557 research outputs found

    Fault Detection and Diagnosis Encyclopedia for Building Systems:A Systematic Review

    Get PDF
    This review aims to provide an up-to-date, comprehensive, and systematic summary of fault detection and diagnosis (FDD) in building systems. The latter was performed through a defined systematic methodology with the final selection of 221 studies. This review provides insights into four topics: (1) glossary framework of the FDD processes; (2) a classification scheme using energy system terminologies as the starting point; (3) the data, code, and performance evaluation metrics used in the reviewed literature; and (4) future research outlooks. FDD is a known and well-developed field in the aerospace, energy, and automotive sector. Nevertheless, this study found that FDD for building systems is still at an early stage worldwide. This was evident through the ongoing development of algorithms for detecting and diagnosing faults in building systems and the inconsistent use of the terminologies and definitions. In addition, there was an apparent lack of data statements in the reviewed articles, which compromised the reproducibility, and thus the practical development in this field. Furthermore, as data drove the research activity, the found dataset repositories and open code are also presented in this review. Finally, all data and documentation presented in this review are open and available in a GitHub repository

    Fault Diagnosis Of Sensor And Actuator Faults In Multi-Zone Hvac Systems

    Get PDF
    Globally, the buildings sector accounts for 30% of the energy consumption and more than 55% of the electricity demand. Specifically, the Heating, Ventilation, and Air Conditioning (HVAC) system is the most extensively operated component and it is responsible alone for 40% of the final building energy usage. HVAC systems are used to provide healthy and comfortable indoor conditions, and their main objective is to maintain the thermal comfort of occupants with minimum energy usage. HVAC systems include a considerable number of sensors, controlled actuators, and other components. They are at risk of malfunctioning or failure resulting in reduced efficiency, potential interference with the execution of supervision schemes, and equipment deterioration. Hence, Fault Diagnosis (FD) of HVAC systems is essential to improve their reliability, efficiency, and performance, and to provide preventive maintenance. In this thesis work, two neural network-based methods are proposed for sensor and actuator faults in a 3-zone HVAC system. For sensor faults, an online semi-supervised sensor data validation and fault diagnosis method using an Auto-Associative Neural Network (AANN) is developed. The method is based on the implementation of Nonlinear Principal Component Analysis (NPCA) using a Back-Propagation Neural Network (BPNN) and it demonstrates notable capability in sensor fault and inaccuracy correction, measurement noise reduction, missing sensor data replacement, and in both single and multiple sensor faults diagnosis. In addition, a novel on-line supervised multi-model approach for actuator fault diagnosis using Convolutional Neural Networks (CNNs) is developed for single actuator faults. It is based a data transformation in which the 1-dimensional data are configured into a 2-dimensional representation without the use of advanced signal processing techniques. The CNN-based actuator fault diagnosis approach demonstrates improved performance capability compared with the commonly used Machine Learning-based algorithms (i.e., Support Vector Machine and standard Neural Networks). The presented schemes are compared with other commonly used HVAC fault diagnosis methods for benchmarking and they are proven to be superior, effective, accurate, and reliable. The proposed approaches can be applied to large-scale buildings with additional zones

    Finding the different patterns in buildings data using bag of words representation with clustering

    Full text link
    The understanding of the buildings operation has become a challenging task due to the large amount of data recorded in energy efficient buildings. Still, today the experts use visual tools for analyzing the data. In order to make the task realistic, a method has been proposed in this paper to automatically detect the different patterns in buildings. The K Means clustering is used to automatically identify the ON (operational) cycles of the chiller. In the next step the ON cycles are transformed to symbolic representation by using Symbolic Aggregate Approximation (SAX) method. Then the SAX symbols are converted to bag of words representation for hierarchical clustering. Moreover, the proposed technique is applied to real life data of adsorption chiller. Additionally, the results from the proposed method and dynamic time warping (DTW) approach are also discussed and compared

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Continuous Monitoring and Automated Fault Detection and Diagnosis of Large Air-Handling Units

    Get PDF

    Continuous Monitoring and Automated Fault Detection and Diagnosis of Large Air-Handling Units

    Get PDF

    Fault detection and diagnosis of low delta-T syndrome in air handling unit cooling coils

    Get PDF
    In the built environment, most energy is used to promote well-being, health, and comfort. The demand for cooling will increase sharply as a result of global warming, better thermal insulation, and the heat island effect. It is therefore increasingly important that cooling installations function optimally. Currently, there are many chilled water installations that suffer from the so-called low delta-T syndrome. The return water temperature from the installations is lower than predetermined and the difference with the supply temperature is smaller, low delta-T. This has adverse consequences for the efficiency of the chillers and/or heat pump and for the energy consumption of the pumps. The result is an energy consumption that is 20-40% higher for cooling than calculated in advance. It is important to be able to detect and analyze the low-dT syndrome properly. Based on this, a software module has been developed that can use the data from a building management system to determine the low-dT syndrome and identify possible causes. Building management systems can be equipped with fault detection and diagnosis module for continuous monitoring of the performance of installations, and continuous commissioning (Cx). This would ensure that the energy consumption of the cooling installations remains as low as possible. Within the project, the first prototype of such a module was built. This will be further refined and expanded in ongoing future projects of other PDEng trainees

    Fault detection and diagnosis of low delta-T syndrome in air handling unit cooling coils

    Get PDF
    • …
    corecore