10 research outputs found

    Comparative Transcriptional Network Modeling of Three PPAR-α/γ Co-Agonists Reveals Distinct Metabolic Gene Signatures in Primary Human Hepatocytes

    Get PDF
    Aims: To compare the molecular and biologic signatures of a balanced dual peroxisome proliferator-activated receptor (PPAR)-α/γ agonist, aleglitazar, with tesaglitazar (a dual PPAR-α/γ agonist) or a combination of pioglitazone (Pio; PPAR-γ agonist) and fenofibrate (Feno; PPAR-α agonist) in human hepatocytes. Methods and Results: Gene expression microarray profiles were obtained from primary human hepatocytes treated with EC50-aligned low, medium and high concentrations of the three treatments. A systems biology approach, Causal Network Modeling, was used to model the data to infer upstream molecular mechanisms that may explain the observed changes in gene expression. Aleglitazar, tesaglitazar and Pio/Feno each induced unique transcriptional signatures, despite comparable core PPAR signaling. Although all treatments inferred qualitatively similar PPAR-α signaling, aleglitazar was inferred to have greater effects on high- and low-density lipoprotein cholesterol levels than tesaglitazar and Pio/Feno, due to a greater number of gene expression changes in pathways related to high-density and low-density lipoprotein metabolism. Distinct transcriptional and biologic signatures were also inferred for stress responses, which appeared to be less affected by aleglitazar than the comparators. In particular, Pio/Feno was inferred to increase NFE2L2 activity, a key component of the stress response pathway, while aleglitazar had no significant effect. All treatments were inferred to decrease proliferative signaling. Conclusions: Aleglitazar induces transcriptional signatures related to lipid parameters and stress responses that are unique from other dual PPAR-α/γ treatments. This may underlie observed favorable changes in lipid profiles in animal and clinical studies with aleglitazar and suggests a differentiated gene profile compared with other dual PPAR-α/γ agonist treatments

    Developing Network-Based Systems Toxicology by Combining Transcriptomics Data with Literature Mining and Multiscale Quantitative Modeling

    Get PDF
    We describe how the genome-wide transcriptional profiling can be used in network-based systems toxicology, an approach leveraging biological networks for assessing the health risks of exposure to chemical compounds. Driven by the technological advances changing the ways in which data are generated, systems toxicology has allowed traditional toxicity endpoints to be enhanced with far deeper levels of analysis. In combination, new experimental and computational methods have offered the potential for more effective, efficient, and reliable toxicological testing strategies. We illustrate these advances by the “network perturbation amplitude” methodology that quantifies the effects of exposure treatments on biological mechanisms represented by causal networks. We also describe recent developments in the assembly of high-quality causal biological networks using crowdsourcing and text-mining approaches. We further show how network-based approaches can be integrated into the multiscale modeling framework of response to toxicological exposure. Finally, we combine biological knowledge assembly and multiscale modeling to report on the promising developments of the “quantitative adverse outcome pathway” concept, which spans multiple levels of biological organization, from molecules to population, and has direct relevance in the context of the “Toxicity Testing in the 21st century” vision of the US National Research Council

    Construction of a Suite of Computable Biological Network Models Focused on Mucociliary Clearance in the Respiratory Tract

    Get PDF
    Mucociliary clearance (MCC), considered as a collaboration of mucus secreted from goblet cells, the airway surface liquid layer, and the beating of cilia of ciliated cells, is the airways’ defense system against airborne contaminants. Because the process is well described at the molecular level, we gathered the available information into a suite of comprehensive causal biological network (CBN) models. The suite consists of three independent models that represent (1) cilium assembly, (2) ciliary beating, and (3) goblet cell hyperplasia/metaplasia and that were built in the Biological Expression Language, which is both human-readable and computable. The network analysis of highly connected nodes and pathways demonstrated that the relevant biology was captured in the MCC models. We also show the scoring of transcriptomic data onto these network models and demonstrate that the models capture the perturbation in each dataset accurately. This work is a continuation of our approach to use computational biological network models and mathematical algorithms that allow for the interpretation of high-throughput molecular datasets in the context of known biology. The MCC network model suite can be a valuable tool in personalized medicine to further understand heterogeneity and individual drug responses in complex respiratory diseases

    Enhancement of COPD Biological Networks Using a Web-Based Collaboration Interface

    Get PDF
    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website (https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks

    Enhancement of COPD biological networks using a web-based collaboration interface

