
Integrated Design and Process Technology, IDPT-2005 
Printed in the United States of America, June, 2005 

 2005 Society for Design and Process Science 
 

 
From Here to Autonomicity:  

Self-Managing Agents and the Biological Metaphors that Inspire Them 
 

Roy Sterritt and Mike Hinchey 
 

University of Ulster 
School of Computing and Mathematics 

Jordanstown Campus 
Northern Ireland 

r.sterritt@ulster.ac.uk 

NASA Goddard Space Flight Center 
Software Engineering Laboratory 

Greenbelt, MD 20771  
USA 

michael.g.hinchey@nasa.gov 
 
 

 
ABSTRACT 

We seek inspiration for self-managing systems 
from (obviously, pre-existing) biological mechanisms. 
Autonomic Computing (AC), a self-managing systems 
initiative based on the biological metaphor of the 
autonomic nervous system, is increasingly gaining 
momentum as the way forward for integrating and 
designing reliable systems, while agent technologies 
have been identified as a key enabler for engineering 
autonomicity in systems.  This paper looks at other 
biological metaphors such as reflex and healing, heart-
beat monitors, pulse monitors and apoptosis for 
assisting in the realization of autonomicity. 
 
 
 
INTRODUCTION 

The case has been well made for the need to create 
self-managing systems,  whether due to the complexity 
problem, the total cost of ownership, or to provide the 
way forward to enable pervasive and ubiquitous 
computation and communications [1][2][3]. 

To enable self-management (autonomicity) a 
system requires many self properties (self-* or 
selfware), such as self-awareness.  As such, agent 
technologies have been identified as a key enabler for 
engineering autonomicity in systems, both in terms of 
retrofitting autonomicity into legacy systems and in 
designing new systems, in part due to their capability to 
provide self-governance (autonomy). 

This paper initially looks again at the definitions 
and properties of agents to set the scene for how they 
may relate to self-managing initiatives.  Autonomic 
Computing is then introduced in terms of its biological 
metaphor.  We then consider other biological metaphors 
and how they may contribute to system integrated 
design and processes, and conclude with some ongoing 
biologically-inspired applications research. 
 
 

 
AGENTS 

The definition of what qualifies as an agent and the 
question of what constitutes its properties is always 
debatable.  A loose definition is ‘programs that assist 
people and act on their behalf by delegating work to 
them’ (end-user perspective) [4].  A systems perspective 
would highlight that the agent is situated within an 
execution environment, and have mandatory properties 
such as being [4]: � Reactive (adapt to changes in the environment) � Autonomous (self-governing – control over 

own actions) � Goal Driven (proactive)  � Temporally Continuous (continually 
executing). 

Agents may also possess any, or all, of the following 
orthogonal properties [4]: � Communicative (with other agents) � Mobile (travel from one host to another) � Learning (adapt in accordance with past 

experience) � Believable (appear believable to the end user). 

Mobility has been highlighted as an orthogonal 
property; as such, not all agents need be mobile.  
Stationary agents will communicate with the 
environment by conventional means such as event 
messages and remote procedure calls, whereas a mobile 
agent is not bound to the system where it begins 
execution, having the unique ability to transport itself 
from one host to another.  Reasons for utilizing mobile 
agents are typically to [4]; � reduce network load � overcome network latency � encapsulate protocols � execute asynchronously � execute autonomously � adapt dynamically � reflect natural heterogeneity � maintain robustness and fault-tolerance 
 
 



 

Of course mobile agents may also suffer from 
some of these issues – network latency, for instance – 
but tend to do so to a lesser extent than relying on a 
series of event messages and RPC to perform the work 
between hosts.  As such, they may make a contribution 
to an autonomic environment where it is envisaged 
substantial communications and work effort will take 
place between the autonomic managers on different 
hosts to provide the envisaged system-wide self-
managing environment. 
 
 
BIOLOGICAL SYSTEMS INSPIRATION 

Biological systems have inspired system design in 
many ways – Artificial Intelligence, Artificial Neural 
Networks, Genetic Algorithms, and Genetic 
Programming, to name a few.  The most recent is 
inspiration for creating self-managing systems.  
 
