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CHAPTER I

INTRODUCTION

Background, Terminology and Motivation

There has been considerable research effort devoted to bipedal (legged) locomotion, a re-

view of which can be found in [4]. While various methods are proposed to tackle the related control

problem, most of the ideas are either built on the Zero MomentPoint (ZMP) paradigm, or rely on

the (passive) Dynamic Walking Principle.

The Zero Moment Point control approach, originally introduced by Vukobratovíc et.al [5],

[6], is the most accepted and widely used paradigm for biped locomotion syntheses. When level

ground walking is considered, ZMP is defined as that point on the ground at which the net moment

vector of the inertial and applied forces has no component ina ground plane [7]. As long as ZMP

is within the foot support area, its location coincides withthe center of pressure (CoP), which is

the point on the foot where the ground reaction force acts. The importance of the ZMP is that by

controlling its position within a foot support region, no foot rotation will occur (i.e., the foot can

be used as a base link from which a trajectory tracking motioncontrol can be performed on the

body). The ZMP idea is well discussed in literature and served to control (among others) the first

dynamically balancing robot WL-10RD [8], and the state-of-the-art humanoid robot the Honda

Asimo [9].

Walking with ZMP kept within the support region prevents foot rotation and is attributed as

“dynamically balanced walk” [7]. In the related context theword “dynamic” is meant to indicate

that along the motion the center of mass (CoM) of the robot doesnot need to be kept above the

CoP (which would be required to maintain static balance). While keeping ZMP within the support

region (to prevent foot rotation) is also referred as a “dynamically stable walk”, restriction on foot

rotation is not required for stable walking, broadly considered as walking without falling herein.
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In particular, foot rotation is naturally utilized by humans (while walking stably) [10].

In addition to indicating a dynamically balanced walk, dynamic walking is also a paradigm

in legged locomotion. In this context, dynamic walking refers to a robot with finely adjusted inertial

and geometric design which, enhanced with slight control, can emulate stable walking [11]. On

the end of the spectrum of this approach is the “passive dynamic walking principle” introduced

by McGear [12], by showing that (with precisely tuned design) an uncontrolled legged machine

can walk on a slight downward slope (powered only by gravity), see [13]. While utilization of a

passive (uncontrolled) dynamics is an important objectivethrough dynamic walking, this approach

does not exclude control. Specifically, one can utilize simple control strategy on actuator assisted

dynamic walkers to emulate natural looking walking [14] or even walking with human efficiency

[1].

During the conducted research, we have identified two preconditions which allowhuman-

like dynamic walkingto be realized on actuated robots:

• The first precondition, related to the control approach, precludes enforcing a predefined ref-

erence trajectory and may also not favor enforcing state dependent kinematic constraints, or

other attributes of the walking cycle (such as stride length, stepping frequency of average for-

ward speed) with high gain control. This condition motivated us to develop a control frame-

work which utilizes state-dependent control torques generated by low-gain spring-damper

couples to provide motion coordination without prespecifying the motion of the system.

• The second precondition (not related to control) depends onjoint actuation which should

not suppress passive joint motion (i.e., joints should be highly back-drivable such as human

joints). Utilization of back-drivable joint design allowsthe inertial motion of the robot to be

exploited through walking rather than being suppressed by the actuation units. This condi-

tion motivated us to design a 7-link biped robot, with highlyback-drivable joints, which is

used in the experimental verification of the control framework.

The overall control philosophy is analytically developed,numerically investigated and ex-
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perimentally realized on a 7-link biped.

Compared to approaches proposed for actuated dynamic walking, [15], [16], [17], [18],

[19], [20], [21], [22], [23], [24], implementation of the present one allowed experimental demon-

stration of human-like dynamic walking with (partially) ballistic swing, extended knee stance sup-

port, and (preemptive) ankle push-off, on a robot with flat foot and upper body. Compared to

the ZMP walking paradigm (which must prevent foot rotation to ensure dynamic balance), the

presented approach allows foot rotation and as such emulation of human-likeactuated dynamic

walking. Beyond this difference, the extended knee stance support offered here allows walking

which is more natural looking then the usual (ZMP-based) bent knee robot walking.

In addition to the analytical derivation, numerical evaluation and experimental implemen-

tation of the proposed control approach, the dissertation also offers a modeling and simulation

method developed to support the presented control methodology.

Summary and Outline of the Dissertation

The dissertation is organized in five chapters. Chapter I presents the introduction of the

work. Chapters II-IV contain three manuscripts that summarize the research completed and have

been submitted for publication as journal articles. ChapterV concludes the work with the con-

tributions and theproposedfuture direction. An overview of the manuscripts presentedthrough

Chapter II-IV is given as follows:

• Manuscript 1: D.J. Braun and M. Goldfarb, “Eliminating Constraint Drift in the Numerical

Simulation of Constrained Dynamical Systems,”Computer Methods in Applied Mechanics

and Engineering, vol. 198 no. 37-40, pp. 3151–3160, 2009.

This article provide a theoretical framework for numericalsimulation of constrained dynam-

ical system modeled with differential-algebraic equations (DAEs). Specifically, the paper of-

fers an equation of constrained motion which, solved with a standard explicit ODE integrator

(i.e., Euler, Runge-Kutta method), provides a precise motion prediction for DAEs. Beyond
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the theoretical contribution, the paper presents three trajectory tracking simulations on a

seven link planar anthropometric biped robot which demonstrates feasibility of the approach

to simulate bipedal motion subjected to redundant (dependent) constraints. This features

have been recognized important through numerical investigation of the walking controller

proposed in [25] (Manuscript 2). The real-time implementation of the method was also uti-

lized for parameter identification, free swing experiments, and the PD control experiment

performed to characterize the dynamics of the seven link biped, design and control of which

is discussed in [26] (Manuscript 3).

• Manuscript 2: D.J. Braun and M. Goldfarb, “A Control Approach to Actuated Dynamic

Walking in Biped Robots,”IEEE Transaction on Robotics, 2009 - accepted. A short version

of this paper, [27], is presented at the IEEE/RSJ International Conference on Intelligent

Robots and Systems, October 11-15, 2009, St. Louis, USA.

This article presents a control framework for human-like actuated dynamic walking in biped

robots. Instead of utilizing the ZMP (zero-moment-point) control philosophy (frequently

preferred to synthesize actuated dynamic walking), we propose an alternative control method

for human-like dynamic walking. The proposed approach meant to improve, the walking

style (bent knee walking) and the low locomotion efficiency recognized as fundamental is-

sues in the majority of actuated walking robots. As was recognized during the conducted re-

search, realization of a compliant walking precludes enforcement of a prespecified reference

trajectory, or may also not favor enforcing state dependentkinematic constraints or other

attributes of the walking cycle (such as step length, stepping frequency or average forward

speed) with high gain control. This recognition motivated us to develop a control frame-

work which utilizes state-dependent control torques generated by low-gain spring-damper

couples to provide motion coordination without prespecifying the motion of the system. As

is demonstrated (through numerous simulations) in the article, the approach can provide

energy-efficient human like actuated dynamic walking in biped robots.
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• Manuscript 3: D.J. Braun, Jason E. Mitchell and M. Goldfarb, “Experimental Implementa-

tion of Actuated Dynamic Walking in Biped Robots,”The International Journal of Robotics

Research- submitted. A short version of this paper, [2], is accepted on the 9th IEEE-RAS

International Conference on Humanoid Robots December 7-10, 2009, Paris, France.

By utilizing the control framework proposed in [25] (Manuscript 2), this article presents

an experimental realization of actuated dynamic walking inbiped robots. During the de-

velopment of the walking controller, an important design requirement for energy-efficient

realization of dynamic walking have been identified. This requirement depends on joint

actuation which should not suppress the passive joint motion (i.e., joints should be backdriv-

able such as human joints). Practically, utilization of backdrivable joint design allows the

inertial motion of the robot to be exploited through walkingrather than being suppressed

by the actuation units. This recognition motivated us to design a seven link biped robot,

with highly backdrivable joints, which device is used in theexperimental verification of

the control framework. The presented walking experiment demonstrates dynamic walking

characterized with (partially) ballistic swing, extendedknee stance support and (preemptive)

ankle push-off which feature can also be identified during (fast) human walking.

Utilizing the framework presented in [28], a control approach for human-like actuated dynamic

walking was analytically developed and numerically investigated in [25], which approach is then

experimentally verified on a seven link biped robot designedfor this purpose [26]. According to the

authors best knowledge, the preemptive ankle push-off (which is an important qualitative attribute

of a fast human walking) identified during the walking experiments, have been only demonstrated

on the MIT Spring Flamingo [18] and on the actuator assisted Cornell dynamic walker [1].
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CHAPTER II
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By
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Vanderbilt University
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Published as a Regular Paper in the
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Abstract

By means of the Udwadia-Kalaba approach we propose an explicit equation of constrained

motion developed to simulate constrained dynamical systems without error accumulation due to

constraint drift. The basic idea is to embed a small virtual force and a small virtual impulse to the

equation of motion, in order to avoid the drift typically experienced in constrained multibody sim-

ulations. The embedded correction terms are selected to minimally alter the dynamics in an accel-

eration and kinetic energy norm sense. The formulation allows one to use a standard ODE solver,

avoiding the need for iterative constraint stabilization.The equation is based on the pseudoin-

verse of a constraint matrix such that it can be used under redundant constraints and kinematic

singularities. The proposed method takes into account the finite word-length of the computational

environment, and also accommodates possibly inconsistentinitial conditions.

Introduction

Constrained dynamical systems are traditionally modeled with a Lagrangian equation of the

first kind [29] where additional algebraic variables (Lagrangian multipliers) are used to incorpo-

rate the motion constraints to the equation. In addition to this classical approach, many alternative

formulations have been proposed in order to model constrained dynamical systems, including:

Gauss’s principle of least constraint [30], Maggi’s equation [31], Gibbs-Appell’s formulation [32],

[33], Kane’s equation [34], and the Udwadia-Kalaba approach [35], [36], [37], supported with

additional discussions and development presented by Pars [38], Nĕımark and Fufaev [39], Gant-

macher [40], Goldstein [41], Chetaev [42] and Lurie [43].

Despite the strong theoretical foundation, direct numerical implementation of the proposed govern-

ing equations generally leads to error accumulation due to “constraint drift”. Specifically, motion

constraint which should be physically invariant will move in space due to error and imperfection

in numerical integration. The resulting solution is not physically consistent and as such loses value

with respect to practical interpretation. This issue has been addressed by many authors including:
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Baumgarte [44], Gearet.al [45], Lötstedt and Petzold [46], Führer and Leimkuhler [47], Petzold

[48], ten Dam [49], Eich [50], Bayo and Ledesma [51], Blajer [52] and Aghili [53]. The impor-

tance of having a reliable simulation tool which produces physically consistent motion prediction

is motivated by many practical applications as was discussed by Schiehlen [54] and Brogliatoet.al

[55].

Our aim is to propose a formulation which enables stable numerical simulation without error ac-

cumulation in motion constraints. In order to do so, it was necessary to take the nonideal compu-

tational environment as well as the possible errors in initial data (caused by the user) into account.

Following a revised constraint definition, we derive an explicit equation for constrained motion

with constraint correction terms. Although these additional terms have no direct physical mean-

ing, they can be interpreted as a set of small virtual forces and impulses and are derived by means

of Gauss’s principle of least constraint. After presentation of the proposed formulation, the ap-

proach is discussed in the context of prior work in the field. Finally, the approach is illustrated on

and validated with several representative examples.

Constrained Multibody Dynamics

In this section, the equation of motion for a constrained dynamical system is derived. The

approach is based on the explicit equation of constrained motion presented by Udwadia and Kalaba

[35].

Unconstrained Multibody Dynamics

Consider an n-degree-of-freedom multibody system, the configuration of which is uniquely

specified byq ∈ R
n generalized coordinates. Let the equation of motion of the considered system

(derived by means of the Lagrangian formalism) be represented in the following form

M(t,q)q̈ = Q(t,q, q̇). (2.1)
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Here,t ∈ [0,T] is a time variable,M ∈R
n×n is a symmetric and positive definite mass matrix while

Q ∈ R
n represents the generalized forces. If no constraints are applied on (2.1), the dynamical

system is considered as unconstrained with respect to the chosen generalized coordinatesq.

Holonomic Constraints: Revised

Let us introduce additionalm holonomic bilateral constraints on the system dynamics,

ΦΦΦ(t,q) = 0, (2.2)

whereΦΦΦ : [0,T]×R
n → R

m. In the forthcoming analysis, we will assume that these rheonomic

(explicitly time dependent) constraints areC2[0,T], such that, (2.2) has well defined first and sec-

ond partial derivatives at least.

Let us discuss the effect of (2.2) on the dynamical system (2.1). Generally speaking, each bilateral

constraint adds a constraint reaction force to the system dynamics. If the constraint is ideal, it gen-

erates an “ideal reaction” which does no work on any constraint consistent virtual displacement.

We assume that all constraints are ideal and as such D’Alambert’s principle applies [56].

Considering the constraint equations (2.2), one can see thatΦΦΦ = 0 defines position-level relations

between the generalized coordinates. However, in order to avoid error accumulations along the nu-

merical solution, the holonomic (position) constraints must also be satisfied on the velocity level

Φ̇ΦΦ = 0. In this light, by adding the aforementioned velocity levelconstraint to (2.2), one obtains

ΦΦΦ(t,q) = 0,Φ̇ΦΦ(t,q, q̇) = 0. (2.3)

If the dynamical system is restricted by (2.2), it is important to make sure that not only (2.2) but also

(2.3) is satisfied. As follows, we will replace (2.3) with velocity and acceleration level constraints

which are linear with respect tȯq andq̈, respectively. To do so, let us assume thatq = q(t) defines

the positions of the constrained dynamical system. Using these functions, one can come up with
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ΦΦΦ(t) = ΦΦΦ(t,q(t)), and the following Taylor expansion holds

ΦΦΦ(t +dt) = ΦΦΦ(t)+(Aq̇−bq)dt+O(dt2), (2.4)

where,A(t,q) = ∂ΦΦΦ/∂q andbq(t,q) =−∂ΦΦΦ/∂ t. Similarly, one can definėΦΦΦ(t) = Φ̇ΦΦ(t,q(t), q̇(t))

and expand the velocity level (nonholonomic) constraints up to the acceleration level as,

Φ̇ΦΦ(t +dt) = Φ̇ΦΦ(t)+(Aq̈−bv)dt+O(dt2), (2.5)

wherebv(t,q, q̇) = −q̇T [∂ 2ΦΦΦ/∂q2]q̇−2[∂ 2ΦΦΦ/∂ t∂q]q̇−∂ 2ΦΦΦ/∂ t2.

If dt is interpreted as a (numerical) integration step, then the first order approximation of (2.3),

(as well as (2.4) and (2.5)) can be satisfied at each subsequent integration step,ΦΦΦ(t + dt) = 0,

Φ̇ΦΦ(t +dt) = 0, with velocity and acceleration level constraints defined as follows

Aq̇ = bq−ΦΦΦ/dt,

Aq̈ = bv− Φ̇ΦΦ/dt.
(2.6)

Instead of (2.6), the analytical derivation of the explicitequation of constrained motion proposed

by [45] and [35], [36], [37] is based on a velocity or acceleration level representation of the original

constraints

Aq̇ = bq,Aq̈ = bv. (2.7)

However, the equation of constrained motion which is based on (2.7) does not have a numerically

stable ODE implementation without additional constraint correction. Namely, in order to substitute

(2.6) with (2.7), the following conditions must be met:

• The user must provide initial conditions which are constraint consistent,ΦΦΦ(0,q(0)) = 0,

Φ̇ΦΦ(0,q(0), q̇(0)) = 0.

• The solutionq(t), q̇(t) must not contain any integration error.
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Due to numerical errors, such conditions are not realistic in a numerical (i.e., computer) simula-

tion environment. Rather, in practice, use of (2.7) typically leads to significant error accumulation

and constraint drift. This motivated us to derive an implementation of (2.6) which takes the ex-

pected numerical imperfections into account. We will show that adequate implementation of (2.6)

prevents error accumulation and results in a numerical solution without constraint drift.

Constrained Multibody Dynamics

In order to incorporate position-level constraints to the dynamic equations, we recall the

Lagrange multiplier approach. However, in contrast to the method traditionally used in mechanics,

where the multipliers represent constraint reaction forces, our intention is to use the same idea to

eliminate constraint violations.

Let us start with the traditional representation of the constrained dynamical system,

Mq̈ = Q+Qc, (2.8)

whereQc = ATλλλ is the generalized constraint force, while the undetermined Lagrange multipliers,

λλλ ∈ R
m, represent the physical forces generated by constraints. This representation is valid for

ideal constraints which do no work,QT
c δq = 0, along any admissible virtual displacementδq ∈

{δq : δq ∈ R
n ,Aδq = 0}. To formulate the equation of motion in explicit form, let ussolve the

constrained acceleration from (2.8) as a function ofλλλ ,

q̈ = a+M−1ATλλλ , (2.9)

wherea = M−1Q is the unconstrained acceleration the system would have without the imposed

constraints, see (2.1). Now, substituting (2.9) back to thepractical acceleration level constraints
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(2.6)2, one can solve for the Lagrangian multipliers by direct inversion

λλλ = (AM −1AT)−1(bv−Aa− Φ̇ΦΦ/dt). (2.10)

Although, the physical constraint reactionsλλλ are not well defined if the constraint matrixA is rank

deficient (due to kinematic singularities or constraint redundancy), the constrained acceleration

as well as the generalized constraint forceQc = ATλλλ are always unique, [57], [58], [36]. Thus,

we can determineQc to accommodate kinematic singularities and constraint redundancy by first

defining the following matrices:M1/2, M−1/2, B = AM −1/2 andB+, where due to the positive

definiteness ofM , the so called principal square root of the mass matrixM1/2 and its inverse

M−1/2 are always well defined, as is the (Moore-Penrose inverse) pseudoinverseB+ of B, [59].

