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Mucociliary clearance (MCC), considered as a collaboration of mucus secreted from
goblet cells, the airway surface liquid layer, and the beating of cilia of ciliated cells, is
the airways’ defense system against airborne contaminants. Because the process is
well described at the molecular level, we gathered the available information into a suite
of comprehensive causal biological network (CBN) models. The suite consists of three
independent models that represent (1) cilium assembly, (2) ciliary beating, and (3) goblet
cell hyperplasia/metaplasia and that were built in the Biological Expression Language,
which is both human-readable and computable. The network analysis of highly
connected nodes and pathways demonstrated that the relevant biology was captured in
the MCC models. We also show the scoring of transcriptomic data onto these network
models and demonstrate that the models capture the perturbation in each dataset
accurately. This work is a continuation of our approach to use computational biological
network models and mathematical algorithms that allow for the interpretation of high-
throughput molecular datasets in the context of known biology. The MCC network
model suite can be a valuable tool in personalized medicine to further understand
heterogeneity and individual drug responses in complex respiratory diseases.

Keywords: mucociliary clearance, network models, biological expression language, respiratory tract, network
perturbation amplitude

INTRODUCTION

The respiratory tract is under constant challenge to provide the body with oxygen while monitoring
air quality for pollutants and microorganisms. The mucous membranes in the airways, which
are lined with microtubule-based projections, the cilia, represent a powerful first-line defense. In
response to irritants and infection, mucus is secreted by goblet cells, and cilia on the surface of
ciliated cells move mucus upward in coordinated waving and beating motions. Eventually, particles
are expelled through sneeze and cough (Wanner et al., 1996). This self-clearing mechanism,
mucociliary clearance (MCC), ensures proper functioning of the respiratory tract.

Cilia have attracted increasing attention because of the growing number of diseases
caused by mutations in genes that impact cilium assembly, function, and turnover
(Fliegauf et al., 2007; Kempeneers and Chilvers, 2018). Traditionally, cilia are classified
as primary or motile (Wheatley, 1995; Satir and Christensen, 2007). Primary cilia are
present on almost all cell types and are involved in tissue homeostasis (Gerdes et al., 2009;
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Nozawa et al., 2013). Motile cilia often occur as clusters of
several hundred protrusions covering cells and direct fluid flow
(Choksi et al., 2014).

Cilia assembly and resorption often depend on the cell cycle
(Kim and Tsiokas, 2011), with a neatly interwoven mode of
regulation assuring timely and developmentally precise control
of cilium biogenesis. The regulatory factor X (RFX) family of
transcription factors is a key regulator of both primary and
motile cilia assembly programs (reviewed in Thomas et al.,
2010; Choksi et al., 2014). A master regulator of motile cilia
assembly across the vertebrates is forkhead box J (FOXJ1), a
member of the forkhead/winged-helix family of transcription
factors (Murphy et al., 1997; Chen et al., 1998; Brody et al.,
2000), which is under control of multiciliate differentiation
and DNA synthesis-associated cell cycle protein (MCIDAS) and
geminin coiled-coil domain-containing (GMNC) protein in the
respiratory epithelium (Stubbs et al., 2012; Arbi et al., 2016).
Mutations in MCIDAS and its downstream effector cyclin O are
implicated in an MCC disorder known as reduced generation
of multiple motile cilia (RGMC) (Boon et al., 2014). In RGMC
patients, cilia numbers are reduced, resulting in impaired MCC,
airway obstruction, and recurring respiratory infections.

An alternative mechanism of ciliary regulation is the
disassembly of the organelle by aurora A kinase (AURKA), which
also regulates the entry into mitosis (Pan et al., 2004; Pugacheva
et al., 2007). AURKA phosphorylates histone deacetylase
6 (HDAC6), stimulating HDAC6-dependent deacetylation of
axonemal microtubules (Hubbert et al., 2002), destabilization of
the ciliary shaft, and subsequent collapse of the cilium.

Exposure to air pollutants, cigarette smoke, drugs, or
infectious agents can affect ciliary beating frequency (CBF)
(Workman and Cohen, 2014; Yaghi and Dolovich, 2016). On
the molecular level, CBF increases in response to high mucus
viscosity (Fernandes et al., 2008) and fluctuations in the levels
of second messengers, such as cyclic adenosine 3′,5′-mono-
phosphate (cAMP), cyclic guanidine 3′,5′-mono- phosphate
(cGMP), intracellular Ca2+, calmodulin, nitric oxide (Jain et al.,
1993; Korngreen and Priel, 1996; Yang et al., 1996; Wyatt et al.,
1998; Zagoory et al., 2001, 2002), and intracellular pH (Sutto
et al., 2004). Mechanistically, CBF increases as a result of cAMP-
and cGMP-mediated activation of respective protein kinases via
Ca2+ release or by a calcium-independent mechanism.

While mucus secretion is a normal defense response, mucin
synthesis in goblet cells and mucus secretion are amplified
in respiratory diseases such as asthma or chronic obstructive
pulmonary disease (COPD). In addition, the number of
goblet cells can increase by proliferation (hyperplasia) and by
airway epithelial cell transdifferentiation (metaplasia), further
contributing to increased mucus production (Blyth et al., 1998;
Rogers, 2007; Turner and Jones, 2009; Boucherat et al., 2013;
Ramos et al., 2014). This airway epithelial remodeling decreases
ciliated cell numbers and ciliary beating efficiency, reducing MCC
and aggravating airway plugging (Nini et al., 2012; Yaghi et al.,
2012; Yaghi and Dolovich, 2016).

