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Executive Summary 
 
Air-Handling Units (AHUs) are highly customized equipment. The regulations concerning AHUs are increasingly 

becoming strict to meet higher energy efficiency and ventilation goals, which adds to the complexity inherent 

with customised equipment. This upsurge in complexity increases the need for continuous maintenance and 

monitoring of AHUs. However, such programs are difficult to implement due to the shortage of skilled personnel. 

Therefore, continuous monitoring and Fault Detection and Diagnosis (FDD) processes need to be automated, 

referred as AFDD. 

 

Despite the plethora of research on AFDD, there are limited real-life applications. Adding to this, the available 

solutions are either unreliable, unaffordable, and/or not scalable. Surveying through the literature on FDD tools 

that are commercially deployed or under development revealed that these tools rely on a combination of expert 

rules or first principles. Rules-based approaches are heavily reliant on sensed information and expert 

knowledge. This makes the maintenance of such tools unsustainable. Further, such tools carry very limited ability 

to prevent significant energy wastage. 

 

It is estimated that up to 30% of energy could be saved through the effective use of data collected with continuous 

monitoring systems. To realise this, highly sensitive (ability to diagnose condition) diagnosis models can be 

trained with Artificial Intelligence (AI) based approaches that are scalable and have lesser reliance on expert 

knowledge and sensors. Through this project, an AFDD tool that incorporates these approaches has been 

developed. It is generally recommended to treat the fault detection and diagnosis processes separately as in this 

way, it is easier to overcome challenges associated with implementation. For example, supervised machine 

learning algorithms require annotated fault labels. In the designed tool, these practical limitations have been 

overcome and completely automated fault detection and diagnosis have been implemented. 

 

For fault detection, a widely used machine learning algorithm called XGBoost is deployed, whilst for fault 

diagnosis, Bayesian network-based probabilistic models are deployed. Typically, these models are inhibitive due 

to the complexity associated with their development. For adding interpretability to these models, frameworks, 

such as (i) Shapley Additive Explanations (SHAP) for fault detection and (ii) 4-Symptoms and 3-Faults (4S3F) for 

fault diagnosis are included.  The 4S3F framework is a generalizable framework that supports the development 

of diagnostic Bayesian networks using piping and instrumentation (P&I) diagrams prepared during HVAC design. 

Using these P&I schemes, the developed Bayesian networks have been discretised for cooling and heating mode 

operations of the AHU. This way the adopted diagnosis approach translates HVAC domain knowledge and 

remains in sync with building practitioner’s approach toward fault diagnosis. 

 

To understand the reliability and generalizability of the proposed FDD strategy, 5 case studies have been utilized 

with a diverse operational environment, weather conditions, and AHU configurations. Additionally, the 

developed diagnosis models are validated under multiple fault scenarios experimentally induced in two building 

environments. The specificity of the deployed diagnosis models exceeds 90% with samples collected through 

long-term test procedures exceeding 60 days. A fault condition diagnosed with a highly specific model imputes 

a very high likelihood of fault presence. Further, the developed diagnosis models not only distinguish between 

fault presence and absence conditions but can also accurately isolate root causes. The diagnosed outcomes are 

supported by visual evidence delivered through a web-based interactive user interface. 

 

It’s been noted that visualizations in the available continuous monitoring tools are not sufficient to aid visual 

diagnostic procedures. Therefore, a lot more time is consumed in preparing data than using it for preventing 

energy wastage. In the developed AFDD tool, this aspect has been taken care of through visualisations that 

promise to support building practitioners and take a step forward toward human-in-the-loop diagnostics. 

Further, a fault library is also realized using a lightweight database structure to manage taxonomy, prior fault 

probabilities and recommendations for fault correction. The developed scheme is useful for building 

practitioners to manage information on faults easily and consistently. Upon deployment, it is estimated that 

nearly 33% chiller of energy waste can be prevented using the AFDD tool. A financial plan to roll out the tool 

commercially for non-residential buildings in the Netherlands carrying large HVAC installations has been 

developed. It’s projected that a SaaS business providing such a tool is financially viable. Under all forecasted 

revenue scenarios profitability can be realised in a window of 5 years from inception. 
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Abstract 
 

 

The built environment is responsible for 37% of energy consumption. Up to 30% of this energy is consumed 

inefficiently due to inadequate Fault Detection and Diagnosis (FDD). The unavailability of trained technical 

personnel and the growing complexity of HVAC design add to further inefficiency. A reliable and automated FDD 

(AFDD) strategy for air handling units is key to addressing these issues. Even though numerous AI-based AFDD 

approaches have been published, real-world applications are more complex and rarely discussed. In this project, 

a Python-based AFDD tool is prototyped. The business logics contained in this tool have been verified and 

validated using data collected from five case studies.  

For designing the FDD business logics, a structured three-step process is proposed. Firstly, the design space is 

narrowed down using a system analysis (Pareto-Lean approach) step and use cases are identified for developing 

fault detection models. More specifically, faults causing the largest energy performance gap and sensors relevant 

for FDD have been identified. Secondly, the use cases are handled utilizing a data-driven strategy to generate 

fault symptoms using a machine learning algorithm (XGBoost). Thirdly, the detected faults are isolated using a 

generic fault diagnosis framework known as 4S3F – Four Symptoms and Three Faults. This way the fault 

detection and diagnosis aspects are separately handled using AI-based approaches. Upon experimental 

validation of the developed diagnosis models, a diagnosis specificity exceeding 90% is realized.  

 

The results obtained from the FDD process are visualized using a web development framework. Design sprints 

are utilized to collate requirements for a user-friendly interface that would support human-in-the-loop 

diagnostics. The prototyped tool is integrated with a commercially operated continuous monitoring system, 

currently being utilized to monitor 400 buildings. It is observed that the prototyped AFDD tool could prevent up 

to 33% of the energy consumed by the chiller. Moreover, the results presented will contribute to the 

development, adoption, and deployment of AI-based FDD strategies in commercial applications. 
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1 INTRODUCTION 

The direct and indirect CO2 emissions from energy use in buildings surpassed 10GTCO2 in 2019, the highest 

recorded level [1]. Space cooling and heating applications are key drivers of this demand [1]. Further, the space 

cooling and heating requirements need to tackle extraneous headwinds due to rising global temperatures and 

the ongoing gas crisis [1,2].  

In the Built Environment, the Heating, Ventilation, and Air Conditioning (HVAC) accounts for over 50% of the 

emissions. Research indicates that energetic performance of HVAC systems is significantly (~10-30%) higher 

energy than design. This energy gap is attributable to inadequate monitoring, ageing, failures, faults, or 

inadequate maintenance [3,4]. Within HVAC systems, Air-Handling Units (AHU) are an important and widely 

studied sub-system, as it combines cooling and heating sub-systems with ventilation [5,6]. AHUs are highly 

customized equipment [7]. These customizations are tailored to meet end-use requirements such as 

compactness, ventilation, and thermal load requirements. Poor system integration of AHUs can lead to hardware 

failures and controller errors [8]. In addition, regulations concerning AHUs are increasingly becoming stricter to 

meet energy efficiency and while ventilation goals are increased [9], which adds to the complexity inherent with 

customizations. This has amplified the need for continuous maintenance and monitoring of such equipment.  

There is a lack of experienced facility managers which combined with increasing cost pressures in facility 

management leads to an inadequate resource allocation [10]. To this end, Bruton et al. in [5] reported that ratio 

of staff allocated for supervising and maintenance of an Air-Handling Unit (AHU) is typically 1:20. To address 

this widening gap, automation of processes is highly desirable. This is legislatively endorsed by European Union’s 

recommendations published in June 2019 that recommended HVAC systems with a rated output of more than 

290kW to be equipped with Building Automation Systems (BAS) [11] 

Although, operation of buildings is being increasingly automated, efficiency gains realized are not sufficient to 

meet decarbonization targets [1]. It is estimated that up to 30% energy could be saved through the effective use 

of data collected through deployed continuous monitoring systems (CMS) [6]. An umbrella of processes such as 

continuous commissioning, monitoring or model-based commissioning (MBCC) labelled as Cx are deployed in 

combination with CMS systems to realize low energy use and higher comfort levels [12]. Fault Detection and 

Diagnosis (FDD) is an important subdomain of Monitoring based commissioning and can be utilized for achieving 

energy efficiency goals as highlighted in Figure 1. For instance, continuous gains (indicated in yellow and 

beneath) can be realized in a programmatic way through a building’s lifecycle.  

 

Figure 1:  The role of FDD tools in monitoring-based commissioning to avoid the loss of energy efficiency [4] 

Automated FDD (AFDD) tools are being developed since the 1980s complimented by development of direct 

digital controllers (DDC) and micro-computers [13]. Despite prior research, there remain limited real-life 

applications [6]. Adding to this, the available solutions are either unreliable, unaffordable, and/or not scalable 

(Zhao et al., 2019). Further, the current acceptance of the available state-of-the-art is limited to early adopters 

or innovators on the technology adoption curve [14]. Furthermore, application of the available techniques to 

AHUs operating in the Netherlands is understudied. For example, research contribution from the Netherlands 

towards application of artificial intelligence (AI) methods for HVAC systems is a less than 3% [15].  
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Considering the discussed aspects, the direct contribution of this project is to add to the limited real-life 

demonstrations of FDD and inspire its widespread adoption. More specifically, the design, development, and 

validation of an AFDD tool that utilizes AI methods is discussed. Further, the tool is integrated with the 

commercially operated CMS application developed by Kropman called InsiteSuite. This CMS is being utilized to 

monitor over 400 buildings in the Netherlands.  

1.1 DEFINITIONS 
In this section some the key terminologies concerning continuous monitoring and FDD process are defined.  

Continuous Monitoring (CM): CM finds its origins in the auditing domain and is a widely accepted process used 

for continuous auditing [16]. In buildings, IT tools such as Building Automation Systems (BAS), Building 

Management Systems (BMS), Energy Management Systems (EMS) are often deployed for continuous monitoring 

and control [17].  

Faults: Faults are unpermitted deviation of at least one characteristic property (feature) of the system from 

acceptable, usual, standard condition [18]. In another definition, Li et al. in [19] described fault as an instance 

where either a system or an equipment or a component performs in a way that is detrimental to either thermal 

comfort or energy efficiency of a building. The development of faults in a system can be either abrupt (stepwise), 

incipient (drift like) or intermittent [13]. 

 

Figure 2: AFDD system overview - cause to effect and observation to diagnosis [13] 

Fault Detection: Quoting Ding in [20], fault detection is “the detection of occurrence of faults in functional units 

of the process, which lead to undesired or intolerable behaviour of the whole system”. In an automated process 

this implies change detection on features (see Figure 2) and/or measured variables referencing nominal values 

[13]. Therefore, this process is also alternatively referred to as ‘Anomaly Detection’ or ‘Symptom Detection’ [21].  

Symptoms: The detected faults provide valuable information that can be utilized in the diagnosis process and is 

generally referred to symptoms (see Figure 2, left). Symptoms can either be analytical or heuristic, wherein the 

former is obtained from automated detection algorithms and the latter is generated through human observation 

[13]. 

Fault Diagnosis: Fault diagnosis is a logical step following fault detection (see Figure 2, right) and is the process 

that involves fault identification or classification or isolation or disease diagnosis or root cause determination 

[13,21] In some circumstances, fault detected or diagnosed may yield same outcomes but in general a two 

stepped approach is required to determine root cause as the same symptoms can be observed with different 

faults.  
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1.2 RELATED WORK 
The related work carried out in the field of FDD for HVAC systems is discussed in this section. In section 1.2.1, 

various approaches proposed for AFDD are identified through a systematic literature review process and are 

introduced. In section 1.2.2, first the application of FDD and the progress made towards its application is 

discussed. Thereafter, the challenges impeding its adoption are summarized.  

1.2.1 FDD Approaches 

Over the previous decade, a noticeable increased has been observed in the number of articles published on AFDD 

approaches focusing on black-box models [13]. Zhao et al. in [4] classified the published methods for fault 

detection and diagnosis (see Figure 3 and Figure 4). Using this classification, FDD methods can be identified as 

Data driven-based or Knowledge driven-based. Data driven-based methods use process data collected at 

buildings, whilst Knowledge driven-based based methods rely on domain experts. For example, Rule-based 

methods use rule sets written using prior knowledge of the system. Further, for fault detection only data driven-

based techniques are sub-classified as AI-based methods, whilst for fault diagnosis both data driven-based and 

inference-based techniques such as Bayesian inference are also sub-classified as AI-based methods.  

 

Figure 3: Classification of Fault Detection methods for building energy systems [4] 

 

 

Figure 4: Classification of Fault Diagnosis methods for building energy systems [4] 

Through a literature review 193 published journal and conference articles on FDD methods for HVAC systems 

are identified. The FDD techniques for AHUs in these articles is summarized in Figure 5. It can be observed that 

unsupervised or semi-supervised techniques such as principal component analysis (PCA), Clustering, 

Association Rules, Symbolic Aggregate Approximation (SAX) based techniques are quite popular given annotated 

fault labels required for supervised learning techniques such as artificial neural networks (ANN) are unavailable. 

However, it should be noted that supervised learning techniques outperform unsupervised learning techniques 

[22].  

Labelling data for faulty operation is difficult due to four reasons cited below: 

1. Chances of HVAC system operating in normal state are much higher than faulty state [23]. 

2. It is very expensive and impractical to get sufficient training data for every fault [24]. For example, in the 

RP-1312A project of ASHRAE it took nearly a year to generate labeled data for 19 different AHU faults, 

however, still could not cover the wide range of possible operation conditions [4]. 

3. There is no established or set process for annotation in building operations. Typically, maintenance records 

or work orders are maintained in Enterprise Resource Planning (ERP) systems and can be read using text 

mining techniques [25]. However, there is limited interoperability between such systems and FDD or BAS 

systems. Further, using this approach it is very difficult to precisely label a particular data point as faulty or 

normal.  

4. Using available measurements at a buildings only certain faults can be detected, which makes it difficult to 

develop models for new or unobserved faults [24]. 
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Figure 5: AFDD Techniques for AHU - Ranked in order of popularity 

Simulation models are helpful for studying fault behaviour inexpensively [19]. The process of generating bulk 

data containing a variety of faults is referred to as ‘Fault Modelling’ [19]. Fault models prepared using this process 

have been utilized for: a) testing FDD methods, b) facilitate fault impact analysis [19]. Fault impact on energy and 

comfort indicators can be understood using this approach [26]. Quantifiable indicator such as fault impact is 

helpful towards commissioning and prioritization activities [26]. This is discussed further in Chapter 3.  

For fault detection, regression-based (see Figure 3) or residual generation approaches offer an alternative to 

working with labelled data. In separate reviews by [27] and [4] regression-based approaches constitute 27% and 

26% of published research articles respectively. Here, a black-box model is prepared to model relationship 

between inputs (or ‘features’) and outputs (or ‘targets’). Amongst, the studied regression-based methods 

artificial neural networks (ANN) based, and support vector regression (SVR) based approaches are quite popular. 

Despite this popularity, a comparison between advanced ML techniques made by Chakraborty et al. in [28] and 

Walker et al. in [29], revealed that gradient boosting ML algorithms perform better than competing algorithms 

such as Artificial Neural Networks (ANN), Linear Regression, Random Forest, Support Vector Machine (SVM).  

For fault diagnosis, knowledge or expert based methods (see Figure 4) are more reliable than data driven-based 

classifiers due to two reasons: a) uncertainty or incompleteness of information, b) unavailability of fault labels 

to train AI models that can learn the causality between faults and symptoms (see Figure 2). In their review, Zhao 

et al. in [4] identified that Bayesian network-based and Fuzzy logic-based approaches are equally popular. 

Bayesian network-based approaches have been successfully applied by [30–36] for AHUs. In general, these 

models can handle circumstances when incomplete, uncertain, or conflicting information is presented as their 

outputs are fault probabilities instead of Boolean fault outcomes [35]. 

In the context of diagnosis, Bayesian networks are also referred to as Diagnostic Bayesian Networks (DBNs). 

DBNs are directed acyclic graph models that explain the causal relationships between faults and symptoms. The 

DBN structure is further explained by initial beliefs mapped as prior and conditional probability tables [33]. 

These beliefs are updated as new evidence is received using Bayesian inference to compute posterior 

probabilities. Despite, the discussed advantages construction of such networks is often tedious and developed 

diagnosis models lack interpretability required for their widespread adoption. Taal et al. in [21], proposed DBNs 

based 4S3F framework. Here, the 4S implies four generic symptom types, namely energy performance, balance 

symptoms, operational state, and additional symptoms, and the 3F refers to three different fault categories: 

model, control, and component faults. Further, this framework draws a clear connection between the developed 

DBN and the piping and instrumentation (P&I) diagram. Further, its architecture is based on systems 

engineering theory and how the system can be redistributed across multiple P&I schemes [21]. Moreover, the 

framework proposes a generalizable and automatable approach to creating Bayesian networks for diagnosing 
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faults in HVAC systems. Importantly, the approach has been successfully demonstrated at AHU installations in 

the Dutch built environment.  

1.2.2 FDD Applications 

Energy conservation for building and community systems (ECBCS) is a global program piloted by International 

Energy Agency (IEA). Annex 47 is sub-track of this program that concerns cost-effective commissioning for 

existing and low energy buildings[37]. Within Annex 47, a total of 18 FDD tools were surveyed, and it was 

identified that a) automation and robust application is highly desirable, b) the developed interfaces of the tool 

need improvement, c) require better integration with the commissioning process [38]. 

Granderson et al. in [39] surveyed commercially deployed and under development FDD tools. It can be observed 

from their survey that FDD tools being utilized by the industry typically rely on a combination of expert rules or 

first principles. For example, [40] proposed a cloud based AFDD tool for AHUs. Their tool utilizes AHU 

performance assessment rules (APAR) [41]. Granderson et al.  in [42] surveyed 14 commercially deployed tools 

and noted that whilst their software stack was proprietary several vendors offer application programming 

interface (API) to support integration. 

Prouzeau et al. in [43], pointed out that despite there being availability of large sets of data collected through 

BMS or Internet of Things (IoT) sensors, its visualization is not effective enough to support building managers 

for Cx or FDD processes. For applying AFDD for AHUs effectively, identifying operation modes of AHUs is key 

[40]. Bespoke nature of AHU design and its logical operation determined by the control system vendor makes 

this process quite complicated [5].  

Nine key issues preventing widespread deployment of AFDD systems are listed below: 

1. Rules-based systems heavily rely on the sensed information. Due to the sensitivity of building owners to 

initial project costs, most building installations only have sensors limited to their control functionality [4]. 

For example, a space involving transfer of heat, mass, light with its outdoor environment, occupants, 

neighboring spaces, and various building installations is often monitored through just a thermostat [13]. 

Due to the lack of this additional information, it is difficult to develop reliable AFDD models. 

2. The lack of standards regarding quality and positioning of deployed sensors further complicates the FDD 

process. Machine Learning (ML) models that rely on data collected through these sensors typically grapple 

with two kinds of uncertainty: a) epistemic and b) aleatory [44]. It is desirable to carefully handle the 

epistemic (or reducible) uncertainty to successfully apply model-based approaches [12] 

3. There is a lack of a unified framework for developing generic key-performance indicators (KPIs) and 

associated rules for automated fault diagnosis [45]. 

4. The limits utilized for generating alarms using the rule-based approaches are typically set at a higher 

threshold than desired to minimize the number of false positives [6]. This reduces the ability of an FDD 

system to detect faults with lower severity and prevent energy waste significantly.  

5. Typically, the alarms configured in CM systems are configured once and are not updated continuously. 

Hence, they fail to detect symptoms that do not breach obvious thresholds [5]. 

6. Approaches that utilize black-box models do not inspire a lot of confidence with building practitioners as 

they are not very interpretable [6]. 

7. Approaches that rely on experts for faults are difficult to maintain and scale. This is since building occupancy 

pattern or service personnel evolve with time, and knowledge transfer is often difficult.  

8. Published research methods on novel FDD techniques start with utilizing a prepared dataset. However, the 

practical application of these methods with operational CMS is rarely discussed. 

9. Analytical functions in the facility management aren’t widespread yet [46]. Commercial alternatives such as 

Analytics or Software as-a-service models need to be explored for software procurement that can guarantee 

value delivery.  

1.3 PROJECT PLAN AND WORK PACKAGES 
The goal of the project is to design and prototype an automated tool that can robustly detect and diagnose faults 

within AHUs, and support maintenance to decrease energy use and to increase human comfort. To meet the 

identified this goal key objectives are detailed hereafter: 

1. Identify and overcome problems associated with implementation of Automated Fault Detection and 

Diagnosis methods for AHUs 

2. Identify most important causes that lead to inefficient energy performance of AHUs. 
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3. Evaluate, design, and validate a data driven module that leverages state-of-the-art techniques from Artificial 

Intelligence (AI) domain.  

4. Focusing on operational faults and AHUs utilized in Dutch Built-Environment, demonstrate the technique 

into a software module that can be integrated with a CMS (for example InsiteSuite).  

5. Deploy the tool and evaluate results at shortlisted buildings. 

 

 

Figure 6: Project methodology 

It is understood that a more personalized approach with subjective feedback collected from occupants is 

required for improving human comfort. This aspect is taken care of in a parallel project titled APK2.0 and hence 

only objective key-performance indicators pertinent to comfort have been considered as inclusions in this 

project. To achieve the stated objectives, the overall planning for the project is divided into work packages (WP) 

shown Figure 6. Briefly, the project would commence with reviewing literature (see WP 1 on Figure 6) in-order 

to deeply understand the domain, and identify the available state-of-the-art. Before designing and developing 

the AFDD tool, a systems analysis (see WP 2 on Figure 6) step has been introduced to firstly characterize the 

system and reduce the design variables. More specifically, a systematic approach termed Pareto analysis has 

been considered to minimize the data preparation requirements. This is aimed at reducing the time spent in data 

preparation (often at least 80%) before any ML models can be trained. Further, it also includes a sensor impact 

analysis to identify critical sensors required for preparing FDD models. The results from this analysis are utilized 

to propose a framework for FDD that can be combined with deployed CM systems termed ‘CM-FDD’ (see WP 3 

on Figure 6). With the reduced datasets and the CM-FDD framework, the project would step into testing and 

validation of the AFDD tool in-situ at the shortlisted building sites. For planning purposes, the project tasks are 

further broken down to pursue distinct initiatives in cooling, heating, and ventilation (see WP 4,5,6 on Figure 6). 

These align with the primary functions of an AHU. Alongside a pilot initiative in each direction integration with 

CMS (InsiteSuite) platform (see WP 7 on Figure 6) would be undertaken. The work package 8, is a supervisory 

work package that’s been designed to monitor and report project’s progress continuously.  

1.4 OUTLINE OF THE REPORT 
The overall design methodology for prototyping the AFDD tool and case studies considered for verification and 

validation of the AFDD tool are discussed in Chapter 2. In effect WP 1, 2, and 3 outlined in Figure 6, contributed 

to the development of this method. In Chapter 3, the results from applying the developed method to considered 

case-studies are presented. The chapter also includes results from pilot deployment of models developed for 

fault detection and diagnosis for cooling, heating and ventilation (see WP 4,5,6 on Figure 6). The developed FDD 

tool using the discussed methodology, and its integration with the CMS (see WP 7 on Figure 6) is presented in 
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Chapter 4. In Chapter 5, the compliance of the designed concept is verified and the financial feasibility along with 

risks associated with the deployment are discussed. The report is then concluded in Chapter 6.  
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2 DESIGN APPROACH AND METHODOLOGY 

A systematic approach that emphasizes on continuous verification and validation of the design has been adopted 

for the project and is presented in this section. Using this approach, first the requirements for the design of the 

AFDD tool are identified and discussed in section 2.1. In line with these requirements, the overall design 

methodology for prototyping the AFDD tool is discussed in section 2.2. 

2.1 REQUIREMENTS 
The complete requirements for the software are identified as a) user requirements and b) system requirements 

[47]. For identifying the user requirements for a stakeholder analysis is performed to assess their interests and 

is presented in section 2.1.1. Thereafter, system requirements are identified from published literature and is 

presented in section 2.1.2. Keeping the various interests in view, and upon careful examination of literature on 

the subject, a comprehensive set of requirements are iterated in section 2.1.3. 

2.1.1 Stakeholder analysis and their interests 

The stakeholders for the project are mapped on Figure 7. This map clearly identifies who are the relevant project 

stakeholders, and how each one of them is connected. Further, the individual motivations (‘Why?’) of the various 

stakeholders are described in form of User stories. The User stories are written in form of actions and benefits, 

wherein the actions translate to specific requirements and benefits address the corresponding stakeholder 

motivation. This way each software requirement is clearly linked to the value delivered for the project 

participant (stakeholder).   

