17,181 research outputs found

    Reliability and Condition-Based Maintenance Analysis of Deteriorating Systems Subject to Generalized Mixed Shock Model

    Get PDF
    For successful commercialization of evolving devices (e.g., micro-electro-mechanical systems, and biomedical devices), there must be new research focusing on reliability models and analysis tools that can assist manufacturing and maintenance of these devices. These advanced systems may experience multiple failure processes that compete against each other. Two major failure processes are identified to be deteriorating or degradation processes (e.g., wear, fatigue, erosion, corrosion) and random shocks. When these failure processes are dependent, it is a challenging problem to predict reliability of complex systems. This research aims to develop reliability models by exploring new aspects of dependency between competing risks of degradation-based and shock-based failure considering a generalized mixed shock model, and to develop new and effective condition-based maintenance policies based on the developed reliability models. In this research, different aspects of dependency are explored to accurately estimate the reliability of complex systems. When the degradation rate is accelerated as a result of withstanding a particular shock pattern, we develop reliability models with a changing degradation rate for four different shock patterns. When the hard failure threshold reduces due to changes in degradation, we investigate reliability models considering the dependence of the hard failure threshold on the degradation level for two different scenarios. More generally, when the degradation rate and the hard failure threshold can simultaneously transition multiple times, we propose a rich reliability model for a new generalized mixed shock model that is a combination of extreme shock model, ÎŽ-shock model and run shock model. This general assumption reflects complex behaviors associated with modern systems and structures that experience multiple sources of external shocks. Based on the developed reliability models, we introduce new condition-based maintenance strategies by including various maintenance actions (e.g., corrective replacement, preventive replacement, and imperfect repair) to minimize the expected long-run average maintenance cost rate. The decisions for maintenance actions are made based on the health condition of systems that can be observed through periodic inspection. The reliability and maintenance models developed in this research can provide timely and effective tools for decision-makers in manufacturing to economically optimize operational decisions for improving reliability, quality and productivity.Industrial Engineering, Department o

    Embedded intelligence for electrical network operation and control

    Get PDF
    Integrating multiple types of intelligent, mulitagent data analysis within a smart grid can pave the way for flexible, extensible, and robust solutions to power network management

    Optimal Periodic Inspection of a Stochastically Degrading System

    Get PDF
    This thesis develops and analyzes a procedure to determine the optimal inspection interval that maximizes the limiting average availability of a stochastically degrading component operating in a randomly evolving environment. The component is inspected periodically, and if the total observed cumulative degradation exceeds a fixed threshold value, the component is instantly replaced with a new, statistically identical component. Degradation is due to a combination of continuous wear caused by the component\u27s random operating environment, as well as damage due to randomly occurring shocks of random magnitude. In order to compute an optimal inspection interval and corresponding limiting average availability, a nonlinear program is formulated and solved using a direct search algorithm in conjunction with numerical Laplace transform inversion. Techniques are developed to significantly decrease the time required to compute the approximate optimal solutions. The mathematical programming formulation and solution techniques are illustrated through a series of increasingly complex example problems

    Variable Capacity Utilization, Ambient Temperature Shocks and Generation Asset Valuation

    Get PDF
    This paper discusses generation asset valuation in a framework where capital utilization decisions are endogenous. We use real options approach for valuation of natural gas fuelled turbines. Capital utilization choices that we explore include turning on/off the unit, operating the unit at increased firing temperatures (overfiring), and conducting preventive maintenance. Overfiring provides capacity enhancement which comes at the expense of reduced maintenance interval and increased costs of part replacement. We consider the costs and benefits of overfiring in attempt to maximize the asset value by optimally exercising the overfire option. In addition to stochastic processes governing prices, we incorporate an exogenous productivity shock: ambient temperature. We consider how variation in ambient temperature affects the asset value through its effect on gas turbine’s productivity.Electricity generation asset valuation; overfire option; price uncertainty

    Modeling of pipeline corrosion degradation mechanism with a LĂ©vy Process based on ILI (In-Line) inspections

    Get PDF
    International audienceIn pipelines, one of the primary testing procedures used to identify the e↔ects and evolution of corrosion over time is through In-Line Inspections (ILI). ILI inspections provide detailed information regarding the inner and outer pipeline condition based on the remaining wall thickness. Based on this information, di↔erent approaches have been proposed to predict the degradation extent of the defects detected. However, these predictions are subject of uncertainties due to the inspection tool and the degradation process that poses some challenges for assessing an entire pipeline within the timespan between two inspections. To address this problem, ILI data was used to formulate a degradation model for steel-pipe degradation based on a Mixed LĂ©vy Process. The model combines a Gamma and Compound Poisson Processes aimed for a better description of the degradation reported by the ILI data. The model seeks to estimate corrosion lifetime distribution and the mean time to failure (MTTF) more accurately. The model was tested on an actual segment of an oil pipeline, and the results have been used to support a preventive maintenance program