There is overwhelming evidence that oxidative stress and
oxidative damage play a pivotal role in the pathogenesis of
COPD (Rahman and MacNee, 1999; Rahman and Adcock, 2006;

Anderson and Macnee, 2009; Kim and Criner, 2015; Matera et al.,
2016). Oxidative stress is a well-described trigger of the epidermal
growth factor receptor (EGFR) signaling pathway that leads
to mucus hypersecretion (Takeyama et al., 1999, 2001; Perrais
et al., 2002; Hewson et al., 2004; Casalino-Matsuda et al., 2006;
Hao et al., 2014). We recently published an adverse outcome
pathway that describes the events that follow oxidative stress-
mediated EGFR activation to goblet cell hyperplasia/metaplasia
and decreased lung function following mucus overproduction
(Luettich et al., 2017).

Signaling downstream of interleukin (IL) 13 is involved
in the pathogenesis of asthma (Wills-Karp, 2004). The IL13
receptor complex initiates several cascades of molecular events
that result in goblet cell metaplasia/hyperplasia. One important
downstream effector of IL13 is the sterile alpha motif pointed
domain-containing ETS transcription factor (SPDEF), which is
directly involved in mucin gene expression (Park et al., 2007;
Chen et al., 2009).

The vast volume and diversity of biological data available on
cilium assembly, CBF, and goblet cell hyperplasia/metaplasia
require that the information be integrated for better visualization
and understanding of the processes that underlie respiratory
diseases. Biological network models offer a framework for
understanding biological processes and diseases and aid
in drawing new, often unpredicted conclusions. Over the
years, we have built several causal biological network (CBN)
models that capture biological processes that are impacted
in COPD. These models, stored in the CBN database, are
emerging as an innovative and powerful tool to quantify
the impact of exposure or potentially affected biological
processes in disease (Cho et al., 2012; Martin et al., 2014;
Boue et al., 2015; Talikka et al., 2017). The major advantage
of the CBN approach is that it transforms unstructured
data into interconnected and organized knowledge that
describes biological processes precisely and accurately (Schlage
et al., 2011; Westra et al., 2011, 2013; Cho et al., 2012;
Gebel et al., 2013; De Leon et al., 2014; Martin et al., 2014;
Szostak et al., 2016).

In this study, we present a suite of causal biological
models that describe important molecular events involved in
MCC, from cilium assembly to ciliary beating, goblet cell
hyperplasia/metaplasia, and mucus hypersecretion. We also show
how transcriptomic data are scored onto these network models
and how the models can provide mechanistic understanding of
gene expression changes.

MATERIALS AND METHODS

Literature Curation
Biological Expression Language (BEL)1 version 1.0 is used
for scientific text curation. BEL is a computable language
that converts causal and correlative biological observations to
statements consisting of two biological entities connected by a
relationship predicate1. Relevant original research articles for

1http://openbel.org/
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curation were identified from pertinent review articles in the
field. The journal impact factor or any other means to rank
the publications was not considered. If the statements in the
original research articles were sufficiently supported by the results
presented in figures, the information was considered reliable
and captured. To retrieve causal relationships the result sections
were extracted from these articles for curation. The introduction,
discussion and conclusion sections were avoided because the
evidences therein largely contain data from earlier studies,
repetition of the results, hypotheses and assumptions. Although
several evidences supporting an interaction would provide more
confidence on the edge, we capture the interactions even when
a single experiment is provided in the literature, in order to
not omit the relevant information. Contradicting statements
were captured without preferential treatment and with proper
annotations (model organism, tissue, cell line, treatment/disease,
experimental setup). The experimental information from the
relevant peer-reviewed scientific articles is semi-automatically
processed through the BEL Information Extraction workFlow
(BELIEF) platform (Szostak et al., 2015, 2016). BELIEF contains
a text-mining software that recognizes biological terms in the
text and assembles them into BEL statements. The curation
interface allows review, correction, and annotations (cell/tissue
type, disease if applicable, species, and experimental design) of
the statements that BELIEF proposes. The literature curation is
an iterative process. After the curation of initial articles, a gap
analysis is performed, and more literature is identified based on
gaps in the network models.

Network Model Assembly and
Visualization
BEL statements are then compiled to generate a cohesive
knowledge assembly model using the OpenBEL framework 3.0.0,
an open source compilation framework. The network model
consists of nodes that are the biological entities in the network
models connected by edges (i.e., the relationships between the
biological entities). Any RNA nodes are removed from the model
backbone and used in the downstream layer for model scoring as
described in Martin et al. (2014). The Cytoscape web application2

is used to visualize and analyze the network properties (Shannon
et al., 2003). Cytoscape supports powerful visual mapping
whereby biological entities are depicted as defined-shaped nodes
connected by the relationship edges. The network visualization
is used also during the curation process to identify the gaps
and to trim the network models. The trimming here means that
any nodes that are “hanging” and do not lead to a biological
process described in the model are removed, or further curation is
performed to add molecular relationships to connect such nodes
to the biological process.

The network model suite is available in the CBN
database. The NPA algorithm as well as some measurable
“downstream” relationships (backbone node to mRNA)
can be downloaded as R packages from the GitHub
project pages https://github.com/pmpsa-hpc/NPA and
https://github.com/pmpsa-hpc/NPAModels.

