clade(Marine	group	B);	

7.9523597	

17	 Bacteria;Chloroflexi;SAR202	clade;	 6.2666206	

18	 Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;S2

5-593;	

5.93333	

19	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavob

acteriaceae;NS5	marine	group;	

5.57857	

20	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	4;	

5.39285	

	

Chapter	4	Table	A-16:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	observed	for	the	environmental	term	“sea”	in	the	marine	dataset	

Marine	-	Sea	Term	

	

Rank	 Taxa	 Total	

1	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	1;	

157.70627	

2	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Sy

nechococcus;	

126.87572	

3	 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillal

es;SAR86	clade;	

104.731735	

4	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Pr

ochlorococcus;	

79.78276	

5	 Bacteria;Cyanobacteria;Chloroplast;	 50.740696	

6	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;	 18.02246	
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7	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	clade;	 13.54829	

8	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	2;	

12.840851	

9	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales

;Rhodobacteraceae;uncultured;	

11.341699	

10	 Bacteria;Marinimicrobia	(SAR406	clade);	 10.73333	

11	 Bacteria;Proteobacteria;Deltaproteobacteria;SAR324	

clade(Marine	group	B);	

7.250019	

12	 Bacteria;Chloroflexi;SAR202	clade;	 6.51108	

13	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9	

marine	group;	

5.1142898	

14	 Bacteria;Proteobacteria;Alphaproteobacteria;OCS116	clade;	 3.3250003	

15	 Bacteria;Actinobacteria;Acidimicrobiia;Acidimicrobiales;OM1	

clade;Candidatus	Actinomarina;	

2.9166698	

16	 Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;SA

R116	clade;	

2.90237	

17	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavob

acteriaceae;NS4	marine	group;	

2.25077	

18	 Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales

;Porticoccaceae;SAR92	clade;	

2	

19	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavob

acteriaceae;NS5	marine	group;	

1.73571	

20	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Rhodospirillaceae;Defluviicoccus;	

1.6363701	
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Chapter	4	Table	A-17:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	observed	for	the	environmental	term	“ocean”	in	the	marine	dataset	

Marine	-	Ocean	Term	

	

Rank	 Taxa	 Total	

1	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	1;	

36.824417	

2	 Bacteria;Cyanobacteria;Chloroplast;	 33.787674	

3	 Bacteria;Marinimicrobia	(SAR406	clade);	 21.18491	

4	 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillal

es;SAR86	clade;	

17.01603	

5	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	clade;	 12.90271	

6	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Pr

ochlorococcus;	

12.150019	

7	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9	

marine	group;	

10.420288	

8	 Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonad

ales;GR-WP33-58;	

5.80952	

9	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales

;Rhodobacteraceae;uncultured;	

5.5833693	

10	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	2;	

5.3571496	

11	 Bacteria;Proteobacteria;Alphaproteobacteria;OCS116	clade;	 5.2666693	

12	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	4;	

3.9643	

13	 Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;SA

R116	clade;	

3.36666	
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14	 Bacteria;Chloroflexi;SAR202	clade;	 3.1110795	

15	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	3;	

2.91667	

16	 Bacteria;Proteobacteria;Gammaproteobacteria;E01-9C-26	

marine	group;	

2	

17	 Bacteria;Bacteroidetes;Cytophagia;Cytophagales;Flammeovirg

aceae;Marinoscillum;	

1.861093	

18	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodospirillales

;Rhodospirillaceae;uncultured;	

1.5	

19	 Bacteria;Verrucomicrobia;Opitutae;MB11C04	marine	group;	 1.4000001	

20	 Bacteria;Proteobacteria;Deltaproteobacteria;Bdellovibrionale

s;Bdellovibrionaceae;OM27	clade;	

1.25	

	

Chapter	4	Table	A-18:	Top	15	ranked	list	of	taxa	and	associated	aggregate	

values	observed	for	the	environmental	term	“reef”	in	the	marine	dataset	

Marine	-	Reef	Term	

	

Rank	 Taxa	 Total	

1	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Sy

nechococcus;	

103.707756	

2	 Bacteria;Cyanobacteria;Chloroplast;	 16.772291	

3	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;	 6.4448986	

4	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Cryom

orphaceae;Owenweeksia;	