 

Figure 7: Stakeholder map 

On this map stakeholders are grouped as per their roles on the project. The stakeholders in the innermost ellipse 

formulate the core user group for the proposed AFDD tool. The proposed tool upon commissioning would be 

directly utilized by this group and carry highest interest in the features to be developed. The second concentric 

ellipse comprises of stakeholders that together represent the gatekeepers group. This group directly influences 

the decision-making process and are concerned with the overall outcomes of this project. Sponsors for the 

project are mapped on the third concentric ellipse. The stakeholders within this sponsors group are mainly 

concerned with the impact of this project. Stakeholders’ interests within the scope of this project are explored 

further and are more concretely presented as user stories in Table 1.   
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Table 1: User stories 

# Stakeholder Example Role I want to [Action] so that [Benefit] 

Inner ellipse (direct users) 

A 
Building 

engineer 

Technicus, 

Kropman 
User 

Be informed of 

actions to be taken 

for fault correction 

avoid comfort 

complaints and prevent 

energy wastage 

Be informed of fault 

diagnosis and root 

cause 

prioritize and 

undertake maintenance 

action 

utilizing a reliable 

and user-friendly 

tool 

ignore any false alarms 

B 
Software 

expert 

Software engineer, 

Kropman  
User 

integrate FDD 

outcomes with the 

company’s CMS  

provide better insights 

to users 

enhance company’s 

CMS with advanced 

visualizations  

deliver information in a 

user-friendly manner 

C 

 

Data/ML 

expert 

Software engineer - 

Machine Leaning, 

Kropman 

User 

integrate advanced 

machine learning 

use-cases into the 

company’s ML 

framework 

deliver intelligence 

powered by machine 

learning to 100+ end 

users  

enhance current 

machine learning 

capabilities 

keep the current 

framework updated 

with state-of-the-art in 

predictive modeling 

D 

Subject 

matter 

expert 

Advisor O&T, 

Kropman 
User 

evaluate innovative 

techniques and their 

potential for 

deployment 

advise company on the 

accurate potential for 

deploying advanced AI 

based methods 

Middle ellipse (influencers in the decision making process) 

E 
Facility 

manager 

Project Leider, 

Kropman; 

Project Manager 

Radboud UMC 

User 

test new techniques 

for fault detection 

and diagnosis, and 

create demonstrable 

examples for the 

organization 

contribute to 

organizational 

development on the 

knowledge scale  

F 
Industry 

partner 

System Air, 

Kropman  
Influencer 

test and validate 

new ideas for 

improving service 

delivery and 

operational 

efficiency 

lead innovations on the 

marketplace, create a 

differentiated value 

proposition for my 

customer, 

organizationally adapt 

to the future 

G 
Business line 

manager 

Director 

Gebouwautomatise

ring, Kropman; 

Hoofd Technical 

Competence Center, 

Kropman 

Decision-

maker 

evolve from current 

rules-based 

approaches to novel 

data-driven/AI 

based techniques for 

fault detection and 

diagnosis 

automate FDD 

processes and use it as 

an example for larger 

digital transformation 

required within the 

organization 

explore data-driven 

models whose 

outputs can be 

develop confidence 

within the organization 

to shift to data-driven 
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# Stakeholder Example Role I want to [Action] so that [Benefit] 

explained solutions 

continuously push 

the boundaries for 

innovation within 

the company 

maintain a competitive 

advantage on the 

marketplace 

H 

Remote 

services 

manager 

Manager Insite 

Remote Services, 

Kropman 

Influencer 

steer my current 

operations through 

automation 

can be future ready for 

managing multiple 

sites with limited and 

less experienced 

resources as compared 

to before 

become more 

operationally 

efficient 

remain financially 

competitive in 

providing my services 

 

I 

Dept. Built 

environment 

(TU/e) 

Professor, TU/e 
Decision-

maker 

promote innovative 

and state-of-the-art 

ideas 

 

contribute to 

upgradation and 

upskilling of building 

installations company 

minimize carbon 

footprint of 

buildings 

contribute 

development of a 

climate neutral built 

environment 

Post-doc, TU/e Sponsor 
deliver high-quality 

output 

contribute to better 

research and design 

outcomes 

Outer ellipse (sponsors) 

J 

 

FM Company 

CXOs 
Kropman  Promotor 

be a profitable and 

climate friendly 

enterprise 

maintain differentiated 

proposition on the 

marketplace and  

develop a robust 

software platform 

for continuous 

monitoring of 

building 

installations 

bid and execute more 

DBMO (Design, Build, 

Maintain and Operate) 

type contracts 

K 
Funding 

institutions 

Eindhoven Engine, 

Rijksdienst voor 

Ondernemend 

Nederland 

Promotor 
mobilize positive 

initiatives 

contribute to energy 

transition and promote 

technology that would 

combat climate change 

L 
Building 

owner 
ROC, Kropman Promotor 

operate my building 

in a sustainable 

manner 

avoid unwarranted 

carbon emissions from 

my building 

M 
Research 

institutes 
ISSO Promotor 

cross-fertilize 

research initiatives 

contribute to 

development of 

collective knowledge 

that would contribute 

to a more sustainable 

future 
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2.1.2 AFDD tool requirements from literature 

In addition to the requirements identified through stakeholder interactions (ref.  section 2.1.1), key requirements 

identified through literature search are presented in this section. These system requirements are identified along 

two directions: a) application specific requirements and b) algorithmic requirements. Herein, application specific 

requirement implies the requirements constraining the design of the overall FDD tool, whilst algorithmic 

requirements are identified to constrain the plethora (ref section 1.2.1) of competing FDD techniques.  

a) The application specific requirements are viewed as functional and realization aspects of the system [48]. 

Using this categorization, some desirable characteristics proposed by [5,8,13,40,49] are presented in Table 

2. 

Table 2: AFDD Tool - desirable characteristics 

Functional Aspects Realization Aspects 

High accuracy Adaptability  

Quick detection and diagnosis  No need for handcrafted AFDD algorithms 

Robustness Low Cost 

Explanation facility Interoperability 

Isolability - ability to distinguish between 

multiple failures 

Low storage and computational requirements 

Novelty identifiability Limited modelling requirements 

Heuristic observations as evidence Automation level in configuration 

Multiple fault identifiability Evaluation and decision support capabilities 

 

b) For algorithms, the following have been identified as key to successful implementation and widespread 

adoption: 

• Linkage between AI or data-driven model and the underlying system, such that deployed models are 

explainable to the user [21]. 

• Overcome the uncertainty within models trained with history data, which is inherent due to limited 

information about historical operation and how well it represents normal behavior [50]. 

2.1.3 Requirements Summary 

The composite system requirements are specified in this section. These system requirements are further 

classified as domain, functional, and non-functional requirements for developing the AFDD tool and are enlisted 

in Table 3, Table 4, and Table 5 respectively [47]. Further, upon consultation with key decision makers a priority 

order has been identified. Using this process, finalized requirement along with its linkage to user story and 

priority is specified in the tables presented below.  The priority order is utilized for planning and development 

purposes. 

Table 3: Prioritized domain requirements 

Linkage to 
user stories 

Requirement Priority 

A, D, E, F, H Select and show key performance indicators that can track system performance High 
A, D, E, F, H, I Select and prioritize key faults that cause the largest energy performance gap High 
A, C, D, E, F, 
G, H, I 

Express clear linkages between developed diagnosis strategy and HVAC system High 

A, C, D, E, F, 
G, H, I 

Explain predictions of deployed machine learning models High 

A, D, E, F, H, I Isolability, Evaluation and decision support capabilities: Utilize Bayesian methods 
that can deal with uncertain information. Further, embed features to evaluate 
outcomes and support decision making. 

High 

A, D, E, F, H, I No. of Sensors/Measurement Requirements: For modelling utilize as less sensors 
as possible to avoid sensor uncertainty  

Medium 
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Linkage to 
user stories 

Requirement Priority 

B, C Ease and Automation of training and tuning, Limited need for handcrafting of 
algorithms: Model training and tuning procedure to be completely automated 

Low 

A, C, D, E, F, G Detection Time: Detection time for detecting abrupt faults needs to be minimal Low 
B, C Computational requirements (Memory): Model deployment for a single building 

should be supported on a standard PC with 16GB memory 
Low 

 

Table 4: Prioritized functional requirements 

Linkage 
with User-
Stories 

Requirement Priority 

C, G, I Provide support for training, testing, evaluating, and deploying Bayesian networks High 

B, D, G, I 
Visualize diagnostic Bayesian networks including symptom states and fault 
probabilities 

High 

C, I 
Provide support for training, testing, evaluating, and deploying machine learning 
models 

High 

A, E, H Validate datasets before utilizing them for serving predictions High 
G, I Software should be able to interface with CMS (InsiteSuite) over API High 
B, C, G Store meta information about the underlying HVAC system Medium 
A, E, H Visualize diagnosed faults in a clear manner Medium 
A, E, H Provide supporting evidence and information on diagnosed faults Medium 
C, G, I Develop a fault library that can store fault and meta information on faults Medium 

C 
Provide support for tracking performance of deployed machine learning models 
and raise flags for retraining 

Medium 

A, E, H 
Software should support date, time and text filter and sort functionalities 
wherever applicable 

Medium 

C Provide support for utilizing state-of-the-art feature selection techniques Low 

C, I 
Feature to compare results from multiple regression modelling frameworks such 
as gradient boosting, decision tress 

Low 

I Software should support dynamic Bayesian networks Low 

G, I 
Software should be able to interface directly with BMS deployed on site for data 
ingestion 

Low 

B, C, G Software should support APIs for data export from developed application Low 

C, G, I 
Software should carry a mechanism to input expert information that can be further 
utilized for labelling or correction purposes 

Low 

 

Table 5: Prioritized non-functional requirements 

Linkage 
to user 
stories 

Requirement Priority 

F, G 
Security:  
Only designated and authorized use of client data  

High 

G, I 

Maintainability: 
Software should be free of poor coding practices and should carry ample 
documentation and annotations for easy maintainability 
Data tags utilized in the software should be human understandable 

High 

G, I 
Interoperability: 
Should be designed in a manner that it can support open interfaces for connectivity 
with external applications 

High 

C, G 

Scalability: 
Should be deployed and tested over multiple building use-cases  
Should be able to handle multiple data sources 
Should be able to accommodate newer algorithms  

High 

A, E, H, G 
Portability:  
Software should be agnostic to operating system environment. It can be deployed on 
any local or cloud environment that carries sufficient memory and support Python 

Medium 
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Linkage 
to user 
stories 

Requirement Priority 

Software visualization layer should support standard browser interfaces 

A, E, H, G 
Performance: 
Should be able infer and generate results by processing real-time data streams 
Should be able to validate inputs and clearly indicate errors 

Low 

G, I 
Reusability: 
Software dependencies should be clearly expressed 
Machine learning and Bayesian network modelling blocks should be reusable 

Low 

 

2.2 DESIGN METHODOLOGY 
To design and engineer the AFDD tool, systems thinking approach has been adopted [51].  For the AFDD tool 

development, Python is the utilized programming language as it is popular and has a large collection of 

continuously maintained packages supporting AI based development., The proposed architecture for AFDD 

software is conceived with modularity, reusability, and scalability considerations. This is to address the non-

functional requirements as stated in Table 5. 

2.2.1 AFDD Tool Overview 

The overall system architecture of the AFDD tool is presented in Figure 8. Herein, the implemented workflow is 

represented with solid arrows. The architecture comprises of several layers namely data acquisition, data 

validation and pre-processing, business, post-processing, and visualization. In the data acquisition layer, all 

aspects concerning data transactions with external interfaces, its protocol, and security are maintained. The 

acquired data is then parsed through as key value pairs into downstream software layers. 

The design of the FDD tool hereafter can be envisioned as User Agnostic and User Specific developments as shown 

in  Figure 8. The User Agnostic development concerns design of data preparation and data mining operations on 

acquired data. These operations are carried out in the Data Validation and Pre-Processing Layer and the FDD 

Business Layer respectively.  The User Specific development is to provide a user-friendly interface for efficiently 

realizing outputs from FDD business layer and enable human-in-the-loop diagnostics. The design of the business 

layer encapsulates majority of the focus of this project and is discussed next in section 2.2.2. The methodology 

for designing the user interface for the tool or the Data Visualization Layer is presented in section 2.2.3. The 

method for designing other layers (see Figure 8) that essentially play a supporting function are briefly discussed 

in section 2.2.4.   

 

Figure 8: System architecture 



Chitkara, S. CM-FDD-HVAC 14 

2.2.2 FDD business layer 

The FDD business layer has been conceived with the intention of wrapping critical information such as faults, 

FDD algorithms, detection thresholds, fault & symptom associations. It has been designed with keeping key 

domain specific requirements such as robustness, isolability, and early detection and diagnosis under 

consideration (see Table 3). In view of these requirements, multiple competing FDD approaches have been 

studied (ref. section 1.2). Before, applying these techniques in practice a systems analysis step has been 

introduced (see Figure 9). 

Systems analysis supports the realization of stakeholder needs into definitive product outcomes [52]. Various 

systems analysis techniques have been proposed to support the product development process across its lifecycle 

[52]. In this project, systems analysis has been conducted early in its life cycle to: a) support planning and 

development; b) avoid costly design modifications in the latter phases of the AFDD tool development.  Two 

specific steps in fault and sensor impact analysis formulate this systems analysis step. This approach is also 

known as Pareto-LEAN approach [53]. However, is referred to fault and sensor impact analysis hereafter. 

The faults to be included in the AFDD tool are prioritized using a fault impact analysis. Herein, faults often studied 

in literature are rank ordered based on their computed energy gap realized through a simulation approach [23]. 

Such a prioritization is vital to maximizing the energy saved through the designed tool. A typical large building 

installation can carry hundreds of sensed and controlled variables. Through the sensor impact analysis sensors 

are prioritized and relationship between faults and analytical symptoms are understood. Using this approach, 

the design variables involved in the FDD process are constrained. This approach is dwelled upon further in 

Chapter 3. 

 

Figure 9: FDD Business Layer 

It has been identified that DBNs can successfully handle the uncertainty associated with the FDD process. The 

DBN based 4S3F framework demonstrates clear linkage between the underlying HVAC system and the diagnosis 

process [21]. The probabilistic nature of this approach allows a way to eliminate failure modes, which is also 

synonymous with how HVAC engineers work [21]. Further, the relationships between faults and symptoms are 

characterized using a belief network [33]. These belief networks lessen the reliance on accuracy of the fault 

detection algorithm [30]. Furthermore, simplified models can be utilized instead of complex algorithms that offer 

lesser generalizability [30]. Citing these reasons, the 4S3F framework (see Figure 9) is selected for developing 

the business layer of the proposed FDD tool.  

As the name implies, the 4S3F method classifies faults into three categories: component faults, control faults, and 

model faults [21]. 
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1. Component faults: Referred to as hard faults that are caused due to design, poor selection, performance 

degradation or complete failures [21].  

2. Control faults: Also known as soft faults. As the name suggests, these faults refer to issues arising due to 

improper control such as set points and controller issues [21].  

3. Model faults: These are also called soft faults and are caused because of models deployed for quantitative 

estimation [21].  

 

For the faults included in the DBN, the prior beliefs are derived using literature search [31,32,54]. The conditional 

probabilities are prepared using HVAC expert knowledge. In this regard, a sensitivity analysis by [50] revealed 

that if the set probability values are reasonable, the likely diagnosed outcome is not affected.  

In a DBN, symptom nodes are variables that are utilized to update prior beliefs on presence or absence of a fault. 

In buildings, these nodes are supplied with evidence using data collected from the BMS. It is desirable to utilize 

smaller Bayesian networks to keep the size of the conditional probability tables manageable as otherwise the 

size of these tables grow exponentially [35]. NoisyMax simplification is utilized as convention for child nodes 

with more than two parents [35].  

Focusing on the symptoms block shown in Figure 9, four kinds of symptom nodes have been proposed by [21] 

1. Operational state (OS): The OS symptom node represent deviation in operational state from its expected 

state. The OS symptoms can be further classified into control-based OS indicators and design-based OS 

indicators [45]. 

2. Energy Performance (EP):  The EP node is representative of normalized key performance indicators such 

as COP, KWh/m2 that are conventionally utilized to gauge or compare performance within or between 

systems. They can be further declassified into performance factors, capacity indicators, or energy outliers 

[45].  

3. Energy Balance (EB): The EB node encapsulates system design principles that tend to promote balanced 

behavior beyond some transient aberrations. Therefore, instead of detailed white box modelling 

approaches, fundamental balancing equations are utilized [21].  

4. Additional (Add.): Additional symptom nodes are utilized to pass qualitative or quantitative information 

received from other available information sources such as maintenance logs, or manufacturers input, or user 

satisfaction[45].  

These symptom nodes are activated using fault detection models encapsulated in the Fault Detection Layer (see 

Figure 9). Diving further into the fault detection layer, it comprises of a modelling layer and a fault evaluation 

layer. For fault detection, amongst the data-driven based approaches (ref section 1.2), regression-based and 

statistical modelling approaches have been utilized to set performance benchmarks to distinguish between faulty 

and normal behaviour. However, the framework is designed with enough flexibility to replace the utilized 

methods with any competing or superior method given a use-case scenario. This is done to ensure that developed 

prototype can be continuously improved with evolution in the AI domain. The fault evaluation is done by setting 

thresholds on the residual generated through this process. In the event, these thresholds are breached a fault is 

considered detected, and the corresponding symptom is passed to the DBN for diagnosis.  

This way in the FDD Business layer, the fault diagnosis process that concerns root-cause elimination is separated 

from the fault detection process which is more aligned with the so-called anomaly detection process. This 

separation between layers is highly recommended as it allows for multiple techniques from various domains and 

sub-domains to be combined in a common framework [13]. For example, through this project an advanced AI 

algorithm called XGBoost (extreme gradient boosting) is utilized in the fault detection process and its outputs 

are fed into the symptom nodes [55]. The modelling strategies utilized for FDD are elaborated upon in Chapter 

5. To validate the robustness of the FDD Business layer, experimental validation is utilized. Case studies utilized 

in this process are discussed in section 2.3. 

2.2.3 Data visualization layer 

Effective visualization is key to promoting human-in-the-loop (HITL) diagnostics. HITL diagnostics implies a 

synergetic cooperation between a human expert and AI models, wherein this combined strength is harnessed, 

whilst simultaneously overcoming limitations of each party [56]. For designing the user interface (UI) for the 

proposed tool, a product discovery method referred to as design sprint is applied[57]. Using this approach, 

specificities desirable for users are incorporated and objectively evaluated before considering them for 

development. Multiple visual concepts are prototyped in Figma, a graphics editor utilized for designing user 
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interfaces. These design concepts of this layer are tested with key stakeholders and result from the process are 

summarized in APPENDIX A. This way, the user specific development (see Figure 8) is realized. 

2.2.4 AFDD tool integration 

Besides the veracity of the business logics, a robust coupling between the AFDD tool and the deployed CMS 

(InsiteSuite) is key to its usefulness. For integration with this CMS system an application programming interface 

(API) approach is adopted. Using this strategy, data can be securely acquired over standard web protocol such 

as HTTP. For this project, the data acquisition layer (see Figure 8) has been customized to the available API 

environment. Although, it can be expanded upon to interface directly with on-premises servers or Internet of 

Things (IoT) gateways as shown in Figure 8. This is a first step towards ensuring the desirable interoperability 

of AFDD application (see Table 5). Further, it also ensures that evidence from the BAS deployed on-site is 

continuously collected and inferred through the utilized FDD strategy.  

As the proposed tool utilizes AI approaches, the software architecture needs to attune to this atypical 

programming environment. Ameisen in [58], discussed how development of machine learning applications at its 

core comprises of two pipelines namely the training pipeline and the inference pipeline. For deploying the 

discussed XGBoost fault detection model (see 2.2.2), the two stitched pipelines are shown in Figure 10. The 

training pipeline starts with data acquisition over the API and ends with a trained model. The performance of 

the trained model is ensured through the intermediary steps of pre-processing, evaluation through cross-

validation, feature selection, and tuning [59]. The specific steps employed for various models trained for the 

application are discussed in Chapter 4. To ensure multiple modelling approaches such as (ANN, Gradient 

Boosting etc.) can utilize same datasets, the steps until feature selection shown in the training pipeline below are 

bucketed into the data validation and pre-processing layer (see Figure 8). 

 

Figure 10: Training and inference pipelines for fault detection 

In the inference pipeline, data is requested over the same API and results are inferred using a saved model from 

the training pipeline. Given the use-case, the inference pipeline splits into two data streams. One is utilized for 

plotting results from the trained model for visual diagnosis and the other to the fault evaluator. In the fault 

evaluator, the generated residual is classified as normal or faulty using a fixed or dynamic threshold [60]. 

Hereafter, the results are prepared for treatment in the diagnosis pipeline. For example, the measured 

continuous variables are converted to discretized as required for the diagnosis pipeline realized using DBNs. The 

training and inference pipelines for other trained ML models as well as the Bayesian network are designed using 

a similar approach.  

Besides, the treatment of data within the FDD business layer, for effective visualization as required in the Data 

visualization layer an intermediary layer is proposed called results post-processing. Herein, the data is for example 

aggregated to be presented in charts or other tabular visualization schemes. In effect, the results post-processing 

layer can support multiple visualizations schemes across the AFDD tool and is therefore designed as a separate 

component.  
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2.3 CASE STUDIES 
The AFDD tool is developed for diagnosing faults AHUs deployed in buildings. This section commences with a 

general description of this sub-system under consideration and the case-study buildings used for the verification 

and validation of the designed tool.    

2.3.1 Air-Handling Unit description 

 

Figure 11: Typical AHU assembly 

1. Central Station Unit: Performs all the AHU functions   

2. Cooling Unit: Is primarily deployed to serve the cooling requirements and may also perform other functions 

3. Heating Unit: Is primarily deployed to serve the heating requirements and may also perform other 

functions 

4. Make-Up Air Unit: Is a factory assembled fan-heater or cooler used to supply additional fresh air 

requirements 

5. Ventilating Unit: Is primarily deployed to serve the ventilation requirements and may also perform other 

functions 

 

During this project, the AHU type being considered is the central station unit type along with a case wherein 

central station unit and cooling unit are combined (ref section 2.3). These AHU configurations are larger than the 

other discussed types. Further, AHUs can also be distinguished based on the airflow control strategy and using 

this classification are distinguishable as variable air volume (VAV) or constant air volume (CAV) type. In VAV 

type units, airflow is modulated to meet the building thermal load requirements, whereas CAV type units operate 

with constant airflow regardless of the prevailing building demand.  

The AHU assembly comprises fans, coils, filters, dampers, heat recovery, sensors, and connections to supply and 

return ducts [61].  These components are indicated on a typical AHU assembly shown in Figure 11. The working 

principles of the considered AHUs are explained in specific details provided in APPENDIX B. Focusing on the Heat 

Recovery Wheel (HRW), issues concerning their performance and operation have been understudied in 

comparison with the other components such as coils, fans, valves, filters [62]. Further, in the backdrop of COVID-

19 pandemic, the prevention of intermixing of the two airstreams (process and regeneration) is a growing cause 

for concern within the HVAC community [63]. Furthermore, AHU performance and design standards specific to 

heat exchangers such as EN13053 and EN308 are expected to include stricter measures concerning pressure 

losses and energy efficiency in the upcoming revisions [9]. Given this context, faults in rotary heat exchangers 

are considered separately in the project. 

2.3.2 Case study description 

A total of five case studies have been selected for this project for creating a wide range of test and validation 

scenarios. The differentiating aspects for each of the cases along with the purpose and project deliverables 

planned against each are summarized in Table 6. These case studies are later discussed in detail. Of the five 
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selected cases, four cases are from the Netherlands including a simulation case wherein Dutch weather file has 

been utilized to have more examples representative of Dutch built environment. The only foreign example 

included in the mix is Energy resource station building. Datasets collected from this building for ASHRAE’s RP-

1312 project have been utilized by several researchers from across the world to demonstrate competing FDD 

approaches for AHUs [64–66]. These datasets therefore provided a consistent baseline for comparison. 

Table 6: Case study comparison 

Description 

Case-Studies 

#1: 
5-Zone 

Building 

#2: 
Energy 

resource 
station 

#3: 
Hoofddorp 

office 

#4: 
Breda office 

#5: 
Nijmegen 

school 

Simulation/Real Case Simulation Real Real 
Simulation 

and 
Real 

Real 

Non-Residential Building 
Type 

Office 
building 

Laboratory 
Facility 

Office 
building 

Office 
building 

School 

Location Netherlands  Iowa, USA Netherlands Netherlands Netherlands 

Purpose 
Systems 
Analysis, 

Verification 
Verification Verification 

Systems 
Analysis and 

Validation 
Validation 

AHU description 

One central 
AHU 

supplying to 
five-zones 

Two central 
AHUs 

supplying to 
three zones 

each 

Four central 
AHUs 

One central 
AHU 

supplying to 
three zones 

(North, 
South, and 
Office 105) 

Two central 
AHUs 

Fans CAV VAV CAV CAV CAV 

Coils 

1 heating 
and 1 

cooling coil 
in central 

AHU and 5 
reheat coils 

1 heating 
and 1 

cooling coil 
in central 

AHU 

1 heating 
and 1 

cooling coil 
in central 

AHU 

1 heating 
coil in 

central AHU 
and 3 

cooling coils 
along supply 

air path 

1 common 
heating and 
cooling coil 
in central 

AHU 

Heat-Recovery 
Rotary Heat 
Exchanger 

Air-Side 
economizer 

Rotary Heat 
Exchanger 

Rotary Heat 
Exchanger 

Rotary Heat 
Exchanger 

Project Deliverables 

Simulation model      

Fault models      

Fault Impact analysis      

Sensor Impact analysis      

Fault Detection models       

Fault Diagnosis models      

FDD application 
deployment 
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1) 5-zone building 

The 5-zone building model is one of sixteen prototype building models developed by U.S. Department of Energy 

[67]. The building emulates character of a non-residential small office (total floor area of 463.6 m2) type building. 

The building has four exterior and one interior zone with 0.61m high return plenum and an overall building 

height of 3.05m. The default AHU configuration provided with the reference building has been modified to 

emulate Air-handlers installed at the real-building cases studied and typifies AHU installations in the 

Netherlands. These modifications include a 100% outdoor air system and a rotary heat exchanger for heat 

recovery. The detailed HVAC characteristics of the building are summarized and compared with the other case-

studies in Table 7. The developed simulation model has primarily been utilized for fault modelling, fault impact 

and sensor impact analysis. Results from fault and sensor impact analysis are presented in section 3.1 and 3.2. 

Table 7: HVAC characteristics 5-zone building, Breda office, and Nijmegen school 

Description 5-zone Breda office Nijmegen school 
No. of Chillers 2 1 1 Heat Pump 
Chiller Type Screw Type Screw Type NA 
Chiller Flow Control Strategy Constant Flow Constant Flow NA 
Chiller Capacity [kW] 13.7 * 2 63.7 NA 

Chiller Pump Configuration 
Constant Primary 

Variable Secondary 
Constant Flow  

Chilled Water Loop Design Exit 
Temp [C] 

6 6 10 

Chilled Water Loop Design Temp 
Difference [delta K] 

6 6 10 

No. of Boilers 1 1 
NA – ATES Type 

System 
Boiler Capacity [kW] 26.96 * 1 156 NA 

Boiler Flow Control Strategy 
Leaving Set Point 

Modulated 
Leaving Set Point 

Modulated 
NA 

Boiler Pump Configuration Variable Flow Constant Flow NA 
Hot Water Loop Design Exit 
Temp [C] 

82 90 40 

Hot Water Loop Design Temp 
Difference [delta K] 

11 20 10 

Central AHU/s 
Air Handling System type CAV CAV CAV 

Maximum Supply Air Flow Rate 
[m3/s] 

0.91 
North Zone – 2.26 
South Zone – 1.27 
105 Zone – 0.67 

AHU 1 and AHU 2 - 
12.22 

100% OA Yes Yes Yes 

Air Side Heat Recovery type 
Rotary heat 
exchanger 

Rotary heat 
exchanger 

Rotary heat 
exchanger 

Cooling Coil Capacity [kW] 28.67 
North Zone – 39.30 
South Zone – 24.40 

105 Zone - 14.50 

130.4 
(Sensible: 36.1kW, 

Latent: -137.62kg/h) 

Heating Coil Capacity [kW] 
8.01kW + 5 reheat 

coils of total ~17kW 
capacity 

84.10 
495.1 (Sensible: 

348.4, Latent: 211.33 
kg/h) 

Setpoints Outdoor Air reset Outdoor air reset Outdoor air reset 

AHU Operation 
Weekdays:  
07:00-21:00 
Weekends: - 

Weekdays:  
06:00-17:00  
Weekends: - 

Varied on daily basis 

 

2) Breda office 

The first case-study considered for validation and prototyped tool deployment is an office building 

commissioned in 1993 and renovated in 2009. The characteristics for the HVAC installation at site are tabulated 

in Table 7. The heating and cooling demand for the building is fulfilled by an onsite gas boiler and electric chiller 

units respectively. The central AHU supplies to three centrally conditioned zones name North & Canteen (North), 
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South, and 105. This constant air volume (CAV) AHU contains the supply and return fans, heating coil, supply, 

and return filters, and an enthalpy type heat recovery wheel (HRW). Whereas, in the supply path of the AHU post 

the supply fan, three individual cooling coils have been placed for each of the supply zones. Flow through the 

heating and cooling coils is regulated using a three-way control valve. An air-terminal unit is placed along the air 

path of 105 zone that is regulates the airflow to maintain concentration of CO2. To maintain the heating supply 

air temperature a master-slave control strategy is employed, wherein master implies PID control between 

heating supply air and water temperatures and slave implies the control loop between hot water supply and the 

3-way control valve (see Figure 12). Further, the heating setpoint is set as the maximum of desired setpoint in 

the three zones. The zone setpoint is controlled using a cascaded control strategy, wherein return air setpoint is 

determined using prevailing outdoor air condition and which cascades further to determine the supply air 

setpoint. The cooling supply air temperature on the other hand, is controlled directly using PID control (ref TC 

in Figure 12) between supply air and cooling coil control valve. 