2http://www.cytoscape.org/

Network Model Scoring
The network perturbation amplitude (NPA) methodology is used
to obtain a quantitative assessment of how each of the models
interprets the transcriptomic changes in the datasets we selected
(GSE22430, GSE37693, and GSE5264). This methodology allows
for the translation of gene expression fold-changes to differential
values for each network node as well as enabling a network-
level summary to provide a quantitation of the degree of
network model perturbation (Hoeng et al., 2012; Martin et al.,
2014; Sewer et al., 2015; Szostak et al., 2016). Raw data were
obtained from Gene Expression Omnibus (GEO) repository
and normalized following a standard pipeline based on robust
multiarray normalization implemented in the R environment for
statistical computing (Smyth, 2004). The differential expression
values and statistics were calculated using the Bioconductor
LIMMA package with appropriate experimental comparisons.
“O” and “K” statistics was used to test the specificity of
the network models (including the “downstream edges” that
connect the network nodes to gene differential expression nodes
according to the underlying reverse-causal concept; Catlett et al.,
2013). They compare the actual NPA value to the distributions
of alternative NPA values obtained by permuting the edges of
the networks (the connections between nodes for “K” and the
connection between nodes and gene differential expression nodes
for “O”). If the actual NPA value is significantly different from
these “background” non-biological values, then we consider it as
significantly specific.

The leading node analysis allows to focus on a fewer number
of nodes in the network by ranking the nodes based on their
contribution (%). Using an empirical 80% collective contribution
instead of the actual rank, does not limit the number of the
nodes, when the contribution of several nodes is almost equal
(Martin et al., 2014).

RESULTS

Model Description
Cilium Assembly Model
The cilium assembly network model is a collection of intertwined
biological entities and processes that are supported by 59 relevant
peer-reviewed articles. The network contains 209 nodes and 319
edges that represent relationships between nodes (Figure 1).
When the connections between the nodes in the network were
analyzed, many poorly connected nodes and a few highly
connected ones, “hubs,” were observed. The most connected node
(63 indegree edges) was the biological process “cilium assembly,”
and the transcription factor FOXJ1, which is downstream of
MCIDAS and GMNC, had the most outdegree edges (Figure 1).

A number of pathways, including delta-like canonical
notch ligand (DLL)/NOTCH (through MCIDAS/GMNC),
smoothened/hedgehog, and grainyhead-like transcription factor
2, converge into a FOXJ1/RFX module that triggers cilium
assembly in the network model. This shows a high level of
cooperativity between FOXJ1 and RFX factors; FOXJ1 can
induce RFX2 and RFX3 expression, FOXJ1 gene expression is
partially dependent on RFX3 activity, and a subset of FOXJ1
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FIGURE 1 | Causal biological network model for cilium assembly. The table shows the top 10 highly connected nodes and their degrees of distribution. The
vocabulary for the BEL is provided in http://www.openbel.org/. The Cytoscape layout is the Yfiles hierarchical layout. The network model can be downloaded from
causalbionet.com.

and RFX target genes overlap (Figure 1). This assures timely
and developmentally precise control of cilium biogenesis. In
addition, numerous molecules and complexes necessary for
structural integrity of cilia, such as the axoneme constituents,
BBSome complex (structural components of the basal body),
and exocyst complex (membrane transport to cilium), support
the “cilium assembly” hub as immediate neighbor nodes.
With regard to the “cilium disassembly” hub, as expected, the
AURKA-HDAC6 axis and their upstream regulators emerged as
a supporting subnetwork.

Ciliary Beating Model
The ciliary beating network model was computed from 52
articles and comprises 80 nodes and 137 edges. The network
illustrates the path from various stimuli through intermediate
signaling molecules converging into consecutive biological
processes, with “mucociliary clearance” as the final node
(Figure 2). “Epithelial cilium movement” has the most inward
connections in the network, and adenosine triphosphate has
the most outward connections. Calcium and “nitric oxide
synthase family” are central hubs in the network, with several
incoming and outgoing edges. The model shows the CBF
increases as a result of cAMP- and cGMP-mediated activation
of the respective protein kinases through Ca2+ release or by
a calcium-independent mechanism. The model also captures

cystic fibrosis transmembrane conductance regulator, whose
activation triggers the adenylate cyclase (ADCY)/cAMP pathway.
Several other stimuli, such as serotonin or macrophage-
stimulating protein, via corresponding receptors (HTR and
MST1R, respectively), lead to increased ciliary motion in the
model. Another level of regulation is added through sex
hormone-dependent modulation, such as progesterone-mediated
decreases or estrogen-mediated increases in CBF.