Autonomic Nervous System (ANS) 

The human body’s Autonomic Nervous System is 
the part of the nervous system that controls the 
vegetative functions of the body such as circulation of 
the blood, intestinal activity and secretion and the 
production of chemical ‘messengers’, hormones, that 
circulate in the blood [5]. The system is subdivided into 
the sympathetic (SyNS) and parasympathetic (PaNS) 
nervous systems, the outflow of the autonomic centres 
is not under direct conscious control. The separate 
systems tend to have opposite effects: parasympathetic 
slows the heart rate whereas the sympathetic speeds it 
up.  The sympathetic nervous activity increases in 
response to fear, i.e., the ‘fight or flight’ response, while 
the parasympathetic nervous activity acts to calm,  the 
‘rest and digest’ response, for instance [5].  This 
biological autonomicity is influencing a new paradigm 
for computing to create similar self-management within 
systems (Autonomic Computing, Autonomic 
Communications and Autonomic Systems). 
 
Autonomic Computing 

IBM introduced the Autonomic Computing 
initiative in 2001, with the aim of developing self-
managing systems [1],[6].  With the growth of the 
computer industry, notable examples being highly 
efficient networking hardware and powerful CPUs, 
autonomic computing is an evolution to cope with the 
rapidly growing complexity of integrating, managing, 
and operating computer-based systems. Computing 
systems should be effective [7], they should serve a 
useful purpose when they are first launched and 
continue to be useful as conditions change. The 
realization of autonomic computing will result in a 
significant improvement in system management 
efficiency. The disparate technologies that manage the 
environment work together to deliver best performance 
results [8]. 

As has been mentioned, the Autonomic 
Computing initiative is inspired by the human body’s 
autonomic nervous system [8].  The autonomic nervous 
system monitors heartbeat, checks blood sugar levels 
and keeps the body temperature normal without any 
conscious effort from the human.  There is an important 
distinction between autonomic activity in the human 
body and autonomic responses in computer systems. 
Many of the decisions made by autonomic elements in 
the body are involuntary, whereas autonomic elements 
in computer systems make decisions based on tasks 
chosen to delegate to the technology [8]. 

Upon launching the Autonomic Computing 
initiative, IBM defined four key self properties: self-
configuring, self-healing, self-optimizing and self-
protecting [8].   In the few years since, the self-x list has 
grown as research expands, bringing about the general 
term selfware or self-*, yet these four initial self-
managing properties along with the four enabling 
properties; self-aware, environment aware, self-monitor 
and self-adjust, cover the general goal of self 
management [9]. 

To meet this autonomic selfware vision, systems 
should be designed with components being allocated an 
autonomic manager. 
 

 

Figure 1 Autonomic Element: Managed Component 
plus Autonomic Manager 

Figure 1 represents an Autonomic Element (AE) 
which consists of a managed component (MC) and an 
autonomic manager (AM).  Control loops with sensors 
(self-monitor) and effectors (self-adjuster) together with 
system knowledge and planning/adapting policies allow 
the autonomic element to be self-aware and to self-
manage.  A similar scheme facilitates environment 
awareness (allowing self-managing if necessary, but 
without the immediate control to change the 
environment – this is effected through communication 
with other autonomic managers that have the relevant 
influence, through reflex or event messages).  In this 
scheme, every component in a system, and every system 
within systems of systems are self-managing with 
management communications between autonomic 
managers. 



 

The influence of the autonomic nervous system 
(ANS) may imply that the Autonomic Computing 
initiative is concerned only with low level self-
managing capabilities such as reflex reactions.  Yet the 
vision behind the initiative is an overarching goal of 
system-wide policy-based self-management where a 
human manager will state a business-critical success 
factor and the ICT systems will take care of it, self-
configuring and self-optimising to meet the policies, and 
self-protecting and self-healing to ensure the policies 
are maintained in light of changing circumstances.  It 
may be reasoned that due to our ANS we are freed (non-
conscious activity) from the low-level complexity of 
managing our bodies to perform high-level complex 
tasks.  Similarly, for Computing to develop further and 
provide equivalent high-level system-wide tasks, 
necessitates a corresponding low-level ‘non-conscious’ 
architecture.  As such, increasing this initiative will 
converge and cross-influence the fields of ubiquitous 
and pervasive computing. 
 
Autonomic Computing and Agents 

Autonomic Computing is dependent on many 
disciplines for its success; not least of these is research 
in agent technologies.  At this stage, there are no 
assumptions that agents have to be used in an autonomic 
architecture, but as in complex systems there are 
arguments for designing the system with agents  [10], as 
well as providing inbuilt redundancy and greater 
robustness [11], through to retrofitting legacy systems 
with autonomic capabilities that may benefit from an 
agent approach  [12].   