Using the introduced notation, the generalized constraintforce becomes

Qc = M1/2B+(bv−Aa− Φ̇ΦΦ/dt). (2.11)

Substituting (2.11) into (2.8), the explicit equation of the constrained dynamics can be easily ob-

tained. In order to further proceed, one can define the constrained acceleration,̈q = v̇ and rewrite

the equation of motion in the following first order form

q̇ = v,

v̇ = a+M−1/2B+(bv−Aa− Φ̇ΦΦ/dt).
(2.12)

Although this formulation accounts for numerical errors onthe velocity level,Φ̇ΦΦ ≈ 0, it cannot

in general prevent error accumulation. This is because (2.12) does not yet take the numerically

induced position level error given byΦΦΦ ≈ 0 into account. With the aim of incorporating this error

source, we mimic the above procedure, adding a new Lagrangian multiplier to (2.12)1,

q̇ = v+M−1AT µµµ. (2.13)
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In contrast toλλλ , the new multiplierµµµ is not generated by the constraints but rather is introduced

to compensate for numerical errors along the integration. Asimilar term,AT µµµ was used by [45]

to incorporate velocity level constraints in the equation of motion. Note that neitherAT µµµ nor

M−1AT µµµ has clear physical meaning. However while the former can only be considered as a

kinematic correction term, the latter (introduced here) isa dynamic correction which allows us to

interpretµµµ as a small mechanical impulse.

Substituting (2.13) into (2.6)1, one obtains

µµµ = (AM −1AT)−1(bq−Av−ΦΦΦ/dt). (2.14)

Once again, using the pseudoinverse notation, the compensation term becomes

M−1AT µµµ = M−1/2B+(bq−Av−ΦΦΦ/dt). (2.15)

Substituting (2.15) into (2.13), and combining with (2.12)2, the complete equation of motion for

the constrained dynamical system is obtained

q̇ = v+M−1/2B+(bq−Av−ΦΦΦ/dt),

v̇ = a+M−1/2B+(bv−Aa− Φ̇ΦΦ/dt),
(2.16)

wherea = M−1Q is the unconstrained acceleration,v̇ is the constrained acceleration, andq̇ is the

constrained velocity.

It can be easily recognized that ifΦΦΦ = 0 and Φ̇ΦΦ = 0 (which also impliesAv = bq) then (2.16)

reduces to the well known explicit equation of motion derived by Udwadia and Kalaba (which as-

sumes an ideal computational environment and perfect initial conditions). Taking the error sources

in the real computational environment into account, we do not assume exact constraint satisfaction

which, following strict mathematical derivations, produces additional error compensation terms

in the equation. The new terms compensate for the numerical errors and guarantee that no error

accumulation can take place.
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Discussion of the Proposed Formulation

In order to discuss (2.16), let us recall the explicit equation of motion which does not

contain the constraint correction terms,

q̇ = v,

v̇i = a+M−1/2B+(bv−Aa),
(2.17)

wherev̇i is the acceleration which exactly satisfiesAv̇i = bv, while v is the velocity obtained by

numerical integration oḟvi (in an ideal computational environment one would obtain,v = vi).

Comparing (2.16)2 with (2.17)2, one may conclude thatM−1/2B+Φ̇ΦΦ/dt represents a small correc-

tion of the constraint force (Lagrangian multiplierλλλ , see (2.10)) which is necessary to satisfy the

constraints under numerically imperfect conditions. In order to have a clearer interpretation, let us

reformulate (2.16)2 by means of the Gauss principle of least constraint,

v̇ = min{x ∈ R
n : (x− v̇i)TM(x− v̇i),

Ax = bv− Φ̇ΦΦ/dt}.
(2.18)

Based on this interpretation, thev̇ provided by (2.16)2 is the closest acceleration tov̇i (in an accel-

eration energy sense) which satisfies the constraints (2.6)2.

Similarly, comparing the first equations in (2.16) and (2.17), one might recognize thatM−1/2B+(bq−

Av−ΦΦΦ/dt), although not generated by physical constraints, is necessary to prevent error accumu-

lation. In order to give a physical interpretation of this term, let us define an equivalent formulation

of (2.16)1 with the following constrained quadratic program

q̇ = min{x ∈ R
n : (x−v)TM(x−v),

Ax = bq−ΦΦΦ/dt}.
(2.19)

Here,q̇ is the closest velocity tȯv (in a kinetic energy sense) which satisfies the constraints (2.6)1.

Note thatv, obtained by time integration of the constrained acceleration, may not satisfy exactly
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the kinematic constraintsAv 6= bq (which condition is taken into account along the derivation). In

a special case whenv = vi, (Av = bq), the correction term would reduce to−M−1/2B+ΦΦΦ/dt.

One can conclude now that the derivation of the accelerationlevel correction terms are closely

related to the general principle of constrained motion formulated by Gauss [30], while the veloc-

ity level correction terms are obtained using kinetic energy minimization, and as such are also

physically motivated.

Numerical Implementation

In order to simulate a constrained dynamical system, a robust and stable numerical solver

for the index-3 differential algebraic equation (DAE) (2.1), (2.2), is required [60]. However, in

contrast to widely available ordinary differential equation (ODE) solvers, a DAE solver which reli-

ably prevents error accumulation and constraint drift is not trivial to implement. By means of DAE

integration, DASSL [61] (and its extended version DASSLRT)offers a state-of-the-art implemen-

tation of the index-2 DAE formulation proposed by [45]. In general, different DAE integrators

have been developed as research codes, overviews of which can be found in [62], [63], [64].

Our intention is to show that one can use traditional ODE integrators to solve the reformulated con-

strained dynamic equation (2.16), without having problemsof error accumulation and constraint

drift. In the remainder of this section, we discuss how to obtain such a numerical solution.

When the analytical model is derived, the system is characterized with the following quantities;M ,

Q, A, bq, bv, ΦΦΦ andΦ̇ΦΦ. Without any further preparation, (2.16) is ready to be solved in a standard

ODE solver which utilizes a first order state-space formulation, providing we can incorporate the

correction terms,ΦΦΦ/dt andΦ̇ΦΦ/dt where, as it was mentioned,dt is interpreted as a time step of

the numerical integrator. The simplest way to incorporate the correction terms is to use a fixed

step solver wheredt is predefined. If however, one wants to exploit the benefits ofa variable step

solver, the actual time step should be used over the integration procedure.

The computational expense of the numerical implementationof (2.16) is dominated by the calcu-

lations of the principal square root of the mass matrixM1/2 and the pseudoinverseB+. Practically,
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these computations entail an eigenvalue computation ofM and a singular value decomposition for

B, see [65]. However, in order to incorporate the constraint forces, one can useM−1/2B+ = R−1C+

whereR is the upper triangular Cholesky factor of the inertia matrixM = RTR while C = AR−1.

This replacement allows one to avoid the particularly expensive eigenvalue computation which

would be required in order to computeM1/2. It is also important to mention that the pseudoinverse

notation utilized in (2.16) allows a compact and general representation of the equation of motion

regardless of whether the constraints are independent or dependent. From a computational point of

view, however, only dependent constraints require singular value decomposition to defineB+ (or

C+) while for independent constraints one can either 1) compute the velocities and accelerations

together with the Lagrangian multipliers from (2.9), (2.10), (2.13) and (2.14), or 2) utilize the fol-

lowing explicit definition,M−1/2B+ = R−1CT(CCT)−1 to evaluate the right hand side of (2.16)

directly.

Note, that the correction terms are obtained based on the Taylor expansion of the constraints, see

(2.4), (2.5), which provides a good approximation as long asa small integration stepdt is used.

With this in mind, one cannot expect arbitrarily precise constraint satisfaction (i.e., due to the finite

time step and numerical imprecision). Let us recognize thatthe correction terms in (2.16) use the

same matrixM−1/2B+, which must in any case be computed in order to incorporate the constraint

forces. In this light, beyond multiplication and addition,the correction terms do not require any

additional computation.

In the following, a simple numerical implementation of (2.16) will be given with some practical

comments.

Numerical Procedure

Using a small time stepdt, the finite domain of integrationt ∈ [0,T] is equidistantly dis-

cretized as 0= t0 < t1 < ... < tn < tn+1 < ... < tN = T. By means of numerical solution, we seek the

discrete values of all positions{q0,q1, ...,qn,qn+1, ...,qN} and velocities{v0,v1, ...,vn,vn+1, ...,vN}

which are numerically constraint consistent. Let us assumethat the initial conditionsq0 = q(0) and
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v0 = v(0) approximately satisfy the constraints,ΦΦΦ(t0,q0)≈ 0, Φ̇ΦΦ(t0,q0,v0) ≈ 0. The complete so-

lution can thus be obtained by integrating the system dynamics successively between discrete time

instants. In order to illustrate salient aspects of the implementation, a numerical integration of

(2.16) is presented based on a forward Euler method, as follows:

1. Based onqn = q(tn) andvn = v(tn), known from the previous integration step (or defined by

initial conditions for the starting step), one can evaluate: Q = Q(tn,qn,vn), M = M(tn,qn),

A = A(tn,qn), bq = bq(tn,qn), bv = bv(tn,qn,vn), ΦΦΦ = ΦΦΦ(tn,qn) andΦ̇ΦΦ = Φ̇ΦΦ(tn,qn,vn). The

upper triangular Cholesky factor of the mass matrixR is computed, whereM = RTR, and

the pseudoinverseC+ is computed based onC = AR−1.

2. Using Q and exploiting the Cholesky factorization one can efficiently solve the uncon-

strained accelerationan from RTRan = Q with a successive forward and backward sub-

stitution.

3. The endpoint position is computed from:

qn+1 = qn +vndt+R−1C+[(bq−Avn)dt−ΦΦΦ], (2.20)

and the endpoint velocity from:

vn+1 = vn +andt+R−1C+[(bv−Aan)dt− Φ̇ΦΦ]. (2.21)

At the end of an integration step, the new position and velocity (qn+1,vn+1) is obtained.

These values are used to initialize the next integration cycle.

The presented method assures that neither use of initial conditions which do not exactly satisfy the

constraints, the roundoff error (cased by imperfect arithmetics), nor the truncation error (made by

discretization) can cause constraint drift along the time integration. This however, does not mean

that inconsistent initialization is preferred. Namely, poorly selectedq0 andv0 will cause intensive

corrections at the beginning of the integration which may alter the dynamic evolution of the system
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over time. To avoid this effect, it is important to take care of correct initialization using approxi-

mately (numerically) consistent initial conditions,ΦΦΦ(t0,q0) ≈ 0, Φ̇ΦΦ(t0,q0,v0) ≈ 0, [66], [67].

Let us mention that due to 1/dt in (2.6), the compensation terms may make the governing equation

(2.16) stiff. However, this term is canceled after time discretization as it is shown in (2.20) and

(2.21).

If the constraints are indepndent, the pseudoinverse used in the numerical procedure is explicitely

definedC+ = CT(CCT)−1. In general hovever,C+ requires a singular value decomposition ofC.

This computation may be relatively expensive, although it allows one to resolve kinematic singu-

larities and generally handle dynamical systems with dependent constraints. For high degree-of-

freedom multibody systems however, reducing the computational effort needed for time integration

could become crucial. In this case, one may favor Cartesian or“natural” coordinates [68], [63],

[69], and use topological based approaches to exploit the structure as well as the sparsity pattern

of the formulation [70], [71].

In order to improve accuracy and/or numerical stability, instead of the presented simple scheme,

more sophisticated explicit or implicit discretization can be used as required. Implicit integrators

are computationally more expensive, but also more stable and are usually required if the equations

of motion are stiff. Practically, an implicit solver would use Newton iteration to obtain the po-

sitions and velocities at each time step. This iterative process can be sped up by exploiting the

sparsity pattern of the Jacobian used in Newton’s method as is proposed in [72]. Note however that

due to its computational expense, solving (2.16) with an implicite solver is only resonable if the

constraints are independent, in which case no singular value decomposition is required to compute

C+.

Related Simulation Methods

In this section, established DAE integration methods frequently used to prevent constraint

drift are discussed with respect to the presented equation (2.16). An overall review of constraint

enforcement approaches can be found in [73] and [74].
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Baumgarte’s constraint stabilization

The main issue in all DAE problems is ensuring that the small numerical error made at each

integration step does not accumulate along the solution process. One of the most popular methods

in engineering practice, which does not require iterative constraint corrections, is Baumgarte’s

constraint stabilization [44]. Practically, instead of using an original constraintΦ = 0, Baumgarte

proposes the use of a corresponding second order equation,Φ̈ + 2αΦ̇ + β 2Φ = 0 which forα =

β > 0 has a globally asymptotically stable aperiodic solution approaching zero (Φ = 0) over time.

As has been frequently pointed out in the literature, the introduced parameters,α and β must

be carefully selected, since the selection can make the reformulated problem stiff and also can

alter the original dynamics of the system under consideration. In (2.16), the correction terms are

derived to minimally alter the dynamics under numerically imperfect conditions without resulting

in stiff equations. This was achieved by means of (2.18), (2.19), without introducing extraneous

parameters likeα andβ .

Various modifications of Baumgarte’s idea can be found in [75], [76], [77], [78]. Specifically, the

approach proposed by Asheret.al [77] is based on a single correction step (Newton iteration step)

towards the position and velocity constraint manifold (2.3) applied after each time step. In the

present paper, the velocity and acceleration level constraint set (2.6) can also be seen as a Newton

iteration algorithm for (2.3). However, in the present approach, the correction terms embedded in

(2.16), are derived to minimally alter the uncorrected solution in a kinetic and acceleration energy

sense according to (2.18) and (2.19), and as such they cannotbe obtained by directly solving (2.6)

as proposed in [77]. Moreover, instead of post-correcting the computed solution, one can recognize

in (2.20), (2.21) that with explicit discretization, the correction terms derived here perform pre-

correction.
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Iterative correction approach

In contrast to Baumgarte’s approach, a variety of other methods have been developed which

eliminate constraint drift by iteratively correcting the already computed solution.

The penalty based Augmented Lagrangian (AL) formulation introduced by Bayo and Ledesman

[51] works with redundant constraints and singular mass matrices. In order to deal with constraint

violation, a “mass-orthogonal” projection method was formulated on the acceleration, velocity and

position level. Based on results presented in [51], the method can provide numerically perfect con-

straint satisfaction along relatively large step integrations. The motivation of the mass-orthogonal

algorithm is to have the same matrix for the dynamic equations and also for the iterative constraint

correction process.

The correction approach proposed in this paper can also be seen as mass-orthogonal. However, the

idea presented herein is based on Gauss’s principle, and as such it is free of the auxiliary (penalty)

parameter one needs to specify on the AL formulation.

An alternative two-step decoupled position and velocity level constraint correction algorithm had

also been proposed by Blajer [52]. This approach is built on the geometric interpretation of the

constrained motion [79]. The method assumes a full-rank constraint matrix and as such it cannot

be used for simulation of dynamical systems with redundant constraints.

Aghili [53] presented an efficient formulation for the constraint motion problem introducing a

“constraint inertia matrix”. In order to satisfy the (possibly dependent) position constraints, he

proposed a geometrically motivated correction method based on the pseudoinverse of the con-

straint matrix.

The approach presented in this paper does not uses the pseudoinverse of the original constraint

matrix, but rather is based on the inertially weighted pseudoinverse, which allows dynamically

consistent constraint correction (i.e., based on Gauss’s principle).
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Coordinate partitioning method

In many practical applications, using dependent coordinatesq with differential-algebraic

equations (2.1), (2.2) is a convenient and natural way to model constrained dynamical systems.

However, having constraints, and as such dependent coordinates, is the primary reason for the

constraint drift along a numerical integration. Theoretically, this problem can be overcome by

analytical reformulation of the mathematical model, embedding all constraints in (2.1) by specially

selected (independent) generalized coordinates. This kind of reformulation of the original DAE

problem to a corresponding ODE is often nontrivial or even impossible in practice. In this light,

Wehage and Haug [80] proposed a more practical coordinate partitioning in order to separate the

dependent coordinates from the independent ones. This partitioning, although non-trivial and not

unique, exactly eliminates the drift at the velocity level from the integration, and allows DAE

problems to be solved accurately using a correction only on the position level.

Differential-algebraic approach

In order to incorporate the motion constraints to the governing equation, Gear [60] devel-

oped an index reduction method. Instead of solving the original index-3 DAE problem (2.1), (2.2),

he proposed an alternative index-2 DAE formulation, [45], where the velocity level constraints,

Aq̇ = bq were directly embedded in the equation of motion. In contrast to the Udwadia-Kalaba ap-

proach, Gear did not eliminate the Lagrangian multipliers but rather calculated these in each time

step. The integration was based on the Backward Differentiation Formula combined with Newton

iterative correction of the original constraintsΦΦΦ. Similar methods have also been developed by

[46], [47], [50].

In the presented approach, the Lagrangian multipliers are not computed, which allows us to take

redundant constraints into account. On the other hand, instead of using the velocity (and acceler-

ation) level constraints in standard form, we have used (2.6), which allows (2.16) to prevent error

accumulation without iteration.
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Note that Eich [50] has proposed a quadratic minimization based method which corrects the com-

puted solution by projecting it to the position and velocityconstraint (2.3) after each time step. The

difference between the approach suggested in [50] and the method presented herein is twofold;

first, the minimization we propose is performed in an acceleration and kinetic energy sense, and

second, the velocity and acceleration level constraints utilized in this paper allows the correction

approach to be explicitly incorporated in equation (2.16).

Taking the numerical error sources into account

The importance considering the finite word length of the computational platform, as well

as the inconsistency of the initial data was also pointed outby ten Dam [49]. In contrast to [60], ten

Dam argued that the index of the DAE is not what causes difficulties in the solution, but rather the

order of steps one takes to obtain the discrete formulation.Instead of discretizing the analytically

derived equations, ten Dam proposed deriving the discrete Lagrange multipliers with the primary

objective of forcing the solution to satisfy the constraints at each time step. It was shown that

the discrete multipliers are not equal to the discretized version of the analytically derived multi-

pliers, which is considered the main reason for the numerical instability experienced by standard

approaches.

From our viewpoint, the primary reason of the error accumulation and constraint drift lies in the

standard constraint representation (2.7). Namely, it assumesΦΦΦ = 0, Φ̇ΦΦ = 0 along the numerical so-

lution, and as such eliminates the information from the drift. Under this assumption, correction of

the constraint drift is not possible. Taking the finite word-length of the computational environment

into account, we acceptΦΦΦ ≈ 0, Φ̇ΦΦ ≈ 0, and use the velocity and acceleration level constraints inde-

pendently as is proposed with (2.6). In this way the constraint drift can naturally and automatically

be eliminated.
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On the presented method

In order to obtain unique Lagrange multipliers, it is traditionally assumed that the constraint

matrix A is of full rank. In real simulation however, one cannot guarantee this property through

the dynamical evolution of the constrained motion. Particularly, if the constraint set becomes de-

pendent,A loses rank, and the Lagrange multipliers cannot be uniquelycalculated, and as such the

numerical simulation fails. By this reason, the approach presented here does not require the La-

grange multipliers to be computed, instead, it uses the generalized constraint force which is always

well defined.