Goblet Cell Hyperplasia/Metaplasia Model
The goblet cell hyperplasia/metaplasia model covers 172
nodes and 335 edges that were obtained from 58 articles. The
hierarchical view of the network model clearly indicates that,
as expected, the biological process “mucus secretion” is the
endpoint of the model (Figure 3). The network model hinges
on EGFR and IL signaling pathways (Figure 3). An array of
growth factors such as epidermal growth factor, transforming
growth factor, tumor necrosis factor, amphiregulin, IL4, IL6,
IL7, IL8, and IL13 initiate goblet cell-specific mucus secretion
by activating their respective receptors (EGFR and IL6R, IL13R,
IL17R) and subsequent signaling events, notably through
Ras/Raf/mitogen-activated protein kinase kinase/mitogen-
activated protein kinase (MAPK)/extracellular signal-regulated
kinase 1/2 (ERK1/2) or janus kinase/signal transducer and
activator of transcription/SPDEF effectors, modulating mucin
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a(CHEBI:ethanol)act(p(PMIPFAM:"EDNR
Family"))act(p(HGNC:TNF)) p(SFAM:"NOS

Family") act(p(EDNRA)) act(p(HGNC:TACR1))act(p(HGNC:ADRB2))
act(a(GOCC:"voltage-gated

calcium channel 
complex"))

act(p(SFAM:"PLA2
Family"))

bp(GOBP:"response
to mechanical 

stimulus")

a(CHEBI:ATP) act(p(SFAM:"CHRM
Family"))

a(CHEBI:"5,6-EET")

act(p(HGNC:PTGS2))

act(p(HGNC:NR3C1))

tloc(complex(p(HGNC:HSP90B1),p(HGNC:NOS3)),MESHCS:"Basal
Bodies",MESHCS:Axoneme)p(HGNC:HSP90B1,pmod(P,Thr))

complex(p(HGNC:HSP90B1),p(HGNC:NOS3))

act(p(SFAM:"NOS
Family"))p(HGNC:NOS2)

act(p(HGNC:NOS2)) act(p(HGNC:NOS3)) act(p(HGNC:CAV3))

a(CHEBI:"nitric
oxide") complex(p(HGNC:CAV3),p(HGNC:NOS3))

a(SCHEM:CO2) a(CHEBI:"3',5'-cyclic
GMP")act(p(HGNC:CFTR))p(HGNC:ADCY10) act(p(HGNC:PTGS1))

act(p(HGNC:NPPC))act(p(HGNC:GUCY1))act(p(SFAM:"PDE3
Family"))a(CHEBI:hydrogencarbonate) act(p(HGNC:PDE5A))

act(p(SFAM:"GUCY
Family"))

act(p(SFAM:"PRKG
Family"))act(p(HGNC:ADCY10))p(SFAM:"ADCY

Family")

complex(GOCC:"protein
phosphatase type 

1 complex") 

bp(MESHPP:"Mucociliary
Clearance")

a(CHEBI:"3',5'-cyclic
AMP")

tloc(p(HGNC:PGR),MESHCS:Cilia,MESHCS:"Cell
Nucleus")

bp(GOBP:"epithelial
cilium

movement")

act(p(HGNC:PRKA)) bp(PMIBP:"mucociliary
transport")

complex(p(HGNC:HMMR),p(HGNC:MST1R))

act(p(HGNC:PGR)) act(p(SFAM:"ADCY
Family")) act(p(HGNC:HMMR)) act(p(SFAM:"ESR

Family"))
p(SFAM:"PRKG

Family")p(HGNC:AGR3) act(p(HGNC:NOS1)) bp(GOBP:"cilium
assembly")

act(p(PMIPFAM:"BDKR
Family"))act(p(HGNC:MST1R))

act(p(HGNC:RFX3))p(HGNC:PRKG1)

a(CHEBI:"calcium(2+)")

bp(GOBP:"hyaluronan
catabolic
process")

act(p(HGNC:ADORA2B))act(p(SFAM:"CAMK
Family")) p(HGNC:MST1R,pmod(P))

bp(GOBP:"intracellular
pH elevation") 

act(p(SFAM:"P2RX
Family"))

act(p(HGNC:PRKG1))act(p(SFAM:"PDE4
Family"))

p(HGNC:ALMS1)act(p(HGNC:TRPV4))

act(p(PMIPFAM:"HTR
Family"))

act(p(HGNC:CALM1))

act(p(SFAM:"PLC
Family"))

a(CHEBI:"reactive
oxygen species") p(HGNC:MST1)

act(p(HGNC:CHRM1)) act(p(SFAM:"PRKA
Family"))

a(CHEBI:"1D-myo-inositol
1,4,5-trisphosphate")

act(p(HGNC:ITPR3))

act(p(SFAM:"P2RY
Family"))

Node name Edge count Indegree Outdegree
bp(GOBP:"epithelial cilium movement 21 20 1
a(CHEBI:"calcium(2+)") 13 9 4
act(p(SFAM:"NOS Family")) 13 8 5
a(CHEBI:"3',5'-cyclic AMP") 10 7 3
a(CHEBI:"3',5'-cyclic GMP") 10 6 4
act(p(SFAM:"PRKA Family")) 10 7 3
a(CHEBI:ATP) 9 1 8
a(CHEBI:"nitric oxide") 8 5 3
act(p(SFAM:"PRKG Family")) 8 6 2
a(CHEBI:ethanol) 7 0 7

FIGURE 2 | Causal biological network model for ciliary beating. The table shows the top 10 highly connected nodes and their degrees of distribution. The vocabulary
for the BEL is provided in http://www.openbel.org/. The Cytoscape layout is the Yfiles hierarchical layout. The network model can be downloaded from
causalbionet.com.

