7 research outputs found

    A controllably adhesive climbing robot using magnetorheological fluid

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 67-69).In this thesis, the novel adhesive effects of magnetorheological fluid for use in climbing robotics were experimentally measured and compared to existing cohesive failure fluid models of yield stress adhesion. These models were found to correlate with experimental results at yield stresses below 1.12 kPa. MR fluid samples activated to have yield stresses above 1.12 kPa were limited to an adhesive stress of approximately 25-30 kPa regardless of inital fluid thickness or yield stress. A climbing robot capable of utilizing MR fluid adhesion was constructed and shown to be capable of adhering to surfaces of any orientation and climbing rough surfaces with a 45° slope. The robot was capable of controllably adhering to rough sandpaper and smooth glass with an adhesive stress of 7.3 kPa, demonstrating a novel form of adhesion on a wide range of surface roughnesses and orientations.by Nicholas Eric Wiltsie.S.M

    Gripping by controllable wet adhesion using a magnetorheological fluid

    Get PDF
    The magnetorheological properties of ferrofluids (or smart, or active fluids) are well known, and are currently exploited in shear in advanced damping systems in the automotive industry, robotics (prosthesis), and machine tools (chatter reduction, positioning). This paper proposes an end effector for gripping by a novel form of controllable wet adhesion inspired by gastropod pedal mucus. The design of a gripper has been proposed, along with performance analysis based on experiments on various parameters, materials and surfaces, exhibiting robustness in unknown and dirty environment, typical of disassembly. Benefits over competing handling technologies and future research directions in this new area have been addressed

    A concept selection method for designing climbing robots

    Get PDF
    This paper presents a concept selection methodology, inspired by the Verein Deutscher Ingenieure (VDI) model and Pugh's weighted matrix method, for designing climbing robots conceptually based on an up-to-date literature review. The proposed method is illustrated with a case study of ongoing research, the investigation of an adaptable and energetically autonomous climbing robot, in Loughborough University

    The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots

    Full text link
    This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods

    Nonlinear Model Predictive Control for the Stabilization of a Wheeled Unmanned Aerial Vehicle on a Pipe

    Get PDF
    This letter addresses the task of stabilizing a wheeled unmanned aerial vehicle on a pipe, which is an emerging applica- tion in oil and gas facilities for nondestructive measurements. After the derivation of the dynamic model of the system, a discrete-time nonlinear model predictive controller is designed over a finite horizon. The analysis of the asymptotic stability of the designed controller is carried out. Numerical tests show the performance and the robustness of the proposed solution

    Using a ferro-fluid pad to climb walls

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (page 31).The goal of this thesis is to build a wall climbing system that utilizes the viscosity property of ferrofluids. Ferrofluid viscosity is varies based on the magnetic field applied to it and this property enables ferrofluids to be used as an adhesive. This would allow a human, with a specially designed climbing gripper, to climb up walls by varying the magnetic field on the ferrofluid that sits between the gripping surface and the wall. While this concept sounds feasible, it is completely untested. The goal of this study was to create theoretical models of how a gripper would work, and then build a climbing gripper using the data from the models. We found that it is theoretically possible to build a ferrofluid climbing system that would allow a human to climb a wall. We then used finite element analysis to optimize a permanent magnet array. Finally, we designed, built, and tested a system around our analysis and found that the gripper did not work and the system was unable to carry any load.by Michael Buchman.S.B

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective
    corecore