All the dynamical simulations which seek precise constraint satisfaction implement some type of

correction algorithm. This correction process alters the dynamic evolution of the system and can

make it depart from the expected natural behavior over time.In order to minimize this effect, the

proposed correction terms are derived to minimally alter the motion in an acceleration and kinetic

energy norm sense.

In contrast to the frequently used iterative type constraint corrections, the equation of motion (2.16)

proposed here, does not require any iteration, which may be highly preferred in real time applica-

tions. The noniterative constraint correction is achievedby directly embedding (2.6) in the equation

of motion. Practically, this allows us to obtain one corrective step (toward the position and the ve-

locity level constraints) at each time step. Note, however,that because only one corrective step

is allowed, using initial conditions which significantly violate the constraints will result in a low

accuracy solution. In this light, it is important to use initial conditions which at least approximately

satisfy the constraints and thus can be accepted as constraint consistent in a numerical sense.

Finally, it is important to mention that utilizing the idea presented in [37], (2.16) can also be gen-

eralized to accommodate nonholonomic and nonideal constraints.
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Application

In this section, the proposed formulation (2.16) is first tested on relatively simple dynamical

systems, then on a more complex one. Specifically, in order toassess the accuracy of the solution,

examples are chosen which are sufficiently simple to allow formulation of the dynamics without

explicitly imposed constraints, which in turn enables an ODE formulation of the dynamics. The

ODE formulation and subsequent solution via an ODE solver, which is termed the “trusted solu-

tion”, is used in these cases to compare the results of the respective DAE solution (2.16) termed

as the “proposed solution” (both under the same numerical conditions). The authors also compare

the DAE solutions obtained by (2.16) and (2.17) (i.e., with and without constraint error correction)

for constraint drift in the presence of “perfectly” consistent and inconsistent initialization. Af-

ter comparing solutions for the simple examples, a seven-link biped (in three different constraint

configurations), which is too complex to be formulated as a single ODE problem, is used as a

“realistic” application of the proposed method.

The presented examples are solved with a fourth order fixed step Runge-Kutta method. The solver

is implemented in MATLAB and compiled to a C code. Using this code, the simulations are per-

formed on 2.4 MHz Intel Core2 Quad PC computer with a fixed time step. The selected integration

step preserves stability of the explicit Runge-Kutta integrator. The error of the reported numerical

solutions are measured with respect to the “numerically exact solution” obtained using the ODE

formulation integrated with a MATLAB solver (with 10−12 relative and absolute tolerance). All

physical quantities used in the simulations have standard SI units [kg,m,s].

Mathematical Pendulum

A pendulum with massm and lengthl is chosen to test the proposed method over a long

time period simulationt ∈ [0,1000]s. The constrained equation of motion, (2.16), is derived using

two (dependent) coordinatesq = [x,y]T and one constraintΦ = x2 + y2− l2. Starting from the

horizontal rest position, the motion is simulated using 10−3 time step. Compared to the “numer-
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ically exact” position of the pendulum, the simulation results show the same accuracy, 3×10−7

(i.e., worst error magnitude), for the “proposed solution”and the “trusted solution”, indicating that

this error is not due to the constrained formulation but is rather generated by discretization. On

the other hand, using (2.17), (with no constraint correction) results in a low accuracy solution,

10−1, as expected. In order to identify the importance of the correction terms, the simulations

were repeated with slightly imperfect initial conditions.The result is depicted in Figure 2.1. Note
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Figure 2.1 Mathematical pendulum:l = 1m, m = 1kg. Last swing int ∈ [0,1000]s simulation
is depicted. The “trusted solution” started from the rest horizontal positionq(0) = [1,0]T , v(0) =
[0,0]T , is plotted with “·”. The solution obtained by (2.16), with imperfect initial conditionsq(0) =
[1+ 10−5,10−5]T , v(0) = [10−4,−10−4]T , is depicted with “◦”. The solution obtained by (2.17)
with the same imperfect initialization is plotted with “+”. This solution violates the constraint and
is shifted in time.

that despite the imperfect initialization, no error accumulation took place in the proposed solution.

Correspondingly, (except the first few steps) the constraintis satisfied up to, 10−12, such that the

solution is practically free of drift. Let us mention that integration of (2.16) over 1000s took 13.7s

CPU time, 26% of which was spent on constraint correction.

Since in the present context an explicit solver is utilized,the overall accuracy of the integrated solu-

tion (accuracy compared to the numerically exact solution)as well as the accuracy of the constraint
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satisfaction is step-size dependent. A representative relation between the integration step-size and

the mentioned accuracy measures is illustrated in Figure 2.2. As one can recognize, with a small

enough time-step, the overall accuracy obtained with the proposed formulation is the same as that

obtained by integration of the unconstrained formulation.The presented numerical result also ver-

ifies that with a larger time-step, the constrained formulation gives a less precise result, namely the

constraint error (although steadily maintained) is not in the order of the machine precision.
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Figure 2.2 In this figure, log-log pictures depict the maximum constraint error
∣

∣Φq
∣

∣

max, |Φv|max,

and the maximum overall accuracyεmax, ε =
√

dx2 +dy2 (wheredxanddyare errors in the corre-
sponding coordinates) between the “trusted solution”, “·”, and the proposed solution, “◦”. The pre-
sented results are based on integration conducted fort = [0,10]s(dashed line) andt = [0,100]s(full
line) with seven different time steps:dt ∈ [5×10−4,10−3,2×10−3,5×10−3,10−2,2×10−2,5×
10−2]. In the first two figures, the full and the dashed lines are overlapped, indicating that the two
solutions have the same accuracy on the constraint satisfaction.
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Slider-crank mechanism

Consider the slider-crank mechanism consisting of two linkswith equal lengthsl and

massesm, and a horizontal slider, with massms, attached to the end of the mechanism Figure

2.3. When the links are either horizontal or vertical the mechanism is in a singular configura-

tion. Our intention is to test (2.16) under this singularity. To make the motion periodically cross

the singular positions, the base link is subjected to a constant counterclockwise torque of 20Nm

and a torsional (linear) viscous damping with damping coefficient 5Nms. The constrained for-

mulation is derived with four (dependent) coordinatesq = [x1,y1,θ1,θ2]
T and three constraints

ΦΦΦ = [x1,y1,y1+ l(sin(θ1)+sin(θ2))]
T . Here,(x1,y1) are coordinates of the support point whileθ1

andθ2 are absolute angles of the links measured counterclockwisefrom a horizontal reference.

The motion, started from a horizontal rest position, is simulated overt ∈ [0,100]s with 10−3 time

step. Compared to the numerically exact solution, the motionreflected to the horizontal position of

the sliderxs = x1+ l(cos(θ1)+cos(θ2)), shows the same accuracy, 4.4×10−8, for the proposed so-

lution and the trusted solution. The equation (2.16) is alsotested under inconsistent initialization.

The simulation results are depicted in Figures 2.3 and 2.4.

Two four-bar linkages

Let us consider two four-bar linkages with links of lengthl and distributed massesm. When

the mechanism moves through a horizontal position, its number of degrees of freedom changes in-

stantaneously from one to three. The intention here is to test (2.16) under this constraint singularity.

The equation of motion is derived with six natural coordinates, [81], which define the position of

the moving joints,q = [x1,y1,x2,y2,x3,y3]
T , and five constraintsΦΦΦ = [x2

1 + y2
1 − l2,(x2 − l)2 +

y2
2− l2,(x3−2l)2+y2

3− l2,(x2−x1)
2+(y2−y1)

2− l2,(x3−x2)
2+(y3−y2)

2− l2]T . The motion,

started from a vertical rest position of the supporting links, is simulated overt ∈ [0,100]swith 10−2

time step. Due to the relatively large time step and long simulation time we do not expect a precise

solution. Accordingly, compared to the exact numerical solution, the result reflected tox3 shows
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Figure 2.3Slider-crank mechanism:l = 1m, m= 1kg, ms = 1kg. Stroboscopic view of the motion
for t ∈ [97.5,99]s. The solution obtained by (2.16) with exact initializationq(0) = [0,0,0,0]T ,
v(0) = [0,0,0,0]T , is depicted with “−”. The numerical integration took 18.9s CPU time, 5% of
which is spent on constraint correction. The motion predicted by (2.16) under slightly inconsistent
initialization q(0) = [10−3,10−2,10−3,10−2]T , v(0) = [10−3,10−2,10−3,10−2]T is plotted with
“−−”. The solution obtained by (2.17), (with no constraint correction), was highly inaccurate
such that we decided not to present it here.
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Figure 2.4 Constraint evolution along the solution obtained by (2.16) is plotted with “−”. Note
that all constraints are below the machine precision 10−15. Constraint evolution along the solution
obtained with no constraint correction is depicted with “− ·−”. Both depicted solutions started
with inconsistent initialization.
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10−2 maximal error in the proposed solution and 2×10−4 error in the trusted solution. Note that,

in numerical simulations with a time step, 10−3, the proposed and the trusted solution possesed the

same accuracy level,≈ 10−7, as that obtained in the previous examples. With the 10−2 time step,

integration of (2.17) with no constraint correction was unstable. The constrained equation (2.16),

was also tested under inconsistent initialization. The results are depicted in Figures 2.5 and 2.6.
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x [m]

y 
[m

]

Figure 2.5Two four-bar linkages:l = 1m, m= 1kg for each link. Stroboscopic view of the motion
for t ∈ [95,96.25]s obtained by (2.16) with exact initializationq(0) = [0,1,1,1,2,1]T , v(0) =
[1,0,1,0,1,0]T , is depicted with “−”. The integration took 5.2s CPU time. The motion predicted
by (2.16) under slightly inconsistent initializationq(0) = [0,1+ 10−2,1,1+ 10−2,2−10−2,1]T ,
v(0) = [1−10−2,0,1,0,1+10−2,0]T is plotted with “−−”.

Trajectory tracking control

Motivated by a recent development in trajectory tracking control [82], our intention is to

show how (2.16) can be used to simulate dynamical systems which perfectly (rather than approx-

imately) track a predefined reference trajectory. According to the classical philosophy of tracking

control, we assume that the motion of the considered dynamical system is guided with kinematic

constraints interpreted as control objectives. This view will allow us to embed all predefined refer-
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Figure 2.6Constraint evolution along the solution obtained by (2.16) using inconsistent initializa-
tion. Due to the large integration step, 10−2, some constraints are not satisfied on the order of the
machine precision. Nevertheless, the constraint drift is not growing through the integration.

ence trajectories in the constraint set (2.6). In the present context, this approach will allow perfect

satisfaction of the control objectives without application of the Baumgartne’s constraint stabiliza-

tion method as was used by [82]. The idea is presented by simulating three “exercise” motions of

a planar biped robot.

Consider a 7-link planar biped robot depicted in Figure 2.7, with heightL = 1.8m, massM = 75kg

and anthropometric geometric properties and mass distribution according to Table 2.1, [3]. The

configuration of the biped is defined with nine absolute coordinatesq = [x,y,θ ,θ1,θ2,θ3,θ4,θ5,θ6]
T .

This coordinate set is independent for the “flying biped” while it becomes dependent if constraints

are applied on the robot.
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Figure 2.7 Biped model with generalized coordinates and associated geometric and inertia prop-
erties. For each segment, the moment of inertial with respect to the center of mass is calculated as
I∗ = m∗r2

∗.

First exercise

Let us consider the biped restricted with nine kinematic constraints, specifically, six physi-

cal restrictions due to the ground contact of both feet, and three additional control objectives which

specify the upper body angle and also define periodic flexion of both knees. The constraint set is

given by: ΦΦΦ = [xf
t − xf

td,y
f
t ,yf

h,xb
t − xb

td,y
b
t ,y

b
h,θ − θd,ϕ

f
k −ϕ f

kd,ϕ
b
k −ϕb

kd]
T where;xf

td = 0.507,

xb
td = −0.097 define the desired horizontal position for the toes on theforward and backward foot,

θd = 4π/9 is the desired upper body angle,ϕ f
k = θ1−θ2 is the relative angle at the forward knee

while ϕ f
kd = (π/6)(1− cos(πt)) defines its desired motion,ϕb

k = θ4− θ5 is the relative angle at

the backward knee with its desired motion defined byϕb
kd = (π/10)(1−cos(πt)). The simulation

result is depicted in Figure 2.8.
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Table 2.1Geometric and inertial parameters of the biped.

Description no. (∗) l∗/L lc∗/l∗ m∗/M r∗/l∗
Upper body 1 0.288 0.626 0.6780 0.496

Thigh 2 0.245 0.433 0.1000 0.323
Shank 3 0.246 0.433 0.0465 0.302
Foot 4 0.152 0.250 0.0145 0.475

Foot geometry
a/l4 b/l4 h/L
0.75 0.25 0.039

Second exercise

Using the same biped model one can apply different constraints to generate a required

motion. In this example, we apply four physical constraintswhich will hold the forward heel and

the backward toe to remain on ground while the motion of the robot is dictated with five control

constraints. Practically, we define the upper body angleθd = 4π/9, the angular motion of the feet

θ3d = (π/18)(cos(πt)+ 1), θ6d = −(π/18)(1− cos(πt)) supported with periodic flexion of the

backward kneeϕb
kd = (π/10)(1−cos(πt)) and full extension of the forward leg. Accordingly, the

constraint set is given by:ΦΦΦ = [xf
h −xf

hd,y
f
h,xb

t −xb
td,y

b
t ,θ −θd,θ3−θ3d,θ6−θ6d,ϕ

f
k ,ϕb

k −ϕb
kd]

T ,

wherexf
hd = 0.262, xb

td = −0.038. A stroboscopic view of the simulated motion is depictedin

Figure 2.9.

Third exercise

The simulated motion here represents a balancing exercise with parallel legs while only the

toes are on the ground. The constraint set is given by:ΦΦΦ = [xf
t ,yf

t ,xb
t ,y

b
t ,θ − θd,ϕ

f
k −ϕ f

kd,ϕ
b
k −

ϕb
kd,θ3−θ3d,θ6−θ6d,xCoM]T , whereθd = 4π/9,ϕ f

kd = ϕb
kd = (π/3)(1−cos(2πt/5)), θ3d = θ6d =

−(π/27)(1−cos(2πt/5)) while the center of mass of the biped is kept above the toes,xCoM = 0.

Note that the constraint set contains ten relations while the system is described with nine coordi-
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Figure 2.8 The simulation is performed with 10−2 time step overt ∈ [0,100]s with q(0) =
[0.056,1.220,1.396,1.920,1.920,0,1.222,1.222,0]T andv(0) = 0. Along the motion, all phys-
ical and control constraints are satisfied up to 5.2×10−11. The corresponding configurations in 50
successive depicted periods are overlapped.
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Figure 2.9 The simulation is performed with 10−2 time step overt ∈ [0,100]s with q(0) =
[0.056,1.239,1.396,1.920,1.920,0.349,1.292,1.292,0]T andv(0) = 0. The depicted 50 motion
cycles show that the corresponding configurations in successive periods are overlapped. All con-
straints are satisfied up to 2.7×10−11.
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nates. In this light, regardless of the configuration of the biped, the constraint set is redundant at

each time instant. Stroboscopic view of the balancing exercise is plotted in Figure 2.10.

The reference trajectories in the above three simulations are selected such that the system cannot
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Figure 2.10 The simulation is performed with 10−2 time step overt ∈ [0,100]s with q(0) =
[0.046,1.252,1.363,1.363,1.363,0,1.363,1.363,0]T andv(0) = 0. The stroboscopic view of the
whole simulation, 20 cycles, shows that the configuration ofthe robot in successive periods are
overlapped. All constraints are satisfied up to 1.6×10−12.

experience impacts (i.e., the necessary smoothness assumption required onΦΦΦ is not violated). Us-

ing an appropriate impact resolution algorithm, the presented method could be applied to simulate

nonsmooth motion such as bipedal walking. However, resolving impacts for multiple constraint

dynamical systems is outside of the scope of this paper [55].

Finally, we would like to point out that by embedding a reference trajectory into the constraint

set, we assumed that the reference motion could be enforced with an “ideal” control force which

satisfies D’Alambert’s principle. This assumption, however, may generate a controllability issue

on the trajectory tracking problem, as was pointed out by [83].
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Conclusion

In order to simulate a constrained dynamical system, a governing equation (2.16) with em-

bedded constraint correction terms is derived. This equation has a numerically stable implemen-

tation and allows the analyst to obtain a simulated solutionover long time periods of constrained

dynamical systems using simple generalized coordinates and standard ODE solvers. The presented

formulation exploits the pseudoinverse of the constraint matrix, and as such, can also be used un-

der dependent constraints and kinematic singularities. Although the idea is presented from the

standpoint of classical mechanics, one can use it to simulate various physical systems modeled

with differential algebraic equations.
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CHAPTER III

MANUSCRIPT 2: A CONTROL APPROACH FOR ACTUATED DYNAMIC WALKING

IN BIPED ROBOTS

By

David J. Braun and Michael Goldfarb
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Published as a Regular Paper in the
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This paper has supplementary multimedia material available at http://ieeexplore.ieee.org, provided

by the authors. This material, Dynamic Walking Video.wmv, demonstrates the dynamic bipedal

walk coordinated by the proposed walking controller. The video can be played with Windows

Media Player. The total size is 4.5MB.
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Abstract

This paper presents an approach for the closed-loop controlof a fully-actuated biped robot

that leverages its natural dynamics when walking. Rather than prescribing kinematic trajectories,

the approach proposes a set of state-dependent torques, each of which can be constructed from

a combination of low gain spring-damper couples. Accordingly, the limb motion is determined

by interaction of the passive control elements and the natural dynamics of the biped, rather than

being dictated by a reference trajectory. In order to implement the proposed approach, the authors

develop a model-based transformation from the control torques defined in a mixed reference frame

to the actuator joint torques. The proposed approach is implemented in simulation on an anthropo-

morphic biped. The simulated biped is shown to converge to a stable, natural-looking walk from

a variety of initial configurations. Based on these simulations, the mechanical cost of transport is

computed and shown to be significantly lower than trajectorytracking approaches to biped control,

thus validating the ability of the proposed idea to provide efficient dynamic walking. Simulations

further demonstrate walking at varying speeds and on varying ground slopes. Finally, controller

robustness is demonstrated with respect to forward and backward push-type disturbances and with

respect to uncertainty in model parameters.