Emerging research suggests that the autonomic 
manager may be an agent itself; for instance, an agent 
termed a self-managing cell (SMC) [ 13], containing 
functionality for measurement and event correlation and 
support for policy-based control. 

In Figure 1 the autonomic manager may be 
considered to be a stationary agent managing a 
component.  The autonomic communications channel 
implies that AMs communicate through such means as 
event messages.  Yet it is feasible for mobile agents to 
play a role here.  The mobile agent advantages 
highlighted in the introduction would facilitate 
autonomic managers within different systems 
cooperating via agents (Figure 2) as well as self-* event 
messages. 
 
Reflex and Healing 

Reflex and healing is a dual strategy approach 
concept inspired by biological systems [14],[15].  
Animals have a reflex system, where the nerve 
pathways enable rapid response to pain.  Reflexes cause 
a rapid, involuntary motion, such as when a hot object is 
touched.  The effect is that the system reconfigures 
itself, moving away from the danger to keep the 
component functioning. 

The body will heal itself on a much longer 
timescale.  Resources from one part of the system are 
redirected to rebuild the injured body part, including 
repair of the reflex response network.  While this cannot 
help in the real-time response, directly after an event, it 
can prepare the system for the next event.  In addition, it 
can readjust the system for operation with a reduced set 
of resources [14]. 

An example of the dual approach is being 
developed for high energy physics experiments, with the 
use of massive facilities to delve into the basic 
composition of matter [14].  In this case, the data is so 
extensive that it is practically impossible to collect all 
data – decisions must be made in real-time as to whether 
or not an interesting event has occurred.  During its 
several year lifespan only a small number of novel 
events are expected.  Downtime for the computing 
system is not an option since this may be when a novel 
event occurs!  Due to the expensive nature of the overall 
experiment, dual or triple mode redundancy is 
precluded. 

Essentially the design allows for non-critical 
applications to be overwritten upon fault conditions 
where the reflex reaction will cause a re-configuration 
to ensure the matter experiments are still being 
adequately (less than optimally) monitored.  The healing 
approach then attempts to re-optimize the system with 
the remaining resources. 
 
Heart Beat Monitoring (HBM) 

The typical approach for system management is 
based on events which are generated and sent under 
fault or problem conditions. 

In the embedded system space, the opposite is 
typically the case.  A system management action occurs 
when something does not occur.  An example is the 
fault tolerant mechanism of a heartbeat monitor (HBM), 
through a combination of the hardware (the timer) and 
software (the heartbeat generator) an ‘I am alive’ signal 
is generated periodically to indicate that all is well [16].  
The absence of this signal indicates a fault or problem.  
Some embedded processors have a hardware timer 
which, if not periodically reset by software, causes a 
reset/restart. This allows a particularly blunt, though 
effective, recovery from a software hang. 

This approach offers the advantage that, through 
continuous monitoring, problem determination becomes 
a proactive rather than a reactive process [15]. 

An example is in the telecommunications fault 
management architecture: managers and their vital 
processes are guarded through the use of heartbeat 
monitors (HBM); for instance, an SDH (Synchronous 
Digital Hierarchy) fault manager will send periodic 
heartbeats up to the cross technology network fault 
manager.  This fault tolerant approach is vital in 
safeguarding the fault management processes and 
ensuring the continued operation of the manager.  The 
absence of this ‘I am alive’ signal enables the remote 
manager to take protective action such as switching to 



 

the back-up manager while investigating the absence of 
the beat.  This automated failover may be considered a 
reflex reaction to safeguard the system while the slower 
healing process is to determine the root cause of the 
problem in the failed manager [17]. 
 
Pulse Monitoring 

Essentially, the HBM provides a vital construct. 
Without it, the system is relying on another process to 
notice that the process has died, with no guarantee of 
how much time will have lapsed before this occurs, if it 
occurs at all. 

Yet, vital as it is, essentially the HBM only 
informs if a process is alive or dead (assuming 
communications are working) – not the process’s actual 
health or state of well-being.  Taking the biological 
analogy, the rate of the heartbeat indicates the current 
conditions within which the biological ‘system’ is 
operating and determines strategies for ‘components’ 
within the system.  

The monitoring of the component’s health by the 
autonomic managers, informing the environment 
through event messaging, and the sub-system 
monitoring of the managers’ health through HBM, are 
all vital activities carried out independently. Yet, the 
autonomic managers themselves are in a key position to 
give an indication of the health of their component or 
the environment from their perspective as they see it at 
that moment in time.  For instance, if a PC’s autonomic 
manager has noticed a sudden dramatic increase in the 
traffic emitting from the local area network, this may 
indicate spam email. 