p(HGNC:SOCS3)
complex(GOCC:"interleukin-6

receptor
complex")

complex(p(HGNC:SOCS3),p(HGNC:TYK2))

act(p(HGNC:GAB2))

p(HGNC:JAK2)

p(HGNC:IL6)

p(HGNC:BCL2)act(p(HGNC:TYK2))

a(SCHEM:NADPH)p(HGNC:TYK2)

act(p(HGNC:JAK2))

composite(p(HGNC:SPDEF),p(HGNC:FOXA3)) act(p(HGNC:STAT6)) act(p(HGNC:SP1))act(p(HGNC:RPS6KA1))r(HGNC:AREG)complex(p(HGNC:BCL2L11),p(HGNC:BCL2L1))p(HGNC:HIF1A)act(p(HGNC:CASP3))act(p(HGNC:BCL2))

act(p(SFAM:"RAF
Family")) act(p(HGNC:ADRB2))

act(p(SFAM:"AKT
Family"))

act(p(SFAM:"MAPK
Erk1/2 Family")) 

act(p(HGNC:RAC1))

act(p(HGNC:MMP14))

act(p(HGNC:ARRB2))act(p(SFAM:"MEK1/2
Family"))

act(p(HGNC:BAX))

act(p(SFAM:"RAS
Family"))r(HGNC:TUBB4A)

complex(GOCC:"phosphatidylinositol
3-kinase

complex")
r(HGNC:KRT14)r(HGNC:KRT4)r(HGNC:BCL2)sec(p(HGNC:IL6))act(p(HGNC:STAT3)) p(HGNC:BAX)

act(p(HGNC:DUOX1))

a(CHEBI:"hydrogen
peroxide")

tloc(p(HGNC:NCF2),MESHCS:Cytosol,MESHCS:"Cell
Membrane")

tloc(p(HGNC:NCF1),MESHCS:Cytosol,MESHCS:"Cell
Membrane")act(p(HGNC:P2RY2))

r(HGNC:FOXA2) r(HGNC:ITGA6) r(HGNC:TP63) r(HGNC:RBPJ) r(HGNC:CLCA1)
tloc(p(SFAM:"PRKC

Family"),MESHCS:Cytoplasm,MESHCS:"Cell
Membrane")

act(p(SFAM:"PRKC
Family"))r(HGNC:PTGER3)

p(HGNC:IL8)p(HGNC:AREG)

p(HGNC:MUC2) bp(GOBP:"neutrophil
activation")p(HGNC:SPDEF) r(HGNC:ANO1) p(HGNC:ANO1) r(HGNC:MUC2) bp(GOBP:"programmed

cell death") act(p(HGNC:HIF1A)) p(HGNC:BCL2L11) p(HGNC:BCL2L1)

act(p(HGNC:ELANE))act(p(HGNC:NOTCH1))act(p(HGNC:ANO1))act(p(HGNC:NOTCH2)) act(p(HGNC:BCL2L11))act(p(HGNC:SPDEF))

r(HGNC:DNAI2) r(HGNC:FOXA3) r(HGNC:FOXJ1)
bp(GOBP:"regulation

of lung goblet cell 
differentiation")

p(HGNC:CLCA1) p(HGNC:NKX21)

act(p(HGNC:CLCA1))

r(HGNC:AGR2)

r(HGNC:SOX17) r(HGNC:GCNT3)r(HGNC:MUC16) r(HGNC:SFTPC) p(HGNC:FOXA3)

act(p(HGNC:FOXA3))

p(HGNC:ITLN1) bp(MESHD:Metaplasia) r(HGNC:SPDEF) p(HGNC:FOXA2)

act(p(HGNC:FOXA2))

tloc(p(HGNC:GAB2),MESHCS:Cytoplasm,MESHCS:"Cell
Membrane") r(HGNC:JUP) r(HGNC:SLC39A8) r(HGNC:SLC26A4) r(HGNC:DNAH9) r(HGNC:NOS2) r(HGNC:CHIA) r(HGNC:SCIN)r(HGNC:EZR)

complex(GOCC:"interleukin-13
receptor

complex")

r(HGNC:STATH) r(HGNC:CDH26)r(HGNC:RHOA)

p(HGNC:IL4)

r(HGNC:CCL26)act(p(HGNC:JAK1)) r(HGNC:TFF2) act(p(SFAM:"ALDO
Family"))p(HGNC:IL4R)r(HGNC:SERPINB10)r(HGNC:CDC42)r(HGNC:IL19)

a(CHEBI:"reactive
oxygen species") 

r(HGNC:CA2)r(HGNC:FCGBP)r(HGNC:ALOX15)
complex(SCOMP:"NADPH

Oxidase
Complex")

r(HGNC:TFF1)r(HGNC:DPP4)

act(p(HGNC:MMP9)) p(SFAM:"MMP
Family")

p(HGNC:TGFA)

act(p(SFAM:"ADAM
Family"))

p(SFAM:"ADAM
Family")

act(p(HGNC:TMPRSS11D))

p(HGNC:ADAM17)

sec(p(HGNC:TGFA))act(p(SFAM:"MMP
Family"))

p(HGNC:MMP9)

complex(p(HGNC:IL17RA),p(HGNC:IL17RC))

p(HGNC:IL17)

act(p(SFAM:"KLK
Family"))

act(p(HGNC:CD44))p(HGNC:IL17A)

act(p(HGNC:EGFR))

p(HGNC:EGF) p(HGNC:TNF)

bp(GOBP:"hyaluronan
catabolic
process")

p(HGNC:CD44)

composite(p(HGNC:TNF),p(HGNC:TGFA))

act(p(HGNC:HYAL2))

p(HGNC:EGFR)

composite(p(HGNC:TNF),p(HGNC:EGF))

complex(p(HGNC:CD44),p(HGNC:EGFR))