Introduction

The zero moment point (ZMP) approach, is perhaps the most comprehensively developed

in the biped locomotion control literature [5], [84], [9], [85], [86], [87]. Methods based on this

approach have been shown to provide effective, robust, and versatile locomotion for biped robots.

Despite their effectiveness, ZMP approaches generally result in a stiff and unnatural looking gait

with low locomotive efficiency [11], [88]. The principal reason that these approaches appear stiff

and have a low locomotive efficiency is that they are based on the trajectory tracking, and therefore

(by definition) override the natural dynamics of the robot (i.e., position-level information is dictated

by the controller, and thus integration of the inertial dynamics is not an essential part of the motion).
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Such reshaping of the natural dynamics is energetically expensive. By contrast, humans (which are

characterized by natural looking gait with high locomotiveefficiency) have been shown to leverage

the natural dynamics of their limbs when walking (e.g., [89]).

In order to achieve a more efficient and natural-looking bipedal gait, several researchers

have investigated dynamic walking approaches that, like humans, leverage rather than override

the limb dynamics of the robot. As defined herein, a dynamic walker is one in which the motion

of the walker is not dictated substantially by the controller, but rather is influenced significantly

by the gravitational and inertial characteristics of the system. As such, neither a predefined ref-

erence trajectory nor any other time or position-based attribute of the walking cycle (i.e., desired

walking speed, stepping frequency or step length) can be enforced by control. Rather, all such

gait characteristics are obtained indirectly by the interaction between the dynamics of the robot

and environment and the influence of joint torques (i.e., from the combined influences of the joint

torques and natural dynamics). Implicit in this definition is that the limb dynamics play a signif-

icant role in determining the joint angle trajectories. This definition also implies that the joints

should be backdrivable such that power can flow freely and bi-directionally between the limb load

and the actuator. Note that the phrase dynamic walking is also used to describe a biped gait that

is dynamically (as opposed to statically) stable ([90], [10]), although that is not the meaning used

herein.

Prior work on dynamic walkers includes work on both actuatedand unactuated walk-

ers. Specifically, such work describes the development of unactuated (i.e., fully passive) walk-

ers, actuator-assisted walkers based largely on passive versions, and actuated walkers that utilize

control approaches that do not dictate joint angle trajectories. Fully passive dynamic walkers do

not incorporate any actuators (or control) and as such the locomotion they produce adheres to the

previously given definition of dynamic walking (i.e., no motions are imposed by a controller). As

such, fully passive dynamic walkers rely on precisely tunednatural dynamics of the robot, and

must walk on a slight downward slope to compensate for the energetic cost of transport (i.e., they

are powered by gravity). Examples of these types of walkers are described by [12], [13], [88].
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Actuator-assisted dynamic walkers augment a nearly-passive walker by introducing a re-

duced set of actuators to overcome the energetic losses associated with gait (i.e., the walkers need

not descend a slope) and to introduce some robustness to design parameter variation (via some

form of feedback control). Examples of actuator-assisted walkers are described in [1], [14], and

[91], the latter of which is based in part on relevant work presented in [92].

A fully actuated, partially dynamic walker is described by [93], [94], [19], [21], [20].

Specifically, the authors address a reduced order problem, which maintains balance in the walker

by imposing kinematic constraints between several joint angles. In doing so, however, they vio-

late the aforementioned definition of dynamic walking by specifying kinematic constraints. In the

work described by [95], a neural network is used to learn the nominal walking trajectories gen-

erated by an impulsive control approach, then a PD controller is used to enforce these relations

as state dependent constraints. Though the combination of impulsive control followed by passive

dynamics is a viable approach to dynamic walking, it is not clear how much of the passive dynam-

ics are preserved through the neural network planner and associated constraint enforcement. Pratt

et al. [18] present a method that need not override the natural dynamics of the biped (depending

on the choice of control parameters). The method described in [18], however, requires some lim-

iting assumptions, namely that the biped feet remain flat on the ground and that the ankle joints

remain unactuated (i.e., do not impose torque on the biped).A biologically inspired sensor and

motor-neuron based approach to dynamic walking is described by [23], [24]. This approach does

not utilize a trajectory tracking objective, but the extentof dynamic walking is unclear, particu-

larly since inertial effects are largely diminished at the scale of implementation, and since the joint

servos are non-backdrivable (thus they preclude bidirectional power flow in the joints, which thus

precludes dynamic walking).

This paper presents a control approach that enables fully dynamic biped walking, which

can provide a more efficient gait than trajectory tracking approaches. Rather than prescribing a

kinematics (i.e., joint angle trajectories), the approachsubjects the robot to a set of state-dependent

torques. These torques are constructed from energeticallypassive elements (i.e., angular springs
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and dampers with fixed equilibrium points), which influence the natural dynamics to generate a

stable gait. Like the approach presented by [18], this work utilizes the notion of (some) control in-

fluences based in the task-space. However, the present approach relaxes all assumptions regarding

robot configuration (i.e., feet need not be flat on the ground); imposes state-dependent torques gen-

erated by low gain spring-damper couples, which are constructed as strictly passive functions with

fixed equilibrium points; references some of these torques to an inertial reference frame and others

to the internal robot frame; and develops a model-based solution to transform the state-dependent

control torques to actuator torques utilizing the Gauss principle of least constraint [30], [38].

The proposed control approach, the application of which leads to an energy efficient and

natural looking dynamic walk, is described herein and subsequently demonstrated via simulation.

Biped Model

The control methodology is based upon a dynamic model of the robot introduced in this

section. This model is derived by means of the Gauss principle of least constraint utilizing the

Udwadia-Kalaba approach [35]. Unlike traditionally used biped models derived separately for

single support, double support and flight phase, the presentmodel offers a unified representation

which is valid for all phases of gait. Compared to constraineddynamic formulations derived by

means of Lagrangian equations of the first kind [96], [97], the approach presented herein provides

an analytical description of the biped dynamics under redundant constraints and kinematic singu-

larities, and as such allows the formulation of a control methodology with no restriction on biped

configuration.

In order to facilitate model and controller development, both are developed in the context of

a seven-link (nine degree-of-freedom) planar biped, as illustrated in Figure 3.1. The configuration

of the biped is defined with the generalized coordinates,q = [x,y,θ ,θ1,θ2,θ3,θ4,θ5,θ6]
T , defined

relative to the inertial reference frame. The biped is assumed to be actuated at each joint (i.e., right

and left hip, knee, and ankle joints), such that, the dynamics of the robot are affected by the vector

of actuator torques,u = [u1,u2,u3,u4,u5,u6]
T , which are assumed positive in the counterclockwise
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direction.

Figure 3.1 Seven-link biped with generalized coordinates and associated geometric and inertial
properties. The corresponding links on both legs are geometrically and inertially identical. For
each segment, the moment of inertia with respect to the center of mass of the associated link is
calculated asI∗ = m∗r2

∗.

Unconstrained Dynamics

Consider ann-dof autonomous multibody system, the configuration of which is uniquely

specified byq ∈ R
n generalized coordinates. The equations of motion, for the unconstrained “fly-

ing” biped, can be written as:

M(q)q̈+h(q, q̇)+G(q) = Qu, (3.1)

whereM ∈ R
n×n is a symmetric and positive definite mass matrix,h ∈ R

n represents the normal

and Coriolis inertial forces,G ∈ R
n represents the gravitational forces, whileE ∈ R

n×m is a matrix

mapping control inputsu ∈ R
m to generalized control force spaceQu = Eu. Note that the gener-
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alized control force vectorQu must belong to the range space ofE, Qu ∈ R(E), which indicates

that, using actuator torquesu, the motion of the robot in flight phase cannot be fully prescribed.

For the biped, all actuator inputs are independent, such that rank(E) = m.

Kinematic Constraints

Along the walk, the biped is restricted with numerous physical constraints. These kinematic

motion restrictions are introduced and discussed as follows.

For the biped in Figure 3.1, neither foot can penetrate the ground, the knee joints cannot

extend beyond the fully straight position, and both feet areassumed not to slide when in contact

with the ground. Since each toe and heel are independently characterized by non-penetration and

no-slip constraint with the ground, the biped dynamics can be subject to ten (dependent) kinematic

constraints. Along the walk, the kinematic constraints are“active” when imposed on the robot

and “inactive” when not affecting the motion. For each (independent) active constraint, the model

loses one degree of freedom. For example, when the biped is insingle support phase with the

stance leg foot flat on the ground, three independent constraints are active, which are the non-

penetration of the toe, the non-penetration of the heel, andone no-slip condition, and as such, the

biped is reduced to a six degree-of-freedom system (assuming that neither knee is fully extended).

Following a general notation, the set of kinematic constraints imposed on the biped is given by:

ΦΦΦ = [ΦΦΦh(q)T ,ΦΦΦn(q, q̇)T ]T = 0, (3.2)

whereΦΦΦh represents the holonomic constraints (e.g., the non-penetration between the toe and heel

and the ground, and the full extension of the knee joint), andΦΦΦn represents the nonholonomic

constraints (i.e., the non-slip condition between each foot and the ground).

We assume thatΦΦΦh is twice andΦΦΦn is at least once differentiable while the initial conditions
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are constraint consistent. In this case, (3.2) can be equivalently represented as:

A(q)q̈ = b(q, q̇), (3.3)

where, A = [AT
h ,AT

n ]T is the constraint matrix defined in terms ofAh = ∂ΦΦΦh/∂q and An =

∂ΦΦΦn/∂ q̇, while b = Aq̈− [Φ̈ΦΦT
h ,Φ̇ΦΦT

n ]T , [36]. Note that when a constraint becomes inactive (as a

function of system configuration), it is eliminated by zeroing the corresponding row in (3.3). On

the other hand, when a constraint switches from inactive to active (e.g., at the ground contact events

or when the knee hits a full extension stop), engagement of the constraint will impart an impact to

the system dynamics. The following subsection describes the treatment of these impact events.

Modeling Impact

For the biped robot, impact occurs when the knee joint fully extends and also when each

foot impacts the ground. Each impact is considered to be instantaneous and perfectly plastic. With

these assumptions, and defining the pre and post-impact velocities asq̇− andq̇+, respectively, the

post-impact kinematic constraints can be written as:

Ahq̇+ ≥ 0,Anq̇+ = 0. (3.4)

Given the no-slip assumption, we will utilize the Gauss principle of least constraint [38],

[57] to formulate the effect of the impact as a constrained quadratic minimization problem as

follows:

q̇+ = min{q̇ ∈ R
n : (q̇− q̇−)TM(q̇− q̇−),

Ahq̇ ≥ 0,Anq̇ = 0}.
(3.5)

Note that motion restriction in the tangential directionAnq̇ = 0 is only active if a particular con-

straint does not break; however, (3.5) neglects the tangential velocity component even if a cor-

responding constraint breaks. This assumption, which cannot be used under “fast” impulsive re-
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bound, becomes reasonable under “slow” non-impulsive constraint detachment. Practically, when

bipedal walking is considered, both the knee and foot are expected to detach non-impulsively (and

nearly normal to the constraint manifold), which justifies the use of (3.5). Compared to more

general considerations [98], [99], [55], [100], [4], (3.5)is particularly well suited to the present

context, in that it does not require computation of physicalconstraint forces, which may not be

possible under redundant constraints and kinematic singularities.

Constrained Dynamics

Based on the Gauss principle of least constraint, [30], [101], [35], the constrained acceler-

ationq̈, which satisfies (3.3), can be obtained from the following quadratic programming problem:

q̈ = min{x ∈ R
n : (x−a)TM(x−a),Ax = b}, (3.6)

wherea = M−1(Qu−h−G) is the unconstrained acceleration (i.e., the accelerationthe system

would have without the imposed constraints (3.3)). According to (3.6),q̈ minimizes the acceler-

ation energy,(q̈− a)TM(q̈− a), between the motion which is not restricted with the kinematic

constraints and the constrained motion. SinceM is symmetric and positive definite, the above

quadratic programming problem is convex, and the solution of (3.6), q̈ = a+M−1AT(AM −1AT)−1

(b−Aa) exists and is unique. In cases in whichA is not full rank (which is often the case in a walk-

ing biped),(AM −1AT)−1 will not exist. In such cases, we can find the constrained accelerationq̈

from:

q̈ = a+R−1C+(b−Aa), (3.7)

whereR is defined as the upper triangular Cholesky factorization of the mass matrixM = RTR,

[65], C = AR−1, is the inertially-weighted constraint matrix, whileC+ is the pseudoinverse (i.e.,

the Moore-Penrose inverse) ofC [59]. This formulation explicitly defines the accelerationof the

constrained motion, which is well defined under dependent constraints. Note that (3.7) is expressed

using the Cholesky factorization of the mass matrixR instead of its principal square rootM1/2
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utilized by Udwadia and Kalaba [35], [36].

The Gauss principle of least constraint is valid for any rigid body system subjected to

“ideal” constraints. Accordingly, due to the no-slip assumption, all constraints in the biped (intro-

duced by (3.2)) are ideal, and as such, (3.7) provides a viable equation of motion which is used in

the following control design.

A Control Approach for Dynamic Walking

In this section, we develop a control methodology which can be used to generate dynamic

walking in legged robots.

Guideline for Control Torque Selection

Instead of directly using the actuator torquesu, we introduce here the desired generalized

control forcesQd ∈ R
n to control the biped motion. This new control element, whichwill be used

to directly apply torques between the robot and the inertialreference frame, is shown to simplify

control design and makes control parameter selection intuitive. Realization ofQd using actuator

torquesu is discussed in the next subsection.

Our objective in walking is to maintain an upright body position, and also to sustain a stable

oscillation in leg motion characterized by a ballistic component in swing. The first objective, to

maintain an (essentially) upright body position, can be achieved by prescribing a torque that attracts

the torso to a nominally vertical position (i.e., in the model coordinates of Figure 3.1, a torque that

attractsθ towards an angle at or near 90o).

In order to drive leg oscillation, the thigh segments are subjected to alternating torques,

where the alternation is driven by changes in biped configuration (e.g., heel strike and heel off).

Specifically, during swing phase, the prescribed torque drives hip flexion by attracting the thigh

segment toward a given (flexion) angular orientation. Upon heel strike, another torque drives hip

extension by attracting the thigh segment toward a given (extension) angular orientation.
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During swing, the knee is not subject to a driving torque, butrather is subject only to

damping. During early stance phase (i.e., heel strike to heel off) a somewhat stiff spring maintains

the knee in an extended position. Note that a less stiff spring could be utilized to encourage stance

knee flexion; however, walking with a straight leg in (most of) stance is described here, since doing

so may reduce knee actuator torque and power requirements. Further, as is recognized through

numerous simulation experiments, a “locking” knee enhances the basin of attraction for a stable

gait limit cycle. The ankle is subject to a torque during swing that encourages slight flexion (to

prevent stumbling), and to one during stance that generatesa slight push-off before the stance leg

enters swing.

Note that the torso and the thigh segment torques are defined relative to the inertial refer-

ence frame (IRF), while the knee and ankle torques are defined relative to the respective adjacent

links. That the torso torque would be defined relative to the IRF is perhaps obvious, since gravity

is assumed fixed with respect to the IRF, and postural stability is only relevant when defined with

respect to the gravity vector. Referencing the thigh segmenttorques with respect to the IRF (as

opposed to the torso) is less obvious, but achieving a desired (angular) dynamics with respect to

the inertial frame is recognized as simpler than commandingtorques with respect to the moving

links in the nonlinearly coupled system.

It is important to mention that the control torques either referenced to the inertial frame

or defined on the robot frame only influence the rotational dynamics of the robot. One does not

need to apply forces that influence the vertical or horizontal dynamics of the torso, since the upper

body will be carried atop the legs, and thus the appropriate horizontal and vertical motion will be

dictated by the motion of the lower limbs.

As described, we do not specify any trajectories in time or space, but only define a single

attraction point for each state. By utilizing torques definedin this manner, we are attracting the

biped toward a desired configuration, but not dictating the path by which it arrives (in time or in

space). Moreover, the controller does not attempt to directly maintain a desired forward speed, step

frequency or stride length; rather, these motion attributes are obtained as a result of the interaction
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between the natural dynamics of the robot and the low gain controller.

Transforming the Desired Control Torques to the Actuator Space

As described in the previous subsection, the control problem is made more intuitive by

referencing thigh and torso torques to the inertial coordinate frame, while defining knee and ankle

torques relative to adjacent links. In order to implement the presented approach, we propose a

transformation between the desired generalized control forces,Qd (introduced in the previous

subsection), and the actuator torques,u, as follows.

The objective of the transformation is to achieve the same constrained motion forcing the

dynamics (3.7) withQu = Eu as would be achieved with the application ofQd. Denoting the

desired constrained acceleration asq̈d (generated byQd) and the constrained acceleration gen-

erated by the actuator torques asq̈, the objective of the transformation can be stated asq̈ = q̈d.

In order to consider this equivalence further, we must first consider issues of overactuation and

underactuation.

Overactuation and Underactuation of the Constrained Dynamics

Due to the presence of the kinematic constraints (3.2), the biped could at times be fully

actuated (i.e., same number of actuators as unconstrained degrees of freedom), overactuated (i.e.,

more actuators than unconstrained degrees of freedom), or underactuated (fewer actuators than

unconstrained degrees of freedom). For example, the biped will be fully actuated when in single

support phase the foot is flat on the ground. The biped will be overactuated in the double support

configuration. Finally, the robot will be underactuated when two or fewer (independent) constraints

are active, such as when in single support and only a single toe or heel (and nothing else) is in

contact with the ground.

