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Abstract

We describe how the genome-wide transcriptional profiling can be used in network-
based systems toxicology, an approach leveraging biological networks for assessing 
the health risks of exposure to chemical compounds. Driven by the technological 
advances changing the ways in which data are generated, systems toxicology has 
allowed traditional toxicity endpoints to be enhanced with far deeper levels of analy-
sis. In combination, new experimental and computational methods have offered the 
potential for more effective, efficient, and reliable toxicological testing strategies. We 
illustrate these advances by the “network perturbation amplitude” methodology that 
quantifies the effects of exposure treatments on biological mechanisms represented 
by causal networks. We also describe recent developments in the assembly of high-
quality causal biological networks using crowdsourcing and text-mining approaches. 
We further show how network-based approaches can be integrated into the multi-
scale modeling framework of response to toxicological exposure. Finally, we combine 
biological knowledge assembly and multiscale modeling to report on the promising 
developments of the “quantitative adverse outcome pathway” concept, which spans 
multiple levels of biological organization, from molecules to population, and has direct 
relevance in the context of the “Toxicity Testing in the 21st century” vision of the US 
National Research Council.

Keywords: omics data, systems toxicology, biological networks, backward reasoning, 
literature mining, multiscale modeling, adverse outcome pathways
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1. Introduction to network-based systems toxicology

The ongoing public debates on the impact on human health of glyphosate, bisphenol A, or electronic 
cigarettes have underlined the importance of performing reliable toxicological assessments [1–3]. 
In this context, regulatory authorities need to require evidence packages to assess the health risks 
associated with chemical compounds of uncertain safety risk contained in consumer products or 
present in the environment. In order to make the authorities’ decisions persuasive to the public, it is 
critical to support them with objective evidence obtained using the latest scientific and technologi-
cal advances. The US National Research Council’s (NSR) “Toxicity Testing in the 21st Century: A 
Vision and a Strategy” manifesto, issued in 2007, was a noteworthy response to this critical need [4].  
It fostered innovative, interdisciplinary approaches (i) to scale up the experimenting capacities by 
favoring in vitro screening to whole-animal testing, (ii) to deepen the interpretation of the experi-
ments in terms of biological mechanisms by integrating the pathway-based approaches used in 
biomedical research, and (iii) to process the extensive data generated using adequate statistical and 
modeling tools to provide quantitative answers and informative predictions.

Developments in systems toxicology during the last 10 years have been driven largely by the goal 
of concretizing the NSR’s vision. Simply stated, systems toxicology can be seen as the applica-

tion of the systems biology mindset and approaches to toxicity testing. Thus, an essential feature 
of systems toxicology is the holistic perspective used in systems biology, in which a biological 
system is viewed as a complex assembly of interacting, often numerous parts rather than the 
simple union of individual elements, which corresponds to the reductionist standpoint [5, 6]. The 
first consequence of the holistic perspective is the fundamental role played by molecular omics 
profiling technologies, as they enable the simultaneous quantification of the abundances of all 
the (detectable) elements of a given class of biomolecules. The technology used most frequently 
is transcriptome profiling, which has become an almost routine operation thanks to its numer-

ous advantages (technical, practical, and economical). In the current post-genomic era, its cover-

age exceeds 20,000 genes, and the resulting large data volume requires proper Bioinformatics 
processing to be exploited adequately. The second consequence of the holistic perspective is the 
introduction of a modeling approach for the interactions between the system parts to produce 
the system-level properties. In cases where transcriptome profiles are available, the modeling 
approach builds upon the relationships between genes to achieve a bottom-up description of the 
biological mechanisms taking place in cells, tissues, or organs. This inherent modeling aspect 
implies that systems toxicology positions itself at the final end of the “gene sets < pathways < 
networks” sequence, which results from the ordering of the transcriptomics interpretation 
approaches according to increasing structural complexity and informational richness [7]. In that 
sense, systems toxicology can be distinguished from toxicogenomics, for which the gene inter-

action modeling aspect is not an essential component. It is important to stress, however, that 
complete descriptions in terms of interacting genes are not (yet) available for all the system-level 
biological mechanisms. Inversely, not all genes measured by transcriptomics have been shown to 
be involved in system-level biological mechanisms.

In this chapter, we will focus on the developments of network-based systems toxicology [8], as 

networks have turned out to be the most suitable description framework for systems biology [5, 6].  
In this case, the complex interaction map between the system parts accompanying the holistic 
view reduces to a (large) series of pairwise relationships encoded by edges of the networks, 
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which connect two nodes representing the interacting system parts. Importantly, networks have 
been shown to constitute a suitable framework for not only representing but also understanding 
systems-level biological mechanisms [9]. Network-based approaches have been subsequently 
extended to achieve a novel understanding of disease effects in healthy systems [10–12] as well 

as to integratively examine the main and secondary effects of drugs (Figure 1a) [13, 14]. From 
the point of view of toxicological assessments, it is very reasonable to expect that network-based 
approaches would provide an appropriate framework for examining the system responses to 
test exposure in terms of perturbed biological mechanisms, in perfect alignment with the NSR’s 
vision. As system-level biological mechanisms result from the interactions of multiple nodes, 
the network-based modeling framework enables elegant collection of the distributed effects of 
a test exposure on individual nodes into the perturbation of a single entity (Figure 1a) [8, 15].