p(HGNC:IL13)

act(p(HGNC:ADAM17))

act(p(HGNC:CAMP))

sec(p(HGNC:AREG))

complex(SCOMP:"AP-1
Complex")

act(p(SFAM:"MAPK
p38 Family")) 

act(p(SFAM:"ADRB
Family")) act(p(HGNC:GABRA2))

bp(GOBP:"mucus
secretion")

p(HGNC:MUC5AC) r(HGNC:MUC5AC)

act(p(HGNC:PTPN1))

r(HGNC:MMP14)

act(p(HGNC:MAPK8))

r(HGNC:MMP9)

act(p(HGNC:CYBB))

complex(p(HGNC:JUND),p(HGNC:FOSL2))

act(p(HGNC:CHRNA7))

p(HGNC:GABRA2) r(HGNC:GABRA2)

act(p(HGNC:SRC))p(HGNC:MUC5B)bp(MESHD:Hyperplasia)

p(HGNC:AGR2)r(HGNC:ITLN1)

r(HGNC:SCGB1A1)p(HGNC:SCGB1A1)r(HGNC:SFTPA1) r(HGNC:MUC5B) r(HGNC:SFTPB)

Node name Edge count Indegree Outdegree
complex(GOCC:"interleukin-13 receptor co 50 2 48
act(p(HGNC:EGFR)) 32 11 21
act(p(HGNC:SPDEF)) 25 2 23
act(p(SFAM:"MAPK Erk1/2 Family")) 22 8 14
r(HGNC:MUC5AC) 22 22 0
a(CHEBI:"reactive oxygen species") 17 9 8
p(HGNC:MUC5AC) 15 14 1
act(p(HGNC:FOXA3)) 13 1 12
act(p(HGNC:STAT6)) 12 5 7
act(p(HGNC:FOXA2)) 11 1 10

FIGURE 3 | Causal biological network model for goblet cell hyperplasia/metaplasia. The table shows the top 10 highly connected nodes and their degrees of
distribution. The vocabulary for the BEL is provided in http://www.openbel.org/. The Cytoscape layout is the Yfiles hierarchical layout. The network model can be
downloaded from causalbionet.com.
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gene expression. Multiple additional factors leading to mucus
hypersecretion and their interactions are also depicted in the
network model. FOXA2 transcription factor, in contrast, limits
goblet cell differentiation in the lung and directly represses
mucin gene expression. The network displays the inhibition of
FOXA2 by EGFR and IL13 pathways that results in goblet cell
hyperplasia and mucus secretion.

Model Scoring With Transcriptomic Data
NPA
Network scoring with transcriptomic data is based on the
inference of activities of the molecular entities in the network
from gene expression changes. This backward reasoning employs
a downstream layer with information on gene expression changes
known to be induced by the backbone entities (Martin et al.,
2014). To test the ability of the MCC network models to
provide a quantitative measure of MCC, we identified publicly
available datasets in Gene Expression Omnibus. The first
dataset selected for model scoring (GSE22430) was from lung
epithelial cells treated with the redox-active toxin pyocyanin
from Pseudomonas aeruginosa that stimulates EGFR (Rada et al.,
2011). Dataset GSE5264 was derived from an in vitro experiment,
in which airway epithelial cells were allowed to differentiate
to a pseudostratified epithelium at the air-liquid interface
(Ross et al., 2007). Finally, we used a transcriptomic dataset
from IL13-treated human airway epithelial cells (GSE37693)
(Alevy et al., 2012).

The cilium assembly network model responded strongly to the
treatment of lung cells with pyocyanin and to the time-course of
bronchial epithelial cell differentiation with increasing amplitude
over time. There was no impact on the models in response to the
IL13 treatment (Figure 4). When the same datasets were used
to score the cilia beating network models, the largest amplitude
of network perturbation was observed in response to pyocyanin
treatment of lung cells (Figure 4). Similar to the cilium assembly
model, the amplitude of cilia beating network perturbation
increased with advanced mucociliary differentiation, and the

model did not respond to the IL13 treatment. The scoring of the
goblet cell hyperplasia/metaplasia network model again showed a
very strong response to the pyocyanin treatment and, to a lesser
extent, to mucociliary differentiation of airway cells. This model
responded to IL13 treatment (Figure 4).

Leading Node Analysis
To investigate the mechanistic foundation underlying the
perturbations of the network models from transcriptomic data
and to further validate the biology in the models, we used the
leading node analysis (Martin et al., 2014). Leading nodes are the
entities in the network models upon which the impact contributes
80% of the observed effect on the network as a whole. Leading
node analysis also allows for the assessment of the directionality
(activation or inhibition) of the inferred effect on each node.
All leading nodes for all contrasts and models are provided in
Supplementary Data Sheets S1–S3.

