35,594 research outputs found

    Halogen occultation experiment intergrated test plan

    Get PDF
    The test program plan is presented for the Halogen Occultation Experiment (HALOE) instrument, which is being developed in-house at the Langley Research Center for the Upper Atmosphere Research Satellite (UARS). This comprehensive test program was developed to demonstrate that the HALOE instrument meets its performance requirements and maintains integrity through UARS flight environments. Each component, subsystem, and system level test is described in sufficient detail to allow development of the necessary test setups and test procedures. Additionally, the management system for implementing this test program is given. The HALOE instrument is a gas correlation radiometer that measures vertical distribution of eight upper atmospheric constituents: O3, HC1, HF, NO, CH4, H2O, NO2, and CO2

    Hypersonic Wind Tunnel Calibration Using the Modern Design of Experiments

    Get PDF
    A calibration of a hypersonic wind tunnel has been conducted using formal experiment design techniques and response surface modeling. Data from a compact, highly efficient experiment was used to create a regression model of the pitot pressure as a function of the facility operating conditions as well as the longitudinal location within the test section. The new calibration utilized far fewer design points than prior experiments, but covered a wider range of the facility s operating envelope while revealing interactions between factors not captured in previous calibrations. A series of points chosen randomly within the design space was used to verify the accuracy of the response model. The development of the experiment design is discussed along with tactics used in the execution of the experiment to defend against systematic variation in the results. Trends in the data are illustrated, and comparisons are made to earlier findings

    Modeling of preparation conditions of PES ultrafiltration hollow fiber membranes using statistical regression techniques

    Get PDF
    Mathematical modeling of the spinning process is crucial for a better understanding of the process variables and process functionality in membrane development. Due to the broad use and key importance of mathematical models in chemical process engineering, experimental design is becoming essential for the rapid development and validation of these empirical models. This work used the design of experiment methodology and aimed to predict the performance of ultrafiltration systems for water treatment by considering the statistical regression technique as an important approach for modeling flux. The utilization of regression modeling was also explored to show the principle elements for predicting flux in the spinning process. In order to investigate how proficient the statistical regression technique is at approximating the predicted value for flux, a real spinning experiment was conducted in this study. In this experiment, 30 samples of data were collected based on a half fractional factorial experiment with design resolution V, as well as 4 replications of center points and 10 axial points. The spinning factors that were investigated are the dope extrusion rate, air gap length, coagulation bath temperature, bore fluid ratio, and post-treatment time for predicting the corresponding flux. The regression model obtained shows that there is a correlation between the experimental data and predicted values. The results of the proposed model can be used to give a good prediction of the spinning process during membrane fabrication

    Viking '75 spacecraft design and test summary. Volume 3: Engineering test summary

    Get PDF
    The engineering test program for the lander and the orbiter are presented. The engineering program was developed to achieve confidence that the design was adequate to survive the expected mission environments and to accomplish the mission objective

    Discovery of orexant and anorexant agents with indazole scaffold endowed with peripheral antiedema activity

    Get PDF
    CB1 receptors and endocannabinoids are integrated components of neuronal networks controlling different organism’s functions, such as appetite and food intake in the hypothalamus. A series of Rimonabant/Fubinaca hybrids have been synthesized in solution as C-terminal amides, acids, methyl esters and N-methyl amides. These compounds have been studied in cannabinoid receptor binding assay and functional receptor assay in vitro, the most active among them as agonist (LONI 11) and antagonist (LONI 4) were tested in vivo to evaluate their ability to stimulate or suppress the feeding behavior after i.p. administration. For LONI 11 formalin test and tail flick tests after s.c. and i.c.v. routes respectively, were also performed in vivo with the aim to investigate the antinociceptive effect at the central or peripheral level. In the Zymosan-induced edema and hyperalgesia, LONI 11 reduced the % paw volume increase and % paw latency after s.c. administration, also suggesting a potential anti-inflammatory activity at the periphery. Keywords. Cannabinoid receptor, Rimonabant, food intake, anorexant agent, edema

    Good Research Practice in Non-Clinical Pharmacology and Biomedicine

    Get PDF
    This open access book, published under a CC BY 4.0 license in the Pubmed indexed book series Handbook of Experimental Pharmacology, provides up-to-date information on best practice to improve experimental design and quality of research in non-clinical pharmacology and biomedicine

    Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces

    Full text link
    Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that these devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Unfortunately, web security is known to be difficult, and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the vendor, device, or architecture. To achieve this goal, our framework performs full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we analyze the web interfaces within the firmware using both static and dynamic tools. We also present some interesting case-studies, and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale. We validate our framework by testing it on 1925 firmware images from 54 different vendors. We discover important vulnerabilities in 185 firmware images, affecting nearly a quarter of vendors in our dataset. These experimental results demonstrate the effectiveness of our approach

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Serious limitations of the QTL/Microarray approach for QTL gene discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL). However, the effectiveness of this approach has not been assessed.</p> <p>Results</p> <p>Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons<b/> between congenic and background strains. Three studies led to the identification of an underlying <it>QTL </it>gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD) regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of <it>QTL </it>regulated in <it>cis </it>(<it>cis </it>eQTL) showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP).</p> <p>Conclusions</p> <p>The literature shows limited successes from the QTL/microarray approach to identify <it>QTL </it>genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select <it>cis-</it>eQTL over <it>trans-</it>eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false <it>cis-</it>eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes that were not tested. Together, our results explain the tendency to report QTL candidates as differentially expressed and indicate that the utility of the QTL/microarray as currently implemented is limited. Alternatives are proposed that make use of microarray data from multiple experiments to overcome the outlined limitations.</p
    corecore