    Integrating Random Shocks Into Multi-State Physics Models of Degradation Processes for Component Reliability Assessment

    No full text
    International audienceWe extend a multi-state physics model (MSPM) framework for component reliability assessment by including semi-Markov and random shock processes. Two mutually ex-clusive types of random shocks are considered: extreme, and cumulative. Extreme shocks lead the component to immediate failure, whereas cumulative shocks simply affect the component degradation rates. General dependences between the degradation and the two types of random shocks are considered. A Monte Carlo simulation algorithm is implemented to compute component state probabilities. An illustrative example is presented, and a sensitivity analysis is conducted on the model parameters. The results show that our extended model is able to characterize the influences of different types of random shocks onto the component state probabilities and the reliability estimates

    Firm productivity, profit and business goal satisfaction: an assessment of maintenance decision effects on small and medium scale enterprises (SME’s)

    Full text link
    [EN] This study was carried out to identify which factors are most relevant to managers of SMEs in maintenance decision making, and to investigate how these factors influence the realization of business goals satisfactorily, using structural equation modelling, partial least square design (PLS-SEM) to establish significant relationships between manifest and latent variables. A study of maintenance cost vis a vis the number of maintenance works carried out and profits realized was conducted to ascertain correlations and identify which factors played key roles in profit maximization. Results showed that with increasing level of maintenance for SMEs, profit margins reduced significantly. Also, an R2 value of 0.83 showed that the latent variable, business goal satisfaction was explained to a high degree (83%) by the manifest variables. Rentals of equipment from third parties (0.27), halting production (0.11) and outsourcing (0.39) were less considered for business sustainability per correlation coefficients than funds (0.79), and the possibilities to carry out both corrective (0.64) and preventive (0.58) maintenance works.  F-square value greater than zero was realized (0.387) and this showed reliability of the both inner and outer models. These findings can be used in building a decision tool or framework that will best suit SMEs with high financial budget constraints.Owusu-Mensah, D.; Quaye, EK.; Brako, L. (2021). Firm productivity, profit and business goal satisfaction: an assessment of maintenance decision effects on small and medium scale enterprises (SME’s). Journal of Applied Research in Technology & Engineering. 2(1):23-31. https://doi.org/10.4995/jarte.2021.14615OJS233121Al-Tabbaa, O., Ankrah, S. (2016). Social capital to facilitate 'engineered'university-industry collaboration for technology transfer: A dynamic perspective. Technological Forecasting and Social Change, 104, 1-15. https://doi.org/10.1016/j.techfore.2015.11.027AlarcĂłn, D., SĂĄnchez, J.A., Pablo de Olavide, U. (2015). Assessing convergent and discriminant validity in the ADHD-R IV rating scale: User-written commands for Average Variance Extracted (AVE), Composite Reliability (CR), and HeterotraitMonotrait ratio of correlations (HTMT). In Spanish STATA Meeting (pp. 1-39). Universidad Pablo de Olavide.Barone, G., Frangopol, D.M. (2014). Life-cycle maintenance of deteriorating structures by multi-objective optimization involving reliability, risk, availability, hazard and cost. Structural Safety, 48, 40-50. https://doi.org/10.1016/j.strusafe.2014.02.002Bertolini, M., Bevilacqua, M. (2006). A combined goal programming-AHP approach to maintenance selection problem. Reliability Engineering & System Safety, 91(7), 839-848. https://doi.org/10.1016/j.ress.2005.08.006Hair, Jr, Joseph, F., Tomas, G., Hult, M., Ringle, C., Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.Jiang, R., Murthy, D.N.P. (2008). Maintenance: Decision Models for Management. Science press, Beijing, China.Joo, S-J. (2009). Scheduling preventive maintenance for modular designed components: A dynamic approach. European Journal of Operational Research, 192(2), 512-520. https://doi.org/10.1016/j.ejor.2007.09.033Lee, H. (2005). A cost/benefit