The HBM and event correlation (or event 
messages to determine what is occurring in the 
environment) have distinct purposes yet they may be 
used together to offer new options.  Since the autonomic 
managers are in a position to offer a view of the vital 
health signs this may be piggybacked into the periodic 
heartbeat (a health value as a pulse) giving that 
indication to the other autonomic managers.  The 
analogy is instead of measuring the presence or absence 
of the heartbeat (dead or alive), opting to measure the 
actual pulse as a health indicator.  This provides the 
same heartbeat guard (presence or absence of pulse) for 
the manager along with additional vital signs health 
information that may be used for reflex reactions. 

The logical difference between the pulse signal 
and general event messages is essentially that the pulse 
provides the mechanism for a reflex reaction whereas 
the general event messages under fault conditions form 
part of the slower healing process–root cause analysis 
from the event stream [15],[2],[17]. 

 
Apoptosis 

The biological analogy of autonomic systems has 
been discussed earlier.  While reading this the reader is 
not consciously concerned with their breathing rate or 
how fast their heart is beating.  Another typical 
biological example is that the touching of a sharp knife 
results in a reflex reaction to reconfigure the area in 
danger to a state that is no longer in danger (self-
protection, self-configuration, and, if damage has 
occurred, self-healing) [7]. 

If you cut yourself and start bleeding, you will 
treat it and carry on with your tasks without any further 
conscious thought.   Yet, often, the cut will have caused 
skin cells to be displaced down into muscle tissue [18].  
If they survive and divide, they have the potential to 
grow into a tumor.  The body’s solution to dealing with 
this situation is cell self-destruction.  There is mounting 
evidence that cancer is the result of cells not dying fast 
enough, rather than multiplying out of control, as 
previously thought. 

It is believed that a cell knows when to commit 
suicide because cells are programmed to do so – self-
destruct (sD) is an intrinsic property.  This self-
destruction is delayed due to the continuous receipt of 
biochemical reprieves.  This process is referred to as 
apoptosis [19], meaning ‘drop out’, and was used by the 
Greeks to refer to the Autumn dropping of leaves from 
trees; i.e., loss of cells that ought to die in the midst of 
the living structure.  The process has also been 
nicknamed ‘death by default’ [20], where cells are 
prevented from putting an end to themselves due to 
constant receipt of biochemical ‘stay alive’ signals.  

Further investigations into the apoptosis process 
[21] have discovered more details about the self-
destruct predisposition.  Whenever a cell divides, it 
simultaneously receives orders to kill itself.  Without a 
reprieve signal, the cell does indeed self-destruct.   It is 
believed that the reason for this is self-protection, as the 
most dangerous time for the body is when a cell divides, 
since if just one of the billions of cells locks into 
division the result is a tumor, while simultaneously a 
cell must divide in order to build and maintain a body.  

The suicide and reprieve controls have been 
compared to the dual-key on a nuclear missile [18].  The 
key (chemical signal) turns on cell growth but at the 
same time switches on a sequence that leads to self-
destruction.  The second key overrides the self-destruct 
[18]. 

 
 

 



 

 
Figure 2 An Autonomic Environment consisting of Autonomic Elements with Autonomic Agents (stationary & 
mobile), HBMs, PBMs and Apoptosis. 
 
 
Apoptosis within Autonomic Agents 

Agent destruction has been proposed for mobile 
agents, in order to facilitate security measures [22].  
Greenberg et al. highlighted the situation simply by 
recalling the situation where the server omega.univ.edu 
was decommissioned, its work moving to other 
machines.  When a few years later a new computer was 
assigned the old name, to the surprise of everyone,  
email arrived, much of it 3 years old [23].  The mail had 
survived ‘pending’ on Internet relays waiting for 
omega.univ.edu to come back up.  

 Greenberg encourages consideration of the same 
situation for mobile agents; these would not be rogue 
mobile agents – they would be carrying proper 
authenticated credentials.  This work would be done 
totally out-of-context due to neither abnormal procedure 
nor system failure.  In this circumstance, the mobile 
agent could cause substantial damage, e.g., deliver an 
archaic upgrade to part of the network operating system, 
resulting in bringing down the entire network. 

Misuse involving mobile agents comes in the form 
of: misuse of hosts by agents, misuse of agents by hosts, 
and misuse of agents by other agents.   

