1,960 research outputs found

    Influence of cardiac tissue anisotropy on re-entrant activation in computational models of ventricular fibrillation

    No full text
    The aim of this study was to establish the role played by anisotropic diffusion in (i) the number of filaments and epicardial phase singularities that sustain ventricular fibrillation in the heart, (ii) the lifetimes of filaments and phase singularities, and (iii) the creation and annihilation dynamics of filaments and phase singularities. A simplified monodomain model of cardiac tissue was used, with membrane excitation described by a simplified 3-variable model. The model was configured so that a single re-entrant wave was unstable, and fragmented into multiple re-entrant waves. Re-entry was then initiated in tissue slabs with varying anisotropy ratio. The main findings of this computational study are: (i) anisotropy ratio influenced the number of filaments Sustaining simulated ventricular fibrillation, with more filaments present in simulations with smaller values of transverse diffusion coefficient, (ii) each re-entrant filament was associated with around 0.9 phase singularities on the surface of the slab geometry, (iii) phase singularities were longer lived than filaments, and (iv) the creation and annihilation of filaments and phase singularities were linear functions of the number of filaments and phase singularities, and these relationships were independent of the anisotropy ratio. This study underscores the important role played by tissue anisotropy in cardiac ventricular fibrillation

    Virtual cardiac monolayers for electrical wave propagation

    Get PDF
    The complex structure of cardiac tissue is considered to be one of the main determinants of an arrhythmogenic substrate. This study is aimed at developing the first mathematical model to describe the formation of cardiac tissue, using a joint in silico-in vitro approach. First, we performed experiments under various conditions to carefully characterise the morphology of cardiac tissue in a culture of neonatal rat ventricular cells. We considered two cell types, namely, cardiomyocytes and fibroblasts. Next, we proposed a mathematical model, based on the Glazier-Graner-Hogeweg model, which is widely used in tissue growth studies. The resultant tissue morphology was coupled to the detailed electrophysiological Korhonen-Majumder model for neonatal rat ventricular cardiomyocytes, in order to study wave propagation. The simulated waves had the same anisotropy ratio and wavefront complexity as those in the experiment. Thus, we conclude that our approach allows us to reproduce the morphological and physiological properties of cardiac tissue

    Nonlinear physics of electrical wave propagation in the heart: a review

    Get PDF
    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that are triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media and their application to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact in cardiac arrhythmias.Peer ReviewedPreprin

    Filament behavior in a computational model of ventricular fibrillation in the canine heart

    Get PDF
    The aim of this paper was to quantify the behavior of filaments in a computational model of re-entrant ventricular fibrillation. We simulated cardiac activation in an anisotropic monodomain with excitation described by the Fenton-Karma model with Beeler-Reuter restitution, and geometry by the Auckland canine ventricle. We initiated re-entry in the left and right ventricular free walls, as well as the septum. The number of filaments increased during the first 1.5 s before reaching a plateau with a mean value of about 36 in each simulation. Most re-entrant filaments were between 10 and 20 mm long. The proportion of filaments touching the epicardial surface was 65%, but most of these were visible for much less than one period of re-entry. This paper shows that useful information about filament dynamics can be gleaned from models of fibrillation in complex geometries, and suggests that the interplay of filament creation and destruction may offer a target for antifibrillatory therap

    A note on stress-driven anisotropic diffusion and its role in active deformable media

    Full text link
    We propose a new model to describe diffusion processes within active deformable media. Our general theoretical framework is based on physical and mathematical considerations, and it suggests to use diffusion tensors directly coupled to mechanical stress. A proof-of-concept experiment and the proposed generalised reaction-diffusion-mechanics model reveal that initially isotropic and homogeneous diffusion tensors turn into inhomogeneous and anisotropic quantities due to the intrinsic structure of the nonlinear coupling. We study the physical properties leading to these effects, and investigate mathematical conditions for its occurrence. Together, the experiment, the model, and the numerical results obtained using a mixed-primal finite element method, clearly support relevant consequences of stress-assisted diffusion into anisotropy patterns, drifting, and conduction velocity of the resulting excitation waves. Our findings also indicate the applicability of this novel approach in the description of mechano-electrical feedback in actively deforming bio-materials such as the heart

    Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics

    Full text link
    We numerically investigate the role of mechanical stress in modifying the conductivity properties of the cardiac tissue and its impact in computational models for cardiac electromechanics. We follow a theoretical framework recently proposed in [Cherubini, Filippi, Gizzi, Ruiz-Baier, JTB 2017], in the context of general reaction-diffusion-mechanics systems using multiphysics continuum mechanics and finite elasticity. In the present study, the adapted models are compared against preliminary experimental data of pig right ventricle fluorescence optical mapping. These data contribute to the characterization of the observed inhomogeneity and anisotropy properties that result from mechanical deformation. Our novel approach simultaneously incorporates two mechanisms for mechano-electric feedback (MEF): stretch-activated currents (SAC) and stress-assisted diffusion (SAD); and we also identify their influence into the nonlinear spatiotemporal dynamics. It is found that i) only specific combinations of the two MEF effects allow proper conduction velocity measurement; ii) expected heterogeneities and anisotropies are obtained via the novel stress-assisted diffusion mechanisms; iii) spiral wave meandering and drifting is highly mediated by the applied mechanical loading. We provide an analysis of the intrinsic structure of the nonlinear coupling using computational tests, conducted using a finite element method. In particular, we compare static and dynamic deformation regimes in the onset of cardiac arrhythmias and address other potential biomedical applications

    Incorporating Inductances in Tissue-Scale Models of Cardiac Electrophysiology

    Get PDF
    In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and [...].Comment: 20 pages, 12 figure

    Dispersion of cardiac action potential duration and the initiation of re-entry: A computational study

    Get PDF
    BACKGROUND: The initiation of re-entrant cardiac arrhythmias is associated with increased dispersion of repolarisation, but the details are difficult to investigate either experimentally or clinically. We used a computational model of cardiac tissue to study systematically the association between action potential duration (APD) dispersion and susceptibility to re-entry. METHODS: We simulated a 60 Ă— 60 mm 2 D sheet of cardiac ventricular tissue using the Luo-Rudy phase 1 model, with maximal conductance of the K+ channel gKmax set to 0.004 mS mm-2. Within the central 40 Ă— 40 mm region we introduced square regions with prolonged APD by reducing gKmax to between 0.001 and 0.003 mS mm-2. We varied (i) the spatial scale of these regions, (ii) the magnitude of gKmax in these regions, and (iii) cell-to-cell coupling. RESULTS: Changing spatial scale from 5 to 20 mm increased APD dispersion from 49 to 102 ms, and the susceptible window from 31 to 86 ms. Decreasing gKmax in regions with prolonged APD from 0.003 to 0.001 mS mm-2 increased APD dispersion from 22 to 70 ms, and the susceptible window from <1 to 56 ms. Decreasing cell-to-cell coupling by changing the diffusion coefficient from 0.2 to 0.05 mm2 ms-1 increased APD dispersion from 57 to 88 ms, and increased the susceptible window from 41 to 74 ms. CONCLUSION: We found a close association between increased APD dispersion and susceptibility to re-entrant arrhythmias, when APD dispersion is increased by larger spatial scale of heterogeneity, greater electrophysiological heterogeneity, and weaker cell-to-cell coupling

    Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity

    Full text link
    It has become widely accepted that the most dangerous cardiac arrhythmias are due to re- entrant waves, i.e., electrical wave(s) that re-circulate repeatedly throughout the tissue at a higher frequency than the waves produced by the heart's natural pacemaker (sinoatrial node). However, the complicated structure of cardiac tissue, as well as the complex ionic currents in the cell, has made it extremely difficult to pinpoint the detailed mechanisms of these life-threatening reentrant arrhythmias. A simplified ionic model of the cardiac action potential (AP), which can be fitted to a wide variety of experimentally and numerically obtained mesoscopic characteristics of cardiac tissue such as AP shape and restitution of AP duration and conduction velocity, is used to explain many different mechanisms of spiral wave breakup which in principle can occur in cardiac tissue. Some, but not all, of these mechanisms have been observed before using other models; therefore, the purpose of this paper is to demonstrate them using just one framework model and to explain the different parameter regimes or physiological properties necessary for each mechanism (such as high or low excitability, corresponding to normal or ischemic tissue, spiral tip trajectory types, and tissue structures such as rotational anisotropy and periodic boundary conditions). Each mechanism is compared with data from other ionic models or experiments to illustrate that they are not model-specific phenomena. The fact that many different breakup mechanisms exist has important implications for antiarrhythmic drug design and for comparisons of fibrillation experiments using different species, electromechanical uncoupling drugs, and initiation protocols.Comment: 128 pages, 42 figures (29 color, 13 b&w
    • …
    corecore