In the remaining part of this section, several essential features of applying network-based 
systems toxicology are briefly explained. First, it is important to note the fundamental differ-

ence between systems biology and systems toxicology or, more broadly, between the inves-

Figure 1. Features of network-based systems toxicology. (a) Schematic representation of network-based view of disease, 
drug, and exposure effects. (b) the iterative discovery cycle in systems biology [5]. (c) the linear five-step assessment 
workflow underlying network-based systems toxicology [8]. (d) the tridimensional representation “biological systems-
exposure treatments-biological networks” illustrating the mechanism-based comparative assessment of exposure effects 
(blue arrow) and in vitro-in vivo or interspecies translatability (red arrow).
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tigation of novel biological mechanisms and the biological mechanism-based assessment of 
exposure effects in a toxicity testing context. When investigating a biological system to dis-

cover novel mechanisms, the goal of the experimental data analysis and interpretation is to 
identify the most promising candidate mechanisms compatible with the observations, which 
would eventually lead to a novel, refined hypothesis to be tested. The implementation of 
this iterative process has been facilitated by systems biology, as the rich system-wide omics 
data allow for both confirmatory and exploratory investigations (Figure 1b) [5]. On the other 
hand, in the toxicity testing context, the biological mechanisms and their models must be 
determined a priori and remain “locked” when evaluating the test exposure experimental 
data in a systematic and least subjective manner. The outcome of the experiment is therefore 
the comparative assessment of the effects of the test exposure with varied parameters, such as 
the tested compounds, their doses, and the exposure durations. This can be represented by a 
linear assessment workflow (Figure 1c) [8], in contrast to the circular systems biology discov-

ery cycle mentioned before. Interestingly, this difference between discovery and assessment 
approaches possesses an analogy in the context of transcriptomics gene set analysis: the com-

petitive “Q1” statistic enabling the identification of the best associated gene sets corresponds 
to the discovery mode, whereas the self-contained “Q2” statistic quantifying the relevance of 
a given gene set corresponds to the assessment mode [16, 17].

Another advantageous aspect of applying network-based systems toxicology is the fact that 
it offers an explicit framework for “mechanistic translatability” between test systems. As the 
resemblances between exposure responses in human subjects and test systems (in vivo ani-
mal or, more recently, in vitro human) are fundamental in toxicity testing, the network-based 
approach enables establishing the validity of intersystem associations using the mappings 
of the biological mechanism-specific networks (red arrow on Figure 1d). This intersystem 
mechanistic translatability supports the use of in vitro test systems, such as cellular cultures, 
organotypic tissues, or organ-on-a-chip models, to reduce animal testing (typically rodents), in 
agreement with the NSR vision and the “3Rs” principles (i.e., “reduce the number of animals,” 
“refine the experiments,” and “replace the animals with nonanimal systems”) [18–21]. The tri-
dimensional representation “system-exposure-network” also contains the setup for perform-

ing a comparative, mechanism-based assessment of exposure responses, which obviously  
remains the primary goal of network-based systems toxicology (blue arrow on Figure 1d, 

which results from the completion of the workflow on Figure 1c) [8, 15, 22]. A biologically 
sound impact assessment between two considered exposures therefore consists of multicri-
teria comparisons between the mechanism-specific responses or “network perturbations”, 
based on an appropriate selection of biological mechanisms.

The two concepts of network perturbation quantification and biological network selection 
are central to network-based systems toxicology and will be deepened further in this chap-

ter. The methodology for calculating network perturbation amplitudes (NPAs) will be pre-

sented as a biologically driven complexity reduction scheme delivering valuable, structured 
information about the impact of toxicological exposure (Section 2). The related endeavor to 
ensure the quality of the biological networks will discussed afterward and illustrated by two 
innovative approaches based on crowdsourcing and literature mining (Section 3). The mod-

eling perspective will be broadened beyond networks of interacting molecules to present 
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other components of the multiscale modeling framework of an organism response to expo-

sure (Section 4). Finally, emerging concepts from the quantification of adverse outcome path-

ways (qAOPs) will illustrate how extended multiscale modeling and biological knowledge 
assembly can combine to develop the predictive aspect of network-based systems toxicol-
ogy. Throughout this chapter, our intention will not be to present a comprehensive review 
nor an abstract synthesis; rather we will coherently pick out concepts that are relevant for 
the past, current, and future developments of network-based systems toxicology as well as 
appealing in the context of “Bioinformatics in the Era of Post Genomics and Big Data.”

