25,183 research outputs found

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Reparameterizing the Birkhoff Polytope for Variational Permutation Inference

    Full text link
    Many matching, tracking, sorting, and ranking problems require probabilistic reasoning about possible permutations, a set that grows factorially with dimension. Combinatorial optimization algorithms may enable efficient point estimation, but fully Bayesian inference poses a severe challenge in this high-dimensional, discrete space. To surmount this challenge, we start with the usual step of relaxing a discrete set (here, of permutation matrices) to its convex hull, which here is the Birkhoff polytope: the set of all doubly-stochastic matrices. We then introduce two novel transformations: first, an invertible and differentiable stick-breaking procedure that maps unconstrained space to the Birkhoff polytope; second, a map that rounds points toward the vertices of the polytope. Both transformations include a temperature parameter that, in the limit, concentrates the densities on permutation matrices. We then exploit these transformations and reparameterization gradients to introduce variational inference over permutation matrices, and we demonstrate its utility in a series of experiments

    Supervised learning with hybrid global optimisation methods

    Get PDF

    Sensor Scheduling for Energy-Efficient Target Tracking in Sensor Networks

    Full text link
    In this paper we study the problem of tracking an object moving randomly through a network of wireless sensors. Our objective is to devise strategies for scheduling the sensors to optimize the tradeoff between tracking performance and energy consumption. We cast the scheduling problem as a Partially Observable Markov Decision Process (POMDP), where the control actions correspond to the set of sensors to activate at each time step. Using a bottom-up approach, we consider different sensing, motion and cost models with increasing levels of difficulty. At the first level, the sensing regions of the different sensors do not overlap and the target is only observed within the sensing range of an active sensor. Then, we consider sensors with overlapping sensing range such that the tracking error, and hence the actions of the different sensors, are tightly coupled. Finally, we consider scenarios wherein the target locations and sensors' observations assume values on continuous spaces. Exact solutions are generally intractable even for the simplest models due to the dimensionality of the information and action spaces. Hence, we devise approximate solution techniques, and in some cases derive lower bounds on the optimal tradeoff curves. The generated scheduling policies, albeit suboptimal, often provide close-to-optimal energy-tracking tradeoffs

    Stabilized Benders methods for large-scale combinatorial optimization, with appllication to data privacy

    Get PDF
    The Cell Suppression Problem (CSP) is a challenging Mixed-Integer Linear Problem arising in statistical tabular data protection. Medium sized instances of CSP involve thousands of binary variables and million of continuous variables and constraints. However, CSP has the typical structure that allows application of the renowned Benders’ decomposition method: once the “complicating” binary variables are fixed, the problem decomposes into a large set of linear subproblems on the “easy” continuous ones. This allows to project away the easy variables, reducing to a master problem in the complicating ones where the value functions of the subproblems are approximated with the standard cutting-plane approach. Hence, Benders’ decomposition suffers from the same drawbacks of the cutting-plane method, i.e., oscillation and slow convergence, compounded with the fact that the master problem is combinatorial. To overcome this drawback we present a stabilized Benders decomposition whose master is restricted to a neighborhood of successful candidates by local branching constraints, which are dynamically adjusted, and even dropped, during the iterations. Our experiments with randomly generated and real-world CSP instances with up to 3600 binary variables, 90M continuous variables and 15M inequality constraints show that our approach is competitive with both the current state-of-the-art (cutting-plane-based) code for cell suppression, and the Benders implementation in CPLEX 12.7. In some instances, stabilized Benders is able to quickly provide a very good solution in less than one minute, while the other approaches were not able to find any feasible solution in one hour.Peer ReviewedPreprin

    Equilibria, Fixed Points, and Complexity Classes

    Get PDF
    Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and (mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews the underlying computational principles and the corresponding classes
    corecore