Cilium assembly model
Figure 5 shows the leading node analysis of the cilium assembly
network model scored with transcriptomic data from early,
intermediate, and late time points of human airway epithelial
cell mucociliary differentiation. At the early time point, bone
morphogenic protein (BMP) signaling was inferred to be
upregulated. The mechanistic target of rapamycin (mTOR),
platelet-derived growth factor A (PDGFA), and protein kinase B
(AKT) signaling were inferred to be downregulated, in contrast
with the inferred upregulation of cilium assembly. At the same
time, NudE neurodevelopment protein 1 like 1 (NDEL1) was
inferred to be downregulated, resulting in downregulation of
cyclin A2 (CCNA2) and cell cycle arrest. At the intermediate and
late time points of mucociliary differentiation, BMP signaling was
no longer inferred to be upregulated. Instead, DLL1/NOTCH1
signaling was inferred to be downregulated, resulting in an
increase in MCIDAS and FOXJ1, the master transcription factors
required for the formation of motile cilia. RFX3, also known to
induce FOXJ1, was inferred to be upregulated at the intermediate

FIGURE 4 | The network perturbation amplitude (NPA). The NPA scores are shown with their confidence interval, accounting for experimental variation. The red star
indicates that NPA is statistically different from 0. In addition, companion statistics derived to inform on the specificity of the NPA score with respect to the network
structure are shown as ∗O and K∗, respectively, if their p-values are below the significance level of 0.05, and by O and K when the corresponding p-values are
between 0.05 and 0.1. ∗ indicates O and K statistic p-values below 0.05 (in color), O and K p-values between 0.05 and 0.1 (in gray). Lanes: 1. GSE22430,
pyocyanin-treated vs. control; 2. GSE5264, early time points of mucociliary differentiation in human airway epithelial cells; 3. GSE5264, intermediate time points of
mucociliary differentiation in human airway epithelial cells; 4. GSE5264, late time points of mucociliary differentiation in human airway epithelial cells; 5. GSE37693,
IL13-treated vs. control.
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FIGURE 5 | Cilium assembly subnetwork based on leading nodes. The graphical representation shows an example of connected leading nodes common for early
(first lane), intermediate (second lane), and late (third lane) time points of human airway epithelial cell mucociliary differentiation. The top 10 leading nodes were
prioritized and connected with other leading nodes from the analysis. The backbone NPA values with directionalities of inferred regulation are shown as bar graphs
for each node. Orange/red bars indicate inferred upregulation and blue bars indicate inferred downregulation. The green asterisk indicates that the node is a leading
node. The vocabulary for the BEL is provided in http://www.openbel.org/.

and late time points. PDGFA, mTOR, AKT, and NDEL1/CCNA2
continued to be downregulated in the leading node analysis.

The leading node analysis of the pyocyanin treatment data
scored on the cilium assembly network model indicated the
upregulation of PDGFA and downregulation of BMP signaling
(Supplementary Data Sheet S1).

Ciliary beating model
Figure 6 shows the leading node analysis of the ciliary beating
network model scored with transcriptomic data from early,
intermediate, and late time points of human airway epithelial cell
mucociliary differentiation. The β2-adrenergic receptor/ADCY
signaling pathway, leading to an increase in cAMP levels and

subsequent Ca2+ increase via the activation of the PRKA
family, was inferred to be upregulated. The analysis also
inferred the activation of cGMP-dependent protein kinase 1
(PRKG1). In addition, the leading node analysis of the pyocyanin
treatment data scored on the ciliary beating network model
indicated the upregulation of ADCY and calcium signaling
(Supplementary Data Sheet S2).

Goblet cell hyperplasia/metaplasia model
Figure 7 shows the leading-node analysis of the goblet cell
hyperplasia/metaplasia model with the pyocyanin and IL13
datasets. The levels of reactive oxygen species (ROS) were
inferred to increase with subsequent activation of EGFR
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FIGURE 6 | Ciliary beating subnetwork based on leading nodes. The graphical representation shows an example of connected leading nodes common for early (first
lane), intermediate (second lane), and late (third lane) time points of human airway epithelial cell mucociliary differentiation. The top 10 leading nodes were prioritized
and connected with other leadin g nodes from the analysis. The backbone NPA values with directionalities of inferred regulation are shown as bar graphs for each
node. Orange/red bars indicate inferred upregulation and blue bars indicate inferred downregulation. Bold edges indicate “direct regulation.” The green asterisk
indicates that the node is a leading node. The vocabulary for the BEL is provided in http://www.openbel.org/.

and ERK1/2, followed by an inferred increase in mucin
production. Three other branches of the network that were
highlighted and led to increases in mucins included the AP-
1, FOXA3/SPDEF, and IL13/SPDEF pathways. The inferred
activation of the IL13 receptor complex mirrored the activation
of the matrix metalloproteinase family. The inferred activation
of the p38 MAPK family upstream of MUC5AC was unique
to the pyocyanin dataset. While the NPA analysis showed
a significant network perturbation in response to human
airway epithelial cell mucociliary differentiation, a closer
examination of the leading nodes clearly indicated inferred

downregulation of ROS and the EGFR and MAPK ERK1/2
pathways (Supplementary Data Sheet S3).

DISCUSSION

MCC is an important defense mechanism that protects the
respiratory tract, and thus the body, from infections and airborne
pollutants. In this article, we presented a suite of CBN models that
describe relevant molecular processes related to MCC. Derived
from original articles, the BEL-scripted scientific statements
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FIGURE 7 | Goblet cell hyperplasia/metaplasia subnetwork based on leading nodes. The graphical representation shows an example of connected leading nodes for
pyocyanin treatment (first lane) and IL13 treatment (second lane) compared with experimental controls. The top 10 leading nodes were prioritized and connected with
other leading nodes from the analysis. Orange/red bars indicate inferred upregulation. Bold edges indicate “direct regulation.” The dotted edge denotes a member of
a protein family. The green asterisk indicates that the node is a leading node in a given contrast. The vocabulary for the BEL is provided in http://www.openbel.org/.

were assembled into three separate network models that capture
molecular processes involved in cilium assembly, ciliary beating,
and goblet cell hyperplasia/metaplasia accurately. The key factors
involved in these processes are part of the backbone that
interconnects various entities in the network models. As an
example, the cilium assembly hub integrates the diversity of the
cascades that are determined by the variety of cilia types, each
requiring precise regulation (for review, see Choksi et al., 2014).