2. Quantification of network perturbation amplitudes

In this section, we describe in more detail a core element of network-based systems toxicol-
ogy: the quantification of NPAs, which amounts to calculating the exposure-induced response 
of biological mechanisms modeled by a network using transcriptomics data. As shown in 
Figure 1c, it represents a key ingredient of the five-step workflow for toxicity assessment and 
constitutes a concrete application of network-based systems toxicology [8, 15, 22]. Here we 
focus on the particular type of “causal networks” for which a mathematically and statistically 
sound methodology has been recently developed [23, 24]. Given a suitably organized collec-

tion of causal networks selected for a priori relevant biological mechanisms, the structure 
of the associated NPA results can be seen as a complexity reduction scheme starting from 
large experimental transcriptomics data. It provides a quantification of the exposure-induced 
impact on the considered biological mechanisms, which is used to comparatively assess tox-

icity in concrete applications. Additionally, it constitutes the starting point for the network-
based systems toxicology developments that will be discussed later in this chapter.

Concretely, the implementation of the NPA methodology applicable to causal networks 
requires three distinct inputs in terms of experimental data and biological knowledge:

1. The differential gene expression values obtained from the transcriptomics data. Although 
we will consider them as resulting from “treatment versus control “pairwise comparisons, 
other types of contrasts can be used in the case of less trivial designs. These data are ob-

tained by applying the suitable statistical models at the individual gene level and extend 
over the full transcriptome, in line with the first aspect of the holistic perspective of sys-

tems biology discussed above. We used to call them “systems response profiles” [8, 22, 25].

2. A suitably organized collection of causal networks covering the essential biological mecha-

nisms of the test system response to the applied exposure treatment. Unlike other types of 
networks, causal biological networks contain nodes that not only describe molecular con-

centrations but also represent functions such transcriptional, enzymatic, or kinase activities. 
The network edges encode causal (i.e., directed) relationships between their nodes, which is 
attributed a positive sign when the activities of the connected nodes are changing similarly 
(e.g., increase in start node causes increase in end node) or a negative one when they change 
oppositely (e.g., increase in start node causes decrease in end node). The underlying biologi-
cal knowledge in these networks has been manually extracted from the scientific literature 
and encoded in the biological expression language (BEL), an ontology developed specifically 
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for causal biological networks. The current version of the causal biological network collec-

tion is publicly available on the causal biological network (CBN) database website [26, 27].  
The recent developments around the causal networks are discussed in Section 3.

3. “Transcriptional footprints” for a large fraction of the nodes contained in the causal networks. 
Transcriptional footprints are transcript abundance nodes that are connected to the causal net-
work nodes via signed directed edges, similar to the ones in the causal networks. They follow 
the “backward reasoning” approach, in which changes in molecular mechanisms encoded 
by causal network nodes (e.g., the activity of a transcription factor) can be deduced from the 
expression changes of their downstream-regulated genes. Clearly, these edges allow the tran-

scriptomics data to connect to the mechanistic networks, and the NPA calculations will con-

sist of the experimental differential gene expressions “propagating through the networks” to 
obtain the corresponding node- and network-level perturbations. In our assessment applica-

tions, we licensed the Selventa Knowledgebase to get a good coverage of the nodes of the caus-

al network collection in terms of transcriptional footprints [28]. Other options are possible: the 
small “BEL corpus” derived from the Selventa Knowledgebase [29], the networks contained 
in our publications [23, 24, 30], or the commercial IPA® “causal analysis” knowledgebase [31].

Given these three inputs, the NPA methodology performs the following computational steps 
to quantify the treatment-induced perturbations across a network (Figure 2):

1. Calculation of the “raw” perturbations for the nodes connected to the transcriptional foot-
prints. Essentially, this consists of performing an edge-based, weighted average of the 
differential gene expressions attached to the transcriptional footprint nodes [23]. Option-

ally, this calculation can be applied to a complete “aggregated” network if it is “causally 
consistent” (or “balanced” in the graph-theoretic language). This property means that the 
edge-based relative sign between any two nodes must be unambiguous (i.e., must not 
depend of the specific path relating the two nodes). As most networks do not satisfy this 
condition (e.g., negative feedback loops are not causally consistent), the aggregation op-

tion would require additional processing to be operative [32].

2. Calculation of the perturbations for all network nodes based on a constraint optimization 
problem. This is obtained by searching for node values that are “smooth” over the network 
and the transcriptional footprint edges (i.e., that have the smallest edge sign-corrected 
differences between connected nodes) while matching the differential gene expression val-
ues for the transcriptional footprint nodes. This problem has an exact solution that can be 
expressed in terms of the inverse of the adapted, signed Laplacian matrix of the network 
graph and of the “raw” node perturbations obtained previously.