From an agent perspective, the first is through 
accidental or unintentional situations caused by that 
agent (race conditions and unexpected emergent 
behavior), the latter two through deliberate or accidental 
situations caused by external bodies acting upon the 
agent.  The range of these situations and attacks have 
been categorized as: damage, denial-of-service, breach-
of-privacy, harassment, social engineering, event-
triggered attacks, and compound attacks.  

In the situation where portions of an agent’s binary 
image (e.g., monetary certificates, keys, information, 
etc.) are vulnerable to being copied when visiting a host, 
this can be prevented by encryption.  Yet there has to be 
decryption in order to execute, which provides a 
window of vulnerability [23].  This situation has similar 
overtones to our previous discussion on biological 
apoptosis, where the body is at its most vulnerable 
during cell division [24]. 
 
 
BIOLOGICAL INSPIRED APPLICATIONS 

The pulse monitor has been recommended as an 
extension of the Globus Heartbeat Monitor (HBM) for 
Grid computing [15], as a construct within an 
autonomic manager [2],[7] and a reflex mechanism 
within a telecommunications fault management 
architecture [17]. It has been prototyped in a PC 
environment to construct a self-healing tool through 
utilising the pulse monitor together with a health check 
(vital signs) mechanism operating in a peer-to-peer 
(P2P) mode without any additional environment on top 
of the Windows OS [25] and proposed as a mechanism 
to share environment awareness responsibilities akin to 
a neighbourhood watch scheme [26]. 

Figure 2 represents a high level view of an 
autonomic environment with the previously discussed 
biologically influenced constructs and mechanisms 
highlighted (much of the detail is extracted for 
simplicity).  Each of the AEs (Autonomic elements) is 
an abstract view of Figure 1 and in this scenario the 
managed component (MC) represents a self-managing 
computer system.  Note that each of these autonomic 
elements (self-managing computer system) may have 



 

many other lower level AEs (for instance an autonomic 
manager for the disk drive) while at the same time the 
AEs in Figure 2 may reside within the scope of a higher 
level AM (system-wide local area network domain’s 
AE). 

Within an AM, vital processes may be safe 
guarded by heart-beat monitors to ensure their 
continued operation, and to have an immediate 
indication if any fail (note in Figure 2 that all three AEs 
have HBMs within their AMs).  An AM has a control 
loop continually monitoring (and adjusting if necessary) 
metrics within the MC, yet vital processes within the 
MC may also be safe-guarded by a HBM with it 
emitting a heart-beat as opposed to being polled by the 
AM to ensure its continued operation, resulting in 
avoiding lost time (time to next poll) for the AM to 
notice it has failed when it does fail (note in Figure 2 
that the left-hand AE has a HBM between the AM and a 
process on the MC).   

Since each AM is in a key position to be aware of 
the health of the computer system (through the 
continuous control loop with the MC) it may share this 
health indication through a pulse to another AM (for 
instance, in Figure 2 the left-hand AE to the middle AE) 
this not only allows self-managing options if the 
machines are, for instance, sharing workload as a cluster 
but protects the AM itself as the pulse also acts as a 
HBM from one AM to another.  As such, if the vital 
process of the AM itself fails, the neighbouring AM will 
immediately become aware and for instance pursue a 
restart of the failed AM.  This pulse signal may also act 
as a reflex signal (more direct than the AM processing 
lots of event messages to eventually determine an urgent 
situation) between AMs warning of an immediate 
incident. 

It has been highlighted that the AMs communicate 
and cooperate through self-managing event messages 
and pulse signals.  Mobile agents may also be used to 
assist in the self-managing tasks where one AM 
dispatches an agent to work on its behalf, for example to 
update a set of policies.  The apoptosis (self-destruct 
mechanism) may be utilized in this scenario as self-
protection, to withdraw authorization to continue 
operation, for example, if the policies become out-of-
date (Figure 2 left-hand AE to the middle AE depicts 
both scenarios, one agent is to self-destruct the other 
still has an authorization signal to continue).   

Space Exploration Missions, through necessity, 
have been incorporating more and more Autonomy.  
Autonomy may be considered as self-governance of 
one’s own tasks/goals.  In terms of ANTS (Autonomous 
Nano-Technology Swarm) missions this, for instance, 
results in a worker having responsibility for its goals.  
To achieve these goals many self-* properties such as 
self-configuration will be necessary, as well as 
utilization of HBM, PBM and reflex reactions within 
AMs. 