A zoomed in portion of the P&I diagram for the central AHU and North zone is shown in Figure 12. The complete 

P&I diagram is provided in APPENDIX B. This building has been modeled in simulation environment using 

DesignBuilder and EnergyPlus [68,69]. The HVAC layout of the simulation is also provided in APPENDIX B. In the 

developed simulation model, to emulate the prevailing control strategy following simplifications have been 

made: 

1. For fault modeling purposes and due to an atypical HVAC design at Kropman Breda, the heating and cooling 

operation of the AHU are modeled separately using different layouts. For emulating heating mode operation, 

the cooling coils placed in the air path are modeled with a Fan Coil Unit object in EnergyPlus. Whereas 

cooling mode operation is modeled using three separated Air-Handling Units.  

2. For heating mode operation, the master-slave control is simplified and calibrated using a direct control of 

supply air temperature with hot water flow through the heating coil.  

The developed models are validated by comparing the simulation predictions with measurements at the site. The 

methodology and results for validation are presented in APPENDIX B. 

 

Figure 12: P&ID Breda office – central AHU and North zone 

 

3) Nijmegen school 

The second building considered for validation and FDD tool deployment is a school located in Nijmegen. It was 

commissioned in the year 2010. The HVAC installation at the building comprises of an Aquifer Thermal Energy 

Storage (ATES) system supported by a heat pump on the generation side. On the distribution side two central 

AHUs are installed that operate with a CAV control strategy. The supply air temperature is directly controlled 

using two-way control valves that regulate supply water through a common cooling and heating coil. In 
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comparison with the Breda office building, a single casing houses all the AHU components. A zoomed in portion 

of the P&I diagram for the AHU1 is shown in Figure 13. The complete P&I diagram is provided in APPENDIX B. 

 

Figure 13: P&ID waterside (left) and airside (right) for Nijmegen school: AHU One 
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3 FDD BUSINESS LAYER 

The FDD business layer discussed in section 2.2.2 encapsulates core business logics. In other words, it’s the brain 

of the proposed AFDD tool. In line with the discussed method in section 2.2.2, the two key systems analysis steps 

namely fault impact analysis and sensor impact analysis are discussed in section 3.1 and section 3.2 respectively. 

For this analysis, the simulation models prepared for 5-zone building and Breda office (ref section 2.3) are 

utilized. The results from this step such as critical faults and sensors are directly utilized in the FDD processes 

discussed next.  

Several advanced AI methods have been utilized in the FDD business layer. Most demonstration of these 

techniques in published literature either utilize prepared datasets or datasets prepared using simulation models. 

Data collected from real buildings though is prone to uncertainty. Therefore, for ensuring a reliable development 

of this layer, a large set of verification and validation cases (ref section 2.3.2) have been considered. In total four 

case studies are utilized namely: Energy resource station, Hoofddorp office, Breda office and Nijmegen office. 

Initially, the trained fault detection models using a black-box approach are verified using Hoofddorp office and 

Energy Resource station buildings. Then for experimental validation of the trained detection and diagnostic 

models Breda office and Nijmegen office are utilized. In section 3.4, the developed fault detection models using 

XGBoost algorithm are presented. In section 3.5, the DBNs developed for the two validation cases are presented. 

In section 3.6, FDD business layer is concluded.   

3.1 FAULT IMPACT ANALYSIS 
Faults can be inexpensively modeled in a simulation environment to understand their impact on energetic and 

comfort performance. Several researchers in the past have demonstrated this approach at system and 

component level using various methods and simulation tools. Few of these approaches are summarized in Table 

8. Of the over 174 plus tools listed on International Building Performance Simulation Association (IBPSA’s) 

website, only a few possess fault modelling capabilities [23]. Further, a comprehensive review on these tools by 

[19] revealed advantages and higher capabilities of EnergyPlus [68].  Furthermore, the tool is being actively 

developed and offers several possibilities for co-simulation [70]. Upon careful evaluation of available options, 

EnergyPlus has been preferred for this project. The methodology utilized for fault impact analysis using 

EnergyPlus is discussed next in section 3.1.1. 

Table 8: Previous research fault impact analysis – buildings and HVAC domain 

Sr. 
No. 

Author 
& Year 

Topic 
Simulation 

Tool 
Summary 

1 [71] 
The Energy Impact of Faults 

in U.S. Commercial 
Buildings 

- 
Quantified impact of 13 different faults 

observed in US Commercial buildings and 
estimated their impact on a national level 

2 [72] 
A study on the energy 

penalty of various air-side 
system faults in buildings 

EnergyPlus 

Energy cost impacts of a range of common 
system faults in variable air volume (VAV). 

Use a 40 Storied building typical of one’s 
found in Hong Kong and study a total of 9 

VAV faults. 

3 [73] 
Modeling and simulation of 
HVAC faults in EnergyPlus 

EnergyPlus 

Characterize and prioritize common faults of 
HVAC equipment and control systems using 

a list of faults covered in an International 
Energy Agency (IEA) Report. Modeled a total 

of 19 faults. 

4 [23] 
Common Faults and Their 

Prioritization in Small 
Commercial Buildings 

EnergyPlus 
Studied and rank ordered a list of 20 top 

priority faults from a list of 39 faults found 
in US small commercial buildings 

5 [73] 

An innovative fault impact 
analysis framework for 

enhancing building 
operations 

EnergyPlus 

Studied a large set of 41 faults at Building 
level and quantified their impact across 

various weather scenarios. Also, provide an 
innovative framework for fault modelling by 
introducing fault probabilities into the fault 

model, and demonstrate the approach on 
typical US medium sized office building 
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6 [74] 

A holistic fault impact 
analysis of the high-

performance sequences of 
operation for HVAC 

systems: Modelica-based 
case study in a medium-

office building 

Modelica 

Focus on high-performance control 
sequences recommended by ASHRAE 

Guideline 36. Demonstrate fault impact 
analysis over 359 different scenarios across 
three operating conditions (cooling, heating 
and shoulder). Measure the adaptability of 

the proposed control sequences. 

3.1.1 Methodology 

For carrying out a fault impact analysis, a list of faults, a baseline model, and weather are three key 

considerations. Using studies carried out by [23,75], surveying published literature of nearly 20 years, a 

comprehensive list of 39 faults pertinent to AHUs is presented in APPENDIX B-Table 24. A baseline model is 

indicative of normal system behavior and is utilized as reference for comparison with fault models. The observed 

difference on selected energy and comfort indicators is quantified as the fault impact.  

For this project, the 5-zone building, and Breda office are included to understand and compare fault impact in a 

general and specific context.  Faults cause dissimilar impacts across different weather conditions [23]. To isolate 

this impact and understand the granularities, the fault impact analysis is split into peak (winter, summer) and 

shoulder (spring, autumn) weather periods observed at the location. The considered weather period for fault 

modelling is shown in Figure 14.  

  
Figure 14: Outdoor air Dry-bulb temperature and Relative Humidity conditions prevailing in the considered weather 

periods for fault impact analysis of 5-zone building 

3.1.2 Results and Discussion 

• 30 and 26 fault models are prepared for 5-zone building and Breda office respectively. Cooling coil and its 

valve related faults are not modeled for Breda office, as chiller control strategy does not allow its operation 

in the considered weather period (winter).  

• For the considered scenarios, the percentages of faults that cause nearly 80% of the energy performance gap 

are shown in Table 9. The observed results nearly follow the Pareto principle or the 80:20 rule [76]. This 

implies that vital few faults can be prioritized using this approach.  

Table 9: Percentages of faults that cause nearly 80% of the energy performance gap estimated through fault impact 
analysis 

5-zone building Breda office 
Peak weather period Shoulder weather period Peak winter period 

26.7% 30.0% 30.8% 
 

• The variation observed in normal vs faulty behavior is more prominent during shoulder months in 

comparison with peak weather months. This points towards utilizing more conservative thresholds for 

differentiating between faulty vs normal behavior during peak summer/winter months viz-a-viz shoulder 

months. 

• Although, the considered cases (5-zone building and Breda office) differ in their HVAC design and control 

strategy, the distribution of faults that cause largest impact doesn’t alter significantly.  

 



Chitkara, S. CM-FDD-HVAC 24 

 

Figure 15: Fault impact analysis with 5-zone building for shoulder weather period 

• Estimated fault impact of control or soft faults (Ref 2.2.2) such as stuck valve or fan, leaking valve, or sensor 

offset is larger than component faults such as performance degradation of fan motor or coil/duct/filter 

fouling. Therefore, control faults are prioritized for the development of the AFDD tool. 

• Amongst the control faults valve and fan related faults cause larger impact than sensor faults.  

The current fault impact analysis doesn’t account for fault occurrence that determines its frequency or 

prevalence [23].  Further, the faults are modeled with their behavior representative of a step function [23]. These 

are possible directions to improve the accuracy of carried out fault impact analysis. Since detailed fault impact 

analysis is not the main objective of this project, faults prioritized using the adopted method are proceeded with. 

3.2 SENSOR IMPACT ANALYSIS 
Varying kind and number of sensors are installed in buildings due to sensitivity of most building owners to costs 

during a building’s design phase [77]. Consequently, installed building sensors are limited to sensors important 

from control standpoint, and relatively expensive sensors such as flow rate, pressure, and power are often found 

missing [4]. This impedes the standardization and scalability of FDD approaches [21]. To this end, a survey of 

building practitioners by Zhang et al. discussed in [77] found that sensors for FDD carry the least level of 

importance. To understand the implications of these considerations on this project, a comparative analysis of 

available sensors at two case-studies (ref section 2.3.2) selected for FDD deployment namely Breda office and 

Nijmegen school is presented in Table 10. Here, the available sensors deployed at building are compared against 

list of sensors commonly observed on AHUs worldwide [78]. In Table 10, presented sensors are also 

differentiated between typical sensors, sensors that carry potential and high potential for FDD [78].  

Table 10: Comparative analysis Air-Handling Unit sensors 

Measurement 
Typical 

Sensors 

Highly 

potential 

Sensors 

Potential 

Sensors 

Breda 

office 

Nijmegen 

school 

Outside air temperature x   * x 

Mix air temperature x   * x 

Supply air temperature x   x x 

Heating coil outlet air temperature   x x x 

Cooling coil outlet air temperature   x x x 
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Return air temperature  x  x x 

Outside air humidity  x  * x 

Supply air humidity  x  x x 

Return air humidity  x   x 

Supply air duct static pressure x   x x 

Supply fan differential pressure  x   x 

Return fan differential pressure  x   x 

Supply airflow rate x   * x 

Return airflow rate  x   x 

Outdoor airflow rate   x   

Supply fan total power meter x     

Return fan total power meter x     

Supply fan speed signal x   x x 

Return fan speed signal x   x x 

Mixing box damper position signal x   x x 

Heating coil valve position signal x   x x 

Cooling coil valve position signal x   x x 

Heating coil water flow rate   x   

Cooling coil water flow rate   x *  

* Proposed and deployed during the project 

Sensor measurements inevitably are uncertain, and this uncertainty is heavily reliant on the kind (temperature, 

pressure etc.) and accuracy of the deployed sensors [79]. The former is unavoidable, however latter can be 

directly linked to cost of sensors [4]. Keeping this along with the need for limiting the size of Bayesian network 

(ref section 2.2.2) in view, it’s important to identify the most important sensors from FDD standpoint. Kim and 

Comstock et al. in [71 and 79], demonstrated a simulation model-based approach to measure the sensitivity of 

sensors to faults. Simulation models are helpful in overcoming the discussed limitations with sensors.  

3.2.1 Methodology 

Fault models discussed in section 3.1 have been utilized to understand impact of faults on various sensors. For 

quantifying this impact normalized mean-biased error (NMBE) has been selected as indicator [81].   

3.2.2 Results and Discussion 

The sensor impact analysis for peak weather periods carried out with 5-zone building and Breda simulation 

model is provided in APPENDIX B, whilst for shoulder weather period is presented in Figure 16. Upon comparing 

the results, it can be observed that amongst the sensors listed in Table 10, maximum impact is felt on the mass 

flow rate sensors deployed on the heating and cooling coils. Although, a highly potential sensor mass flow rate 

measurement is typically lacking in buildings and as is also the case at the considered building cases.  

Besides AHU sensors, to understand the impact in general some additional power measurements are also 

included in the sensor impact analysis. On these sensors too impact of faults is clearly observable and hence can 

be useful in the FDD process. However, power measurements can be quite exorbitant and hence are deployed 

seldomly [6]. The bifurcation of sensor impact across different weather periods (see Figure 14) showcases the 

lack of impact observed in peak weather situations, thereby making the FDD process difficult. Fouling of coils 

along with duct leakages are the hardest to detect amongst the considered list of faults. Either additional 

measurements or detection techniques that stretch beyond the utilized objective measurements are required for 

fault detection. Hence, these faults are not considered in this project. 

Besides mass flow rate, impact that is lesser in magnitude is observed across temperature measurements such 

as temperature at cooling or heating coil air outlet. These measurements are therefore considered as additional 

operational state symptoms (ref section 2.2.2). This way the sensor impact analysis using a simulation model is 

not just helpful for prioritizing the sensors but also for systematically identifying the symptom nodes that can be 

included in a DBN. The utilized approach can further reduce the dependency on experts for realizing a DBN.  
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Figure 16: Sensor impact analysis – 5-zone building – Shoulder weather period 

3.3 CONCLUSION – FAULT AND SENSOR IMPACT ANALYSIS 
Using a fault and sensor impact analysis, the uncertainty associated with using data collected from building 

measurements is overcome. Through simulation models, faults such as stuck valve or fouling are modelled in an 

inexpensive way, which otherwise would have been too energy or labor intensive to study. Further, studying 

leakage fault in a real-system is nearly impossible as it can directly compromise occupant health. Of the list of 39 

faults considered, a few vital faults are identified using the fault impact analysis. Similarly, using a sensor impact 

analysis from the possible list of 50 plus considered sensors, some key sensors are shortlisted.  

Based on the systems analysis for AHU, following choices have been made for development of the AFDD tool: 

• Control faults have been prioritized over component faults such as performance degradation. The prioritized 

list of faults includes stuck or leaking control valve, fouled duct, fouled or broken filter, stuck or complete 

fan failure, sensor offset and inappropriate supply air setpoints.  

• Mass flow rate measurement along with some key temperature measurements (for example temperature 

after cooling/heating coil) are prioritized for developing the FDD strategy further.  

• Of the four faults discussed in for the heat recovery wheel in APPENDIX B-Table 23, control faults including 

VFD bypass and control faults have been prioritized after consultation with stakeholders and project partner 

(System Air). Frosting fault has been excluded given availability of an override within BAS to tackle this. 

Fouling/Scaling fault has been deprioritized due to reasons discussed in section 3.2.2. Using the discussed 

simulation approach, leakage fault can be modelled, and an accurate diagnosis model can be prepared. This 

is recommended for future work. 

3.4 FAULT DETECTION  
For fault detection, a reference benchmark is obtained by training a model using historical data collected at the 

site. The trained model has then been utilized to compare the actual measurement with the predicted value to 

generate a residual. This process of fault detection is commonly referred to as regression-based approach [4] 

and is shown in Figure 17. 
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Figure 17: Regression-based fault detection [4] 

In this project, XGBoost framework has been utilized in the offline model training process (see Figure 17) given 

its superior performance [28,29,82]. XGBoost is a scalable and end-to-end machine learning framework for 

boosted trees [55]. Its success is attributable to popular machine learning theory that multiple weak learners 

perform better than a single strong learner. In its implementation with decision trees, multiple simultaneous 

trees are populated much like random forest, and then the predictions from each of these trees are iteratively 

improved to minimize a loss function such as a squared-error loss or in other words mean squared error. The 

simplified version of objective function for the algorithm is shown in equation (1) [55]. 

ℒ̃ (𝑡) = ∑[𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖] + Ω(𝑓𝑡)

𝑛

𝑖=1

 

(1) 

Here, the first term comprises of the first and second order gradient statistics or the gradient and the hessian of 

the convex loss function. The second term Ω is the regularization parameter that penalizes the complexity of the 

model and helps with its generalization process. The XGBoost implementation allows for the objective function 

to be customized for different loss functions from its default squared loss error to log-loss or logistic in line with 

the learning objective. Further, to account for the bias-variance trade-off multiple hyperparameters have been 

provided to regularize the complexity of the model. The complete list of hyperparameters is provided in [83]. 

Typically, random or grid search methods are employed to find the best combination of hyperparameters. 

Despite their advantages, random or grid search methods are more intuition driven than model driven hence 

making the process of hyperparameter tuning less scalable. R. Shi et al. in  [84] utilized a sequential model-based 

optimization (SMBO) that uses Bayesian optimization updates the hyperparameters in an informed manner. This 

makes the process more generalizable and less resource intensive. Model driven hyperparameter tuning process 

is utilized in this project.  

For developing an accurate model, feature selection is of paramount importance. Using minimal features is key 

to preventing model from overfitting and reducing its complexity. To select relevant features for the model the 

adopted framework is shown in Figure 18. Besides, the available sensed information new features are 

engineered. Then, using an iterative process unimportant features are dropped. The process begins with a coarse 

feature selection [85]. In this step, multi-collinear features are filtered out using Pearson Correlation Coefficient 

(PCC) scores. It is followed by a wrapper-based feature selection method known as recursive feature elimination 

and cross validation (RFECV). This algorithm recursively eliminates features that carry less impact on the model 

performance measured using cross-validation [86]. The wrapper-based method follows the coarse feature 



Chitkara, S. CM-FDD-HVAC 28 

selection process as it is computationally expensive and compensates for the uncertainty associated with coarse 

method [85]. Lastly, Shapley additive explanations (SHAP) framework is invoked for dropping features further 

[87].  

 

 

Figure 18: Feature selection framework 

Black box models such XGBoost are often difficult to interpret due to the non-linear relationships explored within 

these models. SHAP is a game theory based explainable AI framework, that is helpful for interpreting a trained 

black-box model. Using SHAP, features that increase model complexity can be removed using an objective 

evaluation, which improves the model’s reliability and generalizability. At its core, lie the shapley values which 

are an average of marginal contribution of all permutations of features/predictors supplied to a model. SHAP is 

an extension of shapley values that offers local as well global explanations for a predictor. This implies that each 

prediction made by the model can be individually interpreted, which makes this approach very powerful.  

A baseline model is trained using the features selected with RFECV and multiple candidate models are trained 

by iteratively dropping features identified as less importance using SHAP. Candidate model with minimal 

possible but adequate number of features are selected to prevent uncertainty in sensor measurements from 

carrying into the inference process. 

3.4.1 Valve position prediction model 

In the sensor impact analysis discussed in section 3.2, it was identified that mass flow rate measurement can be 

utilized a key performance indicator for the considered faults. However, as identified in Table 10, mass flow rate 

is not a commonly deployed measurement in AHUs. This also holds true for the case studies considered, except 

Breda office where a mass flow rate sensor has been deployed as part of this project. To overcome this challenge 

and keep the FDD strategy generalizable, valve position has been utilized as a proxy for mass flow rate 

measurement. The relationship between the two variables is explained in APPENDIX B-Figure 44.  

Using the discussed XGBoost framework, cooling and heating coil valve prediction models are prepared. For 

verification of the complete fault detection approach Energy Resource Station and Hoofddorp office case studies 

(see APPENDIX B) are utilized. The available datasets deployed at these sites have been partitioned to prepare 

training and test sets. The accuracy of the trained XGBoost models is quantified using the key performance 

indicators such as R2 Score, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Cross-Validation 

Root Mean Squared Error (CV-RMSE) and reported in Table 11 [29,81]. 
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Table 11: Results from verification of trained XGBoost models for valve position prediction 

Case-Study 
Building Name 

Energy resource 
station 

Hoofddorp office 
Energy resource 

station 
Hoofddorp office 

Cooling/Heating 
Valve Position 
Prediction Model 

Cooling Coil Valve 
Position Prediction 

Heating Coil Valve 
Position Prediction 

Heating Coil Valve 
Position Prediction 

Heating Coil Valve 
Position Prediction 

AHU Reference AHU B AHU 2 AHU B AHU 2 

Data Sampling 
frequency 

1 min 8 mins 1 min 8 mins 

# Training 
samples 

8606 
 

9190 10257 56095 

# Test samples 2151 9190 2565 14024 

Test Scores 
R2 Score: 0.93 
RMSE [%]: 2.89 
CV-RMSE 0.06 

R2 Score: 0.88 
RMSE [%]: 6.79 
CV-RMSE 0.08 

R2 Score: 0.971 
RMSE [%]: 0.643 
CV-RMSE: 0.033 

R2 Score: 0.902 
RMSE [%]: 5.252 
CV-RMSE: 0.221 

 

As part of the ASHRAE’s RP-1312A project, fault experiments were carried out over three seasonal periods 

between 2007-2008 at Energy resource station building [66,88,89]. Experiments carried out in summer of 2007 

between August 19th and September 09th are utilized for verifying the complete fault detection process. Here, two 

Air-Handling Units (AHU-A&B) shown in APPENDIX B - Figure 47  were operated simultaneously, wherein AHU-

B operated in normal condition whilst faults were introduced in AHU-A. Since, both AHUs supply conditioned air 

to identical thermal zones and are of the same capacity, learned parameters of XGBoost model trained for AHU-

B transfer to AHU-A.  

 The residual between measured and predicted values is utilized to detect faults. Further, a threshold of ±10% 

on 0-100% scale has been utilized. Since the fault labels are known apriori the detected fault label is compared 

with the true label and the results are plotted on a confusion matrix shown below in Figure 19. Setting the 

threshold at a high of ±10% results in specificity exceeding 97%, however compromising the sensitivity of the 

detection algorithm. To balance this trade-off, threshold can be tuned by plotting a Receiver Operator 

Characteristics (ROC) curve as shown in APPENDIX A-Figure 56. To this end, a dynamic threshold setting method 

has also been explored and discussed in APPENDIX A. The dynamic threshold method showed encouraging 

results and has hence been recommended for future improvements over the fixed threshold method utilized in 

this project.  

 

Figure 19: Confusion matrix for fault detection using the developed model  
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The introduced feature selection framework has been utilized for selecting the final list of features utilized for 

XGBoost model training. The features selected at each stage of the process are listed in Table 12. The last step of 

the feature selection process (see Figure 18) using SHAP is presented in APPENDIX A-Figure 58. 

Table 12: Feature selection for Breda office: North zone cooling coil valve position prediction model 

 #Features Feature Names 
AHU Features 
available from 
building automation 
system 

19 Outside temperature (North East, South-West), Chiller leaving 
water temperature, Chiller entering water temperature, Chiller 
weighted leaving water temperature, Supply air temperature north, 
Calculated supply air temperature north, Calculated return air 
temperature north, Return air temperature north and canteen, 
Supply air temperature central AHU, Room temperature canteen, 
Relative humidity central AHU, Average static pressure supply air 
channel, Delta pressure over return air filter, Absolute humidity 
central AHU supply air, Supply fan speed, Return fan speed, Supply 
air setpoint,  

Engineered Features 5 hour of day, day of week, day of year, week of year, month 
Total Features 24 
Features dropped 
using PCC 

1 Supply air temperature  

Features Selected 
Using RFECV 

- None 

Feature Selected Using 
SHAP 

7 Supply air temperature (central AHU) 
Chiller entering water temperature 
Supply air temperature setpoint (Zone north) 
Supply air temperature setpoint (central AHU) 
Chiller leaving water temperature 
Supply air pressure 
Week of year 

Final Features 7 Supply air temperature (central AHU) 
Chiller entering water temperature 
Supply air temperature setpoint (Zone north) 
Supply air temperature setpoint (central AHU) 
Chiller leaving water temperature 
Supply air pressure 
Week of year 

 

Since, the developed fault detection models are trained with historical data there is a certain lead time before 

such models can be deployed in operation. To identify the lead time required for training such models, three 

cases namely Hoofddorp office, Breda office and Nijmegen office have been considered. Here, the models are 

iteratively trained with datasets partitioned over varying time horizons (month for Hoofddorp and Breda; weeks 

for Nijmegen). This variation is synonymous with the length of available dataset. For example, data from 

Hoofddorp building is available since 2011, and hence has been partitioned in months, whereas data from 

Nijmegen is only available since March 2020 and has been partitioned in weeks. Starting with dataset from first 

available time horizon, at each iteration the length of dataset utilized for training is increased by one. For 

instance, if dataset is partitioned in weeks, then first iteration involves training with dataset from first available 

week and second iteration involves training with data from first week and next available week. This way, it was 

identified that to train an accurate cooling coil valve position prediction models data from at least 20 weeks or 

nearly a complete cooling season in the Netherlands would be ideal. The results detailing these experiments are 

presented in APPENDIX A (Figure 59 and Figure 60). 

Using the discussed XGBoost algorithm, cooling and heating valve position models are trained for Breda office 

and Nijmegen school. The scores of these models on the performance indicators discussed previously are 

tabulated in Table 13. Between the heating and cooling valve position prediction models, it can be observed that 

heating coil valve position prediction models have better performance scores. Given this better fit and higher 

accuracy, these models can be utilized with lower thresholds for fault detection and hence are useful for 

identifying faults with lower severity. On the CV-RMSE indicator scores of all trained models is less than 0.3, and 

hence it can be said that they are useful for engineering applications and are proceeded with further for fault 

diagnosis[29].  
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Table 13: Accuracy metrics for the trained ML models for heating and cooling valve prediction 

Model Site AHU  Key Performance 
Indicator 

Score 

Cooling 
Coil Valve 
Position 

Breda office North Zone Cooling Coil 

R2 Score 0.94 
MAE [%] 2.63 
RMSE [%] 4.86 
CV-RMSE 0.11 

Nijmegen school AHU One 

R2 Score 0.98 
MAE [%] 2.65 
RMSE [%] 4.25 
CV-RMSE 0.09 

Heating 
Coil Valve 
Position 

Breda office Central AHU Heating Coil 

R2 Score 0.99 
MAE [%] 0.98 
RMSE [%] 2.18 
CV-RMSE 0.05 

Nijmegen school AHU One 

R2 Score  0.99 
MAE [%] 0.91 
RMSE [%] 1.72 
CV-RMSE 0.02 

 

3.4.2 HRW supply temperature and relative humidity prediction models 

To measure the effectiveness of heat exchange process, several key performance indicators (KPIs) such as 

effectiveness measured for latent, sensible, enthalpy exchange or number of thermal units (NTUs), moisture 

removal rate (MRC), dehumidification coefficient of performance (DCOP) have been utilized in literature. These 

KPIs have been summarized in Table 14. KPIs such as MRC, and DCOP are more relevant for desiccant type 

wheels, whilst KPIs such as effectiveness or UA (conductance area) are indicative of fouling/scaling of heat 

recovery wheels. Therefore, given the type of heat wheel, its KPIs can be set and continuously monitored for 

tracking its performance. Theoretically, each of these KPIs can be utilized in the fault detection process. In Table 

14, these KPIs are further classified using the symptom classification approach proposed in the 4S3F framework. 