model for investments in inventory and preventive maintenance in an imperfect production system. Computers and Industrial Engineering, 48(1), 55-68. https://doi.org/10.1016/j.cie.2004.07.008Liu, X., Wang, W., Peng, R. (2015). An integrated production: inventory and preventive maintenance model for a multiproduct production system. Reliab Eng Syst Safety, 137(2), 76-86. https://doi.org/10.1016/j.ress.2015.01.002Liu, X., Zheng, J., Fu, J., Ji, J., Chen, G. (2017). Multi-level optimization of maintenance plan for natural gas pipeline systems subject to external corrosion. Journal of Natural Gas Science and Engineering, 50, 64-73. https://doi.org/10.1016/j.jngse.2017.11.021Ma, J., Cheng, L., Li, D. (2018). Road Maintenance Optimization Model Based on Dynamic Programming in Urban Traffic Network. Journal of Advanced Transportation. Article ID 4539324, 11 pages. https://doi.org/10.1155/2018/4539324Marquez, A.C., Gupta, J.N.D. (2006). Contemporary maintenance management: process, framework and supporting pillars. Omega, 34(3), 313-326. https://doi.org/10.1016/j.omega.2004.11.003Nourelfath, M., Nahas, N. & Ben-Daya, M. (2015). Integrated preventive maintenance and production decisions for imperfect processes. Reliab Eng Syst Safety, 148, 21-31. https://doi.org/10.1016/j.ress.2015.11.015Olivotti D., Passlick J., Dreyer S., Lebek B., Breitner M.H. (2018) Maintenance Planning Using Condition Monitoring Data. In: Kliewer N., Ehmke J., Borndörfer R.(eds) Operations Research Proceedings 2017. https://doi.org/10.1007/978-3-319-89920-6_72Pallant, J. (2007). SPSS survival manual, 3rd. Edition. McGrath Hill.Parida, A., Kumar, U. (2016). Applications and Case Studies. Maintenance performance measurement (MPM): issues and challenges. Journal of Quality in Maintenance Engineering, 12(3), 239-251. https://doi.org/10.1108/13552510610685084Qiu, Q., Cui, L., Shen, J., Yang, L. (2017). Optimal maintenance policy considering maintenance errors for systems operating under performance-based contracts. Comput Industr Eng., 112, 147-155. https://doi.org/10.1016/j.cie.2017.08.025Ruschel, E., Santos, E.A.P. & Loures, E.D.F.R. (2017). Industrial maintenance decision-making: a systematic literature review. J Manuf Syst., 45, 180-194. https://doi.org/10.1016/j.jmsy.2017.09.003Shayesteh, E., Yu, J., Hilber, P. (2018). Maintenance optimization of power systems with renewable energy sources integrated. Energy, 149, 577-586. https://doi.org/10.1016/j.energy.2018.02.066Shen, J., Zhu, K. (2017). An uncertain single machine scheduling problem with periodic maintenance. Knowledge-Based Systems, 144, 32-41. https://doi.org/10.1016/j.knosys.2017.12.021Stebbins, R. A. (2001). Exploratory research in the social sciences (Vol. 48). Sage.Van, P.D., BĂ©renguer, C. (2012). Condition-based maintenance with imperfect preventive repairs for a deteriorating production system. Qual Reliab Eng., 28(6), 624-633. https://doi.org/10.1002/qre.1431Verbert, K., Schutter, B.D., Babuska, R. (2017). Timely condition-based maintenance planning for multi-component systems. Reliab Eng Syst Safety, 159, 310-321. https://doi.org/10.1016/j.ress.2016.10.032Yang, L., Ma, X., Zhao, Y. (2017). A condition-based maintenance model for a three-state system subject to degradation and environmental shocks. Comput Industr Eng., 105, 210-222. https://doi.org/10.1016/j.cie.2017.01.01

    Life Expectancy and the Environment

    Get PDF
    We present an OLG model in which life expectancy and environmental quality dynamics are jointly determined. Agents may invest in environmental care, depending on how much they expect to live. In turn, environmental conditions affect life expectancy. As a result, our model produces a positive correlation between longevity and environmental quality, both in the long-run and along the transition path. Eventually, multiple equilibria may also arise: some countries might be caught in a low-life-expectancy / low-environmental-quality trap. This outcome is consistent with stylized facts relating life expectancy and environmental performance measures. We also discuss the welfare and policy implications of the intergenerational externalities generated by individual choices. Finally, we show that our results are robust to the introduction of growth dynamics based on physical or human capital accumulation.environmental quality, life expectancy, poverty traps, human capital
    • 

    corecore