In order to address the issue of underactuation, we characterize the effect of the control

force on the constrained motion of the biped. Let us first segment the unconstrained accelerationa
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as follows:

a = a0 +au = −M−1(G+h)+M−1Qu, (3.8)

wherea0 is the unconstrained acceleration generated by the uncontrolled dynamics andau =

M−1Qu is the unconstrained acceleration resulting from the actuator torques. Substituting (3.8)

into (3.7) provides a similar relation for the constrained accelerations:

q̈ = q̈0 + q̈u = R−1C+b+R−1(I −C+C)Ra0

+R−1(I −C+C)Rau,
(3.9)

whereq̈0 (the first two terms on the right hand side of (3.9)) is the constrained acceleration resulting

from the uncontrolled dynamics whilëqu is the constrained acceleration which is directly related

to the generalized control forces, andI ∈ R
n×n is an identity matrix. Substitutingau from (3.8)

into (3.9), we can obtain the explicit relation ofq̈u in terms of the generalized control forcesQu:

q̈u = R−1NR−TQu, (3.10)

whereN = I −C+C ∈ R
n×n is a symmetric projection operator to the null space of the inertially-

weighted constraint matrixC. Active constraints will reduce the biped degrees of freedom, which

are given bync = rank(N) ≤ n. Active constraints can also reduce the effect of the control inputs.

For the generalized control forcesQu = Eu in (3.10), the number of control inputs which can

independently alter the constrained motion is given bymc = rank(NR−TE) ≤ m.

The type of actuation for the constrained dynamics can now bedefined. Ifnc = mc, the

number of degrees of freedom for the constrained motion is equal to the number of independent

control actuators, and as such the system is said to be fully actuated. In this case, the transformation

between the desired dynamics and achievable dynamics is exact. If nc < mc, the biped has more

independent actuators than active degrees of freedom, and the system is said to be overactuated.

In this case,u is not unique (i.e., the desired dynamics can be reproduced with different control

inputs). Finally, in the case thatnc > mc, the system is underactuated, and as such the desired
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dynamics cannot in general be achieved.

Transformation in a Fully Actuated and Overactuated Configuration

Since the control input only effects the controlled part of the constrained acceleration

(3.10), the equivalence relation between the desired and actual motion (̈q = q̈d) can be written

as:

R−1NR−TEu = R−1NR−TQd. (3.11)

Note that this relation definesn (possibly dependent) equations withm unknown control inputs

u, where the degree of dependence is a function of the constraint configuration,N. Utilizing the

generalized inverse notation [59], a particular solution to (3.11) for the actuator torque vector is

given by:

u = (R−1NR−TE)+R−1NR−TQd. (3.12)

The solution defined by the above relation exists regardlessof over or underactuation, al-

though it does not necessarily satisfy (3.11). Practically, if the system is fully actuated, thenu

is a unique solution of (3.11). In the overactuated case, there is no unique solution of (3.11). In

this case, (3.12) provides a solution of (3.11) in the minimum squared Euclidean norm sense (i.e.,

uTu → min). If however the system is underactuated, (3.11) cannot be solved exactly and as such

(3.12) definesu which minimizes the squared Euclidean norm of the difference between the de-

sired and the actual acceleration,(q̈− q̈d)
T(q̈− q̈d) → min. Note however thatq contains both

translational and also rotational coordinates, and as suchin the uncontrollable case, the control

solution is not dimensionally consistent and does not have clear physical interpretation [102].

Transformation with Dimensional Consistency

Motivated by the Gauss principle of least constraint, we embed (3.11) in the following more

general formulation:

u = min{u ∈ R
m : (q̈− q̈d)

TM(q̈− q̈d)}. (3.13)
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In contrast to (3.11), the above quadratic program will provide physically consistent actuator torque

computation even through motion phases which are underactuated with the joint torque actuators.

In the present context, we expect any underactuated phases,if present, to occur only for

brief periods (i.e., for periods much shorter than the characteristic times associated with the biped

dynamics). As such, we assume any departure in dynamic behavior due to uncontrollability to be

small. Now, using (3.9) and (3.10) one can express (3.13) as an explicit quadratic program foru as

u = min{u ∈ R
m :

1
2

uTAT
u Auu−bT

u Auu}, (3.14)

whereAu = NR−TE andbu = NR−TQd. Considering the fact thatN is in general rank deficient,

a particular solution to (3.14) can be defined as:

u = (NR−TE)+NR−TQd. (3.15)

The solution expressed by (3.15) is physically consistent for all cases of actuation. Specifically, if

the biped is fully actuated (i.e.,nc = mc), (3.15) yields the solution foru that yieldsq̈ = q̈d. In the

overactuated case (i.e.,nc < mc), the solution to (3.15) satisfies the matching dynamics criterion

(i.e., q̈ = q̈d), while also minimizing the squared Euclidean norm ofu. Finally, in the case that

the biped is underactuated (i.e.,nc > mc), (3.15) minimizes the acceleration energy between the

desired and actual motion. Using (3.15) one can transform the desired generalized control forces

Qd to actuator torquesu. Note that, just as in the case of human walking, there is no guarantee

that the biped can recover a stable gait limit cycle from any underactuated configuration with the

proposed control solution.

Works Related to the Proposed Transformation

Using quadratic programming, [103] proposed a method to modify the predefined reference

trajectories to maintain balance while walking. Other works, [18] and [104], present methods that

can be used to transform generalized forces to joint torques. Compared to the presented approach,
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these methods do not provide a unified control force computation through changing constraints,

and are restricted with respect to the robot configuration (e.g., at least one foot is assumed flat on

the ground).

Implementation on a Seven-Link Biped

We illustrate and further describe the proposed approach via implementation and simulation

on the seven-link biped illustrated in Figure 3.1.

Choice of Control

In order to define the control actions, we impose seven state-dependent torques which di-

rectly alter the rotational dynamics of the biped. Each of these state-dependent torques, can be

constructed from energetically passive spring-damper couples with fixed equilibrium points. These

include an angular torque on the torso with respect to the IRF,state-dependent alternating angular

torques on both thighs (also with respect to the IRF), and state-dependent torques on knees and

ankles, both with respect to the robot frame (i.e., defined with respect to adjacent links). As such,

the vector of desired generalized control forces can be expressed as:

Qd = −Kd(φφφ −φφφd)−Bdφ̇φφ , (3.16)
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where

Kd =
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, (3.17)

is the stiffness matrix,Bd is the matrix of linear damping coefficients (which has the same form

as (3.17)),φφφ = [θ ,θ1,θ2 − θ1,θ3 − θ2 + π/2,θ4,θ5 − θ4,θ6 − θ5 + π/2]T defines the feedback

information for the control torque computation, andφφφd = [θb,θ r
l ,0,θ r

a,θ l
l ,0,θ l

a]
T defines the equi-

librium point of each spring (i.e., can be considered as the attraction point of each spring). The

parameters that defineQd for the seven-link biped are shown schematically in Figure 3.2. Note

that the right and left side parameters are indicated with superscripts.

It should be noted that the control given by (3.15), (3.16) does not guarantee a dynamic

walk. Specifically, in order to meet the criteria for dynamicwalking, the stiffness and damping

parameters of the controller must be selected to be sufficiently low such that the control influence

does not substantively prescribe the motion of the robot.

As previously mentioned, leg oscillation is generated by application of alternating torques

(defined with respect to the IRF) applied to each thigh segment. This alternation is switched based

on an event driven finite state structure. As follows, we describe the finite state logic along which

the control parameters,Kd,Bd,φφφd are changed as piecewise constant functions.

Let us start at heel strike which induces application of the state dependent torques that

attract the thigh toward a hip extension configuration; initiates knee locking with a somewhat stiff

spring and damper and imposes a spring-damper element at theankle which accumulates elastic
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Figure 3.2Schematic representation of the control elements.

energy during stance to provide an ankle push at late stance.The heel off event (i.e., when the

heel leaves the ground) switches the hip torque (equilibrium angle) to one that attracts the thigh

towards a hip flexion configuration and allows the ankle to release the energy accumulated during

stance through push off. In addition to these two states, twoadditional states are used to facilitate

stable locomotion. Specifically, following the toe-off event (when the swing foot is entirely in the

air), the swing leg ankle equilibrium point (i.e., angle of attraction) is moved to a slightly flexed

position, which enhances ground clearance while the swing knee is only slightly damped. The

final state, defined by the knee reaching full extension, is used to retain the knee at full extension

and thus prepare the (extended) swing leg for heel strike. Thus, the gait controller consists of

four states, as illustrated in Figure 3.3. Note that the states apply independently to each leg, and

do not apply at all to the torque acting on the torso (i.e., thecontrol parameters for the torso are

not changed during the motion). As such, (for each leg), state one consists of stance, state two

is initiated by heel-off, state three initiated by toe-off,state four initiated by full knee extension,

and the leg is returned to state one by heel strike. Due to external disturbances or other type of

uncertainties however, the described event flow may not remain preserved along the motion of the

robot. In this light, the state of each leg is identified basedon its constraint configuration (i.e., state
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one - both toe and heel on ground; state two - toe on ground, heel off ground; state three - both

toe and heel off ground; state four - toe and heel off ground and extended knee on a forward swing

leg). In particular, switching from state three (swing) to state one (stance) is important if during

swing an incomplete knee extension occurs (which was recognized through the push disturbance

simulations subsequently presented). Further cross switching has also been recognized to improve

the robustness of the proposed control methodology.

Figure 3.3State flow diagram. The state flow presented with (solid line)corresponds to the solid
leg along normal walking.

Given the independence of each leg, there is no guarantee that each leg is fully out of

phase with the other. Recall, however, that the control philosophy in this work is to impose a

minimum number of constraints, and thus encourage the natural dynamics of the biped rather

than constraining it. This is in contrast to an implementation which utilizes time based switching,

such as that described by [105]. Specifically, state switching happens along changes in constraint

configuration initiated by the motion of the robot autonomously. Similar approach on a point foot

robot and curved foot robot can be found in [21], [95] and [24]respectively.
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Simulation

For the biped illustrated in Figure 3.1, the associated geometric and inertial parameters

normalized to a body heightL and massM, as given by [3], are listed in Table 3.1. For purposes

of control implementation and simulation, the biped was parameterized according to the values

listed in Table 3.1 using a heightL = 1.8 mand a massM = 75kg. The simulation was conducted

by utilizing the desired generalized control force described in (3.16) and (3.17), and by using the

actuator torque solution (3.15). The controller was parameterized by starting with initial estimates

(guided by the characteristic times that typify human gait)and using the simulation to iteratively

tune parameters for a robust and human-like gait. Specifically, control parameters were considered

to be a robust set when the biped would within a few steps converge to a stable, natural-looking

gait after starting from rest in several different initial configurations (e.g., double support with both

feet flat; double support with only forward heel and backwardtoe in contact; single support with

foot flat).

Note that some type of automated parameter tuning could alsobe implemented for control

gain selection. Due to the nonlinear character and nonsmooth nature of the problem, however,

such automated parameter tuning is a nontrivial task which often requires additional hand tuning

to provide a robust parameter set [105]. As such, for the simulations presented here, the control

parameters were selected by hand tuning and intuition.

Dynamic Walking of the Biped

For the (adult) human-scale anthropomorphic biped, the control parameters used for an

approximately normal walking speed are listed in Table 3.2 (where the upper index(∗) = r/l

represents the right or left leg, respectively). A stroboscopic image of the motion results of this

controller, simulated over a period oft ∈ [0,10]s, are shown in Figure 3.4. The corresponding real-

time video of the resulting gait is included in the supporting material. For the simulation shown,

the initial configuration of the biped was (starting at rest)in the double-support phase with the

forward heel on the ground and the backward toe on the ground.The average forward walking
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speed for this simulation, after converging to a stable limit cycle, was 0.81m/s.

As was outlined in the paper, the presented control approachis designed to leverage the nat-

ural dynamics of the biped. A direct consequence is that the simulated motions have natural human

style. Beyond this qualitative characteristic, the efficiency of dynamic walking should be improved

relative to a ZMP-based approach, since the former need not use significant energy to override the

natural dynamics of the biped. The efficiency of gait can be characterized by the specific mechani-

cal cost of transport,cmt =(mech. energy)/(weight× distance traveled), which is adapted from the

specific resistance, as presented in [106]. Based on the simulation shown in Figure 3.4, the cal-

culated mechanical cost of transport of the proposed approach iscmt = 0.19. Comparatively, the

specific mechanical cost of transport of the ZMP-based HondaAsimo isestimatedascmt = 1.6 [1],

while the cost of transport of the (actuator-assisted) Cornell dynamic walker iscmt = 0.05 [1]. As

such, the walking synthesized with the proposed approach, which presumably is (as subsequently

demonstrated) more robust and versatile than an actuator-assisted approach, can also be nearly an

order of magnitude more efficient than walking generated by trajectory tracking approaches.

Walking with Different Speeds

In order to demonstrate versatility in the control approach, simulations were also conducted

for faster and slower walking speeds. Multiple possibilities exist for varying the control parameter

set to achieve stable locomotion with different walking speeds. An intuitive parameter that can be

varied to influence the walking speed is the hip stiffness during stance (i.e.,kd2 in state one) which

effects the leg dynamics with respect to the inertial frame.Figures 3.5 and 3.6 show stroboscopic

images of the biped walking at faster and slower walking speeds (relative to Figure 3.4), respec-

tively, both simulated over a period oft ∈ [0,10]s, and both of which were generated by utilizing

the same control parameter set given in Table 3.2, but with different values of the stance hip stiff-

ness. Specifically, to achieve these gaits, the corresponding stiffness value was set tokd2 = 800Nm

andkd2 = 600Nm, respectively. The faster gait, which is shown in Figure 3.5starting from rest

at an initial condition of double-support with both feet flaton the ground, is characterized by an
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average walking speed of 0.92m/s. The slower gait, which is shown in Figure 3.6 starting from

rest at an initial condition of single-support with the footflat on the ground, is characterized by

an average walking speed of 0.68m/s. Corresponding real-time videos of these simulations are

included in the supporting material.

Figure 3.10 shows the respective forward velocities (of thecenter of mass of the torso) at

each of the three walking speeds. The time evolution of the upper body angle for the three gaits

are depicted in Figure 3.11. As can be seen in the figure, the torso for each case starts at an upper

body posture away from the limit cycle, and in each case converges within a few steps to a stable

limit cycle. Figure 3.12 shows the phase plane plots for the (right-side) hip, knee, and ankle joints,

for each of the three gaits, clearly indicating that a stablelimit cycle has been reached in each

case. The fact that the biped achieves a stable limit cycle within a few steps for several different

walking speeds from different initial conditions by varying only a single control parameter (i.e., hip

stiffness during stancekd2) is demonstrative of the ability of the method to generate walking with

different speeds and also shows robustness with respect to variation in initial conditions. Different

control parameters, as the upper body angleθb, hip damping at stance (b∗d2 in state one), and ankle

stiffness in stance (k∗d4 in state one and two) can also be used to change the walking speed. While

the proposed approach can also be used to make the robot stand, natural looking walking was

obtained in a speed range of[0.6,1.2]m/s.

Walking with Different Style

In order to illustrate the differing character of gait achieved with a different set of control

parameters, the biped was simulated with the set of control parameters listed in Table 3.3. The

stroboscopic image of walking with this controller, simulated over a period oft ∈ [0,10]s and

corresponding to an initial condition of starting at rest indouble-support with the forward heel on

the ground and the backward toe on the ground, is shown in Figure 3.7. The corresponding real-

time video of the resulting gait is included in the supporting material. The differing character of

gait is evident by comparing the video corresponding to Figure 3.7 with the video corresponding
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to the gait depicted in Figure 3.4. This motion obtained under substantial variation in control

parameters also demonstrates robustness with respect to control parameter variation.

Based on our experience with simulation of the biped, stable walking is achievable with

a relatively large range of control parameters. Differing sets of control parameters result in a

differing character of gait, some of which appear more natural and efficient than others. Other

sets of parameters generate gaits that appear either more relaxed or more deliberate. There also

obviously exists a large space of parameters that fail. A video of one such failure is included in the

supplemental material. This particular failure is due to a “weak” gait (caused by hip torques that

do not generate sufficiently large steps) which ultimately results in a stumble.

Push Disturbance Response

In order to demonstrate robustness to push-type disturbances, the biped was simulated at

the three speeds with impulsive forward and backward push-type disturbances. Specifically, an

impulsive force was applied via a constant horizontal forceof 200N for a duration of 0.2s, applied

at the center of mass of the upper body in both the forward and backward directions, respectively.

Note that these disturbances are similar to those describedin [107]. In the six simulations (forward

and backward pushes at three different speeds), the robot recovered fully in all cases. In Figure

3.13, all six push recovery test results are depicted. The corresponding real time videos included in

the supporting material demonstrate the push-type disturbance rejection of the proposed approach.

Model Parameter Uncertainties

Since the proposed approach is model based, the authors further conducted numerical ex-

periments to explore robustness with respect to model parameter variations. Specifically, 100

simulations were conducted, in which the mass matrixM and constraint matrixA used in the con-

troller (3.15) were simultaneously varied elementwise by an average of 10% relative to the exact

values (used in the dynamic model). As depicted in Figure 3.14, the controller maintains stability

with uncertainty in parameters, demonstrating a moderate degree of robustness to model parameter
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uncertainty.

Walking on Slopes

The versatility and robustness of the proposed approach wasalso explored by walking up

and down slopes. In order to walk up and down slopes, four intuitive controller parameters were

modified. Specifically, relative to the fast walking set of parameters, the following changes were

made: the upper body angle was selected to beθb = {80o,90o} (for the uphill and downhill walk

respectively), the equilibrium angle for the ankles at swing were changed toθa = 15o (to prevent

stumbling), the hip extension angle wasθl = 128o, and the knee stiffness at stance was changed

to kd3 = 50Nm. The corresponding simulation result for±5o upward and downward slopes are

shown in Figure 3.8 and Figure 3.9. Real time videos of the respective motions are included in the

supporting material. Note that with the same parameters thebiped can walk also on level ground.

Comment on 3D extension and parameter adaptation

It should be noted that the approach presented herein considers sagittal plane motion, al-

though extension to three dimensional walking would neither change the structure of the model

nor the control approach. Particularly, the walking controller would need to be extended with

additional spring-damper elements which would apply a stabilizing torque to the (upper) body

motion in the frontal plane relative to the inertial reference frame. Realization of the correspond-

ing torques would be enabled with additional (hip and/or ankle) actuators on the robot. Finally,

further implementation of parameter adaptation using learning techniques, [24], although not ex-

plored here, may improve the inherent robustness of the approach demonstrated through numerous

simulation results.