Table 14: Key performance indicators – Rotary heat exchanger 

# KPI Symptom classification as per 4S3F Reference 

1 Effectiveness (T/Rh/Enthalpy) * Balance symptoms [90–99] 

2 NTU Balance symptoms [99] 

3 Conductance-area product (UA) * Balance symptoms [100] 

4 Temperature difference / LMTD * Balance symptoms [100] 

5 Heat transfer rate * Balance symptoms [100] 

6 Frost formation boundary/Absolute Humidity  Operation State symptoms [101] 

7 Moisture removal capacity (MRC) ** Balance symptoms [94,102] 

8 
Dehumidification coefficient of performance 
(DCOP) ** 

Energy Performance symptom [102] 

*   FDI – Fouling Detection Indicator 

** Relevant for desiccant HRWs 

 

To model the HRWs, white and black box approaches have been utilized. These approaches have been 

summarized in APPENDIX A-Table 34. White box approaches typically range from reduced to complex numerical 

models that focus on emulating the heat transfer character within some constraints. This is a key limitation of 

this approach as the resulting model is either too specific (to its geometric construction or desiccant properties) 

to the underlying system or can only predict its behaviour in a narrow operational range. Black-box models on 

the other hand can overcome these issues, however, require training datasets and are often difficult to interpret. 

Black-based models have been successfully utilized for modelling HRWs (ref APPENDIX A-Table 34). Most of 

these models try to predict the temperature and/or relative humidity at the supply side outlet of the HRW. 

Madhikermi et al. in [103] compared neural networks and support vector machines for fault detection in HRWs 

and explained their black-box model with framework called LIME (an alternative to SHAP utilized in this project).  
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Using the XGBoost framework introduced, temperature and relative humidity at the supply outlet of HRW are 

predicted for AHU One at Nijmegen school (ref section 2.3.2). These models are prepared using measured air 

temperature and relative humidity in the suction, supply and return streams along with air velocity 

measurements. The SHAP contributions of the various features utilized for Temp prediction model is shown in 

Figure 20. Using these SHAP values it can be said that for the trained model contribution of return temperature 

and suction air temperature is considerably higher than other features, which is expected given the energy 

balance equation (2). The impact of return air temperature is explored further and the dependence of the model 

on this feature is plotted on Figure 21 

 

Figure 20: Feature impact for predicted suction air post HRW temperature computed using SHAP for AHU One 

In Figure 21, the dependence of predicted suction air post HRW is explained with return air temperature. On the 

secondary Y-axis SHAP automatedly selects the feature that carries highest correlation with the independent 

feature. Expectedly, as the return air temperature increases so does the supply air temperature. This way the 

opaqueness of the trained XGBoost model can be reduced, and the dependence of the model on its features can 

be studied in detail. Also, the most important features (see Figure 20) can be tracked for issues such as drift to 

ensure the predictions made using such a model are correct. This is discussed further in APPENDIX E. 

 

Figure 21: Explainability of black-box model using SHAP – Dependence of predicted suction air post HRW on return air 
temperature 

Key: 

temp – Temperature 

rh – Relative Humidity 

ah – Absolute Humidity 

cc – cooling coil 

hc – heating coil 
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In line with the discretization strategy discussed previously, separate black-box models have been developed for 

heating and cooling mode operation of the AHU. Outdoor temperatures less than 18°C and complete range of 

HRW control have been considered for heating mode operation. The complete rules utilized for determining the 

operation modes are provided in APPENDIX A. Model features and targets are split in 80:20 ratio for training and 

testing purpose. From the suction air and return air streams conditions shown in Figure 22, it can be observed 

that a wide DBT operation has been considered for testing the model.  

Figure 22: Dataset utilized for testing the HRW temperature and relative humidity prediction models for heating 
mode operation of AHU one  (supply air condition indicated in red and return air condition indicated with purple)

The results from testing the model performance are summarized in Table 15. Using the discussed approach 

models have been trained for AHU One deployed at Nijmegen school and Breda office. The performance of these 

models on the selected performance indicators is tabulated in Table 15 for comparison. It can be observed that 

highly accurate models that can explain more than 93% variability in the test sets are trained. On comparing the 

models, it is observed that model trained for Breda office are slightly less accurate than model for Nijmegen 

school. At Breda office new sensors were proposed during the project and were installed in February 2022. 

Therefore, these models could only be trained with very limited data. Despite this limitation, the models are 

accurate enough to distinguish between faulty and normal operation as observable in APPENDIX A-Figure 69. 

Further, using the CV-RMSE indicator, these models have been found useful. Although, the usefulness of these 

models for fault detection needs to be ascertained and is discussed next.   

Table 15: Fault detection models trained for HRW supply temperature, relative humidity prediction 

Model Site AHU Key Performance 
Indicator 

Score 

Supply 
Temperature 
Prediction 

Nijmegen school AHU One 

R2 Score 0.98 
MAE [°C] 0.18 
RMSE [°C] 0.35 
CV-RMSE 0.02 

Breda office Central AHU 

R2 Score 0.96 
MAE [°C] 0.41 
RMSE [°C] 0.80 
CV-RMSE 0.04 

Supply Rh 
prediction 

Nijmegen school AHU One 

R2 Score 0.99 
MAE [%] 0.95 
RMSE [%] 1.54 
CV-RMSE 0.03 

Breda office Central AHU R2 Score 0.93 
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MAE [%] 0.98 
RMSE [%] 2.53 
CV-RMSE 0.09 

 

The usefulness of the developed models for fault detection is understood by understanding their ability to 

generate an analytical symptom (ref section 1.1). This ability to generate symptoms is determined visually by 

observing the mean and variance spread of the residual generated using these models. In Figure 23, impact on 

multiple possible symptoms such as residuals between predicted and measured temperature (temp_residual) 

and relative humidity (rh_residual); residual between measured temperature and its setpoint at HRW supply 

outlet (temp_sp_residual); temperature (temp_eff) and humidity efficiencies (moist_eff) discussed in Table 14 

are presented. Two control faults (ref APPENDIX B-Table 23) a) HRW failure and b) HRW operated with 

bypassed rotational control have been introduced. Details for these faults are provided in APPENDIX A-Table 35. 

In Figure 23, upon comparing data from faulty (indicated with maroon) and fault free operation (indicated with 

peach) residuals generated using the developed prediction models are clearly distinguishable and can be 

isolated. Further, as anticipated the two control fault events generate residuals that are centred on either side of 

mean residual. This information is helpful towards setting rules for fault diagnosis. Impact of faults is also 

observable on the utilized HRW KPIs, and hence these are included in the application (ref section 4.2.1).  

 

Figure 23: Symptom impact analysis for Nijmegen school: Operation of Heat Recovery wheel during heating mode 

3.5 FAULT DIAGNOSIS  
Using the introduced 4S3F framework, the developed DBN models evolve from the P&I diagram. Further, the 

development of DBNs for the AHU has been discretized. It implies that separate DBNs have been prepared for 

cooling and heating mode operation of the AHU. These DBNs are then activated using the control strategy 

deployed at the AHU (ref section 2.3). In this section the developed DBN models for the two validation cases are 

first described and then results from their experimental validation are presented. In section 3.5.1, the DBNs for 

cooling mode operation of the considered AHU cases are discussed, whilst section 3.5.2 contains description and 
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validation of DBNs for heating mode operation. In section 3.5.3, DBN utilized for diagnosis of HRW faults is 

presented. 

3.5.1 Cooling mode operation 

The P&I diagram for the zone North & Canteen of Breda office is shown in Figure 12: P&ID Breda office – central 

AHU and North zoneFigure 12. The DBN model that emanates from this P&I diagram is shown in Figure 24. In 

this figure, the fault nodes are depicted in purple, wherein the Airflow fault node is an abstraction for upstream 

air side faults in components such as ducts, fans, or filters that can alter the supplied airflow to the zone.  Reduced 

supply air temperature (SAT) and cooling coil valve (CCV) Stuck nodes depict reduced setpoint and cooling coil 

control valve stuck faults respectively. Airflow fault node and CCV Stuck fault nodes encapsulate three fault 

scenarios that are higher and lower than desired condition or fault-free condition. Whereas Reduced SAT node 

encapsulates only two fault scenarios namely fault present or fault-free. The higher and lower fault conditions is 

additional information that further describes the fault present condition and is helpful for building manager in 

understanding the impact of the fault. 

 

Figure 24: DBN for cooling mode operation – North & Canteen zone at Breda office 

The symptom nodes are generated using a combination of multiple modelling approaches. The rules for passing 

evidence to the symptom nodes are provided in Table 16. The airflow comparison node and CCV prediction nodes 

are activated using predictions from a statistical model and machine learning model respectively. Here, the 

airflow prediction is made using an exponentially weighted moving average (EWMA) model [104]. The EWMA 

model predicts the air velocity based on a historical moving average and is tuned to identify abrupt variations in 

airflow. A moving average prediction is utilized in comparison with design airflow condition, as air flow in nearby 

Zone 105 is modulated to meet a CO2 setpoint and hence the usual constant air volume supplied to the zone 

varies in magnitude. For predicting the cooling coil valve position the discussed XGBoost model (ref section 3.4.1) 

has been utilized. 

Table 16: Symptom Nodes description for cooling mode DBN – Breda office 

# Symptom Node Symptom State Rules for setting the state 

1 Airflow Comparison 

High Fact-Fpred >Θ 

Low Fact-Fpred<-Θ 

Fault-free Fact-Fpred<=Θ 

2 SAT Desired Comparison 
Negative Tset-Tset,des<-Θ 

Fault-free Tset-Tset,des<=Θ 

3 CCV Prediction 

Positive Xccv-Xccv,pred>Θ 

Negative Xccv-Xccv,pred<-Θ 

Fault-free Xccv-Xccv,pred<=Θ 
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# Symptom Node Symptom State Rules for setting the state 

4 RAT Setpoint Comparison 

Positive Tra-Tra,set>Θ 

Negative Tra-Tra,set<-Θ 

Fault-free Tra-Tra,set<=Θ 

5 SAT Setpoint Comparison 

Positive Tsa-Tsa,set>Θ 

Negative Tsa-Tsa,set<-Θ 

Fault-free Tsa-Tsa,set<=Θ 

Key: F - Flow Rate in m3/s, T - Temperature in °C, X - Control Position in %, Θ - Threshold, act - Actual, pred - 

Predicted, ccv - Cooling coil valve, des - Desired, sa - Supply air, ra - Return air, set – Setpoint 

For experimental validation of the developed diagnosis model, several experiments were carried out wherein 

faults were artificially introduced.  Faults shown in DBN (see Figure 24) were introduced between 23rd June 2021 

and 20th August 2021. The chronology of these experiments is provided in APPENDIX A-Table 27. Besides 

introducing different faults, same faults with varying severities are also introduced to understand precision of 

the diagnosis approach.  

On 16th July 2021, an experiment was carried out and a stuck valve fault was introduced in the north zone cooling 

coil at Breda. The position of the three-way control valve that regulates the flow was fixed at 75% at 15:30 in the 

afternoon using a BMS override. It can be observed from Figure 25 that the predicted valve position deviates 

significantly from the measured actual valve position post introduction of this fault and generates a residual 

exceeding +30%. This activates the CCV Prediction node and SAT Setpoint Comparison nodes (see Table 16). 

Consequently, the probability measure of the fault state (Positive Stuck) changes from a low (<5%) to a high 

likelihood (~70%) of fault presence.  

 

Figure 25: Stuck valve fault experiment at Breda office on 16th July 2021 

The computed posterior probabilities for all introduced faults at various severities are summarized in Table 17. 

It can be observed that across multiple severity scenarios’ fault presence is successfully diagnosed.  

Table 17: Computed posterior probability using DBN model developed for Breda office 

Fault Severity Computed Posterior Probability 

Stuck Valve 
Stuck at 50% open 0.68 
Stuck at 75% open 0.68 

Reduced SAT 
16℃ 0.88 
17℃ 0.88 

Lower Airflow 
60% of maximum speed* 0.93 
70% of maximum speed* 0.93 

Higher Airflow 100% of maximum speed* 0.93 
*Typically, the fan operates at 85% of maximum speed 
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 The long-term operational performance of the developed DBN (see Figure 24) along with the contributing faut 

detection models have been tested over an experimental period between 23rd June 2021 and 20th August 2021. 

During this period a mix of fault and fault-free days (on days no fault experiment is carried out) are considered. 

The confusion matrix in Figure 26 showcases the accuracy and robustness of the developed fault diagnosis 

strategy. 

 

Figure 26: Experimental validation - Confusion Matrix – North and Canteen zone at Breda office - Cooling mode 
operation 

Based on the number of true/false positive and negatives recorded, some KPIs that quantitatively indicate 

performance of the developed FDD business layer are computed [105]. Precision, Recall/Sensitivity, and 

Specificity are indicative of the quality of diagnosis, whilst labelling accuracy is indicative of the overall diagnosis 

accuracy. The formulas for computing these metrics are provided in APPENDIX A. Labelling Accuracy implies if 

the diagnosed label and the true label are the same. Sensitivity and Specificity are frequently utilized in medical 

diagnosis to compare quality of tests [106].  

Table 18: Experimental validation of developed DBN models for cooling mode operation  

Case Study Period  Results 

Breda Office 23rd June 2021 to 20th August 2021 

Precision 82.1% 
Recall/Sensitivity 67.2% 
Specificity 92.0% 
Labelling Accuracy 83.2% 

Nijmegen school 01st July 2020 and 31st August 2020 

Precision 83.3% 
Recall/Sensitivity 84.5% 
Specificity 94.5% 
Labelling Accuracy 92.1% 

 

Using similar approach as adopted for Breda office, experimental validation of the diagnosis model developed 

for Nijmegen school is carried out. The developed DBN model and detailed results for Nijmegen school are 

provided in APPENDIX A. The computed performance indicators for both Breda office and Nijmegen school are 

tabulated in Table 18. Comparing the two outcomes, a high diagnosis specificity exceeding 90% is realized over 

a long-term testing period spanning nearly 2 months. A sensitivity of nearly 85% is realized with the DBN model 

deployed at Nijmegen, whilst the DBN model for Breda office is tuned to realize a high specificity. It should be 

noted though that the DBN model at Breda is exposed to varying fault conditions (ref APPENDIX A-Table 27) in 

comparison with Nijmegen school. Despite the lower sensitivity, the DBN model at Breda office can successfully 

identify all fault conditions although with a time delay. This delay is a consequence of the utilized fixed thresholds 

in the fault detection process. This can be addressed if required by using dynamic thresholds for early detection 

(ref APPENDIX A). The traded-off sensitivity is accepted since it’s found high enough to diagnose the faults 

considered. Further, the high specificity addresses a key concern of building managers regarding reliability of 

the FDD system (see Table 3). Further, a positively diagnosed condition in a test with high specificity is helpful 
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in ruling in the disease. It implies that a positive diagnosis of fault with the algorithm would impute a very high 

confidence in fault presence, thereby warranting corrective action to prevent energy waste.  

3.5.2 Heating mode operation 

The heating mode operation for the AHU is its sequence of operation wherein supply air is heated by pumping 

hot water through the heating coil to meet the desired supply temperature. The rules for filtering this sequence 

of operation along with the rules utilized for cooling operation are provided in APPENDIX A. The P&I diagram 

for central AHU deployed at Breda office is shown in APPENDIX B-Figure 48. Using this P&I, the developed DBN 

model is shown in Figure 27. In comparison with the DBN for cooling mode operation, a single DBN model is 

developed as opposed to discretized DBNs for each of the zones. This is since discretization doesn’t offer any 

advantage in this case. 

 

Figure 27: DBN for heating mode operation - Breda office 

As with the DBN shown in Figure 24, Airflow fault node is an abstraction for the air side faults in components 

such as ducts, fans, or filters that can alter the supplied airflow. Increased supply air temperature (SAT) and 

heating coil valve (HCV) Stuck nodes depict increased setpoint and heating coil control valve stuck faults 

respectively. For the heating mode operation prioritized sensor faults (see APPENDIX B-Figure 55)  such as SAT 

sensors deployed in North & South Zones and supply water temperature (SWT) sensor faults are also included. 

Except Increased SAT node, all other fault nodes encapsulate three fault scenarios that are higher or lower than 

desired condition or fault-free condition. Increased SAT node encapsulates only two fault scenarios namely fault 

present or fault-free. The higher and lower fault states provide additional information on the fault present 

condition. 

The symptom nodes for the DBN are generated using a combination of modelling approaches. The rules for 

passing evidence to the symptom nodes are provided in Table 19Table 16. The airflow comparison node and 

HCV prediction nodes are activated using predictions from a statistical model and machine learning model 

respectively. For predicting the heating coil valve (HCV) position the discussed XGBoost model (ref section 3.4.1) 

has been utilized. For each of the fault node, HCV position prediction is the common symptom node, whilst an 

additional node symptom node that compares the measured value against its controlled reference is considered. 

Through data analysis it was noted that comparison of supply water temperature node with its setpoint was not 

sufficient for generating residuals, given the available tolerance in its PID control. Therefore, a supply water 

temperature prediction has been generated using an XGBoost model, that approximates the master slave 

relationship between the valve position and supply water temperature (ref section 2.3.2 for details on control 

strategy). The noisy max simplification discussed in section 2.2.2, is utilized for HCV position prediction node 

given it carries multiple parent nodes. Otherwise, it would have been nearly impossible to compute the complete 

marginal over this distribution.  
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Table 19: Symptom Nodes description for heating mode DBN – Breda office 

# Symptom Node Symptom State Rules for setting the state 

1 Airflow Comparison 

High Fact-Fpred >Θ 

Low Fact-Fpred<-Θ 

Fault-free Fact-Fpred<=Θ 

2 SAT Desired Comparison 

Positive Tset-Tset,des>Θ 

Negative Tset-Tset,des<-Θ 

Fault-free Tset-Tset,des<=Θ 

3 HCV Position Prediction 

Positive Xhcv-Xhcv,pred>Θ 

Negative Xhcv-Xhcv,pred<-Θ 

Fault-free Xhcv- Xhcv,pred<=Θ 

4 
SWT Prediction 

Comparison 

Positive Tsw-Tsw,pred>Θ 

Negative Tsw-Tsw,pred<-Θ 

Fault-free Tsw-Tsw,pred<=Θ 

5 SAT Setpoint Comparison 

Positive Tsa-Tsa,set>Θ 

Negative Tsa-Tsa,set<-Θ 

Fault-free Tsa-Tsa,set<=Θ 

6 
North Zone SAT Setpoint 

Comparison 

Positive Tnsa-Tnsa,set>Θ 

Negative Tnsa-Tnsa,set<-Θ 

Fault-free Tnsa-Tnsa,set<=Θ 

7 
South Zone SAT Setpoint 

Comparison 

Positive Tssa-Tssa,set>Θ 

Negative Tssa-Tssa,set<-Θ 

Fault-free Tssa-Tssa,set<=Θ 

Key: F - Flow Rate in m3/s, T - Temperature in °C, X - Control Position in %, Θ - Threshold, act - Actual, pred - 

Predicted, hcv - Heating coil valve, des - Desired, sw- Supply water sa - Supply air, ra - Return air, set – Setpoint, 

ssa- South Supply air, nsa- North Supply air 

For experimental validation of the developed diagnosis model, several experiments were carried out wherein 

faults were artificially introduced.  Faults shown in DBN (see Figure 27) were introduced between 18th October 

2021 and 09th December 2021. The chronology of these experiments is provided in APPENDIX A.  

To understand the long-term performance of the developed model, a period between 15th October 2021 and 31st 

December 2021 is considered. The confusion matrix shown in Figure 28 showcases the accuracy and robustness 

of the developed fault diagnosis strategy. 

 

Figure 28: Experimental validation - Confusion Matrix - Breda office - Heating mode operation 

Using similar approach as Breda office, experimental validation has been carried out at Nijmegen school. The 

results for this are provided in 84APPENDIX A. The computed performance indicators for both Breda office and 

Nijmegen school for heating mode operation are tabulated in Table 20. As with cooling mode operation the 
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diagnosis specificity has been traded off with its sensitivity to reduce the number of false positives and a highly 

specific (>90%) model has been developed. The precision in the case of Nijmegen school is lower given the 

imbalance of positive and negative labels in the considered datasets. Only 1% of all the considered samples 

belong to faulty operation or in other words are true positive samples. In both cases, it has been observed that a 

lot of false positives are encountered during system start-up. To address this issue, an additional fault 

confirmation layer has been programmed, that counts a positive diagnosis only when three consecutive positive 

results are obtained. As samples in the CMS are collected every 8 minutes, this implies that fault condition is 

confirmed as positive only if it persists for 20 minutes or more.  

Table 20: Experimental validation of developed DBN models for heating mode operation  

Case Study Period  Results 

Breda Office 
15th October 2021 to 31st December 
2021 

Precision 58.7% 
Recall/Sensitivity 67.3% 
Specificity 90.5% 
Labelling Accuracy 86.7% 

Nijmegen school 01st July 2020 and 31st August 2020 

Precision 31.6% 
Recall/Sensitivity 66.7% 
Specificity 98.4% 
Labelling Accuracy 98.0% 

 

A robust diagnosis strategy would involve not only identification of faulty operation but also ability to isolate the 

faults from each other. To this end, the isolability of the diagnosis algorithm has been assessed and summarized 

in plot shown in Figure 29. Viewing across the diagonal from the bottom right, it can be observed that nearly all 

faults are successfully isolated and labelled correctly. In percentage terms, Airflow fault is misdiagnosed as fault 

free most often. This is since, the fault uses an EWMA model, that has been tuned for early diagnosis which is 

acceptable. The increased SAT fault exhibits similar symptoms are SWT sensor fault and hence, there it is 

sometimes misdiagnosed as SWT sensor fault. Under such an event, knowledge of the building engineer can be 

utilized by providing probabilistic outcomes and evidence of both faults. The true negatives are mostly 

encountered after fault has developed and persists in the system. To overcome such situation early diagnosis 

and early correction is recommended. 

 

Figure 29: Isolability of the DBN model developed for Breda office’s heating mode operation 
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3.5.3 Heat Recovery Wheel 

Despite there being some research towards fault detection of HRWs [107], there are no demonstrable literature 

examples for fault diagnosis of HRWs. Through, this project a first model for HRW control fault diagnosis has 

been developed using the energy balance symptoms (ref section 2.2.2) of the 4S3F framework. The temperature 

and relative humidity prediction models discussed in section 3.4.2, are considered as energy balance symptom 

nodes of the DBN shown in Figure 30. 

 

 

Figure 30: DBN for HRW - Nijmegen school 

In the shown DBN for Nijmegen school (see Figure 30) besides the balance symptoms an additional operational 

state symptom node in SAT setpoint comparison has been included that measures the deviation of suction air 

temperature post HRW from its setpoint. Rules for generating symptoms through these nodes are tabulated in 

Table 21. Discretized symptoms such as positive, negative, or fault-free are generated using set thresholds 

determined through experiments. 

Table 21: Symptom node description for HRW DBN – Nijmegen school 

# Symptom Node Symptom State Rules for setting the state 

1 
Relative Humidity 

Prediction 

Positive Rhact-Rhpred>Θ 

Negative Rhact-Rhpred<-Θ 

Fault-free Rhact-Rhpred<=Θ 

2 
Temperature (Temp) 

Prediction 

Positive Tact-Tpred>Θ 

Negative Tact-Tpred<-Θ 

Fault-free Tact- Tpred<=Θ 

3 SAT Setpoint Comparison 

Positive Tact-Tset>Θ 

Negative Tact-Tset<-Θ 

Fault-free Tact- Tset<=Θ 

Key: Rh - Relative Humidity in %, T - Temperature in °C, Θ - Threshold, act - Actual, pred - Predicted, set - 

Setpoint 

For validation of the developed diagnosis model, fault experiments are carried out at Nijmegen school on two 

days in March 2022. The chronology of these experiments is provided in APPENDIX A-Table 35. The diagnosis 

ability of the developed model is tested with data collected over 20 days, and its performance is shown on a 

confusion matrix (see Figure 31).  
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Figure 31: Confusion matrix - DBN HRW experimental validation 

Observing the overall accuracy of diagnosis summarized in Table 22, it is observed that the developed model is 

quite sensitive towards identifying the fault sample, and yet retains its specificity (~86%). Some of the model’s 

sensitivity is traded off for higher specificity by limiting the analysis to only period between 08:00-18:00, as 

operation periods outside these hours at the building are found erratic. Also, as with heating mode operation a 

positive sample is confirmed positive if the diagnosis algorithm concludes a positive diagnosis on two 

consecutive occasions. Its low precision is attributable to lower number of positive samples considered on the 

test, and its labelling accuracy if found sufficient. Further, the developed model not only identifies the fault 

presence with a good sensitivity but is also able to correctly isolate the underlying fault condition on both days 

system operated under faulty condition.  

Table 22: Experimental validation of developed DBN model for heat recovery wheel 

Nijmegen school 10th March 2022 and 31st March 2022 

Precision 30.4% 
Recall/Sensitivity 75.0% 
Specificity 85.9% 
Labelling Accuracy 85.0% 

 

3.6 CONCLUSION 
The proposed FDD business layer scheme is congruent with the requirements identified in section 2.1.3 and is 

highly scalable and flexible. The developed fault detection models are very accurate (explain >90% of variability 

in the datasets) and have been found useful towards generating fault symptoms. The features utilized for training 

these models are iteratively identified using the demonstrated feature selection process. The lead time 

associated with deploying such models is a key consideration and needs further exploration. However, such black 

box models have been found useful in filling gaps associated with lack of sensors. For example, for the heating 

mode operation of Breda office and Nijmegen school supply water temperature and supply air temperature 

prediction models are prepared using just a single measurement. Otherwise making an accurate prediction using 

a first principles approach would have been quite cumbersome. Further, the models developed for HRW can 

predict over its complete control range (0%-100%), which is seldom done in literature.  

Upon experimentally validating the developed diagnosis models, encouraging results with diagnosis specificity 

exceeding 90% across two different non-residential buildings with different HVAC schemes are obtained. Using 

the P&I schemes for the buildings, the DBNs discretized well and were able to successfully isolate all fault 

conditions. The DBN prepared for heating mode operation is an example of how a large probabilistic model might 

shape up, and what are the associated complexities with training such a network. All the DBNs are programmed 

in Python, which implies they can be integrated directly or as an API service for inference. This is discussed in 

the next Chapter 4. Lastly, a concept for diagnosing faults associated with HRW has been demonstrated. The 

developed diagnosis model is highly specific and isolates the fault conditions on all occasions. For extending this 

network, leakage fault is recommended to be included next given its important in the current context.  
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4 AUTOMATED FAULT DETECTION AND DIAGNOSIS - TOOL 

Using the methodology discussed in section 2.2 and keeping the requirements identified (ref section 2.1), a 

prototype for automated Fault Detection and Diagnosis of Air-large Handling Units faults has been conceived. 

The overall concept of tool is discussed next and if followed by the developments towards FDD business layer and 

Data Visualization layer (see Figure 8).  

