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ABSTRACT  

   

Internet of Things (IoT) has become a popular topic in industry over the recent 

years, which describes an ecosystem of internet-connected devices or things that enrich 

the everyday life by improving our productivity and efficiency. The primary components 

of the IoT ecosystem are hardware, software and services. While the software and 

services of IoT system focus on data collection and processing to make decisions, the 

underlying hardware is responsible for sensing the information, preprocess and transmit it 

to the servers. Since the IoT ecosystem is still in infancy, there is a great need for rapid 

prototyping platforms that would help accelerate the hardware design process. However, 

depending on the target IoT application, different sensors are required to sense the signals 

such as heart-rate, temperature, pressure, acceleration, etc., and there is a great need for 

reconfigurable platforms that can prototype different sensor interfacing circuits.  

This thesis primarily focuses on two important hardware aspects of an IoT 

system: (a) an FPAA based reconfigurable sensing front-end system and (b) an FPGA 

based reconfigurable processing system. To enable reconfiguration capability for any 

sensor type, Programmable ANalog Device Array (PANDA), a transistor-level analog 

reconfigurable platform is proposed. CAD tools required for implementation of front-end 

circuits on the platform are also developed. To demonstrate the capability of the platform 

on silicon, a small-scale array of 24×25 PANDA cells is fabricated in 65nm technology. 

Several analog circuit building blocks including amplifiers, bias circuits and filters are 

prototyped on the platform, which demonstrates the effectiveness of the platform for 

rapid prototyping IoT sensor interfaces. 
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IoT systems typically use machine learning algorithms that run on the servers to 

process the data in order to make decisions. Recently, embedded processors are being 

used to preprocess the data at the energy-constrained sensor node or at IoT gateway, 

which saves considerable energy for transmission and bandwidth. Using conventional 

CPU based systems for implementing the machine learning algorithms is not energy-

efficient. Hence an FPGA based hardware accelerator is proposed and an optimization 

methodology is developed to maximize throughput of any convolutional neural network 

(CNN) based machine learning algorithm on a resource-constrained FPGA.  
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CHAPTER 1 

INTRODUCTION 

Internet of Things (IoT) is a popular topic in industry that has emerged over the 

recent years. The term “IoT” is used to describe an ecosystem of smart devices or things 

connected through internet that improve the quality of life by increasing our productivity 

and efficiency. It encompasses a wide range of applications such as wearables, smart 

appliances, home and industrial automation, automobiles and security. IoTs have already 

been experimentally and commercially deployed in some applications [1], such as health 

monitoring wearable devices, smart water and energy meters, asset tracking and 

manufacturing quality control in industrial applications, etc. However, there still are 

many critical challenges for large scale deployment of IoT devices in the real world, the 

most important of which is the energy efficiency. 

The primary components of the IoT ecosystem are hardware, software and 

services. Software and services play a crucial role in functioning of the IoT ecosystem by 

collecting the sensor data, uploading it to cloud servers, processing or analyzing the data 

and presenting in an efficient and easily interpretable form in order to make decisions 

from the sensed information in real-time. The hardware sensor node is responsible for 

sensing the information and transmitting it to the cloud servers via the IoT gateway as 

shown in a typical IoT application scenario depicted in Figure 1.1. Actuator nodes, on the 

other hand, provide a means to act based on the decision made from the sensed 

information. For example, based on the detected motion and temperature, light and AC or 

heat can be automatically controlled to reduce overall energy usage.  
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Figure 1.1. A typical IoT application scenario. 

All the sensors and actuators are connected to the cloud via a local IoT gateway to 

enable remote monitoring and control and to perform data analytics or to run automation 

software on the sensed data. The sensors and actuators connect to IoT gateway through 

WiFi, Bluetooth, NFC, RFID, ZigBee or Ethernet cable, depending on multiple factors 

such as data volume to be transferred, input power supply of the sensor/actuator node and 

proximity of the node to the gateway. IoT gateway also allows node-to-node low-latency 

communication without having to connect to the cloud for small automation tasks. 

