2,832 research outputs found

    A proposal of an architecture for the coordination level of intelligent machines

    Get PDF
    The issue of obtaining a practical, structured, and detailed description of an architecture for the Coordination Level of Center for Intelligent Robotic Systems for Sapce Exploration (CIRSSE) Testbed Intelligent Controller is addressed. Previous theoretical and implementation works were the departure point for the discussion. The document is organized as follows: after this introductory section, section 2 summarizes the overall view of the Intelligent Machine (IM) as a control system, proposing a performance measure on which to base its design. Section 3 addresses with some detail implementation issues. An hierarchic petri-net with feedback-based learning capabilities is proposed. Finally, section 4 is an attempt to address the feedback problem. Feedback is used for two functions: error recovery and reinforcement learning of the correct translations for the petri-net transitions

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    The planning coordinator: A design architecture for autonomous error recovery and on-line planning of intelligent tasks

    Get PDF
    Developing a robust, task level, error recovery and on-line planning architecture is an open research area. There is previously published work on both error recovery and on-line planning; however, none incorporates error recovery and on-line planning into one integrated platform. The integration of these two functionalities requires an architecture that possesses the following characteristics. The architecture must provide for the inclusion of new information without the destruction of existing information. The architecture must provide for the relating of pieces of information, old and new, to one another in a non-trivial rather than trivial manner (e.g., object one is related to object two under the following constraints, versus, yes, they are related; no, they are not related). Finally, the architecture must be not only a stand alone architecture, but also one that can be easily integrated as a supplement to some existing architecture. This thesis proposal addresses architectural development. Its intent is to integrate error recovery and on-line planning onto a single, integrated, multi-processor platform. This intelligent x-autonomous platform, called the Planning Coordinator, will be used initially to supplement existing x-autonomous systems and eventually replace them

    Plasma sprayed titanium coatings with/without a shroud

    Get PDF
    Abstract: Titanium coatings were deposited by plasma spraying with and without a shroud. The titanium coatings were then assessed by scanning electron microscopy. A comparison in microstructure between titanium coatings with and without the shroud was carried out. The results showed that the shroud played an important role in protecting the titanium particles from oxidation. The presence of the shroud led to a reduction in coating porosity. The reduction in air entrainment with t he shroud resulted in better heating of the particles, and an enhanced microstructure with lower porosity in the shrouded titanium coatings were observed compared to the air plasma sprayed counterpart

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port

    HAZOP: Our Primary Guide in the Land of Process Risks: How can we improve it and do more with its results?

    Get PDF
    PresentationAll risk management starts in determining what can happen. Reliable predictive analysis is key. So, we perform process hazard analysis, which should result in scenario identification and definition. Apart from material/substance properties, thereby, process conditions and possible deviations and mishaps form inputs. Over the years HAZOP has been the most important tool to identify potential process risks by systematically considering deviations in observables, by determining possible causes and consequences, and, if necessary, suggesting improvements. Drawbacks of HAZOP are known; it is effort-intensive while the results are used only once. The exercise must be repeated at several stages of process build-up, and when the process is operational, it must be re-conducted periodically. There have been many past attempts to semi- automate the HazOp procedure to ease the effort of conducting it, but lately new promising developments have been realized enabling also the use of the results for facilitating operational fault diagnosis. This paper will review the directions in which improved automation of HazOp is progressing and how the results, besides for risk analysis and design of preventive and protective measures, also can be used during operations for early warning of upcoming abnormal process situations
    corecore