 

Figure 32: Interfaces and packages - AFDD Tool 

The entire AFDD tool is realized in Python. Besides popularity of Python, the realized Pythonic application 

benefits from dozens of Python packages (see Figure 32) and its object-oriented structure. Further, the Pythonic 

realization makes it possible to use the tool across multiple OS environments [108]. The current implementation 

has been tested on windows OS version 10. The entire tool can be viewed as backend (data acquisition layer, data 

validation and pre-processing layer, FDD business layer, and results post-processing layer) and frontend (the data 

visualization layer) developments and are discussed in 4.1 and 4.2.  

4.1 AFDD TOOL BACKEND  
The four layers discussed in section 2.2.1 namely data acquisition layer, data validation and pre-processing layer, 

FDD business layer, and results post-processing layer together form the application backend. In the discussed data 

acquisition layer (see Figure 8), the data for model training and FDD is acquired using the InsiteSuite API support 

(see Figure 32, left) provided by the project partner (Kropman Installatietechniek). To enable this interface and 

acquire data securely over HTTP, Python’s requests package has been utilized. Once access is granted, data is 

continuously acquired using a secure tokenization.  

 

Figure 33: Class diagram - Model training pipeline for FDD tool 

The next backend layer (see Figure 8) namely data validation and pre-processing layer has been enabled using 

Python classes (see  Figure 33). This has been done to program these layers in an object-oriented manner, 
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thereby creating objects that can be repurposed. This development is built atop Python’s base libraries such as 

Pandas, scikit-learn, and NumPy (see Figure 32)  [86,109–111]. The pre-processing of data involves multiple 

steps. First, the acquired raw data is validated. This validation process involves steps such as a) the meta 

information for acquired data such as its timestamps, name tags are corrected for maintaining consistency and 

interpretability within the tool; b) treating missing values with interpolation techniques or dropping them; c) 

treating incorrect values (for example cooling coil valve position > 100) or outliers. Second, the validated data is 

further processed to filter AHU’s operation mode. Third, the pre-processed data is utilized for feature selection 

(ref section 3.4). 

Data from data validation and pre-processing layer, is passed further into the FDD business layer wherein critical 

model information such fault thresholds utilized in the fault evaluator (ref section 2.2.2), model 

hyperparameters, model features, prior and conditional probabilities are maintained.  For enabling the training 

of XGBoost model and Bayesian network, two classes namely train_regressor and pg.BayesianNetwork (see Figure 

33, 3rd card from left) have been utilized. Their utilization (see Figure 32) has been made possible by using the 

API of XGBoost and pomegranate packages [112]. To provide interpretability to the user on the trained black-box 

models (ref section 3.4), shap_eval() class has been programmed. In between the various classes, data is 

exchanged using comma separated values (CSV) and Java Script Object Notation (JSON) formats, which are 

flexible and light weight. This reduces the processing time and resource involved in this process.  

The trained XGBoost models utilized in the fault detection process are maintained at the backend using a model 

management framework. The model management framework in essence tracks key model features (identified 

with shap_eval()) for issues such as data drift, and across key performance indicators such as RMSE, and R2 

Scores. In case of observed issues, this tracking mechanism generates an alarm if the observed model 

performance on the tracked KPIs is less than desired, or a data drift issue is observed. In the 4S3F framework, 

model faults are one of the three fault categories (ref section 2.2.2). Generated model alarms from model tracking 

can be incorporated to infer the correct posterior probability under such a situation.  

As discussed, the diagnosis models are trained to probabilistically emulate faults and symptoms. Maintaining 

these relationships at scale can get overwhelming as DBNs would include more faults and corresponding 

symptoms. Therefore, to support the FDD business layer a database structure termed ‘Fault Library’ has been 

conceived and is discussed in 4.1.1. Thereafter, in 4.1.2 the developed pipeline to continuously acquire data and 

utilize the trained models for automated FDD is discussed.  

4.1.1 Fault Library 

To maintain a unified taxonomy of faults along with more information such as its root cause, prioritization order, 

and other information that can support corrective action a database of faults has been conceived. This database 

structure is referred to as a ‘fault library’. It is envisaged that the list of faults included in the current project is 

extensible and would be continuously updated. For such a scenario, a database scheme serves well as it helps 

avoid data redundancy. The various included faults along with its corresponding fault states (ref section 2.2.2) 

are identifiable in the database records using a unique fault code as shown in Figure 34. Alongside, faults 

qualitative information such as fault priority, its differentiating characteristics such as operation mode, category, 

its description, and recommended actions are also maintained. Further, the prior probabilities utilized for 

training the Bayesian network are also stored. In another table in the same database, fault events diagnosed by 

the FDD application are also stored. This way a unique record of faults and fault events is maintained.  

For storing the discussed information, a lightweight database has been created using Google Sheets which is a 

royalty free spreadsheet program offered by Google. Instead of using the popular database languages such as 

SQL, Google Sheets has been preferred for its ease-of-use and familiarity of prospective users with spreadsheet 

programs. The spreadsheets are accessible over Google’s API via Google’s Cloud platform infrastructure. Through 

Google’s infrastructure, the program is portable across mobile and desktop devices. A wrapper (named gapi) 

that includes methods for handshake with this API is included in the AFDD Tool. Using this wrapper data can be 

uploaded and downloaded from this cloud hosted database in a universal JSON data-interchange format. The 

FDD Tool’s alarms page discussed in section 4.2, utilizes this database as backend.  

 



Chitkara, S. CM-FDD-HVAC 45 

 

Figure 34: AFDD tool - unique faults and faults events library 

 The API infrastructure is open for data sharing not just with designed FDD tool but is also useful for allowing 

secure third-party access. In other words, using this media information can be securely exchanged with third-

party applications for enabling Interoperability (ref Table 5).  

4.1.2 AFDD inference 

The results from trained models are inferred in an automated manner using the developed AFDD tool. This 

implies combining the inference pipelines of detection and diagnosis processes. This combined inference 

pipeline is realized as an online pipeline that follows the same process as utilized in training (see Figure 8) except 

in this case model parameters are known and not learnt (ref section 2.2.4). The data acquisition layer 

continuously checks for availability of new data and updates the local database with this newly acquired data for 

inference. Via this established link the inference using the FDD business layer occurs with minimal delay and is 

helpful towards diagnosing faults early. For inference using the trained XGBoost models, a separate class called 

infer_regressor (see Figure 33, 3rd from left) has been developed that is initialized using trained models and 

features. Further, it contains a method for evaluating predictions on KPIs that are useful for model management 

discussed previously. Inference for diagnosis with the trained DBNs is supported with the help of a Python 

module created named dbn_inference for this purpose. This module has been developed to infer posterior 

probabilities as new data is acquired. Through a series of underlying functions, continuous values collected from 

the CMS are inferred through the FDD models and faults diagnosed are reported. These faults are then parsed 

over the API, into the google spreadsheet (see section 4.1.1). The results from the inference process are visualized 

using a web application interface discussed in section 4.2. 

4.2 AFDD TOOL FRONTEND 
The data visualization layer or the frontend of the AFDD tool (see Figure 32) is encoded in Dash by Plotly [113]. 

It presents the results inferred from the tool’s backend. This encoding wraps HTML, Java Script, and CSS code 

blocks in a Pythonic syntax thus keeping the complete AFDD software limited to Python. This is beneficial as it 

reduces the need for separate skills for programming front-end. An evaluation of the selected package on key 

functional and realization aspects is provided in APPENDIX E. The realized application frontend is accessible 

across and tested with web-browser interfaces including Google Chrome, Mozilla Firefox, Internet Explorer, 

thereby keeping the application system agnostic. 

The architecture of the designed visualization layer is shown in Figure 35. Herein, the entire frontend is sub-

divided into web pages (or ‘dashboards’). For maintaining a hierarchy within this layer, the designed webpages 

are grouped into application pages and sites specific pages. Application pages contain root/index of the 

prototyped application to provide its entry point for example Home Page (see Figure 39). Site pages comprise of 

the sites or building specific pages to modularize the addition or deletion of use-case buildings for example the 

current prototype is demonstrated with two buildings - Breda office and Nijmegen school (ref section 2.3). This 
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hierarchy is created to a) ensure site specific data is not mixed; b) pages in future can be developed in both cases. 

For example, the current tool doesn’t include a user management page which would have application pages as 

its parent and a new building addition would have sites pages as its parent. This provides scalability (ref Table 

5) to the developed frontend. 

 

Figure 35: Data visualization layer hierarchy 

Some key elements of the dashboard such as KPIs and virtual sensors are discussed in 4.2.1 and 4.2.2 

respectively. KPIs are developed using the available sensors, whilst virtual sensors are a provided to overcome 

the lack of sensors.  The resulting dashboard are discussed section 0, 

4.2.1 Key Performance Indicators (KPIs) 

System performance can be effectively quantified using KPIs. The adoption of appropriate KPIs is key to realizing 

energy efficiency goals [114]. H. Li et al. in [115] surveyed literature and classified building performance KPIs at 

three levels: a) whole-building level, b) system level, c) component or equipment level. At system level, the KPIs 

can be structured by impact (for example energy or comfort), value (for example single or series), aggregation 

level (for example hourly, daily), associated faults or abnormalities, and improvement or corrections upon 

observing deviation [115]. A challenge associated with development of these KPIs is availability and reliability 

of sensors (ref section 1.2).  

Through the fault impact analysis presented in section 3.1, impact on energy KPIs such as chiller energy, boiler 

energy, pump energy, and comfort KPIs such as unmet hours have been measured. Through this process a clear 

association between simulated faults and KPIs is identified. Further, these KPIs are treatable as the energy 

performance symptoms in the utilized 4S3F framework (ref section 2.2.2) and KPIs are considered for inclusion 

in the developed FDD tool. The KPIs are laid out atop the developed diagnostics page (see Figure 41). Since, the 

DBNs have been discretized (ref section 3.5), the KPIs on the application page correspond with this 

discretization. For example, on the north zone cooling coil diagnostics page shown in Figure 41, the cooling 

unmet hours imply the number of hours cooling setpoint remains unmet in the north zone.  

In Figure 36, KPIs corresponding with the cooling mode operation are shown. KPIs such as chiller cycles, chiller 

shutoff (1a in Figure 36) and unmet hours are indicative of energetic and comfort performance of the cooling 

sub-system. Along with each indicator (1c in Figure 36), a deviation from baseline indication (1d in Figure 36) 

and the aggregation level (1b in Figure 36) has also been provided. As H. Li et al., (2020) indicate, defining the 
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baseline for comparison is challenging due to complexity, configuration and stochasticity, simplified baselines 

have been considered. For example, chiller cycles are aggregated daily, and compared against the chiller cycles 

recorded on the previous day. The indicated deviation from baseline (red: deterioration /green: improvement), 

is designed to aid the user (such as facility manager or building engineer) efficiently keep track of performance 

and initiate action if required.  

 

 

Figure 36: AFDD tool - key performance indicators cooling mode operation – Breda office 

 

 

Figure 37: AFDD tool - key performance indicator - chiller staging - detailed view 

To further explore each KPI and for leveraging building engineer’s or a subject matter expert’s (SME) knowledge 

for diagnostics, each KPI is designed as an interactive component. This implies that upon clicking the KPI (clicking 
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1c on Figure 36), a window pops open (see Figure 37) that provides information to view development trends of 

that KPI. Using the example of chiller cycles, it can be observed from Figure 37 that between July 17-18, 2021, 

the deployed chiller at Breda office operated with cycled less in comparison with July 16 or July 19. Further, it 

operated mostly at second stage thereby consuming higher energy than previous day despite both days falling 

in the same temperature band (see d on Figure 37). From case presented in Figure 25, it can be correlated that a 

stuck valve fault caused this behaviour. This additional information as seen is clearly useful for a building 

engineer to diagnose faults and track health of key energy consuming components of the HVAC system. Further, 

additional features for analysis such as switching between bar or line plot (a or c on Figure 37) or filtering out 

data for weather conditions (slider d on Figure 37), or dates are also provided (see b on Figure 37). This 

combination of expert knowledge aided with effective visualizations is a step that promotes human-in-the-loop 

diagnostics.  

4.2.2 Virtual Sensors 

Virtual sensors are often developed in HVAC systems to fill in the gaps left by missing, misplaced or out-of-

calibration sensors [116] Therefore, they are helpful in either replacing missing information voided by lack of 

sensors or in assessing the reliability of collected data through sensors. This added information is useful in the 

FDD process [117] For example, the mass flow rate sensor has been identified as vital to detecting faults in an 

AHU (ref section 3.2) and is often found missing in building installations. On this note Choi & Yoon in [118], 

demonstrated the use virtual enthalpy sensor for sensor calibration.  

Virtual sensors can be developed using white, grey, or black-box approaches [116]. During the project additional 

sensors are installed at Breda office (see Table 10) and three virtual energy meters (see Figure 38) have been 

applied using the energy conservation equations for an AHU [116].  

 

Figure 38: Virtual energy meters overlayed on P&I of Breda office - central AHU + north zone cooling coil 

Ready availability of such information is handy for the user (for instance a building engineer or an HVAC expert) 

and reduces their effort spent data curation thereby unlocking time for analysis. For example, using these three 

energy meters building engineer can quickly observe energy flows and for example detect unwarranted use of 

simultaneous heating or cooling installations.  

4.2.3 Data Dashboarding 

The designed visualization layer comprises of four key dashboards (see Figure 35) that have been realized 

iteratively starting with the more abstract requirements presented in section 2.1. The requirements for the 

dashboard are identified through the design sprint methodology discussed in section 2.2.3.  

The Home Page for the FDD tool (see Figure 39) comprises of the list of integrated sites and a global view into 

the diagnosed outcomes. The integrated sites are overlayed on a geographical map using a bubble, whose size 

indicates the number of faults diagnosed using the FDD tool. This way a user (such a remote services manager) 

responsible for monitoring several building installations can quickly identify the installation requiring more 

attention. As shown in Figure 39, on hovering (see 1a) over the bubble more quantitative information is provided, 

which can be expanded in content. More importantly, as the FDD tool would be scaled to a larger number of sites 

such a representation is quite helpful for remotely located teams in planning and coordination with on-site 

engineers. For navigating through the entire tool, an explore option is provided on the main navigation bar (see 

Oa on Figure 39). All developed pages integrated into the application are directly accessible from here. Further, 

the developed pages are categorized for easy access. For example, all the DBN pages are grouped together in this 

menu (see Oa on Figure 39).  
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Figure 39: AFDD tool - Home Page 

Besides, the explore drop-down menu the user can also navigate to the alarms page using an embedded link on 

the site’s image (see 2a Figure 39). Upon clicking the link, the user is directed to the site-specific alarms page 

(see Figure 40). Here, faults diagnosed by the FDD tool are presented as alarms for user. At the start of the page 

some key performance indicators are populated (see 1 on Figure 40). Using these key performance indicators, 

facility manager can keep a track of the faults diagnosed on a specific time horizon such as week, month, year. 

Each performance indicator is compared with a reference value derived using the previous time instance. For 

example, faults diagnosed in the current week are compared with diagnosed faults from previous week. Using 

such quantitative information, a facility manager can initiate action through a service engineer or building 

engineer for fault correction.  

For the building engineer’s record, a detailed list of diagnosed of faults (or alarms) is populated. Alongside each 

alarm, qualitative information such as fault priority, category, type, description about the raised alarm is 

provided. This information is obtained from the fault library explained in section 4.1.1. Using this information, 

the building engineer can prioritize response and take recommended action or refer to an SME for further 

information on diagnosis. Besides information on the faults, the user is also equipped with filtering, searching, 

and sorting functionalities (see 2 a, d, e, f on Figure 40) for an enhanced user experience. Through these features 

the user can slice through the presented data for dates, categories, fault types. For example, the building engineer 

can prioritize airside faults for correction over waterside faults or vice-versa. 

During an initial roll-out, all building engineers or facility managers, might not be equipped with the AI-based 

approaches utilized at the AFDD tool backend for diagnosis. This can generate queries directed towards a 

software expert or ML expert to provide further information on the diagnosed outcome. To tackle these issues, 

the complete information on diagnosis is provided on a detailed diagnostics page shown in Figure 41.  
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Figure 40: AFDD tool - Alarms page 

For ML expert, or an SME, the traceability of the diagnosis is of more importance such that they can track the 

outcomes of the developed models. To support such a use-case, a page specific to Bayesian networks utilized for 

fault diagnosis has been developed. The page allows the user to track information flow through the discussed 

steps within the FDD business layer. At the centre of this page (see Figure 41), lies the developed DBN model for 

fault diagnosis. To support the additional checks, augmented information such as key performance indicators 

(ref section  0) and virtual sensors (ref section 4.2.2) are also located on the top and bottom of DBN pages 

respectively. In line with the discretization process discussed in section 3.5, the user can switch between DBNs 

for cooling, heating, or HRW (see 1 on Figure 41). This toggling feature allows the user to quickly switch between 

these DBNs and view the corresponding Bayesian networks as well as KPIs. 

The nodes of the developed DBN are designed as interactive clickable elements (see 3a and 3b on Figure 41), 

whereby upon clicking the fault node fault probability is displayed (see Figure 42) and symptom residuals (see 

Figure 43) are displayed upon clicking the symptom nodes. Further, on mouseover the fault node, the user is also 

indicated of the location and its connection with the P&I diagram shown after the Bayesian network on the DBN 

page (see 4 on  Figure 41).  This way interpretability of the developed DBN model is improved for a building 

engineer or a facility manager.   

As mentioned, the fault probabilities (upon clicking 3a on Figure 41) and symptom residuals (upon clicking 3b 

on Figure 41) are displayed as pop-ups on the screen. Additional features are provided to support an ML and or 

an SME in comparing computed posterior probabilities and understanding their development on a time horizon. 

For example, for the stuck valve fault discussed in section  3.4.1 the computed posterior probability is nearly 

over 68% (see b on Figure 42), thereby indicating fault presence and its development and correction in time. 

This information can be accessed for all evidence provided to the developed DBN and the computed posterior 

probabilities thereof for all faults by using features of date selection (see a in Figure 42) and checklist (see c in 

Figure 42). For the expert, to be able to share such extra diagnosis information with the building engineer, 

additional features such as downloading a plot or zooming into a particular section are also provided (see d & f 

in Figure 42). 
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Figure 41: AFDD tool - Cooling mode diagnostics page for Breda office North zone 
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Figure 42: AFDD tool - computed posterior probabilities inferred using DBN developed for cooling mode operation at 
Breda office 

 

On the symptom residual pop-up (see Figure 43), computed residuals using for instance formulas in Table 19, 

are visualized on a heatmap representation. The intensity of the colour (RGB scale) on heatmap (see c on  Figure 

43) indicates the magnitude of the residual on the positive (blue) and negative (red). For example, on the 

Wednesday 8th December 2021 a supply water temperature sensor offset fault was introduced (ref section 3.5.2). 

This provides an expert a lucid view into the utilized fault detection process. Further, using such information a 

building engineer, who perhaps is unaware of the complexity of black-box model can easily differentiate between 

anomalous and normal operation. Although the fault diagnosis process has been completely automated in the 

tool, a building engineer using such information can augment the diagnosis process. For example, a building 

engineer can rule out false positives through additional checks or considering available site information or on 

the contrary confirm true positives that can later be utilized for labelling collected operational data.  

The diagnosis process utilizes several AI models, for example for cooling coil or heating coil valve position 

prediction. To ensure a reliable diagnosis, it’s imperative to track the performance of the trained models over 

time and identify issues such as data drift that impact the quality of the prediction [119]. To visually observe the 

performance of trained models over time a specific page has been realized and is discussed in APPENDIX E.  
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Figure 43: AFDD tool - generated symptom residual through XGBoost models 
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5 DISCUSSION 

The concept presented in Chapter 4 is assessed in this section from technical, financial and deployment risk 

perspectives. Firstly, its technical viability is discussed in section 5.1. Secondly, in section 5.2 the overall concept 

is assessed from a financial feasibility viewpoint. Lastly, in section 5.3, the risks associated with deploying the 

concept at scale are discussed.  

5.1 ASSESSMENT OF TECHNICAL VIABILITY 
The presented concept for the AFDD tool is verified by comparing with the prioritized requirements in section 

2.1 and assessed if it technically satisfies needs of various project stakeholders. The compliance of the 

developed tool with respect to identified requirements is presented in APPENDIX F - Table 36. In this matrix, 

complete compliance is indicated with green and partial compliance or improvement needed is indicated with 

yellow. It is observable that the developed tool complies with majority of the identified requirements.  

Focusing on the domain specific requirements, a robust diagnosis strategy is desirable for the most important 

faults. Using the 4S3F framework multiple discretized DBNs have been developed. For their discretization, P&I 

diagram of the underlying HVAC system has been utilized. This way the diagnosis model traces its origins back 

to the HVAC design and is synonymous with how a building practitioner would go about the diagnosis process. 

As opposed to utilizing classification-based approach (see Figure 4), an interpretable diagnosis strategy has 

been employed. To improve interpretability of developed black-box models for fault detection, SHAPley 

framework has been implemented. The framework was also found useful in features selection process. 

Widespread use of such frameworks would not only help reduce dimensionality of datasets, but more 

importantly inspire confidence within building practitioners to trust a black-box model’s predictions.  

In the project an initial concept for model management is presented. For its commercial application, there can 

be improvements made in the direction of extending this framework in the direction of complete automation. 

Currently it included only a few indicators such as R2 Score and RMSE to track model performance and can 

identify issues such as data drift with human support. However, it can be automated through extensive 

collaboration with teams focused on this topic. Although, the developed ML models are fit-for-purpose, the 

current modelling framework should be extended to include algorithms from the deep learning and other 

domains. This would help users to actively compare modelling paradigms and understand their differences. The 

currently application has been developed and tested on a Windows PC with 16GB memory. Although, the 

utilized Python based framework offers cross platform support, this aspect needs to be tested further. This 

can be achieved through testing it first on a Linux machine. Although, to ensure this portability out-of-the-

box it is recommended to containerize the developed tool. To this end, an open-sourced containerization 

platform called Docker has been found useful [120]. 

For integrating Bayesian networks into software continuously values residuals generated in the fault detection 

process have been discretized into states [36]. Some information is lost during this discretization process for 

reducing model complexity, that can be regained. This would improve the specificity of the desirable action and 

its priority. For instance, the fault states are currently discretized as positive, or negative, or fault-free. A 

positive stuck valve fault implies a valve is open more than desired. However, discretizing the positive fault 

state further can help the building engineer or facility manager in understanding its severity and thereby 

prioritize their response. Further, the developed Bayesian network infer posterior probabilities using Bayes 

rule. However, each inference in a time-series is a prediction using fixed prior and conditional probabilities. 

Using this process, the information contained in the time dimension of data is lost. Therefore, it is 

desirable to regain this lost information using dynamic Bayesian networks that can update conditional 

probabilities by learning over time [34]. This would prevent misdiagnosis of faults as pointed to in section 

3.5.2, and thereby improve the isolability of the designed network.  

To support building practitioners further, a comprehensive list of faults studied in literature for AHUs have 

been prioritized using a fault impact analysis presented in section 3.1. It was observed that Pareto 

principle is applicable and faults causing highest energy performance can be prioritized. Although, this 

approach was found useful, it can be improved in three directions. Firstly, the fault modelling approach utilized 

for this analysis uses a stepwise approach to model fault character in time. Fault behaviour that is more often 

drift-like or incipient (for example fouling, leakage), needs to be studied further. This would be helpful 

towards calibrating the detection and diagnosis approach for such faults. Secondly, more fault models with 

multiple simultaneous fault 
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occurrences are recommended. This would help towards creating more test scenarios which are helpful in 

improving the isolability of the diagnosis models further. Lastly, the current simulation models approximate the 

actual building’s behaviour with reasonable error, the tolerance considered can be reduced through more 

detailed modelling and thereby realizing a complete digital twin of the building. These digitals twins could then 

be utilized for energy performance benchmarking and for feature selection.  

The developed application comprises of KPIs populated across each developed page, for tracking performance 

of the underlying system being continuously monitored. These KPIs always include a benchmark or reference 

value to measure performance. For example, on the alarms page (see Figure 40) it is easier to compare faults 

diagnosed in current week with diagnosed alarms over the previous week. However, component KPIs such as 

energy performance of a chiller or boiler cannot be usefully compared using similar method due to variations in 

weather and/or occupancy. Further development in this direction would require a rigorous effort in defining 

appropriate baselines. Furthermore, often these KPIs do not include user or occupant feedback into 

consideration, which is highly desirable. Such feedback is often subjective and not continuously valued as 

objective measurements in a building. However, Bayesian networks can assimilate such information as discrete 

valued inputs in the additional information node (ref section 2.2.2) of the 4S3F framework. The ongoing APK2.0, 

and Brains for Buildings focus on these topics. 

5.2 ASSESSMENT OF FINANCIAL VIABILITY 

In Chapter 1, it was identified that up to 30% building energy can be saved using effective use of data collected 

through CMS systems.  Through the developed FDD tool, faults introduced in the system are successfully 

diagnosed (see Chapter 3). The case presented in Figure 25 is used to estimate the preventable energy waste. On 

the 16th of July 2021 (Friday) a stuck valve fault was introduced in the afternoon and corrected the following 

Monday. The chiller’s energy consumption between the periods 16:00-17:00 was compared on both days to 

estimate the energy savings. Using an energy meter, a 63% increase in the chiller’s energy consumption was 

measured during faulty operation when compared with normal operation on Monday. As faults were 

simultaneously introduced in all cooling coil control valves, the measured increase is apportioned in the ratio of 

airflow through each zone. Using this approach, nearly a 33% increase in the chiller’s energy consumption is 

estimated as attributable to the stuck valve fault in the north zone’s cooling coil control valve. Such faults typically 

go unnoticed until considerable energy has been lost due to traditional facility management practices. The 

developed tool not just diagnoses such faults, but also recommends clear actions for fault correction making a 

strong commercial case for deployment.  

It should be noted that analytical functions within facility management space need development (ref section 

1.2.2). The financial viability of a business working towards development of an AFDD tool is assessed and 

presented APPENDIX F. The financial plan is generated considering a software-as-a-service (SaaS) business 

model [121]. Such a business model is considered key to a successful deployment, as then the software provider 

then becomes a stakeholder in the energy saving process. To estimate revenue potential, an addressable market 

in the Non-Residential Dutch buildings with large AHU/HVAC installations is considered. Further, the 

organizational development required on a five-year time horizon to support such a business has also been 

provided in APPENDIX F. Three scenarios have been forecasted for anticipating the revenue that can be 

generated through such a business. In each of the three scenarios estimated gross margins are a healthy 80%. 

Through the financial modelling it is estimated that as the energy savings accrue over time, enough EUR value is 

unlocked for the building owners to finance such an initiative. Despite the high upfront investment, it is 

forecasted that a SaaS business providing such services can turn profitable at the turn of fourth year from 

conception if it achieves nearly 1% of the total addressable market. Notably in the worst-case scenario the 

business would generate free cashflow only at the turn of sixth year, which can be improved through better 

capitalization of expenses.  