The block diagram of a typical IoT sensor node is shown in Figure 1.2. It consists 

of a sensor, an Analog Front-End (AFE) circuit, an optional processing unit and a 

transceiver. Depending on the target IoT application, different sensors are required to 

sense the physical phenomena such as heart-rate, sound, temperature, pressure, 

acceleration, proximity, light intensity, etc. Sensors convert these physical phenomena to 

electrical property such as voltage, current, charge, impedance (resistance or 

capacitance), which is detected by subsequent analog front-end (AFE) signal 

conditioning circuits.  Depending on the type of input sensor, AFE circuit consists of 
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trans-impedance amplifier, capacitive sensing charge amplifier or variable gain amplifier, 

filters and ADC to convert the conditioned analog signal to digital format. It is followed 

by pre-processing unit and transceiver to send the data to the cloud server for further 

processing or analytics. 

 

Figure 1.2. Block diagram of an IoT smart sensor node. 

Since the IoT ecosystem is still in a developing phase, rapid prototyping platforms 

would help accelerate the hardware design process. Furthermore, rapid prototyping 

platforms are required for validation of IoT sensor AFE circuits before an expensive tape-

out. However, designing a generic sensor front-end circuit to handle all the different 

signal types and magnitudes is non-trivial. Field-Programmable Analog Arrays (FPAAs) 

provide a good solution for rapid prototyping of such sensor AFE circuits.  

IoT systems typically employ machine learning algorithms, especially artificial 

neural networks that run on the servers to process the data in order to make decisions. If 

the sensed data is directly transmitted to the cloud, it could consume large amount of 

network bandwidth and also lead to high latency. However, if the sensed data is 

processed at sensor node or at the IoT gateway, it reduces the consumption of the 

expensive network bandwidth and also minimizes the overall latency of the IoT 

application. Moreover, if pre-processing or analytics of the data is performed locally, 
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then only required information is transmitted to the next tier, i.e. the cloud, thus 

offloading the datacenters to perform other critical tasks.  

Sensor nodes in most IoT applications would be powered from battery or energy 

harvesters and hence high energy-efficiency is of paramount importance. It is not energy-

efficient to perform compute and memory intensive processing required for neural 

networks algorithms on such energy-constrained sensor nodes. Hence, it is more suitable 

to pre-process the data at an IoT gateway, which is powered from wall outlet. 

Furthermore, processing capability of a single IoT gateway can be time-multiplexed and 

shared among multiple IoT applications. Using conventional embedded CPU based 

systems for implementing the neural network based processing systems is not energy-

efficient and may not meet the real-time performance requirements in some critical 

applications. FPGA based hardware accelerators for neural networks have become 

popular among researchers mainly because of their high reconfigurability, short 

turnaround time, good performance and high energy-efficiency. 

Convolutional Neural Networks (CNNs), inspired by visual cortex of the brain, 

are a category of feed-forward artificial neural networks. CNNs, which are primarily 

employed in computer vision applications such as character recognition [2], image 

classification [3]-[6], video classification [7], face detection [8], gesture recognition [9], 

etc., are also being used in a wide range of fields including speech recognition [10], 

natural language processing [11] and text classification [12]. Over the past decade, the 

accuracy and performance of CNN-based algorithms improved significantly, mainly due 

to the enhanced network structures enabled by massive training datasets and increased 

raw computational power aided by CMOS scaling to train the models in a reasonable 
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amount of time. Because of their ability to achieve accuracy close to or even better than 

human-level perception in a wide range of applications, CNNs are apt candidates that can 

be implemented in processing units of the IoT gateways. 