3. Calculation of the NPAs using an edge-based summation. The summed values are the 
squared edge sign-corrected mean of the corresponding node (smoothed) perturbation val-
ues. As this value is always positive, it is important to examine the node-level perturbation  
values to determine whether the underlying biological mechanism is activated or inhibited 
as a consequence of the exposure treatment.

4. Calculation of three accompanying statistics to decide whether the obtained NPA value rep-

resents a true or a false positive. The first statistic is based on the biological variability prop-

agated from the uncertainties of the differential gene expression values: the 95% confidence 

Bioinformatics in the Era of Post Genomics and Big Data160



interval around the NPA value should not contain zero. The other two statistics test the 
relevance of the biological mechanism(s) encoded in the network by randomly reshuffling 
the network edges or the transcriptional footprints. This yields two null distributions for the 
network-level perturbation values. If the actual NPA value lies above the 95% quantile of a 
null distribution, it is considered to be statistically significant and labeled as “K-specific” or 
“O-specific,” respectively. Significant network perturbations correspond to the cases where 
all three statistical tests are successful.

By extending the calculation of NPAs to the full network collection contained in the CBN data-

base, we take advantage of its hierarchical structure to complete a useful, pyramidal, bottom-
up complexity reduction scheme (Figure 2). The grouping of networks into network families,  
themselves constituting the overarching collection, allows quantification and displays the 

Figure 2. The calculations of the network perturbation amplitudes (NPAs) and biological impact factor (BIF) in a 
bottom-up representation. The six layers correspond to the six steps (1–6) explained in the main text. Their respective 
inputs, mathematical processing, and results are schematically displayed from left to right. The “complexity” column 
gives an order of magnitude of the corresponding data size and illustrates the associated complexity reduction scheme.
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exposure-induced biological impact in a more concise way, which is particularly useful in a 
comparative approach to toxicity assessment. These final two steps are the following:

5. Calculation of network family-level biological impact factors (BIF). The network families 
distribute the ~50 networks into five families based on their biological similarities: cell pro-

liferation, cellular stress, cell fate, pulmonary inflammation, and tissue repair/angiogenesis. 
The evaluation of their BIF consists first of filtering out the networks that are not significant-
ly perturbed and then summing the remaining NPA values with weights that take into ac-

count the number of network in each family and the nodes overlapping between networks.

6. Calculation of network collection-level BIF. This aims at providing balanced relative 
weights between the five network families so the main features of the biological systems 
response to the exposure treatment can be perceived easily. In that sense, the BIF repre-

sents a pan-mechanistic, quantitative metric for the exposure-induced effects measured at 
the molecular transcript level and “shaped” by the a priori chosen network collection from 
the CBN database [15, 30]. It represents the starting point for investigating the impacted 
biological mechanisms in a top-down approach.

Having presenting the NPA methodology, it is instructive to see how it compares to existing 
approaches providing network-level quantification. The causal biological networks used in 
the NPA calculations are usually composed of several molecular signaling pathways assem-

bled around common nodes. Generally, pathways have a simpler and somewhat more linear 
structure than networks, so their structure is not as important. As a consequence, it has been 
often disregarded in the published methodologies, which were primarily aimed at dealing 
with pathways. In a recent review recapitulating the network- and pathway-based method-

ologies developed over the last decade, only one category (out of three) takes into account 
the structure: the so-called pathway topology (PT) group [7]. We further observe a recurrent 
difference between the NPA and most PT methodologies: the goal of the quantification is the 
determination of the most relevant pathways or networks (compared to the other ones in the 
collection) to support the biological interpretation. This is achieved by sorting either abstract 
scores or enrichment p-values [33]. This approach corresponds to the abovementioned com-

petitive Q1 statistic, which suits the discovery rather than the assessment perspective, cor-

responding to systems toxicology [16, 17]. This also indicates that the NPA approach is closer 
to the self-contained Q2 statistic in the sense that it allows meaningful comparison of several 
treatments. In short, the NPA methodology provides an explicitly network-based quantifica-

tion scheme that inherently incorporates the self-contained Q2 statistic, allowing meaningful 
comparisons between the exposure effects on the same biological mechanism.

The NPA approach has been successfully employed across a range of toxicological questions 
of concern:

• Comparative assessment of biologically active substances to complement the standard tox-

icological endpoints. This was used for the preclinical assessment of a candidate modified-
risk tobacco product in comparison with conventional cigarettes [34–36].

• In vitro screening of multiple compounds in combination with the capacity of the high-
content screening technologies. This was applied to selections of environmental toxicants 
and nutraceuticals [37, 38].
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• Investigation of in vivo-in vitro translatability (red arrows in Figure 1c). The case of the xe-

nobiotic metabolism response to cigarette smoke exposure was investigated and supported 
the validity of in vitro testing [39].

• Classification of individual human subjects. A proof-of-principle application of the NPA 
methodology to individual subjects has been published [24], and the approach was bench-

marked during the sbvIMPROVER diagnostic signature challenge [40].

