4,252 research outputs found

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    The impact of fruit flavonoids on memory and cognition

    Get PDF
    There is intense interest in the studies related to the potential of phytochemical-rich foods to prevent age-related neurodegeneration and cognitive decline. Recent evidence has indicated that a group of plant-derived compounds known as flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. In particular, evidence suggests that foods rich in three specific flavonoid sub-groups, the flavanols, anthocyanins and/or flavanones, possess the greatest potential to act on the cognitive processes. This review will highlight the evidence for the actions of such flavonoids, found most commonly in fruits, such as apples, berries and citrus, on cognitive behaviour and the underlying cellular architecture. Although the precise mechanisms by which these flavonoids act within the brain remain unresolved, the present review focuses on their ability to protect vulnerable neurons and enhance the function of existing neuronal structures, two processes known to be influenced by flavonoids and also known to underpin neuro-cognitive function. Most notably, we discuss their selective interactions with protein kinase and lipid kinase signalling cascades (i.e. phosphoinositide-3 kinase/Akt and mitogen-activated protein kinase pathways), which regulate transcription factors and gene expression involved in both synaptic plasticity and cerebrovascular blood flow. Overall, the review attempts to provide an initial insight into the potential impact of regular flavonoid-rich fruit consumption on normal or abnormal deteriorations in cognitive performance

    Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research to other measures of neuronal activity it is vital to understand the underlying neurovascular coupling mechanism. Currently, there is no consensus on the relative roles of synaptic and spiking activity in the generation of the BOLD response. Here we designed a modelling framework to investigate different neurovascular coupling mechanisms. We use Electroencephalographic (EEG) and fMRI data from a visual stimulation task together with biophysically informed mathematical models describing how neuronal activity generates the BOLD signals. These models allow us to non-invasively infer the degree of local synaptic and spiking activity in the healthy human brain. In addition, we use Bayesian model comparison to decide between neurovascular coupling mechanisms. We show that the BOLD signal is dependent upon both the synaptic and spiking activity but that the relative contributions of these two inputs are dependent upon the underlying neuronal firing rate. When the underlying neuronal firing is low then the BOLD response is best explained by synaptic activity. However, when the neuronal firing rate is high then both synaptic and spiking activity are required to explain the BOLD signal

    Computational study of resting state network dynamics

    Get PDF
    Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il software The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il resting state attraverso una breve revisione storica della sua scoperta, quindi si passano in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale, per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito, si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strutture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spiegato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico modello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si danno maggiori informazioni sul software The Virtual Brain, si definisce il modello di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’ adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave nell'emergenza di questa attività di fondo del cervello. Questi risultati vengono poi confrontati con le più importanti e recenti ricerche in questo ambito, le quali confermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze che porterebbe in campo medico e clinico una piena comprensione del fenomeno del resting state e la possibilità di virtualizzare l’attività cerebrale

    Balanced excitatory and inhibitory synaptic currents promote efficient coding and metabolic efficiency

    Get PDF
    A balance between excitatory and inhibitory synaptic currents is thought to be important for several aspects of information processing in cortical neurons in vivo, including gain control, bandwidth and receptive field structure. These factors will affect the firing rate of cortical neurons and their reliability, with consequences for their information coding and energy consumption. Yet how balanced synaptic currents contribute to the coding efficiency and energy efficiency of cortical neurons remains unclear. We used single compartment computational models with stochastic voltage-gated ion channels to determine whether synaptic regimes that produce balanced excitatory and inhibitory currents have specific advantages over other input regimes. Specifically, we compared models with only excitatory synaptic inputs to those with equal excitatory and inhibitory conductances, and stronger inhibitory than excitatory conductances (i.e. approximately balanced synaptic currents). Using these models, we show that balanced synaptic currents evoke fewer spikes per second than excitatory inputs alone or equal excitatory and inhibitory conductances. However, spikes evoked by balanced synaptic inputs are more informative (bits/spike), so that spike trains evoked by all three regimes have similar information rates (bits/s). Consequently, because spikes dominate the energy consumption of our computational models, approximately balanced synaptic currents are also more energy efficient than other synaptic regimes. Thus, by producing fewer, more informative spikes approximately balanced synaptic currents in cortical neurons can promote both coding efficiency and energy efficiency