2.8571992	

5	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	1;	

2.2666702	
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6	 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillal

es;SAR86	clade;	

1.626193	

7	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	2;	

1.5444499	

8	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9	

marine	group;	

1.4166899	

9	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavob

acteriaceae;NS5	marine	group;	

1	

10	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales

;Rhodobacteraceae;uncultured;	

0.54166996	

11	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales

;Rhodobacteraceae;	

0.36111	

12	 Bacteria;Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0

996	marine	group;	

0.28572	

13	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Cryom

orphaceae;	

0.26786	

14	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavob

acteriaceae;	

0.25	

15	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavob

acteriaceae;NS4	marine	group;	

0.11111	

	

Chapter	4	Table	A-19:	Top	8	ranked	 list	of	 taxa	and	associated	aggregate	

values	 observed	 for	 the	 environmental	 term	 “brine	 pool”	 in	 the	 marine	

dataset	

Marine	-	Brine	Pool	Term	

	

Rank	 Taxa	 Total	



	 186	

1	 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillal

es;SAR86	clade;	

59.449463	

2	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Pr

ochlorococcus;	

57.52571	

3	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;	 2.16666	

4	 Bacteria;Proteobacteria;Deltaproteobacteria;SAR324	

clade(Marine	group	B);	

1.49999	

5	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	1;	

0.516663	

6	 Bacteria;Proteobacteria;Gammaproteobacteria;Alteromonadal

es;Alteromonadaceae;Alteromonas;	

0.33333	

7	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales

;Rhodobacteraceae;uncultured;	

0.16667	

8	 Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonad

ales;GR-WP33-58;	

0.1	

	

Chapter	4	Table	A-20:	Top	20	ranked	list	of	taxa	and	associated	aggregate	

values	observed	for	the	environmental	term	“bay”	in	the	marine	dataset	

Marine	-	Bay	

	

Rank	 Taxa	 Total	

1	 Bacteria;Proteobacteria;Gammaproteobacteria;Oceanospirillal

es;SAR86	clade;	

26.377739	

2	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	1;	

16.227812	

3	 Bacteria;Actinobacteria;Acidimicrobiia;Acidimicrobiales;OM1	

clade;Candidatus	Actinomarina;	

7.4999695	
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4	 Bacteria;Proteobacteria;Alphaproteobacteria;Rhodobacterales

;Rhodobacteraceae;uncultured;	

5.5583706	

5	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;NS9	

marine	group;	

4.2942786	

6	 Bacteria;Cyanobacteria;Cyanobacteria;SubsectionI;FamilyI;Pr

ochlorococcus;	

4.16665	

7	 Bacteria;Proteobacteria;Alphaproteobacteria;Rickettsiales;SA

R116	clade;	

3.5012002	

8	 Bacteria;Proteobacteria;Deltaproteobacteria;Desulfuromonad

ales;GR-WP33-58;	

2.95237	

9	 Bacteria;Proteobacteria;Deltaproteobacteria;SAR324	

clade(Marine	group	B);	

2.8631098	

10	 Bacteria;Cyanobacteria;Chloroplast;	 2.6048813	

11	 Bacteria;Proteobacteria;Gammaproteobacteria;Cellvibrionales

;Halieaceae;OM60(NOR5)	clade;	

2.5138798	

12	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	3;	

2.375	

13	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Flavob

acteriaceae;NS2b	marine	group;	

2	

14	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	

clade;Surface	2;	

1.70398	

15	 Bacteria;Proteobacteria;Deltaproteobacteria;Bdellovibrionale

s;Bdellovibrionaceae;OM27	clade;	

1.58333	

16	 Bacteria;Marinimicrobia	(SAR406	clade);	 1.5000001	

17	 Bacteria;Proteobacteria;Alphaproteobacteria;OCS116	clade;	 1.10834	
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18	 Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales;Cryom

orphaceae;Owenweeksia;	

1	

19	 Bacteria;Proteobacteria;Alphaproteobacteria;SAR11	clade;	 0.974678	

20	 Bacteria;Actinobacteria;Acidimicrobiia;Acidimicrobiales;Sva0

996	marine	group;	

0.93506	
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