1.1. Previous Research on FPAAs 

Previous academic and industrial efforts focused on Field Programmable Analog 

Arrays (FPAA) with a wide variety of continuous time and discrete time based 

Configurable Analog Blocks (CAB) consisting of coarse grained macros like operational 

amplifiers [13], operational transconductance amplifiers [14]-[17], ADCs [18], DACs 

[19], variable gain amplifiers and reconfigurable filters [20] along with common analog 

primitives like capacitors and MOS resistors [21]. Some researchers focused on CABs 

with medium grained primitives like differential pairs, matched loads and 

transconductors [22], [23]. FPAAs with transistor-level CABs known as Field 

Programmable Transistors Arrays (FPTAs) are explored in [24], [25] for evolvable 

hardware applications. Some other researchers developed FPAAs with CABs consisting 

of a combination of coarse-grained macros along with programmable transistors using 

floating-gate transistor as reconfiguration switches [26]-[30]. However, due to the wide 

variety of analog circuits like bias circuits, amplifiers, filters, switching circuits, 

oscillators etc., it is not possible to map an arbitrary analog function of an IoT sensor 

AFE circuit to a generic set of CABs.  

Hence a transistor-level reconfigurable analog platform, named Programmable 

ANalog Device Array (PANDA), is proposed in [31], which enables rapid prototyping 

and validation of AMS circuits across different technology nodes. Previous work on 

PANDA [32] focuses on the cell design based on the device physics and proposes a 
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mapping methodology to match device characteristics like current (ID), transconductance 

(Gm) and output resistance (Rout) of each transistor in the target circuit to a PANDA cell. 

It further demonstrates the potential of the methodology by emulating a set of AMS 

circuits designed in 22nm and 90nm nodes using a common 45nm PANDA platform, 

which is termed as forward emulation (FE) and backward emulation (BE). However, it is 

primarily based on simulations using Predictive Technology Models (PTM) [33] and 

does not consider circuit performance degradation because of the reconfigurable 

interconnect.  

1.2. Previous Research on Hardware Accelerators 

A typical CNN architecture has multiple convolutional layers which extract 

features from the input data, followed by classification layers. The operations in CNNs 

are computationally intensive with over billion operations per input image [4]-[6], thus 

requiring high performance server CPUs and GPUs to train the models. However, they 

are not energy efficient and hence various hardware accelerators have been proposed 

based on FPGA [34]-[38], SoC (CPU + FPGA) [39] and ASIC [40]. FPGA based 

hardware accelerators have gained momentum owing to their reconfigurability and fast 

development time, especially with the availability of high-level synthesis (HLS) tools 

from FPGA vendors. Moreover, FPGAs provide flexibility to implement the CNNs with 

limited data precision which reduces the memory footprint and bandwidth requirements, 

resulting in a better energy efficiency (e.g. GOPS/Watt). 

Previous FPGA-based CNN accelerator designs primarily focused on optimizing 

the computational resources without considering the impact of the external memory 

transfers [34]- [36] or optimizing the external memory transfers through data reuse [37], 
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[38]. Majority of the previous work implemented generic CNN accelerators that are 

independent of the model configuration (i.e., the number of layers and convolution kernel 

size) [34]-[37], [39] and hence they do not fully utilize the hardware resources to 

maximize the throughput. The authors of [38] proposed a design space exploration 

methodology for CNN accelerator by optimizing both computation resources and external 

memory accesses, but implemented only convolution layers.  

1.3. Contribution of this work 

This thesis mainly focuses on two important hardware aspects of an IoT system: 

(a) an FPAA based reconfigurable sensing front-end and (b) an FPGA based hardware 

accelerator for reconfigurable processing system. To enable reconfiguration capability for 

any sensor type, Programmable ANalog Device Array (PANDA), a transistor-level 

analog reconfigurable platform is proposed in [31]. This work extends the previous 

simulation framework on PANDA [32] to silicon implementation of the full system in 

65nm CMOS technology, including an array of 24×25 PANDA cells, reconfigurable 

interconnect, configuration memory and interface for programming. 

To map AMS circuits onto the PANDA platform, a new set of computer-aided 

design (CAD) tools are required for design partitioning, technology mapping, placement, 

routing and configuration bit-stream generation. Despite the mature FPGA CAD 

methodologies, they do not quite suit well for PANDA because of the intrinsic 

differences in nature of analog circuit behavior with routing switches, heterogeneous cell 

types and special requirements like circuit topology, matching and sensitive nodes etc. 