5.3 DEPLOYMENT RISK ASSESSMENT 

The AFDD tool is successfully deployed for AHUs installed at two case-study buildings. For scaling such a solution 

to multiple building environments in an efficient manner a consistent taxonomy for acquired data through CMS 

systems would be required. Although, commonly available sensors have been utilized for modelling purposes, 

the lack of sensors at other buildings is a noteworthy barrier to overcome. As the lack of sensors would add to 

the lead-time involved in training the AI models utilized in the tool. Brick schema or Project Haystack provide 

feasible alternatives that can help overcome challenges associated with taxonomy [122]. For addressing the 

issues with sensors, studied building examples can be utilized as reference for proposing sensors in the near-
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term. In the longer term, a more generalizable approach to feature selection should be explored to provide an 

economically efficient alternative. 

Google sheets has been utilized as the backend database for maintaining fault library and diagnosed outcomes. 

There are limitations for read and write exceptions imposed by the provider, which would need to be considered 

in detail when scaling to hundreds of building installations. In such a circumstance, it would be desirable to 

replace this backend with a comprehensive database based on SQL. Pomegranate (ref section 4.1) has been 

utilized for realization of Bayesian networks in the tool’s backend. Since, the applications of such models in 

commercial applications is limited, it is difficult to assess the scalability of this package. Although, the package 

has been utilized upon consultation with specialist in this field, it is recommended to test its ability to support 

concurrent use. This can be tested with the help of specialized software experts. 

For a successful scale up of this project, specialist with skills in software development, machine learning 

(including Bayesian ML) and knowledge expertise in HVAC domain are required. Such skills are hard to find in a 

single individual, and hence management and recruiting of right talent are key risk considerations that need to 

be mitigated for this project. 

6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE DEVELOPMENT 

An AFDD tool for large Air-Handling Units along with its design architecture is presented, and its integration with 

an operational CMS is demonstrated for two case study buildings. The business layer of the tool combines state-

of-the-art techniques from the AI domain and automates the FDD process. The designed tool is portable, scalable, 

reliable, and interoperable. To validate its reliability, the tool has been tested under varying scenarios such as 

different building installations, differing operational environments, different fault conditions. The realized 

specificity of the diagnosis algorithms measured over a long-term (>30 days) time horizon exceeds 90% for both 

cooling and heating operation of the Air-Handling Unit. Importantly, the trained diagnosis models not only 

diagnose fault presence conditions but are able to successfully isolate them. Further, the diagnosis model 

developed for studied cases with different HVAC configurations exhibited similarities, thereby alluding to 

generalizability of the 4S3F framework.  

The CMS setup at these installations can be augmented with the prototyped tool and energy penalties due to 

faults can be avoided. At the cooling coil installation at Breda, nearly 33% of energy savings are estimated, and 

consequent additional emissions are thus preventable. The saved costs make the widespread deployment of such 

tools very attractive. As a step in this direction a SaaS business model is presented, which indicate that such a 

business can turn profitable in just four years from deployment making it very viable. In the short-term for the 

industry partner, the tool enhances its software value proposition and would help with executing service 

contracts profitably. 

Using the developed dashboards, faults can be diagnosed and assessed in a user-friendly manner thereby 

pushing human-in-the-loop diagnostics to the fore. Inclusion of a fault library, key performance indicators and 

virtual sensors make the presented prototype comprehensive and extensible. 

For further development of the tool following areas have been identified: 

1. Applying building metadata management schemes such as Project Haystack or Brick Schema, are highly 

desirable for addressing large scale deployments.

2. To advance the developed tool’s AI prowess, dynamic Bayesian networks and automated development of

the initial probabilistic model from P&I are recommended.

3. Upon deployment, the faults diagnosed through the tool can be confirmed by building staff for storing fault

labels. A scheme for operationalizing this process and keeping it user and action friendly is strongly

recommended for overcoming the challenges regarding unavailability of labeled data.

4. Using the presented framework, generalized features for fault detection can be understood that can help

overcome the issue of uncertainty and high-dimensionality of data and shift towards smaller and validated

datasets.
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8 APPENDIX 

 

APPENDIX A. DESIGN AND METHODOLOGY 
 

Storyboards prepared using Miro for collecting feedback from stakeholders.  

 

Wall of Justice summarizing the feedback collected from various stakeholders. 

 

The presented initial concepts are tested with stakeholders to develop an initial prototype that is iteratively 

improved to develop the final product presented in Chapter 4. 
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APPENDIX B. SYSTEMS DESCRIPTION, CASE STUDIES,  
 

Addendum to System Description discussed in section 2.3.1 

In the process airstream side (ref. Figure 11), airflow is controlled through the outside air damper. In the 

Netherlands, to maintain higher ventilation rates AHUs operate with 100% outdoor air control strategy. The 

supply air contaminants are filtered using an air filter selected to meet constraints such as purchase cost, 

operational cost, and effectiveness [61]. The effectiveness of a filtered can be measured on a Minimum Efficiency 

Reporting Values (MERV) scale, which is a 20-point scale where MERV 1 is the least efficient filter whilst MERV 

20 is the most efficient type. AHUs being studied in this research are typically employ MERV 5 and above, whilst 

superior designs of such installations employ Bag type filters that are rated MERV 13 and above. 

The inlet stream is then pre-heated or pre-cooled by recovering heat from the extract stream using a heat 

exchanger such as run-around coil, plate heat exchanger, or rotary heat-exchanger [123]. They are an essential 

component of the deployed ventilation system, that aid its efficient energetic performance. Rotary heat 

exchangers recover heat more efficiently than its alternatives such as a plate or run-around coil [124] and are 

also a common feature of the AHUs deployed at considered case-studies (ref section 3.2). In rotary heat 

exchangers besides sensible heat, latent heat is also exchanged, which is majorly influenced by material and/or 

surface of the storage mass[125]. The efficiency of temperature and humidity exchange is measured using (2) 

and ( 3) respectively. The reference factor for humidity efficiency is termed as condensation potential, that 

implies difference between humidity of warm-air and saturation humidity of cold-air [125].  Rotary heat 

exchangers or heat recovery wheels are manufactured in three designs namely a) Condensation wheel; b) 

Enthalpy wheel (hygroscopic wheel); c) Sorption wheel [125][125]. The storage mass used for the construction 

differentiates these three-wheel types. High humidity efficiencies (more than 80%) can be achieved with 

Condensation wheels that are suited for winter operation. Sorption wheels on the other hand are more suited 

for summer operation as they helpful in reducing cooling load by drying the fresh air. Moisture transfer happens 

through pure sorption and no condensation. Enthalpy wheels transmit humidity through both sorption and 

condensation; however, the sorption component is low and so is the humidity transmission in summer operation.  

𝜂𝑡 =  
𝑡22 − 𝑡21

𝑡11 − 𝑡21

 

(2) 

𝜂𝑋 =  
𝑥22 − 𝑥21

𝑥11 − 𝑥21

 

( 3) 

Key: 
t - Temperature (K; °C), x - Absolute humidity [g/kg] 
11 - Extract air, 21 - Fresh air, 12 - Exhaust air, 22 - Supply air 

 

Commonly studied faults in literature pertaining to HRWs are summarized in Table 23. To this end Madhikermi 

et al. in [103] point out that fault detection within HRW is cumbersome as failure modes are typically unknown 

and are mostly unique. However, early diagnosis of such faults is key to economic and energetically efficient 

operation of AHU.  

Table 23: Possible faults in Heat Recovery Wheel 

# Fault Fault classification Reference 

1 Fouling/Scaling Component fault [19,126–128] 

2 
Leakage/ Air-Short Circuiting/Cross-
Contamination 

Component fault [124,129] 

3 Frosting Control fault [101,124,130] 

4 
Improper rotational control (stuck, 
wrong speed etc.) 

Control fault [103] 
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Post heat recovery, the supply air is heated or cooled to maintain supply air temperature setpoint by regulating 

the fluid flow through the heating or cooling coil via a control valve. The heat exchange process through the coils 

is characterized by the material properties of the coil, its geometry and the temperature differences on both air 

and fluid side [61]. There are primarily two types of configurations for control valves 2-way and 3-way and 

further three-valve styles namely: globe, butterfly, and ball [131]. These valves are remotely operated via BMS 

through actuators and modulate the position of its stem against the flow of fluid from Normally Open (NO) or 

Normally Closed (NC) positions. The flow through the coils is mixed or diverted for 3-Way valves configurations 

or throttled in case of 2-Way Valves configurations. Flow modulation through the valves can either be quick 

opening, linear, parabolic, and equal percentage adjustments (see Figure 44), which serves as one of the key 

characteristics when selecting the valves[132]Valve flow characteristic observed at the 3-way control valve 

deployed at Breda (see section 2.3.2) is also shown in Figure 44. Any faults within heating and/or cooling coils 

often would reduce the system efficiency [19]. The most encountered faults within these coils are fouling, scaling, 

leaking and/or stuck valve [19]. 

 

a) 

 

b) 

 

Figure 44: a) General valve characteristics at constant pressure drop [131]; b) valve characteristics of the three-way 
valve deployed at Breda office 

Downstream of coils, air-handling systems typically employ centrifugal or axial fans to control the flow of air 

[61]. The fan speed is regulated using a variable frequency drive (VFD) connected to the fan motor, which 

regulates it to maintain a static pressure setpoint. The coupling mechanism between the fan motor and drive can 

either be direct or using a belt-drive. At the two validation cases considered (ref. section 2.3.2), although fans are 

equipped with VFDs, they are operated at a constant speed for employing a CAV strategy. For characterizing fans 

in performance curves provided by their OEM are typically studied [133]. Most common failure modes within 

fans are burning-out of motor, loose, or broken fan belt, out-of-balance impeller, power control issues [23].  
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In BMS systems, controllers are operated on a series of pulses based on control logics [131]. These digital controls 

are often referred to as Direct Digital controls or simply DDC. Often proportional, integral, and differential (PID) 

and closed loop control strategy is deployed for cooling or heating control valves.  DDC-based temperature 

controller for cooling and heating coil valve control is shown in Figure 45. Typically, the feedback for the valve 

control is a combination of outdoor air, return and supply air conditions. Control sequence for operation of 

cooling and heating valves installed at case study discussed in section 2.3 is shown in Figure 45. This sequential 

operation of AHU is often referred to cooling and heating mode operation. 

 

Figure 45: Control sequence of AHU operation – Nijmegen school 

On the return side, the extract or return air is filtered before undergoing regeneration process within the heat 

exchanger. The filter employed in this case is typically rated at the same or lower MERV levels than the supply 

filter. The air of the heat recovery process is exhausted using an exhaust fan, that typically operates at a slightly 

lower speed than supply fan. This strategy of slightly imbalanced flow is deployed to prevent the risk of leakage 

from return to supply by maintaining a constant positive pressure between the two. Although, in field 

deployments the static pressure difference Δp22-11 (see Figure 46) is often negative, which leads to contamination 

of supply air stream necessitating additional measures [9]. The fraction of extract air in supply air, is termed as 

exhaust air transfer ratio (EATR).  

 

Figure 46: General AHU schematic showing leakage of air around heat recovery wheels (HRWs) 
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Energy resource station (ASHRAE RP1312A) 

The schematic of the AHU installed at the building is provided below. For me details on introduced faults refer 

to [66,88,89] and for detailed description of the building refer to [74] 

 

Figure 47:  AHUs installed at Energy Resource Station building 

 

Hoofddorp office 

The chosen building is an office building located in Hoofddorp close to Schipol airport. Four Air-Handling Units 

(AHUs) are installed on its roof. Further, data from these AHUs collected between January 2011 and November 

2019, is utilized for this analysis. Furthermore, the list of available measurements on the AHUs along with its 

design parameters are provided in [133] 
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Breda office 

 

Figure 48: P&ID Breda office 

 

 

Figure 49: Breda simulation model - HVAC layout - heating operation 
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Figure 50: Breda simulation model - HVAC layout - cooling operation 
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Nijmegen school 

 

Figure 51: P&ID subsection Nijmegen school 
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APPENDIX C. FAULT IMPACT ANALYSIS AND SENSOR IMPACT ANALYSIS 
 

Fault Modelling with EnergyPlus  

Table 24: Fault Modelling Strategy 

Fa
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t 
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o. 

Syste

m 

Functi

on 

Syste

m 

Eleme

nt 

Fault Fault 

Group    

Method fault 

introduction in Energy 

Plus Model 
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nding 

Object in 

EnergyPl

us 

Observe

d Model 

Weaknes

s or 

Identifie

d from 

Literatur

e 

F1 
Coolin

g 
Valve 

Valve 

stuck 

open 

Stuck 

Fault 

Set the minimum chilled 

water flow to its 

maximum value using 

EnergyPlus Energy 

Management System 

(EMS). Studied by setting 

minimum chilled water 

flow through the coil to 

99% of Maximum 

Actuated Value. 

Controlle

r:WaterC

oil 
Difficult 

or 

impossibl

e to 

emulate 

complete 

Valve 
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istic 

without 
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g. Valve 

control 

only 

limited to 

flow rate 

variation  

F2 
Coolin

g 
Valve 

Valve 

stuck 

closed 

Stuck 

Fault 

Set the minimum and 

maximum actuated values 

of chilled water flow as 

close to zero as possible. 

Controlle

r:WaterC

oil 

F3 
Coolin

g 
Valve 

Valve 

stuck 
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y open 

Stuck 

Fault 

Set the minimum and 

maximum actuated values 

of chilled water flow to 

value corresponding to 

the position valve is stuck 

using EnergyPlus EMS. 

Controlle

r:WaterC

oil 

F4 
Coolin

g 
Valve 

Leaky 

valve 

Perfor

mance 

Degrad

ation 

Using EnergyPlus EMS set 

the minimum value to a 

percentage value of the 

maximum actuated flow, 

to emulate a percentage 

equivalent to the leak.  

Controlle

r:WaterC

oil 

F5 
Coolin

g 
Valve 

Unstab

le 

valve 

control 

Control 

Fault 

EnergyPlus does not 

currently support 

dynamic control 

NA 

Dynamic 

Valve 

actuation 

such as 

PID type 

controls 

cannot be 

simulated 

without 

external 

interfacin

g 
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F6 
Coolin

g 
Coil 

Coil 

fouling 

Fouling 

Fault 

Vary FouledUARated or 

FoulingFactor to apply 

severity.  

FaultMod

el:Fouling

:Coil 

Pressure 

drop 

across 

the coil is 

ignored 

F7 
Heatin

g 
Valve 

Valve 

stuck 

open 

Stuck 

Fault 

Set the minimum hot 

water flow to its 

maximum value using 

EnergyPlus Energy 

Management System 

(EMS).  

Controlle

r:WaterC

oil 

Difficult 

or 

impossibl

e to 

emulate 

complete 

Valve 

character

istic 

without 

external 

interfacin

g. Valve 

control 

only 

limited to 

flow rate 

variation 

F8 
Heatin

g 
Valve 

Valve 

stuck 

closed 

Stuck 

Fault 

Set the minimum and 

maximum actuated values 

of hot water flow close to 

zero 

Controlle

r:WaterC

oil 

F9 
Heatin

g 
Valve 

Valve 

stuck 

partiall

y open 

Stuck 

Fault 

Set the minimum and 

maximum actuated values 

of hot water flow to value 

corresponding to the 

position valve is stuck 

using EnergyPlus Energy 

Management System 

(EMS).  

Controlle

r:WaterC

oil 

F1

0 

Heatin

g 
Valve 

Leaky 

valve 

Perfor

mance 

Degrad

ation 

Set the minimum value to 

a percentage value of the 

maximum actuated flow, 

to emulate a percentage 

equivalent to the leak 

using EnergyPlus Energy 

Management System 

(EMS).  

Controlle

r:WaterC

oil 

F1

1 

Heatin

g 
Valve 

Unstab

le 

valve 

control 

Control 

Fault 

EnergyPlus does not 

currently support 

dynamic control 

NA 

Dynamic 

Valve 

actuation 

such as 

PID type 

controls 

cannot be 

simulated 

without 

external 

interfacin

g 

F1

2 

Heatin

g 
Coil 

Coil 

fouling 

Fouling 

Fault 

Vary FouledUARated 

method or FoulingFactor 

method to apply severity. 

For the studied case fault 

was modelled with 40% 

severity. 

FaultMod

el:Fouling

:Coil 

Pressure 

drop 

across 

the coil is 

ignored 

F1

3 

Ventila

tion 

Dampe

r 

Outdoo

r air 

intake 

Stuck 

Fault 

The general methodology 

for introduction of this 

fault is by changing the 

amount of minimum air 

Controlle

r:Outdoor

Air 

Detailed 

Controlle

r 

response 
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dampe

r stuck 

introduced to be 

introduced into the 

system. Although, it 

comes with a pre-

requisite being that 

economizer should be 

operational (Y. Li & 

O’Neill, 2016) or a 

demand control 

ventilation strategy be 

utilized. However, since 

both cases are not true for 

the studied case, hence 

the strategies for 

modelling procedure do 

not yield any impact. 

Hence it was ignored from 

final fault impact analysis.  

modellin

g 

possibiliti

es are 

insufficie

nt and 

hence 

require 

external 

interfacin

g 

F1

4 

Ventil

ation 

Dampe

r 

Return 

air 

dampe

r stuck 

Stuck 

Fault 

The studied case study building does 

not carry a return side damper and 

hence the fault modelling for the fault 

has not been pursued further. 

- 

F1

5 

Ventil

ation 

Dampe

r 

Exhaus

t air 

dampe

r stuck 

Stuck 

Fault 

The studied case study building does 

not carry a exhaust side damper and 

hence the fault modelling for the fault 

has not been pursued further. 

- 

F1

6 

Ventila

tion 
Fan 

Fan 

Motor 

Efficie

ncy 

degrad

ation 

Perfor

mance 

Degrad

ation 

The fault was applied by 

changing the efficiency 

value of the fan motor. 

The fault was studied to 

emulate a 20% 

degradation than nominal 

value.  

Fan:Varia

bleVolum

e> Fan 

Total 

Efficiency 

The fan 

power 

equation, 

does not 

explicitly 

take Fan 

Motor 

efficiency 

into 

account 

F1

7 

Ventila

tion 
Fan 

Supply 

fan 

stuck 

at 

consta

nt rate 

Stuck 

Fault 

Set the Fan Power 

Minimum Flow Fraction 

or Fan Power Minimum 

Flow Rate to higher value 

than default. A fan stuck 

at 50% of maximum 

supply flow rate situation 

was emulated. 

Fan:Varia

bleVolum

e>FanPo

werMini

mumFlow

Fraction 

Detailed 

pressure 

drop 

character

istics 

cannot be 

emulated 

in a 

dynamic 

fashion 

using the 

utilized 

Fan 

object. 

Further, 

can be 

extended 

to 

incorpora
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te VFD 

control 

character

istics. 

F1

8 

Ventila

tion 
Fan 

Return 

Fan 

stuck 

at 

consta

nt rate 

Stuck 

Fault 

The modelling 

methodology is the same 

as demonstrated for 

Supply Fan fault 

modelling. Since, the 

current baseline model 

doesn't contain a supply 

fan, this fault is ignored 

for this study. 

Fan:Varia

bleVolum

e>Maxim

um Flow 

Rate 

- 

F1

9 

Ventila

tion 
Fan 

Return 

fan 

comple

te 

failure 

Abrupt 

Fault 

Set the maximum flow 

rate for the fan to a value 

close to zero. In the 

studied case study AHU, 

there is no fan on the 

return side hence it was 

not modelled. 

Fan:Varia

bleVolum

e>Maxim

um Flow 

Rate 

- 

F2

0 

Ventila

tion 
Fan 

Supply 

fan 

comple

te 

failure 

Abrupt 

Fault 

Set the maximum flow 

rate for the fan to a value 

close to zero 

Fan:Varia

bleVolum

e>Maxim

um Flow 

Rate 

- 

F2

1 

Ventila

tion 
Duct 

Duct 

fouling 

Fouling 

Fault 

Duct fouling is caused due 

to the dust that 

accumulates in the 

various components along 

the supply path, thereby 

causing a reduction in the 

air flow. This fault in 

effect can be modelled in 

the same way as fouling 

filter fault. From the 

relation between pressure 

drop and mass flow rate 

at maximum fan speed 

condition, the pressure 

drop can be estimated at 

reduced air flow 

condition. This increased 

pressure drop can then be 

specified in the 

FoulingFilter object to 

emulate the fouling duct 

scenario and explained in 

detailed in this report 

with the explanation for 

Fouling Filter. Fault was 

modelled with a severity 

of 10%, which emulates a 

10% increase in pressure 

FaultMod

el:Fouling

:AirFilter 

Separate 

Native 

Fault 

object 

should be 

introduce

d for this. 
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drop over the nominal 

value. 

F2

2 

Ventila

tion 
Duct 

Duct 

leakag

e 

Perfor

mance 

Degrad

ation 

The duct leakage in 

EnergyPlus is modeled 

using the EnergyPlus 

Simplified Duct Leakage 

Model (SDLM). Here the 

supply or return duct 

leakage can be easily 

modeled by specifying the 

nominal upstream and 

constant downstream 

leakage fraction values. 

The nominal upstream 

leakage fraction is the 

fraction of leaked air 

upstream of the terminal 

unit and similarly 

downstream leakge 

fraction implies leakage 

downstream of the 

terminal unit. The leakage 

fraction can be varied up 

to 30%. For the studied 

scenario a higher side 

10% leak upstream of the 

terminal unit was applied 

in the fault model. 

ZoneHVA

C:AirDistr

ibutionUn

it > 

Nominal 

Upstream 

Leakage 

Fraction, 

Constant 

Downstre

am 

Leakage 

Fraction 

- 

F2

3 

Ventila

tion 
Filter 

Foulin

g Air 

Filter 

Fouling 

Fault 

The fault is applied by 

understanding the system 

curve for dirty filter 

condition and tracing it on 

the fan curve. Three 

particular conditions are 

possible a) where a 

variable speed fan is able 

to meet the required 

airflow, b) The variable 

speed fan cannot increase 

the speed any further to 

meet the  air flow 

requirements, and c) 

constant speed fan cannot 

meet the increased flow. 

The increased resistance 

due to fouling filter causes 

excess pressure drop 

which is larger than 

design pressure drop. 

This increased pressure 

drop proportional to 

resistance is utilized to 

introduce severity. In the 

studied case faults with 

20% severities were 

introduced. For the solver 

FaultMod

el:Fouling

:AirFilter 

- 
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to identify the system 

curve for the fouled filter, 

a fan curve corresponding 

to it's maximum speed 

was provided. 

F2

4 

Ventila

tion 
Filter 

Broken 

Air 

filter 

Abrupt 

Fault 

In effect broken filter 

would lead to a reduction 

in pressure drop across 

the filter and would 

produce an effect opposite 

to observed whilst 

modeling a fouling filter 

fault. The fault is applied 

by understanding the 

system curve for broken 

filter condition and 

tracing it on the fan curve.  

The decreased pressure 

drops which is smaller 

than design pressure 

drop, would lead to a 

higher air mass flowrate 

being introduced.   

The pressure drop 

proportional to leak is 

utilized to introduce 

severity. In the studied 

case 20% severity were 

introduced, which is in 

line with similar study 

carried out by (Zhao et. 

al., 2014). For the solver 

to identify the system 

curve for the fouled filter, 

a fan curve corresponding 

to its maximum speed was 

provided. 

FaultMod

el:Fouling

:AirFilter 

- 

F2

5 

Sensin

g 
Sensor 

Coolin

g Coil 

Supply 

air 

temper

ature 

bias 

Sensor 

Fault 

Fault is applied by 

providing a schedule, 

severity, and offset value 

for the bias by specifying 

these values using the 

Native Fault Objects.  

FaultMod

el:Tempe

ratureSen

sorOffset:

CoilSuppl

yAir 

The 

chosen 

sensor 

fault 

model 

can be 

extended 

to include 

other 

fault 

character

istics 

such as 

transient 

nature or 

developm

ent time 

etc if a 

deeper 

F2

6 

Sensin

g 
Sensor 

Heatin

g Coil 

Supply 

air 

temper

ature 

bias 

Sensor 

Fault 

Fault is applied by 

providing a schedule, 

severity and offset value 

for the bias by specifying 

these values using the 

Native Fault Objects. 

FaultMod

el:Tempe

ratureSen

sorOffset:

CoilSuppl

yAir 

F2

7 

Sensin

g 
Sensor 

Return 

air 

temper

Sensor 

Fault 

Fault is applied by 

providing a schedule, 

severity and offset value 

for the bias by specifying 

FaultMod

el:Tempe

ratureSen
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ature 

bias 

these values using the 

Native Fault Objects. The 

fault model was tested, 

however as the return 

side fan was not modelled, 

hence introduction of any 

faulty condition didn’t 

yield impact the energy 

performance. Also, the 

control of the modelled 

Heat Recovery unit was 

assumed to be static in 

nature. 

sorOffset:

ReturnAir 

analysis 

is 

required 

F2

8 

Sensin

g 
Sensor 

Mixed 

air 

temper

ature 

bias 

Sensor 

Fault 

F2

9 

Sensin

g 
Sensor 

Supply 

air 

pressu

re 

sensor  

Sensor 

Fault 

EnergyPlus does not currently support dynamic 

control. More specifically, in EnergyPlus fan are 

modelled with simple polynomial curve fit models. 

Detailed fan modelling such as duct-static-pressure 

reset strategies are possible, however again only 

through specific performance curves and not sensor 

based dynamic control strategies. 

F3

0 

Sensin

g 
Sensor 

Other 

sensor

s that 

may be 

availab

le -Rh 

Sensor 

Fault 

Relative Humidity Sensor faults are supported by 

EnergyPlus through native fault objects called 

FaultModel:HumidistatOffset that can possibly affect 

humidity control strategy if applied at cooling coil 

level. However, since the boundary of this study is 

limited to AHU, this fault is ignored for further 

consideration.  

F3

1 

Sensin

g 
Sensor 

Other 

sensor

s that 

may be 

availab

le -CO2 

Sensor 

Fault 

F3

2 

Contro

l 

Contro

ller 

Min. 

outdoo

r 

airflow 

setpoin

t 

inappr

opriate 

Control 

Fault 

The fault does not apply to the studied HVAC 

configuration and is applicable for Air-Handling 

Units with an Air Side Economizer. 

F3

3 

Contro

l 

Contro

l 

Contro

ller 

Max. 

airflow 

setpoin

t 

inappr

opriate 

Control 

Fault 

The fault does not apply to the studied HVAC 

configuration and is applicable for Air-Handling 

Units with an Air Side Economizer. 

https://www.sciencedirect.com/science/article/pii/S0306261909000233
https://www.sciencedirect.com/science/article/pii/S0306261909000233
https://www.sciencedirect.com/science/article/pii/S0306261909000233
https://www.sciencedirect.com/science/article/pii/S0306261909000233
https://www.sciencedirect.com/science/article/pii/S0306261909000233
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F3

4 

Contro

l 

Contro

l 

Contro

ller 

Max. 

outdoo

r 

airflow 

setpoin

t 

inappr

opriate 

Control 

Fault 

The fault does not apply to the studied HVAC 

configuration and is applicable for Air-Handling 

Units with an Air Side Economizer. 

F3

5 

Contro

l 

Contro

ller 

Coolin

g 

Supply 

air 

temper

ature 

setpoin

t too 

low 

Control 

Fault 

Setpoints in Energy+ are 

controlled by a 

specialized object called 

Setpoint Manager. The 

same can be utilized to 

change the setpoint to 

higher or lower value to 

emulate the fault effect. A 

9∘C temperature set point 

was defined to emulate an 

approximate 20% 

deviation from baseline 

scenario. 