Conclusion

The authors have proposed an approach for the control of biped walking that enables dy-

namic walking in a fully actuated biped robot. Rather than prescribe kinematic trajectories or
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kinematic constraints, the approach is based on the prescription of state dependent torques ob-

tained with low-gain spring-damper couples that “encourage” patterned movement through the

natural dynamics of the biped. These simple set of torques are proposed which generate a stable

gait while allowing the biped to exploit its natural dynamics. Some of the prescribed torques are

referenced to the inertial reference frame, which simplifies the selection and tuning of the con-

trol parameters. Implementation of torques from a mixed setof coordinate frames is enabled by

a joint torque computation (based on Gauss’s principle of least constraint), which is valid for all

configurations of the biped. The proposed approach is implemented in simulation on an anthro-

pomorphic biped, motion of which is shown to quickly converge to a natural-looking gait limit

cycle. Simulations are conducted with various control parameters and also different initial condi-

tions. The mechanical cost of transport is calculated and shown to be nearly an order of magnitude

lower than what would be expected from trajectory tracking approaches. The authors additionally

demonstrate versatility with respect to varying walking speeds and ground slopes, and robustness

with respect to push-type disturbances and uncertainty in model parameters. Future work includes

experimental implementation of the proposed approach.

Table 3.1Geometric and inertial parameters, Winter [3].

Description no. (∗) l∗/L lc∗/l∗ m∗/M r∗/l∗
Upper body 1 0.288 0.626 0.6780 0.496

Thigh 2 0.245 0.433 0.1000 0.323
Shank 3 0.246 0.433 0.0465 0.302
Foot 4 0.152 0.250 0.0145 0.475

Foot geometry
a/l4 b/l4 h/L
0.75 0.25 0.039
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Table 3.2Controller parameters for “normal walking”;k∗d()[Nm], b∗d()[Nms], θ ∗
()[deg].

States kd1 k∗d2 k∗d3 k∗d4 bd1 b∗d2 b∗d3 b∗d4
1 400 700 30 20 50 300 5 15
2 400 70 30 20 50 1 5 15
3 400 70 0 5 50 1 1 1
4 400 0 30 5 50 0 5 1

States 1 2 3 4
θb 87.5
θ ∗

l 68 122 122 −
θ ∗

a 0 0 10 0

Table 3.3Controller parameters;k∗d()[Nm], b∗d()[Nms], θ ∗
()[deg].

States kd1 k∗d2 k∗d3 k∗d4 bd1 b∗d2 b∗d3 b∗d4
1 500 750 40 10 35 250 3 10
2 500 65 40 10 35 1.5 3 10
3 500 65 0 5 35 1.5 1.25 2
4 500 0 40 5 35 0 3 2

States 1 2 3 4
θb 84
θ ∗

l 67 125 125 −
θ ∗

a 0 0 5 0

Figure 3.4 Stroboscopic view of dynamic walking with 0.81m/s average forward speed. The
motion is started from double support phase while only the forward heel and the backward toe are
on the ground,q(0) = [0,1.27,1.57,1.82,1.78,0.2,1.31,1.04,−0.35]T, q̇(0) = 0. The calculated
specific cost of transport iscmt = 0.19. Within a cycle the walker spent 15.6% in double support
phase.
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Figure 3.5 Stroboscopic view of dynamic walking with 0.92m/s average forward speed.
The motion is started from double support with both feet flat on the ground, q(0) =
[0,1.24,1.5,1.86,1.86,0,1.23,1.23,0]T, q̇(0) = 0. The calculated specific cost of transport is
cmt = 0.22. Within a cycle the walker spent 16% in double support phase.

Figure 3.6 Stroboscopic view of dynamic walking with 0.68m/s average forward speed. The
motion is started from single support with the forward foot flat on the ground,q(0) =
[0,1.25,1.3,1.75,1.75,0,1.2,1.2,0]T, q̇(0) = 0. The calculated specific cost of transport is
cmt = 0.17. Within a cycle the walker spent 18.3% in double support.

Figure 3.7 Stroboscopic view of dynamic walking with 0.97m/s average forward speed, sim-
ulated using the control parameters from Table 3.3. The motion is started from double sup-
port phase while only the forward heel and the backward toe are on the ground,q(0) =
[0,1.27,1.57,1.82,1.78,0.2,1.31,1.04,−0.35]T, q̇(0) = 0.
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Figure 3.8Stroboscopic view of uphill walking, simulated using the control parameters from Ta-
ble 3.3. The motion is started from double support with both feet flat on the ground,q(0) =
[0,1.24,1.5,1.86,1.86,0,1.23,1.23,0]T, q̇(0) = 0.

Figure 3.9 Stroboscopic view of downhill walking, simulated using thecontrol parameters from
Table 3.3. The motion is started from double support with both feet flat on the ground,q(0) =
[0,1.24,1.5,1.86,1.86,0,1.23,1.23,0]T, q̇(0) = 0.

Figure 3.10Forward velocity of the upper body CoM for walking at three different speeds. The
average velocities, ˙xavg = [0.92,0.81,0.68]m/s are calculated on the sustained walking cycles by:
ẋavg =

∫ T2
T1

ẋ(t)dt/(T2−T1) whereT1 = 5s andT2 = 10s.

63



Figure 3.11Upper body angle during walking at three different speeds. The vertical upright posi-
tion corresponds to 90o.
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Figure 3.12 Steady walking cycle for three different speeds for the (right) hip, knee and ankle
motion respectively. The joint angles are defined as:θ1−θ for the hip,θ2−θ1 for the knee, and
θ3−θ2 +π/2 for the ankle respectively.
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Figure 3.13Push experiment for the walk at[0.92,0.81,0.68]m/saverage speeds. The six separate
experiments shown characterize the response to forward andbackward pushes (red and black lines
respectively) at[5.1,4,5.8]s with 200N force for a duration of 0.2s, which act horizontally on the
center of the upper body. While the walk remained stable in allsix cases, at the slowest speed,
the robot converged to a different cyclic trajectory after the forward push. Although, the recovery
time in some cases may seem long, the corresponding real timevideo indicates a natural looking
response.
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Figure 3.14The picture depicts forward velocity versus time in 100 simulations under simultane-
ous variation of the mass matrix and constraint matrix. The random variablesn1,2 used to generate
the parameter variation have normal distributionN(µ,σ2) (with zero meanµ = 0 andσ = 0.1
standard deviation). During the simulations, the robot remained stable in 92 trials, while it fell 8
times (all during the starting steps).
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CHAPTER IV

MANUSCRIPT 3: EXPERIMENTAL IMPLEMENTATION OF ACTUATED DYNAMIC

WALKING IN BIPED ROBOTS

By

David J. Braun, Jason E. Mitchell and Michael Goldfarb

Vanderbilt University

Nashville, TN

Submitted as an Original Paper to

The International Journal of Robotics Research

This paper has supplementary multimedia material (available upon acceptance at http://ijrr.org).

The submitted video demonstrates experimentally realizeddynamic walking on a seven-link biped

robot. The video can be played with Windows Media Player.
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Abstract

This paper presents the experimental implementation of a control method developed by

the authors for actuated dynamic walking in biped robots. Rather than utilizing trajectory track-

ing, the control approach used herein employs state dependent control torques generated by low-

gain spring-damper couples to encourage patterned motion.For the purpose of experimentation,

a seven-link biped robot was designed with backdrivable joint actuators, which allows passive

leg motion preferred for dynamic walking. Implementation of the control approach on this ro-

bot provided a system that emulates an energetically efficient human like locomotion. Following

an overview of the control method, the paper describes the robot design, discusses the real-time

control implementation, and presents experimental data (and an accompanying video) that demon-

strates compliant dynamic walking with natural looking (partially ballistic) swing, extended knee

stance support and human like (preemptive) ankle push-off.

Introduction

IN the recent years there has been considerable research effort devoted to bipedal locomo-

tion. Although various approaches are proposed in the literature, see [4] for a recent review, new

control ideas are often motivated by the zero moment point (ZMP) control paradigm or are closely

related to the (passive) dynamic walking principle.

The ZMP approach introduced by [5], [84] is one of the most frequently used approaches

to biped locomotion synthesis, see [90], [9], [10], [85], [86], [87]. Application of this method

has been shown to provide effective, robust, and versatile locomotion for biped robots, [8], [9].

As is recognized through numerous implementations however, due to the characteristic bent knee

stance support, flat foot constraint, and a frequently used (high-gain) trajectory tracking motion

coordination, the ZMP walk may look as a careful human walk onuncertain terrain, rather than

the more natural highly dynamic walking humans typically employ on level ground, [89], [11].

In order to achieve an efficient and natural-looking bipedalgait, several researchers have
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investigated a dynamic walking approaches that leverage the passive (uncontrolled, natural) dy-

namics of the robot through walking, see [108]. On one end of this spectrum are fully passive

dynamic walkers which rely on precisely tuned natural dynamics of the robot, and walk on a slight

downward slope powered only by gravity, [12]. Utilizing this idea, actuator-assisted passive walk-

ers were developed and shown to possess human-like and energy efficient gait [1], [14].

Actuated robots which are controlled to mimic some unified property of passive walking

have also inspired numerous works. In this context, an energy tracking control approach was

proposed in [109] and also adapted by [110], [111], [112], [113]. In these later works, a trajectory-

free control approach was preferred to generate energy efficient dynamic walking. It was also

shown that active feedback control could be used to remove the well known sensitivity issues of

the passive walking to ground slope. These ideas are fully aligned with the control philosophy

utilized in this paper.

Actuated dynamic walking which neither utilizes the ZMP method, nor requires a passive

or a nearly passive robot design, have also been proposed in literature. In this context, [16] used

inverse dynamics and linear optimal state feedback stabilization to control a dynamically walking

robot; [15] have proposed a tracking control scheme where the reference motion was generated

using Van der Pol oscillators; while [114] have introduced acontrol method where the reference

motion was selected to be a “potential energy conserving orbit” (i.e., which is a special trajectory

along which the potential energy of the system is preserved). While tracking control is a frequently

used viable approach to walking, its realization with high gains (usually used for manipulators)

may not be well suited with walking, where there is no ensuredinertial reference (i.e., the foot

cannot be considered fixed to the ground), [17].

Recently, a concept of “hybrid zero dynamics” [19] and “virtual control constraints” [20]

were used to develop and experimentally verify a walking control approach by [21]. This approach

while utilizes high-gain joint level control, it allows thepointed-feet underactuated robot, Rabbit, to

exploit its uncontrolled rotational dynamics in the inertial frame. Instead of enforcing a predefined

time dependent reference trajectory, [22] used neural networks to identify the relations between the
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configuration coordinates generated by the robot while walking. These relations are then used as

references to realize a robust dynamic walk. Motivated by a different idea, a biologically inspired

sensor and motor-neuron based control approach, which doesnot utilize trajectory tracking, was

proposed by [23], [24]. This method was implemented and validated with experimentally realized

dynamic walking on a small size robot, RunBot. Due to the highlygeared actuation unit however,

the robot could not demonstrate ballistic swing leg motion,which is a major attribute of a (human-

like) dynamic walk considered here.

[18] proposed “virtual model control”, which was implemented on a biped with series-

elastic actuators, which enabled a practical control realization that was largely free of kinematic

constraints. In the mentioned work however, the control method does not employ ankle actuation

which is a characteristic motion attribute utilized by humans and as such it is explicitly addressed

herein.

There are two main preconditions which allow natural-looking and energy-efficient realiza-

tion of actuated dynamic walking. The first, related to the control approach, precludes enforcing a

predefined reference trajectory, including state dependent kinematic constraints, or other attributes

of the walking cycle (such as stride length, stepping frequency or average forward speed) with

high gain control. This condition motivated us to develop a control framework which utilizes

state-dependent control torques (generated by low-gain spring-damper couples) to provide motion

coordination without prespecifying the response of the system, [27], [25]. The second precondition

(not related to control) depends on joint actuation which should not suppress passive joint motion

(i.e., joints should be highly backdrivable, so that power can flow both from the actuator to the

limbs, and back from the limbs to the actuator). Utilizationof backdrivable joint design allows the

inertial motion of the robot to be exploited through walkingrather than being suppressed by the

actuation units.

By means of the above arguments, the walking controller utilized here is implemented on

a 7-link biped robot designed with backdrivable actuators which meets the second precondition

required for realization of actuated dynamic walking. Notethat such backdrivability can be sub-
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stituted using closed-loop torque control of each joint through a non-backdrivable transmission,

[104], but doing so largely removes the energetic advantages afforded from leveraging the bipeds

passive dynamics.

In the remainder of this paper, we first recall the general idea of the control approach

developed by the authors [25]. The discussion on control is followed by a section on design of a

seven link biped robot developed with highly backdrivable joints. Description of design is followed

by a section on real-time control implementation. Finally,we present a walking experiment, which

demonstrates human-like compliant dynamic walking of a seven link robot coordinated with the

proposed walking controller. The experimentally realizedmotion is characterized with a natural

looking swing, extended knee stance support and human-like(preemptive) ankle push-off.

Model of the Biped

The control approach utilized in this paper requires information from the dynamical model

of the biped. In this light, we will first introduce the model of a seven-link planar walking robot

illustrated in Figure 4.1. The configuration of the biped is defined with nine coordinates,q =

[x,y,θ ,θ1,θ2,θ3,θ4,θ5,θ6]
T , where the first two coordinates represent the translational motion of

the robot in the inertial frame while the last seven angular coordinates reference the orientation of

the links with respect to the inertial frame. In order to support the forthcoming discussion, we will

also define the joint angles (relative angles between the links) as:ϕϕϕ = [ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,ϕ6]
T =

[θ1 − θ ,θ2 − θ1,θ3 − θ2 + π/2,θ4 − θ ,θ5 − θ4,θ6 − θ5 + π/2]T . The biped is actuated at each

joint (i.e., right and left hip, knee, and ankle joints), such that, the dynamics of the robot are

affected by six actuator torques,u = [u1,u2,u3,u4,u5,u6]
T , which are considered positive in the

same (counterclockwise) direction as the joint angles.

In the following, we derive the mathematical model by considering the biped as a con-

strained mechanical system, [96], [97]. This model contains the differential equations of the flight

phase motion, and the (algebraic and differential) relations which define the kinematic (physical)

constraints along the motion. In the present context, we will only present the basic elements of
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Figure 4.1Seven-link biped with the absolute coordinatesq and the control torquesu. The Carte-
sian coordinates(xi,yi), i ∈ {1,2,3,4}, represent the position of the toe and the heel for the left
and right leg.

the biped model which provides the necessary information for the closed-loop control design. For

more information on the modeling approach utilized here, see [25].

Unconstrained Dynamics

The equations of motion for the 9-DoF (unconstrained) “flying” biped, can be written as

M(q)q̈+h(q, q̇)+G(q) = Qu, (4.1)

whereM ∈ R
9×9 is a symmetric and positive definite mass matrix,h ∈ R

9 represents the inertial

forces,G ∈ R
9 represents the gravitational forces, whileQu = Eu is a generalized control force

computed using a constant matrixE ∈ R
9×6 which maps the control inputsu ∈ R

6 to the general-

ized control force space.
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Kinematic Constraints

The unconstrained equation of motion presented above describes the flying phase motion

of the biped. In normal walking however, numerous kinematicrestrictions, imposed by ground-

foot contact or the full knee extension stop, can restrict the motion of the robot. These kinematic

motion constraints are introduced and discussed subsequently.

For the biped in Figure 4.1, neither foot can penetrate the ground, the knee joints cannot

extend beyond the fully straight position, and both feet areassumed not to slide when in contact

with the ground. Since each toe and heel is independently characterized by non-penetration and

no-slip with the ground, the flight phase dynamics (4.1) can be subject to the following kinematic

(physical) constraints,

ΦΦΦh(q) =
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ẋ2

ẋ3
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= 0, (4.2)

where(xi ,yi), i ∈ {1,2,3,4} are the toe and heel coordinates, see Figure 4.1, whileϕ2 = θ2−θ1

and ϕ5 = θ5 − θ4 are the relative angles at the knee joint. Instead of using (4.2) directly, the

forthcoming control development only requires a particular information contained by the constraint

matrix which is defined by

A(q) = [(∂ΦΦΦh/∂q)T ,(∂ΦΦΦn/∂ q̇)T ]T . (4.3)

Depending on the configuration of the robot, the constraintsconcatenated in (4.2) and (4.3) are

active when they restrict the motion and inactive when they do not. In order to ensure thatA

only contains the active constraints, the configuration of the robot is monitored through the motion
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to identify and eliminate the inactive constraints by zeroing the corresponding row in (4.3). The

constraint matrix obtained in this way, carries the kinematic information from the configuration of

the biped utilized in the forthcoming control development.

Control Approach

The control approach considered here can be discussed in twostages. In the first stage, the

robot is acted upon by generalized control forcesQd which are (partially) referenced to the inertial

frame to make coordination of patterned movement intuitive. On a real robot however there is

no associated control actuator which can realize the generalized control forces (referenced to the

inertial frame) directly. Accordingly, in the second stage, Qd is recomputed toequivalentjoint

torques,u, which can be directly commanded through the actuators to coordinate the robot. As

follows, we provide a systematic description of the outlined control idea on a seven link robot.

Generalized Control Forces

In order to generate patterned movement without trajectorytracking, the seven link robot

is provided with seven control elements which are spring-damper couples with fixed equilibrium

points, see Figure 4.2. Each control element can be characterized with three control parameters,

a stiffness constant, a damping constant, and an equilibrium angle. These parameters are changed

as piecewise constant functions through four separate states along the walk using a configuration-

based switching controller.

Computing the Generalized Control Forces

For a given set of control parameters, the desired generalized control force is computed as

Qd = −Kd(φφφ −φφφd)−Bdφ̇φφ , (4.4)
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Figure 4.2The control elements and the control parameters on a 7-link robot.

whereφφφ = [θ ,θ1,ϕ2,ϕ3,θ4,ϕ5,ϕ6]
T is obtained by position feedback,φ̇φφ is known from a corre-

sponding velocity feedback, while the control parameters concatenated in the stiffness matrix,Kd,

damping matrixBd and the equilibrium anglesφφφd = [θd,θd1,0,ϕd3,θd4,0,ϕd6]
T are assigned by

the configuration-based switching controller as discussedin the forthcoming subsection.