• Exploratory investigations of transcriptomics data. Examining the biological process ac-

tivities contained in the collection of causal networks provides an additional point of view 
already used several times [41–43].

In this section, we explained the NPA methodology as a core element of network-based sys-

tems toxicology. However, its validity also depends on the quality of input from causal net-
work collection available in the CBN database. In the following section, we discuss several 
innovative ways to ensure constant quality in order to consolidate the acceptance of the net-
work-based systems toxicology.

3. Enhancements of the causal network collection

The application of network-based systems toxicology requires the a priori identification of 
the biological mechanisms involved in the test systems response to the applied exposure  
(Figure 1c and d). This led to gradually assemble a structured collection of causal networks of 
high-quality standards, which has been deposited in the CBN database to be accessible to run 
the NPA calculations in concrete situations. The validity of the whole network-based systems 
toxicology approach depends heavily on the biological pertinence of the retained mechanisms 
and of the networks encoding them. In this section, we examine these validity conditions 
more closely and describe two recent efforts aimed at augmenting the biological pertinence 
and extending the biological contexts of the causal networks: a crowdsourced review of their 
content and the use of semi-automated text-mining tools.

Over last two decades, the ever-increasing use of transcriptomics technologies has resulted in 
compilations of a number of pathway resources aimed at associating biological insight to sets 
of differentially expressed genes: KEGG [44], Reactome [45], BioCarta [46], Wiki-pathways 
[47], SPIKE [48], UCSD signaling gateway [49], NCI pathway interaction database [50], or 

NetPath [51]. The parallel assembly of the CBN database was decided and justified by the 
requirement to satisfy higher-quality standards, which were not always met by the available 
pathway resources (Table 1 in [27]):

1. Explicitly accounting for the biological context by setting mechanistic boundaries in terms 
of species, tissue or cell type, and disease state

2. Supporting all the causal relationships encoded in the network edges by (at least) one ex-

plicit, literature-based statement

3. The use of BEL to encode the manually curated literature statements into a format that is 
both human-readable and computable and that stores the rich mechanistic and contextual 
information accurately
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4. Application of data-driven enhancement by analyzing suitable public or dedicated data-

sets using a complementing source of prior biological knowledge, such as the Selventa 
Knowledgebase, which contains more than two million curated relationships [28]

Note that the last feature is also relevant for augmenting the ensemble of transcriptional foot-
print edges, which were also extracted from the Selventa Knowledgebase in our assessment 
applications (see Section 2). Typically, the public dataset GSE44747 investigates the gene expres-

sion regulation by the activation of protein kinase C (“PKC”), and the molecular changes in 
this datasets can be causally related to the node act(p(SFAM:“PRKC Family”)) [52]. Whenever 
a sizable fraction of the genes regulated in this dataset are changed in response to an exposure 
treatment, the activation or inhibition of PKC can be inferred [28]. This example illustrates the 
transcriptional footprint-based “backward reasoning” necessary to connect the causal biological 
networks and the transcriptomics data in order to apply the NPA methodology.

In 2011, we published our first biological networks “Cell Proliferation” that are still part of the col-
lection that serves as the input for NPA and BIF calculations [53]. The initial mechanistic interest 
focused on the lung biology, and version 1.0 of the collection consisted of 108 assembled causal 
networks regrouped into five high-level functional families (cell proliferation 15 [53], cellular 
stress 7 [54], cell fate 34 [55], pulmonary inflammation 24 [56], and tissue repair/angiogenesis 9 
[57]). The design and assembly processes were the same for all the networks, each of them hav-

ing been defined by biological boundaries chosen to globally cover all of the essential biological 
processes and responses of healthy lung tissues (Figure 3). Since 2015, the CBN database website 
has provided free access to the full collection [27]. In addition to the original focus of inhalation 
toxicology covering the non-diseased respiratory tract tissues, causal networks for non-diseased 
vascular tissues, chronic obstructive pulmonary disease, and atherosclerosis plaque destabiliza-

tion have been assembled and published to enrich the covered biological contexts [58–60].

As mentioned above, the scientific acceptability was the main requirement during the assembly 
of the causal networks collection, which is freely available to the scientific community in the 
CBN database. This motivated additional and innovative crowdsourced verification initiatives to 
consolidate the accuracy of the biological mechanisms encoded in the networks. They took place 
in the framework of the network verification challenges of the systems biology verification initia-

tive (sbvIMPROVER NVC) [59, 61–63]. These challenges were based on a novel crowdsourcing 
approach by a large community of more than 50 contributors who were given tools to vote on 
various edges and nodes of the causal networks via a dedicated web interface [64]. A moderator 
supervised the votes for each network and made decisions to include or exclude nodes and edges 
based on community choices. The resulting 46 causal networks were made publicly available 
through the CBN website and constituted version 2.0 of the causal network collection organized 
along the same five high-level functional families as version 1.0 (cell proliferation 15, cellular 
stress 7, cell fate 34, pulmonary inflammation 26, and tissue repair/angiogenesis 11). Currently, 
the NVC platform supports a third crowdsourced network verification challenge for the liver 
xenobiotic metabolism [64]. Eventually, the new models will be shared via the CBN website [26].