NASA missions, such as ANTS, have Mission 
control and operations in a trusted private environment.  
This eliminates many of the wide range of agent 

security issues discussed earlier, just leaving the 
particular concerns; namely, is the agent operating in 
the correct context and exhibiting emergent behavior 
within acceptable parameters, whereupon apoptosis can 
make a contribution. 

The ANTS architecture is itself inspired by 
biological low level social insect colonies with their 
success in the division of labor.  Within their specialties, 
individual specialists generally outperform generalists, 
and with sufficiently efficient social interaction and 
coordination, the group of specialists generally 
outperforms the group of generalists. Thus systems 
designed as ANTS are built from potentially very large 
numbers of highly autonomous, yet socially interactive, 
elements.  The architecture is self-similar in that 
elements and sub-elements of the system may also be 
recursively structured as ANTS [27]. 

Targets for ANTS-like missions include surveys of 
extreme environments on the Earth, Moon, or Mars, as 
well as asteroid, comet, or dust populations. The 
revolutionary ANTS paradigm makes the achievement 
of such goals possible through the use of many small, 
autonomous, reconfigurable, redundant element craft 
acting as independent or collective agents [28]. 

Let us consider the role of the self-destruct 
property, inspired by apoptosis, in the ANTS mission: 
suppose one of the worker agents was indicating 
incorrect operation, or when co-existing with other 
workers was the cause of undesirable emergent 
behavior, and was failing to self-heal correctly.  That 
emergent behavior (depending on what it was) may put 
the scientific mission in danger.   Ultimately the stay-
alive signal from the ruler agent would be withdrawn 
[24].   

If a worker, or its instrument, were damaged, 
either by collision with another worker, or (more likely) 
with an asteroid, or during a solar storm, a ruler could 
withdraw the stay-alive signal and request a 
replacement worker.  Another worker could self-
configure to take on the role of the lost worker; i.e., the 
ANTS adapt to ensure an optimal and balanced 
coverage of tasks to meet the scientific goals. 

If a ruler or messenger were similarly damaged, its 
stay-alive signal would also be withdrawn, and a worker 
would be promoted to play its role. 

All of the spacecraft are powered by batteries that 
are recharged by the sun using solar sails [29],[30].   
Although battery technology has greatly advanced, there 
is still a ‘memory loss’ situation, whereby batteries that 
are continuously recharged eventually lose some of their 
power and cannot be recharged to full power.    After 
several months of continual operation, each of the 
ANTS will no longer be able to recharge sufficiently, at 
which point their stay-alive signals will be withdrawn, 
and new craft will need to be assembled or launched 
from Earth. 
 
 



 

CONCLUSIONS 

Achieving the development of computer-based 
systems that can self-manage without the conscious 
effort of the user is the overarching vision of the 
Autonomic Computing initiative achieved through the 
utilization of self-* properties [3]. Many may consider 
that there are worlds between self-managing biological 
systems, such as the autonomic nervous system, and our 
corresponding software today, yet that is the point – this 
is a long term strategic vision seeking influences from 
biology.  Secondly, it is a metaphor not an attempt to 
mimic biological systems.  This vision may also be 
viewed as the evolution of the aim of creating robust 
dependable systems [9].   

To facilitate this aim, additional biologically-
inspired mechanisms are proposed to assist with 
autonomicity, and to be included within the autonomic 
element [15],[2].  For stationary agents we established 
the concepts of the HBM and PBM: Heart-Beat Monitor 
(I am alive) a fault-tolerant mechanism which may be 
used to safeguard the autonomic manager to ensure that 
it is still functioning by periodically sending ‘I am alive’ 
signals.  Pulse Monitor (I am healthy) extends the HBM 
to incorporate reflex/urgency/health indicators from the 
autonomic manager, representing its view of the current 
self-management state.  The analogy is with measuring 
the pulse rate instead of merely detecting its existence.  
For mobile agents, Apoptosis (Stay alive) is a proposed 
additional construct used to safeguard the system and 
agent; a signal indicates that the agent is still operating 
within the correct context and behavior, and should not 
self-destruct, providing a self-protection mechanism 
[31]. 

We have concluded with a brief description of 
ongoing work utilizing these biologically-inspired 
concepts to assist in achieving autonomicity. 
 
ACKNOWLEDGEMENTS 

The development of this paper was supported at 
University of Ulster by the Computer Science Research 
Institute (CSRI) and the Centre for Software Process 
Technologies (CSPT), funded by Invest NI through the 
Centres of Excellence Programme, under the EU Peace 
II initiative. 

