11 research outputs found

    Development of \u27\u27Bonten-Maru\u27\u27humanoid robot

    Get PDF
    This paper presents the status and research results of the ”Bonten-Maru” humanoid robot project. The main contributions of this project are on CORBA based control of humanoid robot,real time optimal gait generation, control of humanoid robot in a long distance using teleoperation system, operation of humanoid robot in emergency environments, and various humanoid robot motions. In order to verify our research results, we developed the ”Bonten-Maru” humanoid robot. Another important objective is to cooperate with different researchers on humanoid robots by:(1)making the control platform open;(2)easy to be extended;(3)easy to integrate programs in developed in different programming languages. We present the main of the ”Bonten-Maru” humanoid robot project published in more than 20 papers in international journals and conference proceedings

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Walking trajectory generation & control of the humanoid robot: suralp

    Get PDF
    In recent years, the operational area of the robots started to extend and new functionalities are planned for them in our daily environments. As the human-robot interaction is being improved, the robots can provide support in elderly care, human assistance, rescue, hospital attendance and many other areas. With this motivation, an intensive research is focused around humanoid robotics in the last four decades. However, due to the nonlinear dynamics of the robot and high number of degrees of freedom, the robust balance of the bipedal walk is a challenging task. Smooth trajectory generation and online compensation methods are necessary to achieve a stable walk. In this thesis, Cartesian foot position references are generated as periodic functions with respect to a body-fixed coordinate frame. The online adjustment of these parameterized trajectories provides an opportunity in tuning the walking parameters without stopping the robot. The major contribution of this thesis in the context of trajectory generation is the smoothening of the foot trajectories and the introduction of ground push motion in the vertical direction. This pushing motion provided a dramatic improvement in the stability of the walking. Even though smooth foot reference trajectories are generated using the parameter based functions, the realization of a dynamically stable walk and maintenance of the robot balance requires walking control algorithms. This thesis introduces various control techniques to cope with disturbances or unevenness of the walking environment and compensate the mismatches between the planned and the actual walking based on sensory feedback. Moreover, an automatic homing procedure is proposed for the adjustment of the initial posture before the walking experiments. The presented control algorithms include ZMP regulation, foot orientation control, trunk orientation control, foot pitch torque difference compensation, body pitch angle correction, ground impact compensation and early landing modification. The effectiveness of the proposed trajectory generation and walking control algorithms is tested on the humanoid robot SURALP and a stable walk is achieved

    Study on biped walking vehicle

    Get PDF
    制度:新 ; 文部省報告番号:甲2247号 ; 学位の種類:博士(工学) ; 授与年月日:2006/3/24 ; 早大学位記番号:新426

    Energy Shaping of Mechanical Systems via Control Lyapunov Functions with Applications to Bipedal Locomotion

    Get PDF
    This dissertation presents a method which attempts to improve the stability properties of periodic orbits in hybrid dynamical systems by shaping the energy. By taking advantage of conservation of energy and the existence of invariant level sets of a conserved quantity of energy corresponding to periodic orbits, energy shaping drives a system to a desired level set. This energy shaping method is similar to existing methods but improves upon them by utilizing control Lyapunov functions, allowing for formal results on stability. The main theoretical result, Theorem 1, states that, given an exponentially-stable limit cycle in a hybrid dynamical system, application of the presented energy shaping controller results in a closed-loop system which is exponentially stable. The method can be applied to a wide class of problems including bipedal locomotion; because the optimization problem can be formulated as a quadratic program operating on a convex set, existing methods can be used to rapidly obtain the optimal solution. As illustrated through numerical simulations, this method turns out to be useful in practice, taking an existing behavior which corresponds to a periodic orbit of a hybrid system, such as steady state locomotion, and providing an improvement in convergence properties and robustness with respect to perturbations in initial conditions without destabilizing the behavior. The method is even shown to work on complex multi-domain hybrid systems; an example is provided of bipedal locomotion for a robot with non-trivial foot contact which results in a multi-phase gait

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution

    Exploiting inherent robustness and natural dynamics in the control of bipedal walking robots

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 115-120).Walking is an easy task for most humans and animals. Two characteristics which make it easy are the inherent robustness (tolerance to variation) of the walking problem and the natural dynamics of the walking mechanism. In this thesis we show how understanding and exploiting these two characteristics can aid in the control of bipedal robots. Inherent robustness allows for the use of simple, low impedance controllers. Natural dynamics reduces the requirements of the controller. We present a series of simple physical models of bipedal walking. The insight gained from these models is used in the development of three planar (motion only in the sagittal plane) control algorithms. The first uses simple strategies to control the robot to walk. The second exploits the natural dynamics of a kneecap, compliant ankle, and passive swing-leg. The third achieves fast swing of the swing-leg in order to enable the robot to walk quickly (1.25m). These algorithms are implemented on Spring Flamingo, a planar bipedal walking robot, which was designed and built for this thesis. Using these algorithms, the robot can stand and balance, start and stop walking, walk at a range of speeds, and traverse slopes and rolling terrain. Three-dimensional walking on flat ground is implemented and tested in simulation. The dynamics of the sagittal plane are sufficiently decoupled from the dynamics of the frontal and transverse planes such that control.-of each can be treated separately. We achieve three-dimensional walking by adding lateral balance to the planar algorithms. Tests of this approach on a real three-dimensional robot will lead to a more complete understanding of the control of bipedal walking in robots and humans.by Jerry E. Pratt.Ph.D

    Study on biped foot systems and controls adaptable to various terrains

    Get PDF
    制度:新 ; 報告番号:甲2842号 ; 学位の種類:博士(工学) ; 授与年月日:2009/3/15 ; 早大学位記番号:新506
    corecore