As the original network assembly process involved significant efforts in manual literature 
 curation (Figure 3), the development of text-mining-based capabilities appeared as an 
appropriate  solution to increase the quantity of assembled causal networks while preserv-

ing their quality. A novel, semi-automated biological knowledge extraction workflow called 
the “BEL information extraction workflow” (BELIEF) was developed, which incorporates 
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 state-of-the-art linguistic tools for recognition of specific entities [65, 66]. It mines prese-

lected, unstructured scientific literature and enables its users to extract causal and correlative 
relationships that are subsequently transcribed into the computable and human-readable 
BEL format used in the CBN network collection. A web interface has been developed, as 
well, to facilitate its practical application [67]. The usefulness of the BELIEF workflow was 
assessed during the assembly of a network describing atherosclerotic plaque destabilization 
and containing 304 nodes and 743 edges supported by 33 PubMed literature references [65]. 
The comparison between the semi-automated and conventional curation processes showed 
similar results but with significantly reduced curation effort for the semi-automated process. 
It is currently applied to a variety of biological mechanisms extending beyond the initial 
focus of pulmonary biology (e.g., vascular tissues).

The high quality of CBN causal network collection provides a solid foundation for the net-
work-based systems toxicology approach. Supplementing its essentially manual assembly 
process, innovative crowdsourced verification initiatives have consolidated and updated the 
biological content of the networks. The development of the semi-automated BELIEF workflow 

Figure 3. Overview of the causal biological network assembly and enhancements. The CBN database website contains 
the initial hierarchically structured collection of biological networks describing the essential biological processes 
and responses of healthy lung tissues. The enhanced network versions resulting from the sbvIMPROVER network 
verification challenges are integrated in CBN, as well as the networks describing relevant response mechanisms in other 
biological contexts, which were obtained by the BELIEF semi-automated literature mining workflow.
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has been beneficial not only directly, by speeding up the maintenance of the CBN collection, 
but also indirectly, by popularizing the use of causal networks in biomedical contexts beyond 
toxicological assessment [27].

4. Integration into the multiscale modeling of exposure responses

In the previous section, we saw that the enhancements of the causal network collection were 
opening new development opportunities for the approaches used in network-based systems 
toxicology. This leads to similar reconsideration of the molecular holistic approach underly-
ing the systems biology approach from a broader perspective—that of modeling an organism 
response to exposure in the toxicological context. Indeed, the organism response to exposure is 
a complex process, covering multiple space and time scales, for which modeling approaches of 
diverse complexities have been used. In this section, we discuss how the causal networks used 
in our holistic systems biology approach can be integrated into the quantitative toxicology/phar-
macology frameworks of absorption, distribution, metabolism, and excretion toxicity (ADMET) 
and physiologically based toxicokinetics (PBTK)/physiologically based pharmacokinetics 
(PBPK) modeling. This will not only reveal the approximations and limitations of the respective 
approaches but also eventually indicate where bridges between causal molecular networks and 
other modeling approaches can be built and which efforts would be required to achieve them. 
Paving the road for multiscale approaches constitutes a promising development perspective for 
improving the understanding of how potentially toxic substances interact with the human body.

ADMET belongs to the basic principles of pharmacology and toxicology and describes the kinet-
ics, dynamics, and toxicity of compounds within the human body following an exposure. The 
objective of such an approach is to estimate the toxicokinetic and metabolic profiles (Figure 4a). 
Obviously, a molecular dynamics approach resolving the trajectories of individual molecules from 
absorption to excretion is not achievable because of our insufficient understanding of the interplay 
between the numerous molecular mechanisms involved and, from a practical perspective, limited 
computational power. As a consequence, the replacement of the individual molecular trajectories 
by the corresponding mean density distributions and velocity fields—the so-called continuum 
approximation—appeared to be the most suitable approach to perform quantitative modeling in 
the toxicokinetic context. In the specific case of inhalation toxicology, the inclusion of additional 
assumptions about the interplay between liquid, vapor, and aerosol phases lead to a well-defined 
computational fluid dynamics (CFD) scheme, which quantitatively describes the deposition of 
aerosol particles in the nasal and other respiratory cavities by calculating the airflows and veloci-
ties [68]. Therefore, a fine description of the dose reaching respiratory tissues (Figure 4b) can be 
achieved through CFD partial differential equation systems in space and time variables.