Part of this work has been supported by the NASA 
Office of Systems and Mission Assurance (OSMA) 
through its Software Assurance Research Program 
(SARP) project, Formal Approaches to Swarm 
Technologies (FAST), and by NASA Goddard Space 
Flight Center, Software Engineering Laboratory (Code 
581). 
 
REFERENCES 
 

1. P. Horn, “Autonomic computing: IBM 
perspective on the state of information 
technology,” IBM T.J. Watson Labs, NY, 15th 

October 2001. Presented at AGENDA 2001, 
Scottsdale, AR (available at 
http://www.research.ibm.com/autonomic/), 
2001. 

2. R. Sterritt, “Towards Autonomic Computing: 
Effective Event Management”, Proceedings of 
the 27th Annual IEEE/NASA Software 
Engineering Workshop, Greenbelt, MD, Dec. 
2002. 

3. J. O. Kephart and D. M. Chess. The Vision of 
Autonomic Computing, Computer, 36(1):41–
52, 2003. 

4. D.B. Lance, M. Oshima, “Programming and 
deploying Java Mobile Agents with Aglets”, 
Addison-Wesley, 1998. 

5. Oxford Reference Encyclopedia, Oxford 
University Press, 1998. 

6. A. G. Ganek, T.A. Corbi, “The dawning of the 
autonomic computing era”, IBM Systems 
Journal, Vol. 42, No. 1, 2003 

7. R. Sterritt, D.W. Bustard, “Towards an 
Autonomic Computing Environment”, In  
Proceedings of IEEE DEXA 2003 Workshops - 
1st International Workshop on Autonomic 
Computing Systems, Prague, Czech Republic, 
September 1-5, 2003, IEEE Computer Society 
Press, pp 694-698. 

8. IBM White Paper, “An architectural blueprint 
for autonomic computing”, IBM, April 2003. 

9. R. Sterritt, D. Bustard, “Autonomic 
Computing-a Means of Achieving 
Dependability?”, Proc. IEEE Int. Conf. on the 
Engineering of Computer Based System 
(ECBS’03), Huntsville, Alabama, USA, April 
7-11 2003 

10. N.R. Jennings, M. Wooldridge, Agent-oriented 
Software Engineering, In J. Bradshaw (ed.), 
Handbook of Agent Technology, AAAI/MIT 
Press, Cambridge, 2000. 

11. M.N. Huhns, V.T. Holderfield, R.L.Z. 
Gutierrez,  Robust Software via Agent-Based 
Redundancy, In Proceedings Second 
International Joint Conference on Autonomous 
Agents & Multiagent Systems, AAMAS 2003, 
July 14-18, 2003, Melbourne, Victoria, 
Australia, pp 1018-1019. 

12. G. Kaiser, J. Parekh, P. Gross, G. Valetto, 
Kinesthetics eXtreme: An External 
Infrastructure for Monitoring Distributed 
Legacy Systems, In Proceedings Autonomic 
Computing Workshop – IEEE Fifth Annual 
International Active Middleware Workshop, 
Seattle, USA, June 2003. 

13. E. Lupu, et al., EPSRC AMUSE: Autonomic 
Management of Ubiquitous Systems for e-
Health, 2003. 

14. T. Bapty, S. Neema, S. Nordstorm, S. Shetty, 
D. Vashishtha, J. Overdorf, P. Sheldon, 
“Modeling and Generation Tools for Large-
Scale, Real-Time Embedded Systems”, 10th 



 

IEEE International Conference and Workshop 
on the Engineering of Computer-Based 
Systems, Huntsville, Alabama, USA, 7-10th 
April 2003, pp 11-16. 

15. R. Sterritt, “Pulse Monitoring: Extending the 
Health-check for the Autonomic GRID”, IEEE 
Workshop on Autonomic Computing 
Principles and Architectures (AUCOPA’ 2003) 
in Proc. IEEE Int. Conf. Industrial Informatics 
(INDIN 2003), Banff, Alberta, Canada, 22-23 
August 2003. 

16. P. Stelling, I. Foster, C. Kesselman, C. Lee, G. 
v. Laszewski, “A Fault Detection Service for 
Wide Area Distributed Computations”, 
Proceedings of the 7th IEEE Symposium on 
High Performance Distributed Computing, 
1998. 

17. R. Sterritt, D. Gunning, A. Meban, P Henning, 
“Exploring Autonomic Options in an Unified 
Fault Management Architecture through Reflex 
Reactions via Pulse Monitoring”, IEEE 
Workshop on the Engineering of Autonomic 
Systems (EASe 2004) in Proc. 11th Ann. IEEE 
Int. Conference and Workshop on the 
Engineering of Computer Based Systems 
(ECBS 2004), Brno, Czech Republic, 24-27 
May 2004. 