    Get PDF
    The construction and application of biological network models is an approach that offers a holistic way to understand biological processes involved in disease. Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory disease of the airways for which therapeutic options currently are limited after diagnosis, even in its earliest stage. COPD network models are important tools to better understand the biological components and processes underlying initial disease development. With the increasing amounts of literature that are now available, crowdsourcing approaches offer new forms of collaboration for researchers to review biological findings, which can be applied to the construction and verification of complex biological networks. We report the construction of 50 biological network models relevant to lung biology and early COPD using an integrative systems biology and collaborative crowd-verification approach. By combining traditional literature curation with a data-driven approach that predicts molecular activities from transcriptomics data, we constructed an initial COPD network model set based on a previously published non-diseased lung-relevant model set. The crowd was given the opportunity to enhance and refine the networks on a website ( https://bionet.sbvimprover.com/) and to add mechanistic detail, as well as critically review existing evidence and evidence added by other users, so as to enhance the accuracy of the biological representation of the processes captured in the networks. Finally, scientists and experts in the field discussed and refined the networks during an in-person jamboree meeting. Here, we describe examples of the changes made to three of these networks: Neutrophil Signaling, Macrophage Signaling, and Th1-Th2 Signaling. We describe an innovative approach to biological network construction that combines literature and data mining and a crowdsourcing approach to generate a comprehensive set of COPD-relevant models that can be used to help understand the mechanisms related to lung pathobiology. Registered users of the website can freely browse and download the networks

    A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue

    Get PDF
    BACKGROUND: Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans exposed to chronic levels of environmental stress, including inhaled cigarette smoke (CS). Systems biology data sets (e.g., transcriptomics, phosphoproteomics, metabolomics) could enable comprehensive investigation of the biological impact of these stressors. However, detailed mechanistic networks are needed to determine which specific pathways are activated in response to different stressors and to drive the qualitative and eventually quantitative assessment of these data. A current limiting step in this process is the availability of detailed mechanistic networks that can be used as an analytical substrate. RESULTS: We have built a detailed network model that captures the biology underlying the physiological cellular response to endogenous and exogenous stressors in non-diseased mammalian pulmonary and cardiovascular cells. The contents of the network model reflect several diverse areas of signaling, including oxidative stress, hypoxia, shear stress, endoplasmic reticulum stress, and xenobiotic stress, that are elicited in response to common pulmonary and cardiovascular stressors. We then tested the ability of the network model to identify the mechanisms that are activated in response to CS, a broad inducer of cellular stress. Using transcriptomic data from the lungs of mice exposed to CS, the network model identified a robust increase in the oxidative stress response, largely mediated by the anti-oxidant NRF2 pathways, consistent with previous reports on the impact of CS exposure in the mammalian lung. CONCLUSIONS: The results presented here describe the construction of a cellular stress network model and its application towards the analysis of environmental stress using transcriptomic data. The proof-of-principle analysis described here, coupled with the future development of additional network models covering distinct areas of biology, will help to further clarify the integrated biological responses elicited by complex environmental stressors such as CS, in pulmonary and cardiovascular cells

    Knowledge Management approaches to model pathophysiological mechanisms and discover drug targets in Multiple Sclerosis

    Get PDF
    Multiple Sclerosis (MS) is one of the most prevalent neurodegenerative diseases for which a cure is not yet available. MS is a complex disease for numerous reasons; its etiology is unknown, the diagnosis is not exclusive, the disease course is unpredictable and therapeutic response varies from patient to patient. There are four established subtypes of MS, which are segregated based on different characteristics. Many environmental and genetic factors are considered to play a role in MS etiology, including viral infection, vitamin D deficiency, epigenetical changes and some genes. Despite the large body of diverse scientific knowledge, from laboratory findings to clinical trials, no integrated model which portrays the underlying mechanisms of the disease state of MS is available. Contemporary therapies only provide reduction in the severity of the disease, and there is an unmet need of efficient drugs. The present thesis provides a knowledge-based rationale to model MS disease mechanisms and identify potential drug candidates by using systems biology approaches. Systems biology is an emerging field which utilizes the computational methods to integrate datasets of various granularities and simulate the disease outcome. It provides a framework to model molecular dynamics with their precise interaction and contextual details. The proposed approaches were used to extract knowledge from literature by state of the art text mining technologies, integrate it with proprietary data using semantic platforms, and build different models (molecular interactions map, agent based models to simulate disease outcome, and MS disease progression model with respect to time). For better information representation, disease ontology was also developed and a methodology of automatic enrichment was derived. The models provide an insight into the disease, and several pathways were explored by combining the therapeutics and the disease-specific prescriptions. The approaches and models developed in this work resulted in the identification of novel drug candidates that are backed up by existing experimental and clinical knowledge

    UNRAVELING THE COMPLEX GENETICS OF NEUROLOGICAL DISORDERS

    Get PDF
    corecore