1,133 research outputs found

    A Comprehensive Framework for Performance Analysis of Cooperative Multi-Hop Wireless Systems over Log-Normal Fading Channels

    No full text
    International audienceIn this paper, we propose a comprehensive framework for performance analysis of multi–hop multi–branch wireless communication systems over Log–Normal fading channels. The framework allows to estimate the performance of Amplify and Forward (AF) relay methods for both Channel State Information (CSI–) assisted relays, and fixed–gain relays. In particular, the contribution of this paper is twofold: i) first of all, by relying on the Gauss Quadrature Rule (GQR) representation of the Moment Generation Function (MGF) for a Log–Normal distribution, we develop accurate formulas for important performance indexes whose accuracy can be estimated a priori and just depends on GQR numerical integration errors; ii) then, in order to simplify the computational burden of the former framework for some system setups, we propose various approximations, which are based on the Improved Schwartz–Yeh (I–SY) method. We show with numerical and simulation results that the proposed approximations provide a good trade–off between accuracy and complexity for both Selection Combining (SC) and Maximal Ratio Combining (MRC) cooperative diversity methods

    Diversity, Coding, and Multiplexing Trade-Off of Network-Coded Cooperative Wireless Networks

    Full text link
    In this paper, we study the performance of network-coded cooperative diversity systems with practical communication constraints. More specifically, we investigate the interplay between diversity, coding, and multiplexing gain when the relay nodes do not act as dedicated repeaters, which only forward data packets transmitted by the sources, but they attempt to pursue their own interest by forwarding packets which contain a network-coded version of received and their own data. We provide a very accurate analysis of the Average Bit Error Probability (ABEP) for two network topologies with three and four nodes, when practical communication constraints, i.e., erroneous decoding at the relays and fading over all the wireless links, are taken into account. Furthermore, diversity and coding gain are studied, and advantages and disadvantages of cooperation and binary Network Coding (NC) are highlighted. Our results show that the throughput increase introduced by NC is offset by a loss of diversity and coding gain. It is shown that there is neither a coding nor a diversity gain for the source node when the relays forward a network-coded version of received and their own data. Compared to other results available in the literature, the conclusion is that binary NC seems to be more useful when the relay nodes act only on behalf of the source nodes, and do not mix their own packets to the received ones. Analytical derivation and findings are substantiated through extensive Monte Carlo simulations.Comment: IEEE International Conference on Communications (ICC), 2012. Accepted for publication and oral presentatio

    Average Rate of Downlink Heterogeneous Cellular Networks over Generalized Fading Channels - A Stochastic Geometry Approach

    Full text link
    In this paper, we introduce an analytical framework to compute the average rate of downlink heterogeneous cellular networks. The framework leverages recent application of stochastic geometry to other-cell interference modeling and analysis. The heterogeneous cellular network is modeled as the superposition of many tiers of Base Stations (BSs) having different transmit power, density, path-loss exponent, fading parameters and distribution, and unequal biasing for flexible tier association. A long-term averaged maximum biased-received-power tier association is considered. The positions of the BSs in each tier are modeled as points of an independent Poisson Point Process (PPP). Under these assumptions, we introduce a new analytical methodology to evaluate the average rate, which avoids the computation of the Coverage Probability (Pcov) and needs only the Moment Generating Function (MGF) of the aggregate interference at the probe mobile terminal. The distinguishable characteristic of our analytical methodology consists in providing a tractable and numerically efficient framework that is applicable to general fading distributions, including composite fading channels with small- and mid-scale fluctuations. In addition, our method can efficiently handle correlated Log-Normal shadowing with little increase of the computational complexity. The proposed MGF-based approach needs the computation of either a single or a two-fold numerical integral, thus reducing the complexity of Pcov-based frameworks, which require, for general fading distributions, the computation of a four-fold integral.Comment: Accepted for publication in IEEE Transactions on Communications, to appea

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Second Order Statistics of -Fisher-Snedecor Distribution and Their Application to Burst Error Rate Analysis of Multi-Hop Communications

    Get PDF
    An advantage of using the composite fading models (CFMs) is their ability to concurrently address the impact of multi-path and shadowing phenomena on the system performance in wireless communications. A Fisher-Snedecor (FS) F CFM has been recently proposed as an experimentally verified and tractable fading model that can be efficiently applied for 5G and beyond 5G wireless communication systems. This paper provides second-order (s-order) performance analysis of the product of N independent but not identically distributed (i.n.i.d) FS F random variables (RVs). In particular, accurate and closedform approximations for level crossing rate (LCR) and average fade duration (AFD) of the product of N i.n.i.d FS F(N-FS F) RVs are successfully derived by exploiting a general property of a Laplace approximation method for evaluation of the N -folded integral-form LCR expression. Based on the obtained s-order statistical results, the burst error rate and maximum symbol rate of the N -FS F distribution are addressed and thoroughly examined. The numerical results of the considered performance measures are discussed in relation to the N-FS F multi-path and shadowing severity parameters. Moreover, the impact of the number of hops (N) of the N -FS F CFM on the s-order metrics, the burst error rate and maximum symbol rate are numerically evaluated and investigated. The derived s-order statistical results can be used to address the cooperative relay-assisted (RA) communications for vehicular systems. Monte-Carlo (M - C) simulations for the addressed statistical measures are developed in order to confirm the provided theoretical results.This work was supported in part by UC3M and the European Union's Horizon 2020 Programme under the Marie Sklodowska-Curie Grant through the CONEX-Plus Project under Agreement 801538; in part by the IRENE-EARTH Project under Grant PID2020-115323RB-C33/AEI/10.13039/501100011033; in part by ERDF and the Spanish Government Projects under Grant PID2019-106808RA-I00 AEI/FEDER, UE; in part by CDTI Cervera Project INTEGRA under Grant CER-20211031; in part by the Secretaria d'Universitats i Recerca de la Generalitat de Catalunya under Project 2017-SGR-00376 and Project Fem IoT under Grant 001-P-001662; in part by the European Commission Project CPSoSaware; and in part by the Cost Actions under Grant CA19111, Grant CA20120, and Grant CA16220.Publicad

    Two-Hop Connectivity to the Roadside in a VANET Under the Random Connection Model

    Get PDF
    We compute the expected number of cars that have at least one two-hop path to a fixed roadside unit in a one-dimensional vehicular ad hoc network in which other cars can be used as relays to reach a roadside unit when they do not have a reliable direct link. The pairwise channels between cars experience Rayleigh fading in the random connection model, and so exist, with probability function of the mutual distance between the cars, or between the cars and the roadside unit. We derive exact equivalents for this expected number of cars when the car density ρ\rho tends to zero and to infinity, and determine its behaviour using an infinite oscillating power series in ρ\rho, which is accurate for all regimes. We also corroborate those findings to a realistic situation, using snapshots of actual traffic data. Finally, a normal approximation is discussed for the probability mass function of the number of cars with a two-hop connection to the origin. The probability mass function appears to be well fitted by a Gaussian approximation with mean equal to the expected number of cars with two hops to the origin.Comment: 21 pages, 7 figure
    • 

    corecore