184 research outputs found

    Steganographer Identification

    Full text link
    Conventional steganalysis detects the presence of steganography within single objects. In the real-world, we may face a complex scenario that one or some of multiple users called actors are guilty of using steganography, which is typically defined as the Steganographer Identification Problem (SIP). One might use the conventional steganalysis algorithms to separate stego objects from cover objects and then identify the guilty actors. However, the guilty actors may be lost due to a number of false alarms. To deal with the SIP, most of the state-of-the-arts use unsupervised learning based approaches. In their solutions, each actor holds multiple digital objects, from which a set of feature vectors can be extracted. The well-defined distances between these feature sets are determined to measure the similarity between the corresponding actors. By applying clustering or outlier detection, the most suspicious actor(s) will be judged as the steganographer(s). Though the SIP needs further study, the existing works have good ability to identify the steganographer(s) when non-adaptive steganographic embedding was applied. In this chapter, we will present foundational concepts and review advanced methodologies in SIP. This chapter is self-contained and intended as a tutorial introducing the SIP in the context of media steganography.Comment: A tutorial with 30 page

    Machine Learning and Pattern Recognition

    Get PDF
    Learning is needed when there is no human expertise existing or when human beings are unable to explain their expertise. In such a situation, one simply collects all the possible previous information, analyse it and then make a rule for future prediction or taking meaningful decision. When we plan to conclude such a work with the help of a computer by providing it ample amount of data and our past experience with tools and techniques, then the whole process becomes machine learning. Hence, machine learning can be defined as programming computers to optimise a performance criterion using example data and past experience. For example, recognition of spoken speech is being done by human beings seemingly without any difficulty, but cannot explain how they do it.Defence Science Journal, 2010, 60(4), pp.345-347, DOI:http://dx.doi.org/10.14429/dsj.60.50

    Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics

    Get PDF
    In [1], we have explored the theoretical aspects of feature selection and evolutionary algorithms. In this chapter, we focus on optimization algorithms for enhancing data analytic process, i.e., we propose to explore applications of nature-inspired algorithms in data science. Feature selection optimization is a hybrid approach leveraging feature selection techniques and evolutionary algorithms process to optimize the selected features. Prior works solve this problem iteratively to converge to an optimal feature subset. Feature selection optimization is a non-specific domain approach. Data scientists mainly attempt to find an advanced way to analyze data n with high computational efficiency and low time complexity, leading to efficient data analytics. Thus, by increasing generated/measured/sensed data from various sources, analysis, manipulation and illustration of data grow exponentially. Due to the large scale data sets, Curse of dimensionality (CoD) is one of the NP-hard problems in data science. Hence, several efforts have been focused on leveraging evolutionary algorithms (EAs) to address the complex issues in large scale data analytics problems. Dimension reduction, together with EAs, lends itself to solve CoD and solve complex problems, in terms of time complexity, efficiently. In this chapter, we first provide a brief overview of previous studies that focused on solving CoD using feature extraction optimization process. We then discuss practical examples of research studies are successfully tackled some application domains, such as image processing, sentiment analysis, network traffics / anomalies analysis, credit score analysis and other benchmark functions/data sets analysis

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã

    An Artificial Neural Network for Wavelet Steganalysis

    Get PDF
    Hiding messages in image data, called steganography, is used for both legal and illicit purposes. The detection of hidden messages in image data stored on websites and computers, called steganalysis, is of prime importance to cyber forensics personnel. Automating the detection of hidden messages is a requirement, since the shear amount of image data stored on computers or websites makes it impossible for a person to investigate each image separately. This paper describes research on a prototype software system that automatically classifies an image as having hidden information or not, using a sophisticated artificial neural network (ANN) system. An ANN software package, the ISU ACL NetWorks Toolkit, is trained on a selection of image features that distinguish between stego and nonstego images. The novelty of this ANN is that it is a blind classifier that gives more accurate results than previous systems. It can detect messages hidden using a variety of different types of embedding algorithms. A Graphical User Interface (GUI) combines the ANN, feature selection, and embedding algorithms into a prototype software package that is not currently available to the cyber forensics community

    Synthetic steganography: Methods for generating and detecting covert channels in generated media