The description of the dynamics of each molecule when it reaches a cell can be done, for exam-

ple, using a stochastic description of enzymatic activities through the chemical master equation 
(Figure 4b). While appealing on a local level, those approaches are not straightforward in global 
application to a whole-body model. To that end, simplifying the complex human body into a lim-

ited number of connected compartments underlying PBTK/PBPK modeling is usually explored 
for evaluating levels of a given substance in various tissues or organs (Figure 4c). PBTK/PBPK can 
also be linked to deposition CFD models, as discussed by some authors [69–71]. Metabolism is 
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further simplified by assuming a well-stirred volume or that conversion of an enzyme-substrate 
complex to an enzyme-product complex is instantaneous. Such a description of the enzymatic 
and metabolic dynamics reduces them to a set of ordinary differential equations (ODE) in time.

In general, PBTK/PBPK-derived ODE systems involve many parameters that are not necessar-
ily accessible to researchers, and an analytical study of the system may be required to estimate 
them. For that purpose, assuming steady state, ODEs can be represented semiquantitatively by 

Figure 4. The multiscale modeling framework of the human body response to toxicological exposure. The sequence from 
panels (a) to (e) spans several space and time scales, for which multiple modeling approaches are used. In order to make 
them applicable, simplifying assumptions are necessary at each step (blue arrows), and the resulting model parameters 
must be determined experimentally. From this perspective, the signed directed graphs (SDGs) underlying the network-
based system toxicology approach can be integrated into a broader multiscale response modeling framework.
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a signed directed graph (SDG) derived from the Jacobian matrix of the ODE system evaluated  
at its steady-state solution (Figure 4d) [72]. In this context, the organismal response to an expo-

sure is viewed as a perturbation of its steady state, which is characterized by the associated 
SDG encoding the time directionality and relative signs of the perturbations between all pairs 
of connected nodes. Although such an SDG is derived in the PBTK/PBPK context, in principle, 
other SDGs can be obtained similarly [73]. This is accomplished when a higher resolution of 
the description of molecular mechanisms involved in the response can be obtained from the 
scientific literature. This is exactly the case for the biological processes contained in the causal 
networks presented in the previous section, as we know how they integrate into the broad 
quantitative toxicology/pharmacology modeling frameworks built around ADMET and aimed 
at describing the organismal response to exposure in its full complexity.

In this short excursion aimed at broadening the modeling scope beyond molecular systems 
biology, we saw several approaches to quantify the response to exposure. Their validity 
ranges covered specific space and time scales, while a higher complexity often demanded 
more and more parameters to be experimentally determined to make the model applicable. 
As a consequence, building bridges between modeling scales represents appealing develop-

ment directions to achieve a more integrated understanding of an organism response to expo-

sure. However, the effort required to preserve the applicability of the resulting models are 
substantial, and in the last section, we will examine a tentative, multiscale approach that is 
acquiring an increasing interest the context of modern (twenty-first century) toxicology.

5. Development of quantitative adverse outcome pathways

In the previous sections, we have described NPA as a core element of network-based systems 
toxicology. We then saw two extensions: new networks contexts and extended modeling 
framework. In this final section, we propose a combination of these elements in terms of a 
network-based approach to qAOPs. This direction offers a novel development opportunity that 
needs to incorporate the predictive aspect at population level, which is to be contrasted to the 
a posteriori approach of test system data-driven assessment discussed up to now (Figure 1c). 
This feature requires an adapted approach to select the relevant biological mechanisms as well 
as the development of quantitative, multiscale modeling approaches of the suitable complexity.

Starting from ecotoxicology and quickly gaining popularity in human toxicology, adverse out-
come pathways (AOP) have become a valuable means to model exposure effects. Similar to 
the network models, AOPs organize existing, scattered literature knowledge into a structured  
representation with the aim to construct a linear sequence of “key events” (KE) from the initial 
interaction between a chemical and the biological system—the molecular initiating event (MIE)—
to the individual and population-level adverse outcome [74] (Figure 5). We have contributed to 
the development of two AOPs for the common disorders resulting from long-term smoking and 
published them in the AOP wiki [75]. The first AOP maps the events from epidermal growth fac-

tor receptor activation by oxidative stress to decreased lung function [76], and the second AOP 
illustrates the different steps that are required for oxidative stress to lead to disruption in endothe-

lial nitric oxide bioavailability and, finally, to hypertension [77]. These AOPs were built following 
the requirements by the Organization for Economic Co-operation and Development (OECD) [78]. 
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One avenue to network-based systems toxicology is to build BEL models that represent these 
events. The first BEL model suite is underway and describes the biological processes involved 
in impaired mucociliary clearance. It is foreseen to be published under an SBVimprover NVC in 
2018 [64].

