4,554 research outputs found

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    This paper presents a white-box conceptual framework for adaptation that promotes a neat separation of the adaptation logic from the application logic through a clear identification of control data and their role in the adaptation logic. The framework provides an original perspective from which we survey archetypal approaches to (self-)adaptation ranging from programming languages and paradigms, to computational models, to engineering solutions

    A Conceptual Framework for Adapation

    Get PDF
    We present a white-box conceptual framework for adaptation. We called it CODA, for COntrol Data Adaptation, since it is based on the notion of control data. CODA promotes a neat separation between application and adaptation logic through a clear identification of the set of data that is relevant for the latter. The framework provides an original perspective from which we survey a representative set of approaches to adaptation ranging from programming languages and paradigms, to computational models and architectural solutions

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A Comparison of Self-Organization Mechanisms in Nature and Information Technology

    Get PDF
    Successful concepts of self-organization found in natural systems can enable enterprise information systems to address their complexity issues. In this paper, we propose an analysis of self-organization approaches found in natural sciences and information technology. Based on common classes both for application areas and mechanisms, these two fields are compared in order to identify successful concepts, which can be used for the adaptation in information systems research. For illustration purposes, we give a brief example for self-organization in the domain of Service-oriented Architectures, i.e., cooperation mechanisms for agents monitoring services

    Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture

    Get PDF
    Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers. In this context, renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production. Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features. These biomaterials have complex hierarchical structures, great stability, adjustable mechanical strength, stimuli-responsiveness, and self-healing attributes. Functional molecules may be added to their flexible structure, for enabling novel agricultural uses. This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production, soil health, and resource efficiency. Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals, bioactive agents, and biostimulators as they enhance nutrient absorption, moisture retention, and root growth. Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture. Despite their potential, further studies are warranted to understand and optimize their usage in agricultural domain. This effort seeks to bridge the knowledge gap by investigating their applications, challenges, and future prospects in the agricultural sector. Through experimental investigations and theoretical modeling, this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture, ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact. (Figure presented.)</p

    09201 Abstracts Collection -- Self-Healing and Self-Adaptive Systems

    Get PDF
    From May 10th 2009 to May 15th 2009 the Dagstuhl Seminar 09201 ``Self-Healing and Self-Adaptive Systems\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. Links to extended abstracts or full papers are provided, if available. A description of the seminar topics, goals and results in general can be found in a separate document ``Executive Summary\u27\u27

    Metal-Support Interactions of Single-Atom Catalysts for Biomedical Applications

    Get PDF
    The development of single-atom catalysts (SACs) has become a rapidly growing research field. It is a critical challenge to understand the interactions between the single-atom metal active sites and the support materials. Recently, original research reports of SACs in biomedical applications have emerged in the literature, yet this topic has seldom been reviewed. Here, this review focuses on the latest advances in single-atom catalysis for biomedical applications and highlights the keys for the design of SACs, such as understanding the interactions between metals and supports and classifying various enzyme-like activities. This review helps bridge the knowledge of multiple disciplines and provides prospects regarding the development of SACs for biomedicine
    corecore