Setpoint

Manager:

Schedule

d 

- 

F3

6 

Contro

l 

Contro

ller 

Heatin

g 

Supply 

air 

temper

ature 

setpoin

t too 

low 

Control 

Fault 

Setpoints in Energy+ are 

controlled by a 

specialized object called 

Setpoint Manager. The 

same can be utilized to 

change the setpoint to 

higher or lower value to 

emulate the fault effect. A 

9∘C temperature set point 

was defined to emulate an 

approximate 20% 

deviation from baseline 

scenario. 

Setpoint

Manager:

Schedule

d 

- 

F3

7 

Contro

l 

Contro

ller 

Coolin

g 

Supply 

air 

temper

ature 

setpoin

t too 

high 

Control 

Fault 

Setpoints in Energy+ are 

controlled by a 

specialized object called 

Setpoint Manager. The 

same can be utilized to 

change the setpoint to 

higher or lower value to 

emulate the fault effect. A 

17∘C temperature set 

point was defined to 

emulate an approximate 

20% deviation from 

baseline scenario. 

Setpoint

Manager:

Schedule

d 

- 

F3

8 

Contro

l 

Contro

ller 

Heatin

g 

Supply 

air 

temper

ature 

setpoin

Control 

Fault 

Setpoints in Energy+ are 

controlled by a 

specialized object called 

Setpoint Manager. The 

same can be utilized to 

change the setpoint to 

higher or lower value to 

emulate the fault effect. A 

Setpoint

Manager:

Schedule

d 

- 
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t too 

high 

17∘C temperature set 

point was defined to 

emulate an approximate 

20% deviation from 

baseline scenario. 

F3

9 

Contro

l 

Contro

ller 

Inappr

opriate 

schedu

ling of 

fans 

and 

coils 

Control 

Fault 

The stated fault deals with dynamic 

occupancy-based schedules as opposed 

to constant schedules assumed in the 

baseline model used for this study. 

Hence, this fault is not studied further. 

In theory, to study this fault accurately 

EnergyPlus would require to be 

interfaced with other software to 

emulate a dynamic response model 

over multiple simulations. 

- 

 

 

Sensor Impact Analysis 

 

 

Figure 52: Sensor impact analysis: 5-zone building - Peak weather 
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Figure 53: Sensor impact analysis - Breda office - Peak winter period 

Fault Impact analysis 

Figure 54 and Figure 55 show deviation from energy baseline. 

 

Figure 54: Fault impact analysis: 5-zone building - Peak weather period 
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Figure 55: Fault impact analysis - Breda office - Peak winter period 
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APPENDIX D. FDD BUSINESS LAYER – FAULT DETECTION AND FAULT DIAGNOSIS 
 

Table 25: Features Utilized for training Cooling and Heating Valve Prediction Models at Energy Resource Station and 
Hoofddorp office 

Case-Study 
Building Name 

Energy resource 
station 

Hoofddorp office 
Energy resource 
station 

Hoofddorp office 

Cooling/Heating 
Valve Position 
Prediction 
Model 

Cooling Valve 
Position Prediction 

Heating Valve 
Position Prediction 

Heating Valve 
Position Prediction 

Heating Valve 
Position Prediction 

AHU Reference AHU B AHU 2 AHU B AHU 2 

Features used for 
prediction 

Exhaust Air 
Damper, Chilled 

Water Pump 
CHWP-A Water 

Flow Rate, Sum of 
Room Supply Air 

Flow Rates, Return 
Air Flow Rate, 

Outside Air Flow 
Rate, AHU Supply 
Air Temperature, 

Mixed Air 
Temperature, 

Return Air 
Temperature, 

Heating Water Coil, 
Discharge Air 
Temperature, 

Supply Air Duct 
Static Pressure, 
Supply Fan VFD 

Speed, Return Fan 
VFD Speed, Supply 

Air Humidity, 
Return Air 

Humidity, Outside 
Air Temperature, 

OA Duct 
Temperature, 

Heating, Water Coil 
Leaving Water 
Temperature, 

Heating Water Coil, 
Mixed Water 
Temperature, 

Chilled Water Coil 
Entering Water 
Temperature, 

Chilled Water Coil 
Leaving Water 
Temperature, 

Chilled Water Coil 
Mixed Water 
Temperature 

Supply ventilator 
[rpm], Supply 

ventilator [kW], 
Exhaust ventilator 

[rpm], Exhaust 
ventilator [kW], 

Control wtw [%], 
PdT supply filter 

[Pa], Supply water 
temp. [°C], Retour 
water Temp. [°C], 

PT Supply [Pa], 
Supply air Temp. 
[°C], Supply air 

Hum. [%], Exhaust 
air Temp. [°C], 

Exhaust air Hum. 
[%], PT Exhaust 

[Pa], PdT Exhaust 
Filter [Pa], Control 
Exhaust Vent. [%], 
Outside Temp. [°C], 
Outside Hum. [%], 
Inlet Temp LBK2 

[°C] 

MA-TEMP 
SA-TEMP 
HWC-DAT 
HWP-GPM 
OAD-TEMP 
HWC-LWT 
RMT-CFM 
dayofweek 

hour 
RA-TEMP 

Supply water temp. 
[°C] 

Exhaust air Temp. 
[°C] 

Retour water 
Temp. [°C] 

Outside Temp. [°C] 
PdT supply filter 

[Pa] 
PdT Exhaust Filter 

[Pa] 
Supply air Hum. 

[%] 
hour 

Supply air Temp. 
[°C] 

Control Exhaust 
Vent. [%] 

Supply ventilator 
[rpm] 

dayofyear 
week 

dayofweek 
PT Exhaust [Pa] 

Exhaust air Hum. 
[%] 

month 
Outside Hum. [%] 
Exhaust ventilator 

[kW] 
PT Supply [Pa] 
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The list of faults along with respective date on which the fault was introduced are summarized in the Table 26 

shown below. For all day’s fault is applied for the entire occupancy period i.e., between 06:00-18:00. More 

information on how these faults were introduced can be found in [66] 

Table 26: List of faults introduced at Energy resource station building [66] 

Fault description Date 
EA Damper Stuck (Fully Open) 20/8/2007 
EA Damper Stuck (Fully Close) 21/8/2007 
Return Fan at fixed speed (30% speed) 22/8/2007 
Return Fan complete failure  23/8/2007 
Cooling Coil Valve Control unstable  
(Reduce PID PB by half) 

24/8/2007 

Cooling Coil Valve Reverse Action  3/9/2007 
OA Damper Stuck (Fully Closed)  26/8/2007 
Cooling Coil Valve Stuck (Fully Closed)  27/8/2007 
Cooling Coil Valve Stuck (Fully Open)  31/8/2007 
Cooling Coil Valve Stuck (Partially Open - 15%)  1/9/2007 
Cooling Coil Valve Stuck (Partially Open - 65%)  2/9/2007 
Heating Coil Valve Leaking (Stage 1 - 0.4GPM)  28/8/2007 
Heating Coil Valve Leaking (Stage 2 – 1.0GPM)  29/8/2007 
Heating Coil Valve Leaking (Stage 3 – 2.0GPM)  30/8/2007 
OA Damper Leak (45% Open) 5/9/2007 
OA Damper Leak (55% Open) 6/9/2007 
AHU Duct Leaking (after Supply Fan) 7/9/2007 
AHU Duct Leaking (before Supply Fan) 8/9/2007 

 

 

 

Figure 56: ROC curve for tuning the residual threshold of the developed cooling coil valve prediction model 

 

 

 

 

 

 

 

Threshold set 

arbitrarily 
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Dynamic Threshold method for generating residuals 

As was discussed in Section 2.3 and Section 2.4, the usefulness of the model can be improved by determining the 

right threshold on the residual utilized determining the boundary between faulty and normal behaviour. An 

appropriate threshold setting is important for both early and robust fault detection [134]. The uncertainty of the 

residual is characterized by uncertainty due to both model fitting and measurement errors.  To overcome this 

uncertainty, the confidence of the prediction can be improved further by dynamic threshold setting and moving 

this process online wherein the threshold can be determined in real-time [134]. [13]surveyed various articles 

and found that moving average and exponentially weighted moved average (EWMA) that utilize time series 

modelling approaches are quite popular. Besides, [60] also surveyed literature on this topic and identified the 

popularity of statistical modelling techniques. [60] proposed a dynamic threshold setting method that emanates 

from Chebyshev’s inequality that can handle a wide range of probability distributions. They propose a moving 

window approach wherein mean and standard deviation of a predicted variable are computed on a rolling 

window basis. A dynamic threshold can be computed by varying the hyperparameters of this model. The two 

hyperparameters moving window width and number of standard deviations can be set to improve fault 

classification accuracy.  

This method is tested to understand the possibility for inclusion in the fault detection process discussed in 

section 3.4. The following Figure 57 showcases the results from testing this approach for Energy resource station 

building case study. To ascertain its efficacy the classification accuracy of the model which incorporates correctly 

classifying both normal and faulty behaviour is compared with fixed threshold method. The hyperparameters 

window size and no. of standard deviations were set to 10 and 3 respectively. Since, the data is sampled at every 

minute a value of 10 implies a window size of 10 minutes, whilst 3 implies the equivalent standard deviations 

away from the computed mean within the moving window. Using this approach, an upper and lower threshold 

are determined. Here, both thresholds are important since an upper threshold controls the energy cost whilst 

lower threshold controls the comfort cost.  

 

 

Figure 57: Fault detection with dynamic threshold 

For comparison, a fixed threshold with a magnitude of ±8% was utilized. This was the inflection point observed 

on plot shown in Figure 56. Comparing the two, with the fixed threshold method a classification accuracy of 44% 

was observed whilst it improved to 68% when threshold was determined dynamically. This gain of over 50% 

points to the effectiveness of the approach.  
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Feature selection using SHAP 

Features selected using RFECV and PCC and iterated in Table 12 are analysed and their contribution is shown in 

Figure 58a). The graph shows rank ordered contribution of features based upon their mean absolute impact on 

the model’s prediction. Further, these features are iteratively selected in the order of highest absolute impact. 

Least impactful features are dropped, and model’s performance is tested on key performance indicators (KPIs): 

R2 score, and root mean squared error (RMSE). It can be observed from Figure 58b) that after selecting the top 

seven features, the performance on the model on the KPIs doesn’t improve significantly. Hence, these top seven 

features are finalized, and the model trained using these features was proceeded with for fault detection.  

 

a) 

 

b) 

 

Figure 58: Feature contribution evaluation using SHAP 
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Experiments to evaluate lead-time of trained ML models 

In general limitation of a tree-based models such as XGBoost with decision trees used earlier is their inability to 

extrapolate beyond the data observed in the training set. Therefore, it’s important to further explore the 

generalization character of trained models presented earlier. The model performance is explored at Hoofddorp 

office and Breda office by training data from a cooling season of an year using the approach discussed in section 

3.4 and is summarized in plots shown in Figure 59.  

Hoofddorp Office Breda Office 

Figure 59: Experiments to evaluate lead-time for black-box models with datasets from Hoofddorp office and Breda office 

At Nijmegen school for the experiments, the available dataset from 2020 until 2021 was utilized. This dataset 

was first filtered for when the AHU operated in cooling mode and data from the period when fault experiments 

are carried out in 2020 was removed. This final dataset from nearly 52 weeks spread over 2020 and 2021 was 

partitioned on a weekly basis hence resulting in 52 smaller datasets. Thereafter, each of the smaller datasets 

were iteratively added to compose a training and test set (split in a ratio of 80:20 respectively). On each iteration 

model performance was measured on KPIs: R2 score, RMSE, and cross-validation RMSE were measured on the 

test set and the unutilized dataset. Measuring the performance of the model over the unutilized dataset is 

indicative of the generalizability of the trained model. It can be observed from Figure 60 that data recorded from 

at least 20 weeks is required on a minimum to train an acceptable model (CV-RMSE < 0.3). For this case, it is also 

observed that an accurate enough model (uncertainty < 10%) is realized only upon training the model with at 

least 34 weeks of data. Although, an accurate model is realized using the approach, its performance unexpectedly 

dips post 47th iteration. This is a consequence of the change in building supply air setpoint as observable from 

Figure 60. To this end if significant changes in control/operations strategy are implemented model 

retraining is recommended. Therefore, keeping a track of critical features of the model is important and is 

proposed to be considered in the overall FDD strategy.  
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Figure 60: R2 Score and RMSE with weekly tests – ROC Nijmegen
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List of fault experiments carried out at Breda office and Nijmegen school for experimental validation of 

developed diagnosis model for cooling mode operation 

Table 27: Chronology of faults introduced at Breda office in 2021 

Fault 

Name 

Fault 

description 

Fault Introduction Method – Brief 

Description 
P&ID Ref  

Severity / 

Setting 
Period 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-6CV1 30% 

23/06/

2021-

24/06/

2021 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-7CV1 20% 

23/06/

2021-

24/06/

2021 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-8CV1 20% 

23/06/

2021-

24/06/

2021 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-6CV1 30% 
25/06/

2021 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-7CV1 20% 
25/06/

2021 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-8CV1 20% 
25/06/

2021 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-6CV1 20% 

30/06/

2021-

02/07/

2021 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-7CV1 30% 

30/06/

2021-

02/07/

2021 

Valve Leak 
Valve cannot 

close fully 

Minimum valve position was hard set 

to a fixed value equivalent to severity 

of fault 

1-8CV1 30% 

30/06/

2021-

02/07/

2021 

Stuck 

Valve 

Valve stuck at 

fixed position 

Minimum and Maximum valve 

positions were hard set to severity of 

the fault 

1-6CV1 50% 

02/07/

2021-

05/07/

2021 

Stuck 

Valve 

Valve stuck at 

fixed position 

Minimum and Maximum valve 

positions were hard set to severity of 

the fault 

1-7CV1 50% 

02/07/

2021-

05/07/

2021 

Stuck 

Valve 

Valve stuck at 

fixed position 

Minimum and Maximum valve 

positions were hard set to severity of 

the fault 

1-8CV1 50% 

02/07/

2021-

05/07/

2021 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1806 16℃ 

07/07/

2021-

12/07/

2021 
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Fault 

Name 

Fault 

description 

Fault Introduction Method – Brief 

Description 
P&ID Ref  

Severity / 

Setting 
Period 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1804 16℃ 

07/07/

2021-

12/07/

2021 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1808 16℃ 

07/07/

2021-

12/07/

2021 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1806 17℃ 

14/07/

2021-

16/07/

2021 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1804 17℃ 

14/07/

2021-

16/07/

2021 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1808 17℃ 

14/07/

2021-

16/07/

2021 

Stuck 

Valve 

Valve stuck at 

fixed position 

Minimum and Maximum valve 

positions were hard set to severity of 

the fault 

1-6CV1 75% 

16/07/

2021-

19/07/

2021 

Stuck 

Valve 

Valve stuck at 

fixed position 

Minimum and Maximum valve 

positions were hard set to severity of 

the fault 

1-7CV1 75% 

16/07/

2021-

19/07/

2021 

Stuck 

Valve 

Valve stuck at 

fixed position 

Minimum and Maximum valve 

positions were hard set to severity of 

the fault 

1-8CV1 75% 

16/07/

2021-

19/07/

2021 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1806 17℃ 
22/07/

2021 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1804 17℃ 
22/07/

2021 

Reduced 

Setpoint 

Supply air set 

point reduced 

to value less 

than desired 

Supply air setpoint control logic was 

reset, and its value was fixed to a set 

value 

3.1.1808 17℃ 
22/07/

2021 

Lower Air 

Flow 

Supply Air 

flow rate was 

reduced and 

maintained a 

fixed value 

Fan speed was reduced from its usual 

setting ~80% 
1-5TV2 60% 

22/07/

2021-

23/07/

2021 

Valve 

Experimen

ts 

No Fault 

Valve Position was adjusted from 0-

100 and then back from 100-0. Other 

cooling valve positions were manually 

fixed to 0 and pump was manually 

switched ON. 

1-7CV1 NA 
29/07/

2021 
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Fault 

Name 

Fault 

description 

Fault Introduction Method – Brief 

Description 
P&ID Ref  

Severity / 

Setting 
Period 

Valve 

Experimen

ts 

No Fault 

Valve Position was adjusted from 0-

100 and then back from 100-0. Other 

cooling valve positions were manually 

fixed to 100 and pump was manually 

switched ON. 

1-6CV1 NA 
29/07/

2021 

Valve 

Experimen

ts 

No Fault 

Valve Position was adjusted from 0-

100 and then back from 100-0. Other 

cooling valve positions were manually 

fixed to 100 and pump was manually 

switched ON. 

1-7CV1 NA 
12/08/

2021 

Lower Air 

Flow 

Supply Air 

flow rate was 

reduced and 

maintained a 

fixed value 

Fan speed was reduced from its usual 

setting ~80% 
1-5TV2 60% 

12/08/

2021-

16/08/

2021 

Valve 

Experimen

ts 

No Fault 

Valve Position was adjusted from 0-

100 and then back from 100-0. Other 

cooling valve positions were manually 

fixed to 100 and pump was manually 

switched ON. 

1-8CV1 NA 
18/08/

2021 

Higher Air 

Flow 

Supply Air 

flow rate was 

increased and 

maintained a 

fixed value 

Fan speed was increased from its 

usual setting ~80% 
1-5TV2 100% 

18/08/

2021-

20/08/

2021 

Lower Air 

Flow 

Supply Air 

flow rate was 

reduced and 

maintained a 

fixed value 

Fan speed was reduced from its usual 

setting ~80% 
1-5TV2 70% 

20/08/

2021 

 

Table 28: Chronology of faults introduced at Nijmegen school in 2020 

Fault 

Name 

Fault 

description 

Fault Introduction 

Method – Brief 

Description 

AHU 
P&ID 

Ref 

Severity 

/ 

Setting 

Start 

Date 

End 

Date 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 100TT04 18 25/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

18 25/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

18 25/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

1 

100TT04 

17 26/Jul 26/Jul 



Chitkara, S. CM-FDD-HVAC 93 

Fault 

Name 

Fault 

description 

Fault Introduction 

Method – Brief 

Description 

AHU 
P&ID 

Ref 

Severity 

/ 

Setting 

Start 

Date 

End 

Date 

was fixed to a set 

value 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

16 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

16 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

16 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

16 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

16 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

15 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

15 26/Jul 26/Jul 
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Fault 

Name 

Fault 

description 

Fault Introduction 

Method – Brief 

Description 

AHU 
P&ID 

Ref 

Severity 

/ 

Setting 

Start 

Date 

End 

Date 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

15 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

15 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

15 26/Jul 26/Jul 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

 26/Jul  

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

22 31/Jul  

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 03/Aug 09/Aug 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 03/Aug 09/Aug 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 03/Aug 09/Aug 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 03/Aug 09/Aug 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 03/Aug 09/Aug 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

1 

100TT04 

17 03/Aug 09/Aug 
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Fault 

Name 

Fault 

description 

Fault Introduction 

Method – Brief 

Description 

AHU 
P&ID 

Ref 

Severity 

/ 

Setting 

Start 

Date 

End 

Date 

was fixed to a set 

value 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

17 07/Aug 07/Aug 

Reduced 

Setpoint 

Supply air set 

point reduced to 

value less than 

desired 

Supply air setpoint 

control logic was 

reset, and its value 

was fixed to a set 

value 

1 

100TT04 

22 09/Aug 09/Aug 
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Results from experimental validation of cooling mode operation faults introduced at Breda office 

On 2nd July 2021 at 17:20, a stuck valve fault experiment was carried out. Herein, the three-way cooling coil 

control valve position installed at north zone was fixed at 50% open. This fault was introduced until 10:48 on 5th 

July 2021. Zooming into the behaviour of our diagnosis strategy on the 3rd July 2021 as shown in Figure 61, it can 

be observed a that a large residual exceeding +20% is observable between actual and predicted valve positions, 

thereby activating the CCV Prediction node (see Table 16). Thereby, the computed posterior probability of 

positive stuck valve state is computed higher than 65% indicating fault presence with a high confidence.  

 

 

Figure 61: Stuck valve fault experiment 

On 07th July 2021 at 17:20, a reduced supply air temperature setpoint experiment was carried out. Herein, the 

supplied air temperature setpoint that is cascaded control using the prevalent outdoor and return air conditions 

was reduced to 16℃. Nominally this value is set at 18℃, hence introducing a fault with 2K severity. This fault 

was manually induced until 08:24 on 12th July 2021. Zooming into the behaviour of our diagnosis strategy on the 

08th of July 2021 as shown in Figure 62, it can be observed a that a residual exceeding +5% is observable between 

actual and predicted valve positions and 1℃ between actual and desired supply air setpoint conditions. The CCV 

Prediction node and SAT Desired Comparison node (see Table 16) are activated given these values exceed the 

set thresholds. However, the RAT Setpoint Comparison symptom node is not activated as the fault severity is not 

too high. Despite, the computed posterior probability of Reduced Supply Air Temperature (SAT) fault is 

computed higher than 85% indicating fault presence with a very high confidence.  
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Figure 62: Reduced supply air set point experiment 

On 22nd July 2021 at 16:30, a lower airflow experiment was carried out. Herein, the supplied airflow was reduced 

using the variable frequency drive installed on the supply fan from its nominal 85% to 60%. It meant that the 

supplied air pressure dropped from nominal 300Pa to 150Pa. This fault was introduced until 17:12 on 23rd July 

2021. Zooming into the behaviour of our diagnosis strategy on the 23rd July 2021 as shown in Figure 63, it can 

be observed a that a residual exceeding +5% is observable between actual and predicted valve positions and 

0.5m/s between actual and predicted airspeed conditions. The CCV Prediction node and Airflow Comparison 

node (see Table 16) are activated given these values exceed the set thresholds. Thereby, the computed posterior 

probability of lower airflow fault is computed higher than 90% indicating fault presence with a very high 

confidence.  

 

Figure 63: Lower airflow fault experiment 

KPIs for experimental validation  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  

            ( 4) 
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𝑟𝑒𝑐𝑎𝑙𝑙/𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
  

            ( 5) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
  

            ( 6) 

 

DBN for cooling mode operation at Nijmegen school and its experimental validation 

As with Breda, the layout of the DBN network emanates from the P&ID of the installed HVAC system. The P&I 

diagram for the AHU one is shown in APPENDIX A. For the first prototype of the FDD tool, this AHU is considered. 

The component fault nodes are depicted in purple in the DBN are shown in Figure 64. For the studied sub-system, 

Air flow fault node is an abstraction for any air side faults in components such as ducts, fans, or filters that can 

abruptly alter the supplied airflow. Red SAT and cooling coil valve (CCV) Stuck nodes depict reduced setpoint 

and cooling coil control valve stuck faults respectively.  

 

Figure 64: DBN for cooling mode operation – Nijmegen school 

Despite there being differences, in HVAC configuration network structure did not differ besides the Red SAT node 

as can be observed upon comparing Figure 24 and Figure 64. The alteration had to be made since at Nijmegen 

the supply air temperature control strategy is directly correlated with the prevailing outdoor air temperature. 

In contrast, at Breda the supply air temperature is controlled using two variables return air and outdoor air 

temperatures. The symptom nodes were thus adjusted to account for this change.  

Table 29: DBN model - Symptom Nodes description -Cooling mode operation at Nijmegen school 

# Symptom Node Symptom State Rules for setting the state 

1 Airflow Comparison High Fact-Fpred >Θ 

Low Fact-Fpred<-Θ 

Fault-free Fact-Fpred<=Θ 

2 SAT Desired Comparison Negative Tset-Tset,des<-Θ 

Fault-free Tset-Tset,des<=Θ 

3 CCV Prediction Positive Xccv-Xccv,pred>Θ 

Negative Xccv-Xccv,pred<-Θ 

Fault-free Xccv-Xccv,pred<=Θ 

4 SAT Setpoint 

Comparison 

Positive Tsa-Tsa,set>Θ 

Negative Tsa-Tsa,set<-Θ 

Fault-free Tsa-Tsa,set<=Θ 

 

Key:  
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F - Flow Rate in m3/s, T - Temperature in °C, X - Control Position in %, Θ - Threshold, act - Actual, pred - 

Predicted, ccv - Cooling coil valve, des - Desired, sa - Supply air, set – Setpoint 

For experimental validation of the developed diagnosis model, fault experiments carried out in 2020 are utilized.  

Reduced SAT fault shown in DBN (see Figure 64) was introduced over periods in July and August 2020. The 

chronology of these experiments is listed in Table 28.  

On 03rd August 2020 at 11:03, a reduced supply air temperature setpoint experiment was carried out. Herein, 

the supplied air temperature setpoint that is feedforward control using the prevalent outdoor air condition was 

reduced to 17℃. Nominally this value is set at 21℃, hence introducing a fault with a 4K severity. This fault was 

manually induced until 22:07 on 09th August 2020.  

 

Figure 65: Reduced supply air temperature setpoint experiment on 4th August 

Zooming into the behaviour of our diagnosis strategy on the 04th August 2020 as shown in Figure 65, it can be 

observed a that a residual exceeding +5% is observable between actual and predicted valve positions and 4K 

between actual and desired supply air setpoint conditions. The CCV Prediction node and SAT Desired 

Comparison node (see Table 29) are activated given these values exceed the set thresholds. Thereby, the 

computed posterior probability of Reduced Supply Air Temperature (SAT) fault is computed higher than 95% 

indicating fault presence with a very high confidence.  

To observe the ability of the prototyped FDD to rule out a fault condition, computed posterior fault probabilities 

are plotted in Figure 66. It is clearly observable that once fault is corrected as was done in the late evening of 09th 

August 2020, fault probability reduces to its set prior probability indicating fault absence on 10th August 2020.  
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Figure 66: Reduced supply air temperature setpoint experiment on 9th August and corrected on 10th 

The long-term operational performance of the DBN (see Figure 65) for cooling mode operation of the AHU at 

Nijmegen school was tested. The test was carried out using data collected over the summer experimental period 

between 01st July 2020 and 31st August 2020. During this period a mix of fault and fault-free days (on days no 

fault experiment was carried out) were considered. The confusion matrix in Figure 67 is indicative of the 

performance of the adopted fault diagnosis strategy. The KPIs shown in Table 18, indicates a very good diagnosis 

ability of the prototyped FDD tool.  