As part of network model validation, we conducted network
scoring with gene expression data from experiments that were
expected to trigger perturbation of the MCC models. The scoring
also allowed us to look farther from the static network view
into the key factors that impact the network and assess the
behavior (activation or inhibition) of molecular entities in the
model backbone based on differential gene expression in the
selected datasets.

As expected, the biology in the redox-active pyocyanin
treatment experiment was best reflected in the goblet cell
hyperplasia/metaplasia model, with EGFR and downstream
MAPK ERK1/2 factors predicted to be activated, leading to

mucin production. This was in line with other experimental
observations of increased numbers of goblet cells and increased
mucin production in response to pyocyanin treatment
(Rada et al., 2011).

Impact on the cilium-focused network models could be
explained by the cell redox state and ROS levels affecting multiple
cellular signaling pathways, some of which overlap with cilium
biology. As an example, the activity of the nitric oxide synthase
(NOS) family as well as the nitric oxide (NO) chemical node
were inferred to be upregulated by pyocyanin treatment in the
ciliary beating network model (Supplementary Data Sheet S2).
NO is a redox molecule that regulates tissue oxidative balance
through direct and indirect mechanisms of action and can lead
to an increase in ciliary beat frequency through the activation of
NOS family.

Network scoring with the airway epithelial cell differentiation
dataset clearly showed time-dependent activation of pathways
leading to cilium assembly and ciliary beating. At the early
stage, BMP signaling was inferred to be upregulated, indicating
the lack of cilium assembly, while at later time points, BMP
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released the inhibitory effect on cilium assembly, with the
MCIDAS/FOXJ1/RFX3 pathway inferred to be activated to
promote cilium assembly. Network scoring, however, indicated
that mTOR and AKT were downregulated in the dataset,
contradictory to the causal connection from mTOR and AKT
to cilium assembly that was inferred to be upregulated. These
relationships were derived from articles describing primary
cilium assembly and may not appropriately reflect the biology in
the respiratory tract, where the operating process is the motile
cilia assembly program that culminates in the FOXJ1/RFX3
module (Wang et al., 2015; Suizu et al., 2016).

Downregulation of CCNA2 and cell cycle arrest in the cilium
assembly network model could indicate a slowing down in
cell proliferation to enforce cell differentiation. This was in
accordance with the inferred inhibition of the mTOR/AKT
pathway in the cilium assembly model. The results were
further enforced by the scoring of the goblet cell network.
The inferred reduction in EGFR signaling could indicate
loss of proliferative potential in cultures differentiating to
pseudostratified epithelium. This result also suggests that the
network model discriminates between a physiological (i.e.,
differentiation) and pathological (i.e., COPD-related) increase in
the number of goblet cells in airways. Finally, the cilia beating
model appropriately captured the activation of cAMP/PRKA and
cGMP/PRKG signaling that elevates cellular Ca2+ levels, leading
to increases in cilia beating.

Scoring the three network models with the datasets from IL13-
treated lung cells highlighted the specificities of the different
networks: IL13-induced airway mucus production affected
several hubs in the hyperplasia/metaplasia model, notably the
SPDEF transcription factor, while impacts on the cilium assembly
and ciliary beating models did not reach statistical significance.

In conclusion, the representation of cilium assembly, ciliary
beating, and airway remodeling processes through CBN models
is a potential powerful tool for systems medicine (Talikka et al.,
2017). MCC networks can be used as a substrate for scoring high-
throughput data for mechanistic understanding of the differences
between diseased and healthy tissue. The MCC network model
suite presented here, along with gene expression data from well-
controlled clinical studies, could be used in individuals with
MCC disorders for subject classification, identification of mode
of action of novel drug candidates, or prediction of treatment
outcome. Ultimately, the MCC network model suite provides
perspectives for tailored drug therapy and precision medicine.
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DATA SHEET S1 | Leading node analysis for cilium assembly network model
scored with transcriptomic data from pyocyanin treatment, IL-13 treatment, and
mucociliary differentiation datasets. For each node, an ∗ indicates it is a leading
node and the number denotes its rank among the leading nodes. + or − in
parenthesis indicates inferred up- or down-regulation, respectively. Value in % is
the contribution of the node to the overall NPA.

DATA SHEET S2 | Leading node analysis for ciliary beating network model scored
with transcriptomic data from pyocyanin treatment, IL-13 treatment, and
mucociliary differentiation datasets. For each node, an ∗ indicates it is a leading
node and the number denotes its rank among the leading nodes. + or − in
parenthesis indicates inferred up- or down-regulation, respectively. Value in % is
the contribution of the node to the overall NPA.

DATA SHEET S3 | Leading node analysis for goblet cell hyperplasia/metaplasia
network model scored with transcriptomic data from pyocyanin treatment, IL-13
treatment, and mucociliary differentiation datasets. For each node, an ∗ indicates it
is a leading node and the number denotes its rank among the leading nodes. + or
− in parenthesis indicates inferred up- or down-regulation, respectively. Value in %
is the contribution of the node to the overall NPA.
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