Hence a new CAD tool, PANDA-PRO is developed for implementation of AMS circuits 

on the designed platform.  
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Several analog circuit building blocks including amplifiers, voltage and current 

references and active filters are designed in 65nm technology and mapped to the platform 

using PANDA-PRO. Measured performance metrics of these circuits show a good match 

with those of target designs, demonstrating the effectiveness of the platform for rapid 

prototyping IoT sensor front-end circuits. Dynamic reconfiguration capability of the 

platform is demonstrated through input offset cancellation of an amplifier implemented 

on the platform along with an FPGA in a closed loop. This capability, which enables on-

the-fly reconfiguration of the PANDA cell size and connectivity, provides new 

opportunities for validation of self-calibrating and adaptive circuits which cost 

considerable amount of simulation time to validate. 

An FPGA based hardware accelerator for Convolutional Neural Networks (CNN) 

is proposed for implementing in the processing unit in an IoT gateway. CNN model 

consisting of all the layers: convolution, normalization, pooling and classification layers 

with fixed-point operations are implemented on FPGA using OpenCL based high-level 

synthesis (HLS) framework. Critical design variables that impact the throughput are 

identified for optimization. Execution time of each CNN layer is analytically modeled as 

a function of the design variables and validated on FPGA. Logic utilization is empirically 

modeled using FPGA synthesis data for each CNN layer as a function of the design 

variables. A systematic methodology is proposed to minimize total execution time of a 

given CNN algorithm, subject to the FPGA hardware constraints of logic utilization, 

computational resources, on-chip memory and external memory bandwidth. 

The new methodology is demonstrated by implementing and maximizing the 

throughput of two state-of-the-art large-scale CNNs: AlexNet [4] and VGG [5] (which 
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achieved top accuracies in ImageNet challenges 2012 and 2014, respectively), on two 

Altera FPGA platforms with different hardware resources.  

1.4. Thesis Organization 

The organization of the thesis report is as follows: chapter 2 presents the overview 

of developed 65nm PANDA platform for rapid-prototyping IoT sensor front-end circuits. 

It also details the PANDA cell structure, architecture of reconfigurable interconnect and 

presents the cell-level measured I-V characteristics to validate the approach at device-

level. Chapter 3 presents computer aided design (CAD) tool methodologies developed for 

implementing any analog circuits on PANDA platform, which includes automatic 

mapping, placement, routing and bit-stream generation. Chapter 4 presents the 

measurement results of benchmark circuits implemented on 65nm PANDA platform and 

outlines the limitations and other applications of the platform. Chapter 5 presents the 

FPGA based hardware accelerator for a class of neural networks known as convolutional 

neural networks that can be used in IoT pre-processing unit. Chapter 6 summarizes the 

key contributions of this work along with recommendations for future work.  
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CHAPTER 2 

OVERVIEW OF 65NM PANDA PLATFORM 

Figure 2.1 shows the block diagram of PANDA system, which consists of an 

array of reconfigurable cells along with island-style interconnect and segmented routing 

channels similar to digital FPGAs [41]. Since each cell can be connected to any other cell 

through the reconfigurable connection block (CB) and switch blocks (SB) as shown in 

Figure 2.1(b), this platform is versatile for implementation of any analog circuit. To 

demonstrate the potential of PANDA for hardware validation on silicon, a full system 

consisting of 24×25 array of programmable cells, reconfigurable interconnect, 

configuration memory and computer interface for configuration is designed and 

fabricated in a 65nm CMOS technology. 

