9 research outputs found

    Interface-Resolving Simulations of Gas-Liquid Two-Phase Flows in Solid Structures of Different Wettability

    Get PDF
    This PhD study is devoted to numerical investigations of two-phase flows on and through elementary and complex solid structures of varying wettability. The phase-field method is developed and implemented in OpenFOAM®. The numerical method/code is verified by a series of test cases of two-phase flows, and then applied to investigate: (1) droplet wetting on solid surfaces; (2) air bubble rising and interacting with cellular structures and (3) gas-liquid interfacial flows in foam structures

    Numerical Simulation of Droplets with Dynamic Contact Angles

    Get PDF
    The numerical simulation of droplet impact is of interest for a vast variety of industrialprocesses, where practical experiments are costly and time-consuming. In these simulations, the dynamic contact angle is a key parameter, but the modeling of its behavior is poorly understood so far. One of the few models, which considers the overall physical context of the involved 'moving contact line problem' is Shikhmurzaev’s interface formation model. In addition to keeping the problem well-posed, all surface and bulk parameters, such as the contact angle, are determined as part of the solution rather than being prescribed functions of contact line speed. In this thesis, we couple an asymptotic version of the interface formation model with our three-dimensional incompressible two-phase Navier-Stokes solver NaSt3DGPF developed at the Institute for Numerical Simulation, Bonn University. With this sophisticated model, the droplet shapes, heights and diameters compare very well with those from a range of practical experiments

    Lubricant transport towards tribocontact in capillary surface structures

    Get PDF
    To counter lubricant shortage at a frictional contact (starvation), lubrication liquids, e.g. oils, are actively transported from a distant location towards the undersupplied tribocontact. This is done via small channels or generally via structures cut into a flat surface. In this way one can use capillary force as a cheap and reliable driver of the lubricant flow. Numerical modeling and experiments show that this method can be considered a promising new option to enhance tribocontact operation

    Modelling multiple-material flows on adaptive unstructured meshes.

    No full text
    The ability to distinguish between regions with different material properties is essential when numerically modelling many physical systems. Using a dual control volume mesh that avoids the problem of corner coupling, the HyperC face value scheme is extended to multiple dimensions and applied as a device for material advection on unstructured simplex meshes. The new scheme performs well at maintaining sharp interfaces between materials and is shown to produce small advection errors, comparable to those of standard material advection methods on structured meshes. To further minimise numerical diffusion of material interfaces a total variation bounded flux limiter, UltraC, is defined using a normalised variable diagram. Combining the material tracking scheme with dynamically adapting meshes, the use of a minimally dissipative bounded projection algorithm for interpolating fields from the old mesh to the new, optimised mesh is demonstrated that conserves the mass of each material. More generally, material conservation during the advection process is ensured through the coupling of the material tracking scheme to the momentum and mass equations. A new element pair for the discretisation of velocity and pressure is proposed that maintains the stability of the system while conserving the mass of materials. When modelling multiple materials the use of independent advection algorithms for each material can lead to the problem of non-physical material overlap. A novel coupled flux limiter is developed to overcome this problem. This automatically generalises to arbitrary numbers of materials. Using the fully coupled (and rigorously verified) multi-material model, several geophysically relevant simulations are presented examining the generation of waves by landslides. The model is validated by demonstrating close agreement between model predictions and experimental results of wave generation, propagation and run-up. The simulations also showcase the powerful capabilities of an unstructured, adaptive multi-material model in real world scenarios
    corecore