Before we proceed further, let us point out that while (4.4) has the same form as a usual

PD control law, the philosophy and the application of (4.4) is entirely different. Specifically,

we use piecewise constant (fixed) equilibrium anglesφφφd instead of tracking a predefined desired

trajectoryφφφd = φφφd(t). While this difference may not seem crucial, one can recognize that contrary

to the precise trajectory tracking which requires high-gain PD control, the fixed angular references,

Figure 4.2, make high-gains not well suited to walking control. Accordingly, utilization of low

control gains is not only a preference to generate compliantmotion, but also a requirement for

stable gait synthesis.

Let us mention that utilizingφφφ (as defined above), the generalized control force (4.4) only

influences the rotational dynamics of the robot. In this light, the translational motion,(x,y), is

not controlled directly but rather is allowed to be an outcome of proper postural coordination and

interaction of the robot and the environment. It can also be seen thatQd operates on a mixed
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reference frame by utilizing absolute coordinates defined between the robot and the inertial frame,

and also relative angular coordinates defined between the links. The specific coordinate choice was

selected to mitigate the parameter tuning process discussed below.

Parameter Modulation based on the Robot Configuration

In order to achieve a walking motion, the control parametersare selected depending on the

configuration of the robot. In this light, we define four separate states for each leg depending on

whether the toe and/or the heel touch the ground and whether the leg is fully extended at the knee

joint, see Figure 4.3. The configuration-based control parameter modulation is implemented with

four “i f −else” statements. In each state, the logic assigns three controlparameters for each of the

seven control elements from a set of user-defined desired parameters.

Figure 4.3 The configuration-based switching logic with the four separate states. The particular
state-flow,S1→ S2→ S3→ S4→ S1..., together with the corresponding switching events, which
correspond to normal walking, is indicated with dashed lines.

Utilizing the control elements which partially referencesthe control influence to the inertial

frame is recognized to support intuitive parameter tuning.As follows, we describe a biologically

inspired approach for the parameter selection with intention to mimic muscle activation of a walk-
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ing human subjects, [115], [3].

Along a walk, one of the primary objectives is to keep the upper body in an upright vertical posi-

tion. Utilizing the control elements which act between the body and the inertial reference frame,

one can set the stiffness parameter and the equilibrium angle to provide a near upright position for

the body, and then use the associated damping parameter to influence the body dynamics. A simi-

lar idea can be used to generate leg oscillation (with respect to a fixed inertial reference) by using

the control elements attached to the thigh. Specifically, inswing, a low stiffness and low damping

element pulls the leg towards a fixed hip extension configuration (specified with an equilibrium

angle), while in the stance phase, a higher stiffness and higher damping is assigned to the same

control element which is encouraging the stance leg to move towards a fixed hip flexion angular

configuration. The knee stiffness and damping is also modulated, by means of using a relatively

high value in stance (to support the body with the help of the knee stop), and employing only slight

damping to generate (partially) ballistic swing. Controlling the ankle is set up by mimicking the

strategy taken by humans. Accordingly, the ankle stiffnessis used to accumulate elastic energy

from the middle stance and provide a characteristic ankle push-off at late stance. The main control

parameter at the swinging ankle is an equilibrium point which should be adjusted to provide slight

dorsiflexion, to avoid stumbling and scuffing during swing.

Actuator Torques

While Qd is straightforward to compute, it does not represent the joint torques, and as

such, it cannot be directly used to coordinate the motion of the robot. Practically, one may want

to find the torquesu which, while directly commanded through the actuators, provides the same

motion the robot would have by applying the desired generalized control forcesQd. Since we are

interested in control of the constrained motion, let us recall here the acceleration component of the

constrained motion generated by the desired generalized control forces,

q̈d = R−1NR−TQd, (4.5)
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whereR is the upper triangular Cholesky factorization of the mass matrix M = RTR (whereM is

defined in (4.1)),N = I − (AR−1)+(AR−1) is the null-space projection operator of the inertially-

weighted constraint matrix (whereA is defined by (4.3)). The interested reader can find the deriva-

tion of (4.5) in [27]. Using the above relation, one can also define the constraint consistent accel-

erations generated with the actuator torques,

q̈u = R−1NR−TEu. (4.6)

Following the main objectivëqd = q̈u, one can equate (4.5) and (4.6) and solve the corresponding

linear equation foru. Depending on the constraint configuration of the robot however, this solution

may not exist (in cases when the robot is underactuated, for example in flying phase or if only

one toe or one heel is contacting the ground). In order to obtain an approximate solution even

when the robot is underactuated, we propose not to solveu from q̈d = q̈u directly, but rather to

define a solution which minimizes the acceleration energy between the desired and the real motion

(q̈d − q̈u)
TM(q̈d− q̈u) → min. The general solution to this problem is given with

u = A+
u NR−TQd +(I −A+

u Au)u0, (4.7)

whereA+
u is a Moore-Penrose generalized inverse (pseudoinverse) ofAu = NR−TE, [59], I ∈R

6×6

is an identity matrix, whileu0 ∈ R
6 is an arbitrary (joint torque) vector. A particular solution

provided with the first term in the above relation (u0 = 0) minimizes the squared Euclidean norm

of the joint torques and as such, due to its optimal character, it is a preferred solution herein.

In addition to the pseudoinverse solution (first term in (4.7)), one can also utilizeu0 (with

the second term in (4.7)) to control the contact constraint forces. Although the intention here is

not to maintain the grand contact constraints by force control, partial utilization of this idea is

recognized as a convenient way to actively modulate the kneestiffness once the leg of the robot is

fully extended.

Let us point out here that (4.7) defines a full-body control law where each joint torque

79



depends on the motion of the robot in whole. It is also important to recognize that no inverse

dynamics is performed to cancel the gravitational and inertial forces along the motion and enforce

a predefined reference trajectory on the system. Instead, the natural dynamics of the robot is

allowed to substantially influence the motion of the robot which is synthesized using joint torques

that mimic the effect of spring-damper forces (partially) applied between the robot and the inertial

reference frame. As subsequently demonstrated, the described approach allows emulation of a

human-like walking of a seven-link biped robot.

Robot Design

Practically, realization of a natural motion requires utilization of backdrivable actuation

which allows passive joint motion, similar to human joints.In this light, for the purpose of val-

idation of the proposed control method, we design a seven-link biped robot keeping in mind the

mentioned design requirement.

The 7-link biped robot, depicted in Figure 4.4 is an experimental prototype which is 1.2m

tall and 14.3kg. The geometric parameters and mass distribution on the robot is specified in Table

4.1. Below, we discuss the upper body design, joint design, foot design, and the sensory-system

on the robot.

Upper Body

The robot has an upper body which carries 4.54kg, (10lb), of weights which are distanced

0.2m from the hip joint, see Figure 4.4. The purpose of these weights is to represent (with the rest

of the robot trunk) a reasonable mass for the head, arms, and trunk of a 1.2m tall biped. The body

is provided with a single-axis gyroscope (Analog Devices, ADXR150) which directly measures its

sagittal plane angular velocity. The sensor is characterized with±150o/s measurement range and

a noise density of 0.05o/s/
√

Hz. In order to reduce the noise level, the analog signal is filtered

with a first order low pass filter with a 50Hz roll-off frequency.
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Figure 4.4 Left: Experimental prototype of a 7-link dynamic walker developed at the Vander-
bilt University, Center for Intelligent Mechatronics. Right: CAD-model, side view of the 7-link
biped. The values for the model parameters are reported in Table 4.1, specifically, the geometric
parameters, the link massesm,m1,m2,m3, link moments of inertiasJc,Jc1,Jc2,Jc3; actuator masses
ma1,ma2,ma3, actuator moments of inertiasJa1,Ja2,Ja3, the gear ratios on the reducers on the joints
n1 : 1, n2 : 1, n3 : 1, and the experimentally identified joint level linear viscous damping constant
b1,b2,b3.
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Table 4.1Geometric and inertial parameters of the robot with total mass ofM = 14.3kgand hight
of L = 1.2m.

Structure no.(∗) l∗[m] lc∗[m] m∗[kg] Jc∗[kgm2]
Body − 0.390 0.185 6.12 0.0210
Thigh 1 0.295 0.147 0.67 0.0096
Shank 2 0.298 0.140 0.55 0.0069
Foot 3 0.183 − 0.36 0.0007

Foot
a[m] b[m] h[m] cx[m] cy[m]
0.137 0.046 0.055 0.014 0.035

Actuators no.(∗) n∗ ma∗[kg] Ja∗[kgm2] b∗[Nms]
Hip 1 21 0.84 0.0067 ≈ 0.13

Knee 2 12 0.84 0.0022 ≈ 0.11
Ankle 3 21 0.84 0.0067 ≈ 0.05

Joint Design

The seven link robot has an upper body, hip, knee, ankle and human-like foot. In the biped

prototype, a unified design is utilized for the hip, knee and ankle joints with slight modifications

made for differences in range of motion and attachment points. Figure 4.5 depicts the specific

design solution of the knee joint.

Actuator Unit

The robot is actuated with six 150W brushed DC-motors (Maxon RE40) through low gear

ratio planetary reducers (Maxon GP42C), specifically 21:1, 12:1, 21:1 for the hips, knees and

ankles respectively. A low gear ratio drive (i.e., backdrivable joint design which allows substantial

power flow between the inertial load and the actuator) allowspassive motion of the joints which is

a precondition to leverage natural dynamics through actuated dynamic walking without excessive

energy requirement.

Unlike the backdrivable actuation unit, highly geared joints, often used for robot manipu-

lators and also in actuated walking robots, would introducesignificant joint friction and prevent

power flow from the links to the actuators. While such highly geared actuation allows decoupled
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motion coordination with local (joint level) control, a system with backdrivable joints becomes

highly coupled and as such more difficult to control. In the present paper, however, low gear ratio

actuators are utilized to meet the precondition for naturallooking and energy-efficient motion.

Angular Joint Sensors

Each joint is provided with an incremental quadrature encoder (Maxon, ENC-MR-L-1024-

CPT) attached to the motor shaft, Figure 4.5. The reference position for each of the six encoders

is identified (in a static stance phase during initialization) using two acceleration sensors (Analog

Devices, ADXL203) located on the upper body and the upper right leg. The implemented sensors

provide an accurate joint angle,ϕϕϕ , measurement which can be characterized with quantizationstep

of 4.2o×10−3 at the hip and ankle joints and 7.3o×10−3 for the knee joints.

Figure 4.5Top: Knee joint on the robot. Bottom: CAD model - exploded view of the knee joint:
1) encoder; 2) actuation unit - motor and the gearhead; 3) inner bearing housing; 4) lower leg; 5)
Teflon sleeve bearing; 6) hard stop at full knee extension; 7)upper leg; 8) external bearing housing;
9) elastic coupling; 10) connecting element; 11) potentiometer and housing (not used in present
implementation).
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Foot Design and the Foot Sensors

The foot of the robot is constructed from ABS plastic, each of which is instrumented with

four force sensing resistors (Interlink, 402 FSR), specifically, two FSR’s on each toe and heel.

These sensors are located between the underside of the foot and a thin foot-plate made from spring

steel, Figure 4.6. When the toe and/or the heel touches the ground, the circular rubber touch-pad

(located on the foot-plate) touches the foot sensors. The corresponding signal serves to identify the

contact configuration between the foot and the ground. Near to the toe and the heel (which are the

expected contact areas) the foot-plate is supplemented with silicon rubber pads with high frictional

properties, good abrasive durability and appropriate shock absorbing capability. In the proposed

control implementation, measurements of the contact forces or moments are not required. As such,

the feet are not equipped with load cells.

Figure 4.6 Top: Foot of the robot. Bottom: CAD model - exploded view of the foot: 1) FSR
sensor; 2) foot-plate; 3) sensor touch-pad; 4) rubber foot contact-pad.
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Comment on Planar Walking

For purposes of the experimental implementation of actuated dynamic walking, we con-

sider planar motion of the robot. Specifically, the robot is attached through its hip to a lever arm

which keeps the biped on a circular path, with 1.6m radius while walking, see Figure 4.4. This

solution although not an ideal realization of a sagittal plane walk, was convenient for experimenta-

tion. Similar realization was employed for the MIT Spring Turky/Flamingo, [18], for Rabbit [21]

and also for RunBot [24]. In the current realization, the leveris only used to constrain the motion

of the robot but it is not instrumented or exploited in any wayto provide an inertial reference for

the sensory-system on the robot.

Real-Time Control Implementation

The proposed closed-loop controller was developed on desktop PC with the real-time in-

terface provided by MATLAB / Simulink Real Time Workshop. In the following, we discuss

implementation of the closed-loop controller.

Feedback Information from the Contact Configuration

In order to identify the active (and inactive) constraints imposed by foot contact with the

ground we have utilized the foot sensors. Specifically, whenever the toe and/or the heel are touch-

ing the ground, the analog signal from the foot sensors are thresholded to generate an on/off type

output, which is used in the control implementation. In addition to the contact condition between

the foot and the environment, knowledge of full knee extension is also required for the control

approach. For this purpose, the knee angle encoders are monitored to determine whether the leg is

fully extended,ϕ2,5 ≈ 0.
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Position and Velocity Feedback

In the present paper we utilize both the joint anglesϕϕϕ (which are measured by encoders),

and also absolute link anglesθθθ = [θ ,θ1,θ2,θ3,θ4,θ5,θ6]
T , to implement the proposed feedback-

control approach. Although the absolute orientations are not measured directly, they can be cal-

culated byθθθ = [θ ,θ + ϕ1,θ + ϕ1 + ϕ2,θ + ϕ1 + ϕ2 + ϕ3 − π/2,θ + ϕ4,θ + ϕ4 + ϕ5,θ + ϕ4 +

ϕ5 + ϕ6−π/2]T if the upper body angleθ is provided. Accordingly, in the following discussion

we will only describe how to computeθ . Once the angular configuration is known, the velocity

information is obtained by numerical differentiation.

Computing the Absolute Orientation of the Upper Body

Whenever the robot is not underactuated (at least one foot is flat on the ground or; either

the backward toe or heel and the forward toe or heel is on the ground), the system has six or less

degrees of freedom, and the absolute angular orientation for the upper body can be calculated using

the six encoder measurementsϕϕϕ formally stated as,

θ = θ(ϕϕϕ). (4.8)

The related kinematic computation is performed exactly if either of the feet touches the ground in

two contact points. Otherwise, if the foot touches the ground in three or more contacting points, the

upper body angle is solved in a least square sense to cope withkinematic redundancy and expected

inconsistency in the measurements.

Estimating the Absolute Orientation

There are two cases where (4.8) cannot be applied. This is if the robot moves through un-

deractuated configuration (i.e., flight phase or if only one toe or one heel is contacting the ground)

or if (4.8) is singular or nearly singular. Under these conditions, we have utilized the gyroscope

signal to directly provide the angular velocity of the upperbody, θ̇ = θ̇g, and an estimate of the
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absolute orientation of the upper bodyθ by

θ = θ(t0)+
∫ t

t0
θ̇g(τ)dτ, (4.9)

wheret ∈ [t0, t1), t0 is the time instant starting from which (4.8) could not be used, while t1 is

the time when (4.8) can again be used reliably. The interval[t0, t1) for which the integration is

performed is expected to be short (at most 10% per step duration). There are practical limitations

which makes (4.8) preferred over (4.9). Specifically, integration of the analog gyroscope signal in

longer time would cause drift in the position estimate, while filtering θ̇g to reduce the noise level

will induce delay (phase-lag) on the feedback information from the motion (which may lead to

stability problems in coordination), see [116]. These two issues, which are the main limitations of

many inertial measurement units, are bypassed here by utilizing (4.9) only when needed for short

time periods.

Concatenation of (4.8) and (4.9) allows reconstruction of the angular motion of the robot

in the inertial frame,θθθ . Note that switching between the two computational schemesmay induce

discontinuities on position and also on the velocity signals. This issue is prevented with blending

between the two kinematic solutions in a short time window after the switching instant.

Computing the Actuator Torques

The most specific part of the real-time control implementation is a control torque compu-

tation (4.7). Below, we provide further insight in this context.

The real-time implementation of (4.7) is developed in Matlab/Simulink environment. The

model parameters required for this computation are the constant matrixE, the constraint matrixA

and the mass matrixM . It is an intrinsic property of the model which allows computation ofA(θθθ)

andM(θθθ) based only on the angular configuration of the robot (i.e., computation of(x,y) is not re-

quired). Once the model parameters are known, a procedural way to implemented (4.7) is provided

with two standard routines: the Cholesky factorization, andthe pseudoinversion. Note that while
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the former is not a delicate operation, the pseudoinverse calculation (which is usually based on the

singular value decomposition (SVD) [65], [59] is a numerically involved operation. Despite this

computational requirement, the current Matlab implementation of the complete closed-loop con-

troller was real-time capable with 1000Hz sampling rate on an Intel Core 2 Quad 2.4Ghz desktop

computer.

Experimental Characterization of the Robot

In this section, experimental and simulation results are presented to: verify the model pa-

rameter identification, characterize the passive motion ofthe device and validate the electronic

implementation of the control actuators.

Parameter Identification

In order to compute the actuator torques, the model parameters E, A andM are required.

For the purpose of real time control, these parameters are derived in analytical closed form. The

specific geometric and inertial parameters for each link which are used to computeA andM are

provided by measurements, and estimation from the CAD model.The following experiments and

simulations are performed with the parameter set reported in Table 4.1.

Free Swing Experiment

The robot introduced in this paper is provided with low gear ratio drives. In order to show

that the corresponding actuator unit indeed allows passivemotion (necessary for ballistic swing),

we have conducted free swing experiments. The experimentalresults are depicted in Figure 4.7.
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Figure 4.7Free swing experiments which characterize the passive (uncontrolled) dynamics of the
hip and the knee joint. The motion of the device is depicted with (black) solid line while the
simulated response is plotted with dashed (blue) lines. Thedifference in the low velocity area is
mainly due to the Coulomb friction and the cabling which is neglected in the simulations, (the
asymmetric effect of the cabling can be seen in the knee response). In order to clearly show
the difference between a backdrivable actuator unit utilized here, and a usual highly geared joint
design, the dotted (gray) lines depict the model predictionof corresponding motion the robot would
have with 105 : 1 and 60 : 1 gear ratio on the hip and knee respectively. Due to the low inertia of
the foot, a similar free swing experiment is recognized not well suited to characterize the dynamics
of the ankle joint, and as such is not conducted here.
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PD Control Experiments

In order to validate the implementation of the control actuators together with the dynamic

model, further experiments were conducted with PD control which operates with periodically mod-

ulated equilibrium points. The experimental response and the model prediction are both depicted

in Figure 4.8. Note that using low gain PD control allows us tovalidate both the implementation

of the actuator unit and the model parameters, namely, the response of the system in this case is

not prescribed with the control force but rather substantially influenced by the natural dynamics of

the robot.