Figure 2.1. Architecture of PANDA. (a) Island-style reconfigurable interconnect similar 

to FPGAs. (b) A typical tile consisting of a PANDA cell connected to the reconfigurable 

interconnect via connection blocks (CB) and switch blocks (SB). A PANDA cell with 3-

transistor stack is shown as an example. 
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2.1. PANDA Cell Structure 

Implementation of an AMS circuit on PANDA platform requires mapping of each 

transistor to a PANDA cell to match the drain current (ID), output resistance (Rout) and 

transconductance (Gm). To implement any generic AMS circuit, PANDA cells comprise 

of transistors with different widths and lengths. For practical implementation, transistor 

widths are discretized using binary weighted transistors (1x, 2x and 4x) in parallel to a 

fixed transistor (Fx) as shown in Figure 2.2(a), such that the effective transistor width can 

be configured from Fx to Fx+7x using the digital controls (b0, b1, b2). 6 different types of 

PANDA cells each with different fixed and variable programmable width transistors are 

designed to achieve an effective width coverage of 80nm to 10m with a maximum 

discretization error of 10%. The transistor sizes in these 6 cell types are shown in Table 

2.1. If a circuit demands for more accuracy, PANDA cells with coarse width transistors 

can be used in parallel to cells with fine width transistors. 

1
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D

G
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T3T2

T1

D

G

Fx 1x 2x 4x

S

D

G

S

D

S

G
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Figure 2.2. (a) Programmable NMOS transistor using digital controls (b0, b1, b2) (b) 

Target analog transistor mapped to either 1-transistor PANDA cell (left) or 3-transistor 

PANDA cell (right) based on ID, Rout and Gm requirements.  
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To map long-channel transistors that have higher output resistance, transistors T1 

is stacked to T2 to form a cascode pair as shown in Figure 2.2 (b). Transistor T3 with its 

gate connected to VDD is added to the stack for flexibility in matching ID, Rout and Gm. 

Two variants of transistor length L=60nm and L=120nm are provided in the platform for 

flexibility to map a wide range of target transistors. To add versatility to the platform, 

programmable resistors, capacitors and parasitic BJTs are also incorporated into the 

array. The different types of PANDA cells, their sub-types and number of cells of each 

type present in the array are summarized in Table 2.2. 

To demonstrate the transistor-level I-V characteristic matching between a target 

transistor and PANDA cell, an NMOS transistor of W/L=560nm/60nm is mapped to a 1-

transistor PANDA cell at bias conditions of VG=0.4V, VD=0.5V and VS=0V. Measured I-

V characteristics of the mapped PANDA cell compared to the simulated characteristics of 

the target transistor is shown in Figure 2.3. ID-VD characteristics show a close match at 

the nominal bias of VG=0.4V. ID-VG characteristics match till VG=0.5 V, but after that 

voltage drop across the routing switches increases which reduces the effective VD at the 

transistor drain terminal. 

Table 2.1. Transistor Size Discretization 

Type Fixed Width Programmable width 

1 - 80nm, 120nm, 160nm 

2 - 90nm, 100nm, 140nm 

3 320nm 80nm, 160nm, 320nm 

4 850nm 170nm, 340nm, 680nm 

5 2.0m 400nm, 800nm, 1.6m 

6 5.76m 960nm, 1.92m, 3.84m 
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Figure 2.3. Measured I-V characteristics of PANDA cell with effective W/L = 

8×80nm/60nm emulating a target transistor of W/L=560nm/60nm mapped at nominal 

VG=0.4V, VD=0.5V, VS=0.  

Figure 2.4 shows the measured I-V characteristics of a 3-transistor PANDA cell 

which maps to a long-channel transistor of W/L=560nm/260nm at bias conditions of 

VG=0.6V, VD=0.6, VS=0V. In Figure 2.4 ID-VG characteristics, the change in ID with VD 

is minimal due to the high output resistance of the long-channel transistor. 
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Table 2.2. Summary of PANDA Cell Types 

PANDA cell type No. of sub-types No. of cells 

1-Transistor cell with L=60nm NMOS: 6, PMOS: 6 132 

1-Transistor cell with L=120nm NMOS: 6, PMOS: 6 132 

3-Transistor cell with L=60nm NMOS: 6, PMOS: 6 120 

3-Transistor cell with L=120nm NMOS: 6, PMOS: 6 120 

Programmable resistor 

(4k to 252k in steps of 8k) 
1 32 

Programmable capacitor 

(0.4pF to 1.6pF in steps of 0.4pF) 
1 32 

Parasitic BJTs NPN: 1, PNP: 1 32 
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Figure 2.4. Measured I-V characteristics of a 3-transistor PANDA cell with T1 and T2 as 

230nm/120nm and T3 is OFF emulating an analog transistor of W/L=560nm/260nm at 

nominal VG=0.6V, VD=0.6V, VS=0. 