    Get PDF
    Issues of privacy in communication are becoming increasingly important. For many people and businesses, the use of strong cryptographic protocols is sufficient to protect their communications. However, the overt use of strong cryptography may be prohibited or individual entities may be prohibited from communicating directly. In these cases, a secure alternative to the overt use of strong cryptography is required. One promising alternative is to hide the use of cryptography by transforming ciphertext into innocuous-seeming messages to be transmitted in the clear. ^ In this dissertation, we consider the problem of synthetic steganography: generating and detecting covert channels in generated media. We start by demonstrating how to generate synthetic time series data that not only mimic an authentic source of the data, but also hide data at any of several different locations in the reversible generation process. We then design a steganographic context-sensitive tiling system capable of hiding secret data in a variety of procedurally-generated multimedia objects. Next, we show how to securely hide data in the structure of a Huffman tree without affecting the length of the codes. Next, we present a method for hiding data in Sudoku puzzles, both in the solved board and the clue configuration. Finally, we present a general framework for exploiting steganographic capacity in structured interactions like online multiplayer games, network protocols, auctions, and negotiations. Recognizing that structured interactions represent a vast field of novel media for steganography, we also design and implement an open-source extensible software testbed for analyzing steganographic interactions and use it to measure the steganographic capacity of several classic games. ^ We analyze the steganographic capacity and security of each method that we present and show that existing steganalysis techniques cannot accurately detect the usage of the covert channels. We develop targeted steganalysis techniques which improve detection accuracy and then use the insights gained from those methods to improve the security of the steganographic systems. We find that secure synthetic steganography, and accurate steganalysis thereof, depends on having access to an accurate model of the cover media

    인공지능 보안

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 자연과학대학 협동과정 생물정보학전공, 2021. 2. 윤성로.With the development of machine learning (ML), expectations for artificial intelligence (AI) technologies have increased daily. In particular, deep neural networks have demonstrated outstanding performance in many fields. However, if a deep-learning (DL) model causes mispredictions or misclassifications, it can cause difficulty, owing to malicious external influences. This dissertation discusses DL security and privacy issues and proposes methodologies for security and privacy attacks. First, we reviewed security attacks and defenses from two aspects. Evasion attacks use adversarial examples to disrupt the classification process, and poisoning attacks compromise training by compromising the training data. Next, we reviewed attacks on privacy that can exploit exposed training data and defenses, including differential privacy and encryption. For adversarial DL, we study the problem of finding adversarial examples against ML-based portable document format (PDF) malware classifiers. We believe that our problem is more challenging than those against ML models for image processing, owing to the highly complex data structure of PDFs, compared with traditional image datasets, and the requirement that the infected PDF should exhibit malicious behavior without being detected. We propose an attack using generative adversarial networks that effectively generates evasive PDFs using a variational autoencoder robust against adversarial examples. For privacy in DL, we study the problem of avoiding sensitive data being misused and propose a privacy-preserving framework for deep neural networks. Our methods are based on generative models that preserve the privacy of sensitive data while maintaining a high prediction performance. Finally, we study the security aspect in biological domains to detect maliciousness in deoxyribonucleic acid sequences and watermarks to protect intellectual properties. In summary, the proposed DL models for security and privacy embrace a diversity of research by attempting actual attacks and defenses in various fields.인공지능 모델을 사용하기 위해서는 개인별 데이터 수집이 필수적이다. 반면 개인의 민감한 데이터가 유출되는 경우에는 프라이버시 침해의 소지가 있다. 인공지능 모델을 사용하는데 수집된 데이터가 외부에 유출되지 않도록 하거나, 익명화, 부호화 등의 보안 기법을 인공지능 모델에 적용하는 분야를 Private AI로 분류할 수 있다. 또한 인공지능 모델이 노출될 경우 지적 소유권이 무력화될 수 있는 문제점과, 악의적인 학습 데이터를 이용하여 인공지능 시스템을 오작동할 수 있고 이러한 인공지능 모델 자체에 대한 위협은 Secure AI로 분류할 수 있다. 본 논문에서는 학습 데이터에 대한 공격을 기반으로 신경망의 결손 사례를 보여준다. 기존의 AEs 연구들은 이미지를 기반으로 많은 연구가 진행되었다. 보다 복잡한 heterogenous한 PDF 데이터로 연구를 확장하여 generative 기반의 모델을 제안하여 공격 샘플을 생성하였다. 다음으로 이상 패턴을 보이는 샘플을 검출할 수 있는 DNA steganalysis 방어 모델을 제안한다. 마지막으로 개인 정보 보호를 위해 generative 모델 기반의 익명화 기법들을 제안한다. 요약하면 본 논문은 인공지능 모델을 활용한 공격 및 방어 알고리즘과 신경망을 활용하는데 발생되는 프라이버시 이슈를 해결할 수 있는 기계학습 알고리즘에 기반한 일련의 방법론을 제안한다.Abstract i List of Figures vi List of Tables xiii 1 Introduction 1 2 Background 6 2.1 Deep Learning: a brief overview . . . . . . . . . . . . . . . . . . . 6 2.2 Security Attacks on Deep Learning Models . . . . . . . . . . . . . 10 2.2.1 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Poisoning Attack . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Defense Techniques Against Deep Learning Models . . . . . . . . . 26 2.3.1 Defense Techniques against Evasion Attacks . . . . . . . . 27 2.3.2 Defense against Poisoning Attacks . . . . . . . . . . . . . . 36 2.4 Privacy issues on Deep Learning Models . . . . . . . . . . . . . . . 38 2.4.1 Attacks on Privacy . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 Defenses Against Attacks on Privacy . . . . . . . . . . . . 40 3 Attacks on Deep Learning Models 47 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.2 Portable Document Format (PDF) . . . . . . . . . . . . . . 55 3.1.3 PDF Malware Classifiers . . . . . . . . . . . . . . . . . . . 57 3.1.4 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Feature Selection Process . . . . . . . . . . . . . . . . . . 61 3.2.3 Seed Selection for Mutation . . . . . . . . . . . . . . . . . 62 3.2.4 Evading Model . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.5 Model architecture . . . . . . . . . . . . . . . . . . . . . . 67 3.2.6 PDF Repacking and Verification . . . . . . . . . . . . . . . 67 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Datasets and Model Training . . . . . . . . . . . . . . . . . 68 3.3.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.3 CVEs for Various Types of PDF Malware . . . . . . . . . . 72 3.3.4 Malicious Signature . . . . . . . . . . . . . . . . . . . . . 72 3.3.5 AntiVirus Engines (VirusTotal) . . . . . . . . . . . . . . . 76 3.3.6 Feature Mutation Result for Contagio . . . . . . . . . . . . 76 3.3.7 Feature Mutation Result for CVEs . . . . . . . . . . . . . . 78 3.3.8 Malicious Signature Verification . . . . . . . . . . . . . . . 78 3.3.9 Evasion Speed . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.10 AntiVirus Engines (VirusTotal) Result . . . . . . . . . . . . 82 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Defense on Deep Learning Models 88 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.1.1 Message-Hiding Regions . . . . . . . . . . . . . . . . . . . 91 4.1.2 DNA Steganography . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Example of Message Hiding . . . . . . . . . . . . . . . . . 94 4.1.4 DNA Steganalysis . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.2 Proposed Model Architecture . . . . . . . . . . . . . . . . 103 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.5 Message Hiding Procedure . . . . . . . . . . . . . . . . . . 108 4.3.6 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . 109 4.3.7 Performance Comparison . . . . . . . . . . . . . . . . . . . 109 4.3.8 Analyzing Malicious Code in DNA Sequences . . . . . . . 112 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Privacy: Generative Models for Anonymizing Private Data 115 5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.2 Anonymization using GANs . . . . . . . . . . . . . . . . . 119 5.1.3 Security Principle of Anonymized GANs . . . . . . . . . . 123 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.4 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . 126 5.2.5 Comparison to Differential Privacy . . . . . . . . . . . . . 128 5.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 128 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 Privacy: Privacy-preserving Inference for Deep Learning Models 132 6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.3 Deep Private Generation Framework . . . . . . . . . . . . . 137 6.1.4 Security Principle . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.5 Threat to the Classifier . . . . . . . . . . . . . . . . . . . . 143 6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Experimental Process . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 150 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 Conclusion 153 7.0.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.0.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography 157 Abstract in Korean 195Docto

    Feature selection for sky image classification based on self adaptive ant colony system algorithm

    Get PDF
    Statistical-based feature extraction has been typically used to purpose obtaining the important features from the sky image for cloud classification. These features come up with many kinds of noise, redundant and irrelevant features which can influence the classification accuracy and be time consuming. Thus, this paper proposed a new feature selection algorithm to distinguish significant features from the extracted features using an ant colony system (ACS). The informative features are extracted from the sky images using a Gaussian smoothness standard deviation, and then represented in a directed graph. In feature selection phase, the self-adaptive ACS (SAACS) algorithm has been improved by enhancing the exploration mechanism to select only the significant features. Support vector machine, kernel support vector machine, multilayer perceptron, random forest, k-nearest neighbor, and decision tree were used to evaluate the algorithms. Four datasets are used to test the proposed model: Kiel, Singapore whole-sky imaging categories, MGC Diagnostics Corporation, and greatest common divisor. The SAACS algorithm is compared with six bio-inspired benchmark feature selection algorithms. The SAACS algorithm achieved classification accuracy of 95.64% that is superior to all the benchmark feature selection algorithms. Additionally, the Friedman test and Mann-Whitney U test are employed to statistically evaluate the efficiency of the proposed algorithms
    corecore