    Human neuromaturation, juvenile extreme energy liability, and adult cognition/cooperation

    Get PDF
    Human childhood and adolescence is the period in which adult cognitive competences (including those that create the unique cooperativeness of humans) are acquired. It is also a period when neural development puts a juvenile’s survival at risk due to the high vulnerability of their brain to energy shortage. The brain of a 4 year-old human uses ≈50% of its total energy expenditure (TEE) (cf. adult ≈12%). This brain expensiveness is due to (1) the brain making up ≈6% of a 4 year-old body compared to 2% in an adult, and (2) increased energy metabolism that is ≈100% greater in the gray matter of a child than in an adult (a result of the extra costs of synaptic neuromaturation). The high absolute number of neurons in the human brain requires as part of learning a prolonged neurodevelopment. This refines inter- and intraarea neural networks so they become structured with economical “small world” connectivity attributes (such as hub organization and high cross-brain differentiation/integration). Once acquired, this connectivity enables highly complex adult cognitive capacities. Humans evolved as hunter-gatherers. Contemporary hunter-gatherers (and it is also likely Middle Paleolithic ones) pool high energy foods in an egalitarian manner that reliably supported mothers and juveniles with high energy intake. This type of sharing unique to humans protects against energy shortage happening to the immature brain. This cooperation that protects neuromaturation arises from adults having the capacity to communicate and evaluate social reputation, cognitive skills that exist as a result of extended neuromaturation. Human biology is therefore characterized by a presently overlooked bioenergetic-cognition loop (called here the “HEBE ring”) by which extended neuromaturation creates the cooperative abilities in adults that support juveniles through the potentially vulnerable period of the neurodevelopment needed to become such adults

    Human metabolic adaptations and prolonged expensive neurodevelopment: A review

    Get PDF
    1.	After weaning, human hunter-gatherer juveniles receive substantial (≈3.5-7 MJ day^-1^), extended (≈15 years) and reliable (kin and nonkin food pooling) energy provision.
2.	The childhood (pediatric) and the adult human brain takes a very high share of both basal metabolic rate (BMR) (child: 50-70%; adult: ≈20%) and total energy expenditure (TEE) (child: 30-50%; adult: ≈10%).
3.	The pediatric brain for an extended period (≈4-9 years-of-age) consumes roughly 50% more energy than the adult one, and after this, continues during adolescence, at a high but declining rate. Within the brain, childhood cerebral gray matter has an even higher 1.9 to 2.2-fold increased energy consumption. 
4.	This metabolic expensiveness is due to (i) the high cost of synapse activation (74% of brain energy expenditure in humans), combined with (ii), a prolonged period of exuberance in synapse numbers (up to double the number present in adults). Cognitive development during this period associates with volumetric changes in gray matter (expansion and contraction due to metabolic related size alterations in glial cells and capillary vascularization), and in white matter (expansion due to myelination). 
5.	Amongst mammals, anatomically modern humans show an unique pattern in which very slow musculoskeletal body growth is followed by a marked adolescent size/stature spurt. This pattern of growth contrasts with nonhuman primates that have a sustained fast juvenile growth with only a minor period of puberty acceleration. The existence of slow childhood growth in humans has been shown to date back to 160,000 BP. 
6.	Human children physiologically have a limited capacity to protect the brain from plasma glucose fluctuations and other metabolic disruptions. These can arise in adults, during prolonged strenuous exercise when skeletal muscle depletes plasma glucose, and produces other metabolic disruptions upon the brain (hypoxia, hyperthermia, dehydration and hyperammonemia). These are proportional to muscle mass.
7.	Children show specific adaptations to minimize such metabolic disturbances. (i) Due to slow body growth and resulting small body size, they have limited skeletal muscle mass. (ii) They show other adaptations such as an exercise specific preference for free fatty acid metabolism. (iii) While children are generally more active than adolescents and adults, they avoid physically prolonged intense exertion. 
8.	Childhood has a close relationship to high levels of energy provision and metabolic adaptations that support prolonged synaptic neurodevelopment. 
&#xa
    corecore