Dynamic Walking

In this section we provide simulation results and experimental data for the walking biped.

A corresponding video is included in the supporting multimedia material.

Simulation Result

The control approach implemented here was initially verified using numerical simulations

on an anthropometric biped model, see [27], [25]. In the present paper, the authors utilized the

same simulation tool to select control parameters for an energy efficient gait for the present robot.

The gait resulting from a suitable set of control parametersis depicted in Figures 4.9 and 4.10. The

related walking motion is characterized with average speedof vavg = 0.53m/s (Froude number

Fr = vavg/
√

gLleg = 0.21) and mechanical cost of transport, (mech.energy)/(weight × distance

traveled), ofcmt = 0.15.

While the simulation model was developed with emphasis on physical consistency, it does

not incorporate all the experimental conditions which apply to the robot. Aside from the usual

implementation nonidealities such as measurement noise and phase-lag on the feedback signals,

other unmodelled effects were also not included in the simulation. Specifically, instead of a sagittal

plane motion, the real robot walks in a circle (1.6m in radius). Moreover, the lever arm used to
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Figure 4.8 Low gain PD control experiment. Solid line (black) represents the motion of
the device while the dashed line (blue) is the correspondingmodel response. The exper-
iment is performed by applying a control torque vectoru = −Kd(ϕϕϕ − ϕϕϕd) − Bdϕ̇ϕϕ , Kd =
[2,1.5,1,0,0,0]T , Bd = [0.2,0.2,0.1,0,0,0]T , ϕϕϕd = [(π/3)sin(1.5πt) + π/20,(π/6)sin(3πt −
pi/2)−π/2,(π/6)sin(6πt)+π/6]T .
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Figure 4.9Motion plots for the simulated robot. The corresponding stroboscopic view is depicted
on Figure 4.10.

Figure 4.10Stroboscopic view of the simulated walk overt ∈ [0,12]s.
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guide the robot is neither counterbalanced nor is it taken into account in the mass matrix used in

the control computation. If high gain trajectory tracking were applied to control the robot, these

effects would likely be overridden (by the control forces).In the present situation however, the

experimental conditions will substantially alter the natural dynamics of the robot which is proposed

to be leveraged. While the mentioned implementational nonidealities influence the walking style,

they do not prevent the proposed control approach to generate coordinated motion.

Experimental Result

The control approach was implemented in real-time and used to coordinate the walking of

the biped robot. A representative experimental data is shown in Figure 4.11. A frame sequence

extracted from the experimental video is shown in Figure 4.12. The walking of the robot is char-

acterized with: average forward speed ofvavg ≈ 0.5m/s which corresponds to Froude number

Fr = vavg/
√

gLleg = 0.2. According to the dynamic similarity hypothesis [117], the calculated

Froud number indicates that the presented walking can be compared with the walk of the actuator-

assisted Cornell dynamic walkerFr = 0.18 [1] and the fully actuated Honda AsimoFr = 0.17

[118].

Following the concept of specific resistance, [106], we adopted the mechanical cost of

transport to estimate the energy requirement of the presented walking robot. The estimated value

obtained by the experimental data iscmt = 0.35. Since the present robot is fully actuated (i.e.,

all joints are under continuous closed loop control), the generated walk may not be as efficient

as one can obtain by actuated assisted passive dynamic walkers, see the Cornell bipedcmt = 0.05

(which has the same efficiency as humans). However, the carefully developed control approach

and the backdrivable actuator design adapted herein appears to provide an energetic advantage

of the presented robot over other actuated walkers which utilize highly geared joints and high-

gain trajectory tracking control approaches. This claim can be supported by pointing out that the

mechanical cost of transport for the Honda Asimo robot whichutilizes the ZMP control paradigm

is estimated to becmt = 1.6, see [1].
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Beyond the above quantitative attributes, there are important qualitative similarities be-

tween the walking of the robot herein and a human being. Specifically, the walking experi-

ment demonstrates a natural looking (partially ballistic)swing which is realized with passive knee

(which is only slightly damped). Moreover, one can also recognize the characteristic preemptive

ankle-push off with human-like flat foot. While an actuated curved foot is an accepted solution in

actuator-assisted dynamic walking [1], [14], an actuated human-like (flat) foot which provides a

preemptive ankle push-off to propel the robot forward, realized herein, is a major control challenge

which is rarely utilized in practical implementations, see[119] for a related discussion.

Let us mention that during the preemptive ankle push-off, (when only the backward toe of

the rear foot is on the ground), the robot is in underactuatedconfiguration. Practically, underactu-

ation characterized with foot rotation, is an indicator of dynamic disbalance (dynamic instability)

[7], and as such it is not allowed through implementation of the ZMP control approach, although

it is utilized by human beings [10]. Recently, [87] proposed acontrol solution and numerically

demonstrated walking with controlled (prescribed) foot rotation. In the present paper, we have ex-

perimentally demonstrated that the proposed control approach can cope with foot rotation. More-

over, the foot rotation (preemptive ankle push-off) here isnot prescribed (enforced by control),

but rather is chosen by the robot only if recognized advantageous or necessary through its forward

progression.

Conclusion

The authors have presented an experimental realization of acontrol approach which en-

ables dynamic walking in a fully actuated robot. Rather than prescribe kinematic trajectories, state

dependent control torques are utilized in motion coordination that “encourage” patterned move-

ment. Implementation of the control methodology which, does not force the robot to follow a

predefined motion, but rather allows it to chose its own walking style, step length and forward

speed, is performed on a seven link biped robot which is designed with highly backdrivable joint

actuation. The conducted walking experiment demonstrateshuman-like compliant dynamic walk-
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Figure 4.11Actuated Dynamic Walking - Experimental data. Angular datafrom the motion of the
robot. Black (full) lines depict the motion of the right leg while the blue (dashed) lines depict the
motion of the left leg.

Figure 4.12Frame sequence correspond to six subsequent walking steps extracted from the exper-
imental video.
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ing of a robot biped, characterized with natural looking (partially) ballistic swing and preemptive

ankle push-off.

Appendix

This appendix contains: a description on the experimental setup; a modification on the

hardware design, a description on control parameter tuning, and presents pictures and data from

the conducted walking experiments.

Experimental Setup

The seven-link robot utilized in the walking experiments isdesigned to be a planar walker.

In experimental realization, the robot is constrained witha lever arm which allows walking in a

circle with 1.6m in radius. The lever arm, the weight of which is approximately 2kg, is not coun-

terbalanced but instead is considered as an unmodelled disturbance along the motion. Although

the asymmetric connection of the robot to the arm also affects the motion, it does not prevent the

proposed controller from generating stable walking. The experimental setup utilized in this work

is depicted in Figure 4.13.

Enhancement on the Hardware Design

During the conducted experiments, failure in the joint couplings was identified on numer-

ous occasions. In order to resolve this issue, the joints andthe elastic joint couplings were re-

designed and refabricated. In the new design, the potentiometers (not used during the experiments)

are not included, the joint couplings are made thicker, while the overall joint assemblies became

more compact and less compliant, see Figures 4.14. The new joints were tested through numerous

experimental trials and have been recognized as a robust alternative to the primary design solution.

In addition to the design modification of the joints, the footof the robot was also modified.
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Figure 4.13Experimental setup.

Figure 4.14Left: Knee joint on the robot, side and frontal views. Right: CAD model - exploded
view of the knee joint: 1) encoder; 2) actuation unit - motor and the gearhead; 3) inner bearing
housing; 4) lower leg; 5) Teflon sleeve bearing; 6) hard stop at full knee extension; 7) upper leg; 8)
external bearing housing; 9) elastic coupling; 10) connecting element.

97



Practically, due to the significant torsional moment applied through the foot (which can be 25 Nm)

the initial design was weak in tensile strength. This issue was addressed by using Gerolite (G-10)

as an alternative material for the new foot, instead of an impact resistive ABS plastic utilized on the

initial foot. Due to the significantly better material properties, the new foot has been recognized as

a reliable solution (no failure has been identified during the experiments).

Comment on the Sensory System

The walking experiments showed that imprecise sensory feedback can crucially affect the

performance of the robot. One of the most sensitive elementsin this context is the gyroscope

measurement which provides the angular velocity feedback from the upper body. In addition to

the gyroscope, identification of the foot contact configuration is also required to implement the

proposed walking controller. For this purpose, force sensitive resistors (FSR’s) are used as contact

switches on the foot. The FSR’s, while known to be non-reliable for force measurement, per-

formed satisfactorily as contact switches as demonstratedthrough numerous walking experiments.

Nonetheless, this simple design solution may be replaced with a more sophisticated foot equipped

with load-cells to enhance the consistency of the feedback information from the foot contact con-

figuration.

Comment on the Control Implementation

As any control approach, the one presented here also requires parameter tuning during its

implementation. If high gain trajectory tracking control were utilized, this parameter tuning may

not be a difficult task, (as long as the high gain control realization does not generate instability, due

to practical issues such as noise or phase-leg on the signal measurements). The control approach

proposed here does not use reference trajectories, and prefers low gains which allow compliant

motion coordination on the robot. While selecting gains may not be as trivial in this case, it is

made intuitive on the proposed walking controller.
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The intuitive nature of the parameter tuning is provided by defining the generalized control

forces on the upper body and the thighs with respect to the inertial reference frame Figure 4.2. This

becomes obvious once coordination of the upper body is considered. Namely, achieving a (nearly)

upright body position is trivial with the spring-damper couple located between the body and the

inertial frame (i.e., one can set the equilibrium angle to nearly 90o with a high enough stiffness

parameter), while achieving the same using the hip torques (which have coupled influence on the

body and the legs) would be considerably more complicated. Asimilar argument holds true if one

considers oscillatory leg motion generation with the proposed spring-damper couples (which are

referenced to the inertial frame) compared to the hip torques which could be considered referenced

to the moving (oscillating) body. Utilizing this feature, apractical parameter tuning was performed

independently first on the body (having the biped in double support stance phase with extended

knees), then the swing leg is independently tuned (by havingthe biped in single support phase),

and finally the stance leg parameters are tuned (again havingthe biped in single support phase).

Since the biped is in whole coupled, experience has shown (asexpected), that this preliminary

parameter tuning needs to be refined with on-line tuning to achieve stable walking. This kind of

parameter adjustment is made sequentially through walkingexperiments where the biped walked

with a “little help” provided by the experimenter.

Experimental Results

A demonstrative report on the conducted walking experiments is given below. The figures

depict frame sequences, extracted from walking videos, experimental data on the motion of the

robot, and the computed joint torques used to coordinate thebiped.
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Figure 4.15Experiment I: Frame sequence of a walking experiment. The walking is character-
ized with: average step length of 0.5m, average stepping frequency of 1Hz, average forward speed
of 0.5m/s (Froude numberFr = 0.2), specific mechanical cost of transportcmt = 0.32. Compar-
atively, this cost is (approximately) six times higher thanhuman efficiency (also reproduced by
the Cornell dynamic walker), while it is five times lower than the value estimated for the Asimo
robot, [1]. During the walking experiment, the biped utilized a characteristic ankle push-off, pre-
ferred by humans. The experiment also verified proper coordination of the robot through short 0.1s
underactuated motion phases (when only the forward heel wason the ground), see [2].
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Figure 4.16Angular motion corresponding to the frame sequence depicted on Figure 4.15.
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Figure 4.17Joint torques corresponding to the frame sequence depictedon Figure 4.15.
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Figure 4.18Phase plots corresponding to the hip, knee and ankle motion on the left and right legs.
The data corresponds to the frame sequence depicted on Figure 4.15. The starting point of the
motion is indicated with a circular dot while the end of the motion is denoted with a square mark.
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Figure 4.19Experiment II: Frame sequence of a walking experiment. The walking is characterized
with: average forward speed of 0.48m/s (Froude numberFr = 0.19), specific mechanical cost of
transportcmt = 0.32.
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Figure 4.20Angular motion corresponding to the frame sequence depicted on Figure 4.19.
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Figure 4.21Joint torques corresponding to the frame sequence depictedon Figure 4.19.
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Figure 4.22Phase plots corresponding to the hip, knee and ankle motion on the left and right legs.
The data corresponds to the frame sequence depicted on Figure 4.19. The starting point of the
motion is indicated with a circular dot while the end of the motion is denoted with a square mark.
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Figure 4.23Experiment III: Frame sequence of a walking experiment. Thewalking is character-
ized with: average forward speed of 0.5m/s (Froude numberFr = 0.2), specific mechanical cost
of transportcmt = 0.31.
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Figure 4.24Angular motion corresponding to the frame sequence depicted on Figure 4.23.
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Figure 4.25Joint torques corresponding to the frame sequence depictedon Figure 4.23.
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Figure 4.26Phase plots corresponding to the hip, knee and ankle motion on the left and right legs.
The data corresponds to the frame sequence depicted on Figure 4.23. The starting point of the
motion is indicated with a circular dot while the end of the motion is denoted with a square mark.
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CHAPTER V

CONCLUSION AND FUTURE WORK

Conclusion

This dissertation presents a dynamic modeling, analyticalcontrol development, numerical

investigation and experimental realization of a human-like actuated dynamic walking in biped

robots. First, a simulation approach developed for constrained dynamical system modeled with

differential-algebraic equations is presented. This material provided a basis to model and simulate

the biped as a constrained dynamical system. Then, a controlapproach for human-like actuated

dynamic walking is introduced and numerically investigated. Finally, the control approach was

experimentally verified on a seven-link biped robot designed (with backdrivable joints) for this

purpose. The walking experiments demonstrate human-like actuated dynamic walking of a robot,

as was claimed and predicted by motion simulations. Summaryof the contributions is listed as

follows:

1. Development of an explicit equation of motion for precisenumerical simulation of con-

strained mechanical systems.

2. Development of a control framework which allows compliant human-like dynamic walking

in biped robots.

3. Evaluation of the proposed walking controller by extensive numerical investigation. This

numerical investigation addresses the ability of the controller to provide walking started from

different postural configuration, walking with different speed, walking up and down slope,

walking with various styles, walking under control parameter variation, walking under model

parameter variations, and walking under external force disturbances.

4. Design and instrumentation of a seven-link biped robot with backdrivable joint actuators.
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Beyond the description of the hardware design and the sensorysystem on the robot, demon-

stration of the passive joint motion (allowed by the backdrivable joint actuation) is specifi-

cally presented.

5. Realization of a human-like actuated dynamic walking on the seven-link robot. Experimental

demonstration of a robot walking with (partially) ballistic swing leg, extended knee stance

support and human like (preemptive) ankle push-off.

Future Work

Bipedal locomotion is an active research field that provides numerous possibilities for fur-

ther development. Since realization of dynamic walking requires a symbiotic combination of

control and design, a future research direction is natural to be discussed separated to these two

categories.

Comment on the Control Approach

The control approach proposed here addresses a human-like dynamic walking on actuated

biped robots. However, as presented, the approach is not restricted to walking but is general enough

to be used (without any modification on its structure) to perform numerous other everyday tasks

such as: standing, standing to walking, walking to standingtransitions, or also sitting, sitting to

standing, standing to sitting transitions for example.

In a more general view, the control approach applied to walking synthesis here, can be

used to a biologically-inspired compliant coordination onrobotic systems. Instead of using a de-

sired trajectory and inverse dynamics to calculate the control forces, the presented method defines

the controller on force level, which allows one to perform compliant coordination without pre-

specifying the motion of the system. This approach is recognized to be highly advantageous to

generate a motion similar to that preferred by animals and humans while moving or locomoting

efficiently.

110



During the development of the proposed control idea, the objective was not to use assump-

tions which would limit the applicability and generality ofthe final results. As a direct conse-

quence, the control approach developed here is applicable to 3D walking with no structural mod-

ifications compared to its 2D (planar walking) implementation. Experimental demonstration of a

3D actuated dynamic walking however does require redesign of the current robot which investment

is seen as a promising future work.

As was recognized through development, experimental realization of the proposed ap-

proach is tightly coupled with control parameter tuning. Inthis light, development of a machine

learning algorithm for automatic parameter tuning is recognized to be a beneficial future invest-

ment.

Comment on the Robot Design

In the presented work, we have specifically pointed out that an energy efficient realization

of a natural compliant motion depends on the applied controlmethod (which should not be a high-

gain trajectory tracking) and also depends on a robot designwhich should allow exploitation of

the natural dynamics of the robot. Practically, it means that joints should be backdrivable such

as human joints which allow the inertial motion of the robot to be exploited rather then being

suppressed as on highly geared industrial manipulators andalso on majority of actuated walking

robots.

While backdrivable joints are advantageous from energetic point of view, they make the

dynamics of the considered system (walking machine) coupled and as such nontrivial to control.

Moreover, providing the required torque during a demandingstance phase (when the entire body

needs to be supported) may not be trivial with low gear ratio (backdrivable) actuators. Development

of a backdrivable but also high torque actuation unit for compliant motion/force control can be seen

as a targeted future research in the present context.

A high torque actuation unit, while experimentally demonstrated not to be a requirement

for level ground walking, would provide the necessary control authority under significant external
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disturbances. On the present platform, experiments have verified that torque limitation prevents the

robot to deal with significant disturbances, which can be addressed by further design enchancement

(i.e., increasing joint torque capability).
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[63] J. G. de Jaĺon and E. Bayo,Kinematic and Dynamic Simulation of Multibody Systems The
Real-Time Challenge. Springer-Verlag, New York, 1994.

[64] E. Hairer and G. Wanner,Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems. Springer-Verlag, Series in Computational Mathematics, 2 ed., 1996.

[65] G. Golub and C. V. Loan,Matrix Computations. The John Hopkins University Press, 3 ed.,
1996.

[66] B. Leimkuhler, L. R. Petzold, and C. W. Gear, “Approximation methods for the consis-
tent initialization of differential-algebraic equations,” SIAM Journal on Numerical Analysis,
vol. 28, no. 1, pp. 205–226, 1991.

[67] P. E. Nikravesh, “Initial condition correction in multibody dynamics,”Multibody System
Dynamics, vol. 18, pp. 107–115, 2008.
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