While the above effort aims at identifying the mechanistic biological knowledge underly-

ing the chosen AOPs, the parallel development of the associated quantitative modeling 
approaches needs to be moved forward. It was anticipated to follow three steps to yield a 
“dynamic adverse outcome pathway” [79]:

1. Assembly and quantification of causal mechanistic networks

2. Development of dynamic models linking exposure to the organ-level responses

3. Simulation of the population-level effects of an exposure

The importance of this endeavor was underlined by the fact that the achievement of Step [3] 

was explicitly promoted as “the ultimate goal of systems toxicology.” As Step [1] has been com-

pleted with the CBN database and the development of the NPA methodology, the attention 
now focuses on Steps [2] and [3], which have to incorporate the predictive capacity of the future 
qAOP. Typical useful resources in this context are the BioModels database containing hundreds 
of computational models of biological processes (Step [2], [80]) as well as the “mechanistic axes 
population ensemble linkage” algorithm, which enables the creation of large sets of mechanisti-
cally distinct virtual humans that, upon simulated exposure, statistically match the prevalence 
of phenotypic variability reported in human population sample studies (Step [3], [81]).

Given the network-based system toxicology components presented in this chapter, several 
directions could be considered to support the qAOP development. Typically, appropriate 
transcriptomics datasets could be identified and used for applying NPA quantification to 
causal networks representing the biological mechanisms underlying one or more KE and their 
relationships. Although the time dependence is not explicit in the SDGs associated to the net-
works, their causal characteristic can provide information about the time direction based on 
the sequence of causally related perturbations. As during the assembly of the CBN network 
collection, the use of transcriptomics data is expected to improve the accuracy of the networks. 
In the qAOP context; the usual “treatment vs. control” experimental design might be advan-

tageously replaced by a time course design, which can reveal (part of) the time evolution of 
the relevant perturbed mechanisms. We may also consider the possibility of calculating NPA 
at individual level, which, as a consequence of its complexity reduction property, yields better 
between-class separations in classification contexts [24]. This could be used to more accurately 
model the population-level distributions of the exposure-induced perturbations.

Figure 5. The structure of an adverse outcome pathway (AOP).
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To conclude on a more concrete note, we show the “real-life” example of a simple qAOP devel-
oped for risk assessment in ecotoxicology: the connection between the inhibition of cytochrome 
P450 19A aromatase (the MIE) and the population level decreases of the fish fathead minnow 
(the adverse outcome) [82]. Concretely, the easily collected measures of chemical inhibition of 
the rate-limiting steroidogenic aromatase enzyme are used to predict reductions in egg pro-

duction and, subsequently, population size of the fish. The quantitative modeling of the asso-

ciated sequence of events was achieved by linking three discrete models describing different 
components of the AOP, from the MIE (aromatase inhibition) through five intermediate KEs, 
to impacts of regulatory interest (fecundity, population size). While the qAOP was developed 
based on experiments with fish exposed to the aromatase inhibitor fadrozole, a toxic equivalence 
calculation allowed to predict the effects of another untested aromatase inhibitor, iprodione.

This example showed that as long as their main elements are well chosen, qAOPs do not need to be 
“complicated,” as it would have been expected from a pathway covering multiple levels of biologi-
cal organization (i.e., from molecules to population levels). This observation effectively illustrates 
the trade-off that needs to be found during qAOP development between biological accuracy, mod-

eling complexity, and practical value in terms of predictive capacity. All three aspects are equally 
important for the validity of the outcome, as qAOPs are meant to play a central role in regulatory 
decision-making based on twenty-first-century toxicology approaches to risk assessment.

6. Conclusions

In this incursion into the field of network-based systems toxicology, we have seen how origi-
nal approaches were used and developed to provide innovative tools for assessing the health 
risks associated with the exposure to chemical compounds of uncertain safety. The application 
of systems biology principles to the assessment of exposure-induced responses involved the 
generation of genome-wide transcription profiles. These large datasets were processed using a 
combination of standard bioinformatics tools and ad hoc methodologies following a network-
based framework reflecting the holistic perspective of systems biology. This approach pro-

vided an implementation of the NSR principles and, in particular, supported the 3Rs initiative 
aimed at reducing animal use in research. We described in more detail the NPA methodology 
suitable for the particular type of causal networks using the “backward reasoning” approach. 
Combined with the collection of causal networks available on the CBN website, NPA enables the  
quantification of exposure-induced perturbations of the mostly molecular biological mechanisms 
described by the networks. This provided a quantitative assessment of the biological impact 
resulting from toxicological exposure treatments and offered multiple application possibilities. 
Turning to the current developments of network-based systems toxicology, we first mentioned 
the quality improvement of the CBN causal network collection using crowdsourcing initiatives 
(SBVimprover) and the extension to new biological contexts enabled by the application of litera-

ture mining tools that partially replace the manual curation process needed to assemble high-
quality causal networks. After integrating the network-based systems biology approach into the 
multiscale modeling of exposure responses, we discussed the qAOP as a promising development 
avenue for network-based systems toxicology. Its expected advantageous use in the regulatory 
decision-making context represents an appealing perspective that justifies the past, current, and 
certainly future efforts deployed in the development and applications of systems toxicology.
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