652 research outputs found

    Many-core and heterogeneous architectures: programming models and compilation toolchains

    Get PDF
    1noL'abstract è presente nell'allegato / the abstract is in the attachmentopen677. INGEGNERIA INFORMATInopartially_openembargoed_20211002Barchi, Francesc

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Parallel Computers and Complex Systems

    Get PDF
    We present an overview of the state of the art and future trends in high performance parallel and distributed computing, and discuss techniques for using such computers in the simulation of complex problems in computational science. The use of high performance parallel computers can help improve our understanding of complex systems, and the converse is also true --- we can apply techniques used for the study of complex systems to improve our understanding of parallel computing. We consider parallel computing as the mapping of one complex system --- typically a model of the world --- into another complex system --- the parallel computer. We study static, dynamic, spatial and temporal properties of both the complex systems and the map between them. The result is a better understanding of which computer architectures are good for which problems, and of software structure, automatic partitioning of data, and the performance of parallel machines

    Energy consumption in networks on chip : efficiency and scaling

    Get PDF
    Computer architecture design is in a new era where performance is increased by replicating processing cores on a chip rather than making CPUs larger and faster. This design strategy is motivated by the superior energy efficiency of the multi-core architecture compared to the traditional monolithic CPU. If the trend continues as expected, the number of cores on a chip is predicted to grow exponentially over time as the density of transistors on a die increases. A major challenge to the efficiency of multi-core chips is the energy used for communication among cores over a Network on Chip (NoC). As the number of cores increases, this energy also increases, imposing serious constraints on design and performance of both applications and architectures. Therefore, understanding the impact of different design choices on NoC power and energy consumption is crucial to the success of the multi- and many-core designs. This dissertation proposes methods for modeling and optimizing energy consumption in multi- and many-core chips, with special focus on the energy used for communication on the NoC. We present a number of tools and models to optimize energy consumption and model its scaling behavior as the number of cores increases. We use synthetic traffic patterns and full system simulations to test and validate our methods. Finally, we take a step back and look at the evolution of computer hardware in the last 40 years and, using a scaling theory from biology, present a predictive theory for power-performance scaling in microprocessor systems

    Reconfigurable Architectures and Systems for IoT Applications

    Get PDF
    abstract: Internet of Things (IoT) has become a popular topic in industry over the recent years, which describes an ecosystem of internet-connected devices or things that enrich the everyday life by improving our productivity and efficiency. The primary components of the IoT ecosystem are hardware, software and services. While the software and services of IoT system focus on data collection and processing to make decisions, the underlying hardware is responsible for sensing the information, preprocess and transmit it to the servers. Since the IoT ecosystem is still in infancy, there is a great need for rapid prototyping platforms that would help accelerate the hardware design process. However, depending on the target IoT application, different sensors are required to sense the signals such as heart-rate, temperature, pressure, acceleration, etc., and there is a great need for reconfigurable platforms that can prototype different sensor interfacing circuits. This thesis primarily focuses on two important hardware aspects of an IoT system: (a) an FPAA based reconfigurable sensing front-end system and (b) an FPGA based reconfigurable processing system. To enable reconfiguration capability for any sensor type, Programmable ANalog Device Array (PANDA), a transistor-level analog reconfigurable platform is proposed. CAD tools required for implementation of front-end circuits on the platform are also developed. To demonstrate the capability of the platform on silicon, a small-scale array of 24×25 PANDA cells is fabricated in 65nm technology. Several analog circuit building blocks including amplifiers, bias circuits and filters are prototyped on the platform, which demonstrates the effectiveness of the platform for rapid prototyping IoT sensor interfaces. IoT systems typically use machine learning algorithms that run on the servers to process the data in order to make decisions. Recently, embedded processors are being used to preprocess the data at the energy-constrained sensor node or at IoT gateway, which saves considerable energy for transmission and bandwidth. Using conventional CPU based systems for implementing the machine learning algorithms is not energy-efficient. Hence an FPGA based hardware accelerator is proposed and an optimization methodology is developed to maximize throughput of any convolutional neural network (CNN) based machine learning algorithm on a resource-constrained FPGA.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Scheduled routing for the NuMesh

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 66-68).by Milan Singh Minsky.M.S
    • …
    corecore