 

 

Figure 67: Experimental validation - Confusion Matrix - Nijmegen school – Cooling mode operation 
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Rules for separating sequence of operation of the various Air-Handling Units 

Table 30: Operation mode detection rules for Breda office and Nijmegen school 

Site AHU Mode of 
Operation 

Rule 

Breda office Central AHU Heating 
Mode 

Supply Hot water temperature > 25, 
Heating Coil Valve Open, Cooling Coil 
Valves closed 

Breda office North Zone, South Zone Cooling 
Mode 

Chilled water temperature < 8, Heating 
Coil Valve Closed, Cooling Coil Valves 
Open 

Nijmegen school AHU One, AHU Two Heating 
Mode 

Supply water temperature > 33, 
Heating Coil Valve Open, Cooling Coil 
Valves closed 

Nijmegen school AHU One, AHU Two Cooling 
Mode 

Supply water temperature < 16, 
Cooling Valve Open, Fan Switched On 

 

List of fault experiments carried out at Breda office and Nijmegen school for experimental validation of 

developed diagnosis model for heating mode operation 

Table 31: Chronology of faults introduced at Breda office 

Fault 
Name 

Fault 
description 

Fault Introduction 
Method – Brief 
Description 

P&ID 
Ref No. 
and 

Severity 
/ Setting 

Start Date Stop Date 

Stuck 
Valve 

Valve stuck at 
fixed position 

Valve position was 
hard set to a fixed 
value equivalent to 
severity of fault 

1-5CV1 40% 20/10/2021 22/10/2021 

Increa
sed 
setpoi
nt 

Supply air 
setpoint control 
logic was reset, 
and its value was 
fixed to a set 
value 

North-East zone fixed 
at 27 deg C, South-
West zones at 25 deg 
C 

3.1.1804, 
3.1.1806 

2℃ 28/10/2021 28/10/2021 

Increa
sed 
setpoi
nt 

Supply air 
setpoint control 
logic was reset, 
and its value was 
fixed to a set 
value 

North-East zone fixed 
at 27 deg C  

3.1.1804 2℃ 12/11/2021 12/11/2021 

Stuck 
Valve 

Valve stuck at 
fixed position 

Valve position was 
hard set to a fixed 
value equivalent to 
severity of fault 

1-5CV1 60% 23/11/2021 23/11/2021 

Increa
sed 
setpoi
nt 

Supply air 
setpoint control 
logic was reset, 
and its value was 
fixed to a set 
value 

North-East zone fixed 
at 26 deg C  

3.1.1804 1℃ 30/11/2021 30/11/2021 

Air 
flow 

Higher Air Flow Supply Air flow rate 
was increased and 
maintained a fixed 
value 

1-5TV2 100% 14/12/2021 14/12/2021 

Sensor 
offset 

Supply air 
temperature 
sensor in main 
AHU 

Add an offset in the 
corresponding sensor 
in BAS 

3.1.1563 -2 08/10/2021 08/10/2021 
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Sensor 
offset 

Supply air 
temperature 
sensor in zone 
north 

Add an offset in the 
corresponding sensor 
in BAS 

3.1.1569 -2 18/10/2021 20/10/2021 

Sensor 
offset 

Outdoor air 
temperature 
sensor 

Add an offset in the 
corresponding sensor 
in BAS 

3.1.5332
0 

-2 25/10/2021 27/10/2021 

Sensor 
offset 

Return air 
temperature 
sensor in zone 
north 

Add an offset in the 
corresponding sensor 
in BAS 

3.1.1570 -2 02/11/2021 03/11/2021 

Sensor 
offset 

Supply heating 
water 
temperature 
sensor in main 
AHU 

Add an offset in the 
corresponding sensor 
in BAS 

3.1.1552 5 09/11/2021 10/11/2021 

Sensor 
offset 

Supply heating 
water 
temperature 
sensor in main 
AHU 

Add an offset in the 
corresponding sensor 
in BAS 

3.1.1552 -5 08/12/2021 09/12/2021 

 

Table 32: Chronology of faults introduced at Nijmegen school 

Fault 
Name 

Fault 
description 

Fault Introduction 
Method – Brief 
Description 

P&ID 
Ref No. 
and 

Severity 
/ Setting 

Start Date Stop Date 

Increa
sed 
setpoi
nt 

Supply air 
setpoint control 
logic was reset, 
and its value was 
fixed to a set 
value 

Supply air 
temperature is 
determined using a 
feedforward control 
strategy based on 
outdoor air 
temperature. To 
introduce the fault, 
the heating curve is 
shifted by value 
equivalent to fault 
severity. 

100TT04 2K 01/03/2022 01/03/2022 

Stuck 
Valve 

Valve stuck at 
fixed position 

Valve position was 
hard set to a fixed 
value equivalent to 
severity of fault 

07CV03 10% 03/03/2022 03/03/2022 

Increa
sed 
setpoi
nt 

Supply air 
setpoint control 
logic was reset, 
and its value was 
fixed to a set 
value 

Supply air 
temperature is 
determined using a 
feedforward control 
strategy based on 
outdoor air 
temperature. To 
introduce the fault, 
the heating curve is 
shifted by value 
equivalent to fault 
severity. 

100TT04 2K 24/03/2022 25/03/2022 
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DBN for heating mode operation at Nijmegen school and its experimental validation 

 

 

 

 

Figure 68: DBN for heating mode operation – AHU one at Nijmegen school 

The supply air temperature setpoint is set at the outlet of fan, which is typically higher than the supply 

temperature at the air outlet of the heating coil due to fan heat. To generate a residual under fault scenario the 

SAT setpoint is compared with a predicted supply temperature using an XGBoost model. This model estimates 

supply temperature at the fan outlet using the supply air temperature at the heating coil outlet. This way an 

accurate residual is generated for fault detection purpose on the SAT Setpoint Comparison node.  

Table 33: Symptom Nodes description for heating mode DBN – Breda office 

# Symptom Node Symptom State Rules for setting the state 

1 Airflow Comparison 

High Fact-Fpred >Θ 

Low Fact-Fpred<-Θ 

Fault-free Fact-Fpred<=Θ 

2 SAT Desired Comparison 

Positive Tset-Tset,des>Θ 

Negative Tset-Tset,des<-Θ 

Fault-free Tset-Tset,des<=Θ 

3 HCV Position Prediction 

Positive Xhcv- Xhcv,pred>Θ 

Negative Xhcv - Xhcv,pred<-Θ 

Fault-free Xhcv - Xhcv,pred<=Θ 

4 SAT Setpoint Comparison 

Positive Tsa-Tsa,set>Θ 

Negative Tsa-Tsa,set<-Θ 

Fault-free Tsa-Tsa,set<=Θ 

Key: F - Flow Rate in m3/s, T - Temperature in °C, X - Control Position in %, Θ - Threshold, act - Actual, pred - 

Predicted, hcv -Heating coil valve, des - Desired, sa - Supply air, set – Setpoint 
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Surveyed Literature for modelling heat recovery wheels 

The following table summarizes approaches utilized in literature for modelling heat recovery wheels. 

Table 34: Literature summary for modelling heat recovery wheels 

# Ref Title Approach Comments 
1 [126] System-level fouling 

detection of district 
heating substations 
using virtual-sensor-
assisted building 
automation system 

Data-driven Neural network model to predict FDI that can be 
utilized for  

2 [100] Automated 
Performance Tracking 
for Heat Exchangers in 
HVAC 

Data-driven a total variation (TV) filter integrated with an 
enhanced PF, termed local search PF (LSPF), is 
developed. Residual generation, control 
parameters. Tracking gradual perf degradation 
through exp function and sudden through step 
function. Sim model utilized to test the approach 
and RP1043 data utilized to validate 
experimentally.  

3 [135] Experimental analysis 
of a rotary heat 
exchanger for waste 
heat recovery from the 
exhaust gas of dryer 

Experimenta
l approach 

Measuring the impact of key variables such as temp, 
flow, rotational speed etc. on key KPIs 

4 [136] A novel fault diagnosis 
and self-calibration 
method for air-
handling units using 
Bayesian Inference and 
virtual sensing 

Data Driven Propose a virtual sensor for tracking fouling in heat 
exchangers using the UA and LMTD. Validate the 
proposed approach using a TRNSYS model. 

5 [129] Real heat recovery with 
air handling units 

Experimenta
l 

Tracer gas introduction for leakage detection 

6 [137] Case study results: 
fault detection in air-
handling units in 
buildings 

Data Driven Optimal operation of hear recovery pump 

7 [130] Prediction of 
condensation and 
frosting limits in rotary 
wheels for heat 
recovery in buildings 

Physical/He
uristic 
Model 

Specific to Frosting: Tracking the moisture carrying 
capacity (using mollier diagram) of supply air at sub 
zero temperatures. Simultaneously, understanding 
the excess water in exhaust stream. 

8 [101] Frost formation in 
rotary heat and 
moisture exchangers 

Experimenta
l/Mathemati
cal 

 
absolute humidity is the prevailing parameter for 
characterizing the frosting phenomenon. A frost 
mass fraction chart was established in terms of the 
relative humidity of the warm exhaust stream and 
of the temperature of the cold supply stream 

9 [138] PERFORMANCE 
EVALUATION OF 
ROTARY 
DESICCANT WHEELS 
USING A SIMPLIFIED 
PSYCHOMETRIC 
MODEL AS DESIGN 
TOOL 

Numerical Method to solve for enthalpy of different desiccant 
wheels using a grey-box approach – Model 54 

10 [97] Desiccant wheels 
effectiveness 
parameters: 
Correlations based on 
experimental data 

Data Driven Developed Efficiency Factors for measuring 
enthalpy and Rh effectiveness. Explores the 
dependence of effectiveness parameters on inlet air 
and rotational speed of the wheel. Further, 
generalization of the previously utilized 
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effectiveness parameters over a wide boundary 
condition is proposed. Considered measurement 
points such as T and Rh on all four locations around 
desiccant wheel and a delta P across the wheel.   

11 [96] Experimental 
validation of a 
simplified approach for 
a desiccant wheel 
model 

Data Driven efficiency factors with fewer measurements as 
opposed to [17]. Utilizes an analogy method, 
wherein performance of desiccant wheel is 
approximated using a simple heat transfer process 
as experienced in an heat exchanger. Two variables 
F1 (approximates adiabatic lines) and F2 
(approximates Rh lines) referred to as combined 
potentials are introduced. Method enables 
prediction of outlet states of wheel on basis of 
calculated values of the combined potentials 
efficiencies ηF1, ηF2. Considered regeneration side 
temperatures are quite high in comparison to the 
typically experienced in building conditions in 
Netherlands.  

12 [139] Implementation of GA-
LSSVM modelling 
approach for 
estimating the 
performance of solid 
desiccant wheels 

Data Driven Using LSSVM and GA, predict Tpro,out, ωpro,out, 
Treg,out, ωreg,out, ηdeh, MRC, and SER for both 
WSG and LT3 type dessicant wheels.  

13 [140] Optimization - 
Desiccant-wheel 
optimization via 
response surface 
methodology and 
multi-objective genetic 
algorithm 

Data Driven Central Idea - outlet temperature and humidity 
ratio of process air are not independent of each 
other; a desiccant wheel must be optimized by 
considering state conditions of outlet air in the 
process stream to allow the desiccant wheels to 
work in a high-efficiency mode. Response surface 
method proposed to optimize both parameters 
together. Finally, equation for Tout,process is 
written in terms of humidity ratio that explains the 
interaction effect for silica gel and molecular sieve 
based desiccant wheels. Surface area ratio is found 
to be the most dominant independent variable. 
Nonetheless, not all physical dimensions or 
operating conditions of a wheel (e.g. wheel depth or 
rotational speed) were considered in this approach. 

14 [141] Artificial neural 
network-based 
modelling of desiccant 
wheel 

Data Driven Predict DBT and specific humidity of air at outlet of 
desiccant wheel in the operation range of 60-150 
deg C regeneration temperature. For optimization 
MRC considered as an objective. Multiple objective 
functions evaluated. However, the approach is 
dated since ANN modelling has significantly 
advanced since then.  

15 [142] Performance 
prediction of rotary 
solid desiccant 
dehumidifier in hybrid 
air-conditioning 
system using artificial 
neural network 

Data Driven Solid desiccant system. 7 predictors and 6 predicted 
variables using a multi-output ANN based 
regressor. Moisture removal rate and effectiveness 
of the dehumidifier are considered as key 
performance indicators. 

16 [102] Optimization - 
Validation of multitask 
artificial neural 
networks to model 
desiccant wheels 
activated at low 
temperature 

Data Driven Data-driven approach followed to overcome the 
limitations of complexity associated with physical 
modelling approaches discussed previously. Multi-
task learning ANN model (predicted variables: 
Temp and Humidity Ratio at output of HRW). 
Predictors used: Return Air Temp & Humidity 
condition, Suction Air Temp & Humidity Condition, 
Supply air flow rate and speed of rotation.  
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17 [92] Semi-empirical 
mapping method for 
energy recovery wheel 
performance 
simulation 

Numerical Algebraic Equations utilized to developed an 
Energy Recovery Wheel model. Equations 
determining effectiveness of wheel as a function of 
speed of rotation, air face velocity, and wheel depth 
are derived.  

18 [93] Optimization – Design 
Optimization of Heat 
Wheels for Energy 
Recovery in HVAC 
Systems 

Numerical Explores the effects of various design aspects on the 
performance of HRW, considering parameters such 
as revs, dimensions, velocity etc. Effect is measured 
on sensible effectiveness and pressure drop.  

19 [143] Effect of rotational 
speed on the 
performances of a 
desiccant wheel 

Experimenta
l 

KPIs such as DCOP, SER and effectiveness are 
analysed to study their dependence on rotational 
speed of silica gel based desiccant wheel for low 
temperature regenerators (60–70 °C). SER is found 
to be monotonically increasing function of 
rotational speed, whilst effectiveness 
(dehumidification) increases and starts decreasing 
after a certain threshold. Op conditions that 
maximize DCOP are opposite to those that 
maximize effectiveness (dehumidification) 

20 [144] Effectiveness 
parameters for the 
prediction of the global 
performance of 
desiccant wheels – An 
assessment based on 
experimental data 

Experimenta
l 

Compares a set of performance indicators proposed 
in previous research such as by [96]. Enthalpy and 
moisture absorption content (at equilibrium) were 
found to be the most suitable indicators. However, 
only in the scenario that sorption isotherms are 
known. Correlations for effectiveness parameters 
that can be directly derived from manufacturers 
data would be effective.  

21 [98] Performance 
comparisons of 
desiccant wheels for air 
dehumidification and 
enthalpy recovery 

Numerical Numerical equations proposed to study the effect of 
rotational speed, number of transfer units and 
specific area on performance indicators for wheel 
are investigated. Performance indices looked at are 
sensible effectiveness, latent effectiveness, 
dehumidification effectiveness, specific 
dehumidification power are considered. Key 
observations: 
1. Air dehumidification is more sensitive to rotary 
speed than enthalpy recovery is. 
2. latent effectiveness is usually smaller than the 
sensible effectiveness, because the moisture 
transfer resistance is usually larger than the heat 
transfer resistance. In other words, mass diffusion 
in the solid is far less than the thermal diffusion. 
3. NTU increases with specific area 
 

22 [145] Heat and Mass Transfer 
in Air-to-Air Enthalpy 
Heat Exchangers 

Numerical  Numerical model for counter flow heat exchanger 
(membrane based) 

23 [146] Virtual entropy 
generation (VEG) 
method in experiment 
reliability control: 
Implications for heat 
exchanger 
measurement 

Numerical Utilize first and second law of thermodynamics to 
deal with measurement uncertainty in heat 
exchangers. 

24 [99] Modeling and 
simulation of heat and 
enthalpy recovery 
wheels 

Numerical Developed a mathematical model for heat and mass 
transfer for rotary heat exchangers and are further 
validated using independent observations. Key 
Finding: Heat wheels are far less efficient than 
enthalpy recovery wheels.  
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Fault experiments for validation of HRW models discussed in section 3.5.3 

Table 35: Chronology of fault experiments carried out at Breda office and Nijmegen school 

Location 
Fault 
Name 

Fault 
descripti

on 

Fault 
Introduct

ion 
Method – 

Brief 
Descripti

on 

P&ID Ref 
No. 

Severity / 
Setting 

Start 
Date 

Stop Date 

AHU One 
Nijmegen 

school 

Control 
failure 

Heat 
recovery 

wheel 
isn’t 

rotating 

Heat 
recovery 

wheel 
control 

position is 
manually 
overridde
n and set 
to a fixed 

speed 

100SC03 0% 
14/03/20

22 
14/03/20

22 

AHU One 
Nijmegen 

school 

VFD 
bypass 

Control of 
heat 

recovery 
wheel is 

bypassed, 
and the 

heat 
recovery 

wheel 
rotates at 

a fixed 
100% 
speed 

Heat 
recovery 

wheel 
control 

position is 
manually 
overridde
n and set 
to a fixed 

speed 

100SC03 100% 
23/03/20

22 
23/03/20

22 

Central 
AHU 

Breda 
office 

Control 
failure 

Heat 
recovery 

wheel 
isn’t 

rotating 

Heat 
recovery 

wheel 
control 

position is 
manually 
overridde
n and set 
to a fixed 

speed 

1-5WW1 0% 
17/03/20

22 
17/03/20

22 

 

In the following figure, faulty vs fault free operations are compared for Breda office. The fault introduced at Breda 

office is shown in Table 35. It can be observed upon comparing the figures that during fault operation the heat 

recovered is a lot less than predicted through the model. Hence, the developed model is found useful for 

distinguishing between such faults.  
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Figure 69: Comparison of predicted vs actual temperatures post heat recovery wheel during faulty and free operation for 
Breda office 
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APPENDIX E. FDD APPLICATION 
 

Model Management 

The model management framework can be envisaged as a ledger, wherein performance of models trained with 

data is recorded. In the current implementation, its conception is simplified to initiate and inspire steps required 

in this direction. A database of models is maintained. In Figure 70, model performance tracking page for Breda 

office is shown. Here, the trained models are listed along with their latest performance evaluation on indicators 

such as R2 score (see c on Figure 70), and RMSE (see d on Figure 70) discussed in section 3.4. The model 

performance over these indicators, is tracked in time and compared with the baseline performance (performance 

realized in the offline training process) to detect a model performance anomaly. An alert (see e on Figure 70) is 

generated in case the tracked performance drops, which can also be observed using the check performance 

button displayed alongside (see f on Figure 70).  

To explore the features for their importance and contributions to the trained model a button is provided. Clicking 

on the button (see b on Figure 70) opens a pop-up where such information is provided. Further, on the pop-up, 

a drift detection algorithm is setup for tracking drift of the most important features. It is envisaged that alerts 

generated through drift detection and combined with model KPIs would be shown in the Alerts bar (see e on 

Figure 70). They are further proposed to be integrated as model faults in the developed DBNs. 

 

Figure 70: FDD Application - Machine Learning models tracking page for Breda office 
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APPENDIX F. DISCUSSION 
 

Compliance against prioritized requirements: 

Table 36: Compliance matrix of the developed AFDD tool towards various domain, functional and non-functional 
requirements identified for their verification 

Requirement Priority Compliance 
Select and show key performance indicators that can track system performance High  
Select and prioritize key faults that cause the largest energy performance gap High  
Express clear linkages between developed diagnosis strategy and HVAC system High  
Explain predictions of deployed machine learning models High  
Isolability, Evaluation and decision support capabilities: Utilize Bayesian 
methods that can deal with uncertain information. Further, embed features to 
evaluate outcomes and support decision making. 

High 
 

No. of Sensors/Measurement Requirements: For modelling utilize as less 
sensors as possible to avoid sensor uncertainty  

Medium 
 

Ease and Automation of training and tuning, Limited need for handcrafting of 
algorithms: Model training and tuning procedure to be completely automated 

Low 
 

Detection Time: Detection time for detecting abrupt faults needs to be less than 
or equal to 3 hours 

Low 
 

Computational requirements (Memory): Model deployment for a single building 
should be supported on a standard PC with 16GB memory 

Low 
 

Provide support for training, testing, evaluating, and deploying Bayesian 
networks 

High 
 

Visualize diagnostic Bayesian networks including symptom states and fault 
probabilities 

High 
 

Provide support for training, testing, evaluating, and deploying machine learning 
models 

High 
 

Validate datasets before utilizing them for serving predictions High  
Software should be able to interface with CMS (InsiteSuite) over API High  
Store meta information about the underlying HVAC system Medium  
Visualize diagnosed faults in a clear manner Medium  
Provide supporting evidence and information on diagnosed faults Medium  
Develop a fault library that can store fault and meta information on faults Medium  
Provide support for tracking performance of deployed machine learning models 
and raise flags for retraining 

Medium 
 

Software should support date, time and text filter and sort functionalities 
wherever applicable 

Medium 
 

Provide support for utilizing state-of-the-art feature selection techniques Low  
Feature to compare results from multiple regression modelling frameworks 
such as gradient boosting, decision tress 

Low 
 

Software should support dynamic Bayesian networks Low  
Software should be able to interface directly with BMS deployed on site for data 
ingestion 

Low 
 

Software should support APIs for data export from developed application Low  
Software should carry a mechanism to input expert information that can be 
further utilized for labelling or correction purposes 

Low 
 

Security:  
Only designated and authorized use of client data  

High 
 

Maintainability: 
Software should be free of poor coding practices and should carry ample 
documentation and annotations for easy maintainability 
Data tags utilized in the software should be human understandable 

High 

 

Interoperability: 
Should be designed in a manner that it can support open interfaces for 
connectivity with external applications 

High 
 

Scalability: 
Should be deployed and tested over multiple building use-cases  
Should be able to handle multiple data sources 

High 
 



Chitkara, S. CM-FDD-HVAC 111 

Requirement Priority Compliance 
Should be able to accommodate newer algorithms  
Portability:  
Software should be agnostic to operating system environment. It can be 
deployed on any local or cloud environment that carries sufficient memory and 
support Python 
Software visualization layer should support standard browser interfaces 

Medium 

 

Performance: 
Should be able infer and generate results by processing real-time data streams 
Should be able to validate inputs and clearly indicate errors 

Low 
 

Reusability: 
Software dependencies should be clearly expressed 
Machine learning and Bayesian network modeling blocks should be reusable 

Low 
 

 

Financial Plan 

1. Market 

The Dutch Non-Residential buildings market which is the target market for the product is approximately 38% of 

the total buildings stock, which is equivalent to circa 550 million sq. mts [147]. Of this, a total serviceable market 

is estimated at 47% of the total Non-Residential buildings stock or 258.5 million sq. mts. This building stock is 

proposed to be sorted further based on large, medium, and small building types. In the sales strategy, large, 

and medium building types with centralized/large AHU systems would be targeted first as the product 

market fit is best realized. 

 

2. Competition 

The technology providers for the Non-residential Intelligent Buildings can be fragmented into 3 different 

categories. Smart Hardware or Software providers and Building Management System (BMS) systems providers. 

There are also service providers that offer bundled solutions (Hardware and Software), however are limited in 

number, and can be perceived like the BMS systems providers. The proposed solution has been benchmarked 

against these providers and the results of which are summarized in Table 37.  

 
Table 37: Competitive benchmarking 

Competitor 
Type 

Market 
Opportunity 

Focus 

Strategic 
Intent 

Market 
Share 

Objective 

Competitive 
Position 

Strategic 
Posture 

Competitive 
Strategy 

Legacy BMS 
solution 

providers 

New 
Construction and 

Automation 

Maintain 
Current 
Position 

Expansion 
via upselling 

Very Strong 
Mostly 

defensive 

Striving for 
low-cost 

leadership 

Smart 
Hardware 
solution 

providers 

Automation 
Be 

dominant 
leader 

Aggresive 
Expansion 

Stuck in the 
middle 

Mostly 
offensive 

Focus on 
volumes 
business 

Smart Software 
solution 

providers 

Operation and 
Maintenance 

Move into 
top 5 

Expansion 
via 

acquisition 

Direct 
Competition 

Mostly 
offensive 

Focus on land-
grab 

 

3. Revenue Forecast 

The business model is reliant on the value generated (energy savings and operational efficiency realized) for the 

customer. Therefore, the pricing strategy has been linked to the value delivered. Three scenarios namely worst, 

nominal, and best have been projected. In each of the scenarios the realized revenue would be 45%,55%,65% of 

the available wallet share or in other words value delivered. Figure 71 shows forecasted Annual recurring 

revenue (ARR) position in each of these scenarios. Under a nominal case, 116% CAGR is estimated over Y2 

revenue. The CAC in this scenario is projected to go down from a high of 2.11 Euros/sq. mt. to 0.52 Euros/sq. mt. 

thereby leaving a healthy margin for growth and investments into our R&D. Further it is anticipated that the 

business would generate a revenue/employee of EUR 270k in 5 years.  
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Figure 71: Revenue Generation 

4. Financial Model 

The financial model for the nominal case is shown in  Table 38 and whilst others are excluded from this report. 

Considering the worst and nominal scenarios, anticipated financing requirements for the first two years are 

pegged between EUR 1.5-1.6 million. In the best case, to fund additional growth a 20% higher financing need 

over nominal case is estimated. In year 1 the business would require a runway of nearly EUR 400k.  

Table 38: Profit and Loss Statement 

 Profit & Loss     Year 1 Year 2 Year 3 Year 4 Year 5 
        

        

Sales 
  

3,754  415,800  2,375,912  5,141,662  9,031,917  

Cost of goods sold (-/-) 
 

(26,000) (89,840) (297,273) (483,316) (630,021) 

Gross Margin 
  

(22,246) 325,960  2,078,639  4,658,346  8,401,896  
        

Personnel cost (-/-) 
 

(34,800) (84,600) (346,400) (436,000) (498,000) 

Sales & Marketing (-/-) 
 

(36,000) (295,400) (442,550) (618,962) (716,668) 

General Administration (-/-) 
 

(105,000) (246,960) (429,975) (451,474) (474,047) 

Research & development (-/-) 
 

(305,000) (511,150) (655,398) (881,328) (936,294) 

Other costs (-/-) 
 

(61,480) (134,960) (223,390) (267,600) (272,300) 

Total cost 
  

(542,280) (1,273,070) (2,097,713) (2,655,364) (2,897,310) 
        

Earnings before interest tax 
depreciation and amortisation 
(EBITDA) 

 
 (564,526) (947,110) (19,074) 2,002,981  5,504,585  

        

Depreciation and amortisation (-/-) 
 

(4,640) (12,092) (22,144) (30,315) (35,152) 

Earnings before interest and tax 
(EBIT) 

  
(569,166) (959,202) (41,217) 1,972,666  5,469,434  

        

Interest 6% 
 

-  (24,028) (68,385) (80,988) (8,407) 

Financial cost 
  

-  (24,028) (68,385) (80,988) (8,407) 
        

Earnings before tax (EBT) 
  

(569,166) (983,230) (109,602) 1,891,679  5,461,027  
        

Tax 25% 
 

142,292  245,807  27,400  (472,920) (1,365,257) 

Net result 
  

(426,875) (737,422) (82,201) 1,418,759  4,095,770  
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5. Assumptions for business model 

The assumptions utilized for preparing the financial model are summarized in Table 39 and Figure 72. In the 

table the business model assumptions are provided whilst in figure, the proposed organizational development 

required to sustain such a business are provided.  

 
Table 39: Business Model assumptions 

Description EUR UOM 

Price Per KWh 0.14 EUR/KWh 

EUR Saved per KWh (@20% Savings Rate) 0.03 EUR/KWh 

Avg. Non Residential Energy Consumption 200 KWh/m2 

Savings Rate 5.6 KWh/m2 

Price for customer @ 45% Savings 3.08 EUR/m2 

 

The proposed business model can be termed software as a service (SaaS). Therefore, a lot of emphasis is laid on 

the strategic value of employees. The details of estimated year-on-year team size are provided in Figure 72. 

 

Figure 72: Number of FTEs year on year 

 

1 2 3 4 5

R&D 4,3 7,5 9 11 11

Support 0 1,18 5 7,6 8,6

GA 1,3 2,42 5,4 5,4 5,4

S&M 0,2 3 5 7 8

Total FTEs 5,8 14,1 24,4 31 33
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