18. J. Newell, Dying to Live: Why our Cells Self-
Destruct, Focus, December 1994. 

19. R. Lockshin, Z. Zakeri, Programmed Cell 
Death and Apoptosis: Origins of the Theory, 
Nature Reviews Molecular Cell Biology,  
2:542-550, 2001. 

20. Y. Ishizaki, L. Cheng, A.W. Mudge, M.C. 
Raff, Programmed Cell Death by Default in 
Embryonic Cells, Fibroblasts, and Cancer 
Cells, Mol. Biol. Cell, 6(11):1443-1458, 1995. 

21. J. Klefstrom, E.W. Verschuren, G.I. Evan, c-
Myc Augments the Apoptotic Activity of 
Cytosolic Death Receptor Signaling Proteins 
by Engaging the Mitochondrial Apoptotic 
Pathway, J. Biol Chem,. 277:43224-43232, 
2002. 

22. J.D. Hartline, Mobile Agents: A Survey of 
Fault Tolerance and Security, University of 
Washington, 1998. 

23. M.S. Greenberg, J.C. Byington, T. Holding, 
D.G. Harper, Mobile Agents and Security, 
IEEE Communications, July 1998. 

24. R. Sterritt, M. G. Hinchey, “Apoptosis and 
Self-Destruct: A Contribution to Autonomic 
Agents?”  In Proceedings FAABS-III, 3rd 
NASA/IEEE Workshop on Formal Approaches 
to Agent-Based Systems (April 2004), 

Greenbelt, MD, Springer Verlag LNCS 3228, 
2005. 

25. R. Sterritt, S. Chung, “Personal Autonomic 
Computing Self-Healing Tool”, Proceedings of 
IEEE Workshop on the Engineering of 
Autonomic Systems (EASe 2004) at 11th 
Annual IEEE International Conference and 
Workshop on the Engineering of Computer 
Based Systems (ECBS 2004), Brno, Czech 
Republic, 24-27 May, pp 513-520. 

26. R. Sterritt, D.F. Bantz, “PAC-MEN: Personal 
Autonomic Computing Monitoring 
Environments”,  In Proceedings of IEEE 
DEXA 2004 Workshops - 2nd International 
Workshop on Self-Adaptive and Autonomic 
Computing Systems (SAACS ‘04), Zaragoza, 
Spain, August 30 – 3 September,  2003. 

27. S. A., J. Mica, J. Nuth, G. Marr, M. Rilee, M. 
Bhat, ANTS (Autonomous Nano-Technology 
Swarm): An Artificial Intelligence Approach to 
Asteroid Belt Resource Exploration, Curtis, 
International Astronautical Federation, 51st 
Congress, October 2000. 

28. P.E. Clark, S. Curtis, M. Rilee, W. 
Truszkowski, J. Iyengar, H. Crawford, “ANTS: 
A New Concept for Very Remote Exploration 
with Intelligent Software Agents”, Presented at 
2001 Spring Meeting of the American 
Geophysical Union, San Francisco, 10-14 
December 2001; EOS Trans. AGU, 82 (47), 
2001. 

29. W. Truszkowski, J. Rash, C. Rouff and M. 
Hinchey, Asteroid Exploration with 
Autonomic Systems, In Proceedings of IEEE 
Workshop on the Engineering of Autonomic 
Systems (EASe 2004) at the 11th Annual IEEE 
International Conference and Workshop on the 
Engineering of Computer Based Systems 
(ECBS 2004), Brno, Czech Republic, 24-27 
May 2004, pp 484-490. 

30. W. Truszkowski, M. Hinchey, J. Rash and C. 
Rouff, NASA’s Swarm Missions: The 
Challenge of Building Autonomous Software, 
IEEE IT Professional, September/October 
2004, pp 51-56. 

31. R. Sterritt, M.G. Hinchey, “Engineering 
Ultimate Self-Protection in Autonomic Agents 
for Space Exploration Missions”, Proceedings 
of IEEE Workshop on the Engineering of 
Autonomic Systems (EASe 2005) at 12th 
Annual IEEE International Conference and 
Workshop on the Engineering of Computer 
Based Systems (ECBS 2005), Greenbelt, MD, 
USA, 3-8 April, 2005, pp 506-511.

 
 