2.2. Reconfigurable Interconnect 

 Previous FPAAs comprised of opamp based Configurable Analog Blocks (CABs) 

used crossbar interconnects, where each cell I/O has a dedicated routing channel that runs 

over the entire length of the array. This routing segment has switches to each of the 

perpendicular routing channels. Since the array has less number of such coarse-grained 

CABs, the crossbar interconnect architecture is feasible in those FPAAs. On the contrary, 

in PANDA where there are 100’s of PANDA cells distributed across the platform, 

crossbar interconnects are not feasible as the routing switch cost increases in the order of 

O(N
2
) [42]. PANDA utilizes the island-style routing architecture in conjunction with 

segmented routing architecture [41] from FPGAs as shown in Figure 2.5, where each cell 

connects to any other cell in the array through the reconfigurable interconnect. Each tile 

consists of a PANDA cell, connection blocks (CB), switch block (SB) and configuration 

memory. Connection block is required for each terminal of the PANDA cell, to connect a 

cell to the routing tracks. Switch blocks are located at intersection of horizontal and 
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vertical tracks to connect a source track to destination track(s). Each tile is carefully 

designed so that the configuration memory required for configuring the transistor widths, 

CB and SB connectivity, is present in the same tile. 

 

Figure 2.5. Mesh Interconnect architecture used in FPGAs [42] 

The main drawback of island-style architecture with routing segments that extend 

only one block length is that a signal from a cell to other cell which is ‘n’ blocks away 

has to pass through ‘n’ SB switches and 2 CB switches. This degrades/destroys the 

analog circuit functionality for large ‘n’, because of the resistance of the each switch 

along the path. Hence segmented routing similar to FPGAs is used, where each routing 

track extends to more than one block length before ending at a SB. This reduces the 

number of passing SB switches when connecting two distant cells. In the current 

implementation, routing tracks with segments which extend up to 16 blocks are provided 

for parasitic reduction while routing. Routing tracks with smaller segment lengths are 

also provided in the platform for flexibility in routing when connecting nearby cells. 

Switch block (SB) is situated at the intersection of horizontal and vertical routing 

tracks and connects an incoming track to some specific outgoing tracks based on the 
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architecture of the switch block. The number of tracks to which each incoming track can 

connect is known as switch block flexibility (Fs), where Fs=3 in typical FPGAs. There 

are different switch block architectures available in FPGA literature such as disjoint [43], 

universal [44], Wilton [45] and Imran switch block [46] each having its own 

advantages/disadvantages. Imran switch block is used in PANDA, as it is area efficient 

and gives best routable designs for segmented routing architecture [46]. The number of 

tracks to which connection block connects, is called connection block flexibility (Fc), 

which should be half the total number of tracks for best routability and area efficiency 

[41]. Hence the connection block in PANDA is designed such that it connects to 7 

routing tracks among the total of 13 tracks. 

The extracted parasitic resistance and capacitance of a routing line that connects 

two adjacent cells are 7 and 1fF, respectively, which are considerably less than those of 

the switches. The total capacitance associated with a routing line can be evaluated as sum 

of parasitic capacitance of all the switches connected to that line and the capacitance of 

the routing segment itself. For example, the total estimated capacitance on a long routing 

line that extends to 16 blocks is 216 fF, whereas the total capacitance on a short line that 

connects adjacent cells is 21 fF. 

2.3. Reconfiguration switches 

Similar to FPGAs, transmission gate (TG) based switches are used in the 

reconfigurable routing, as they can easily be configured by changing the memory 

locations that drive the gates of the TG. However, different from the switches in FPGAs, 

switches in the PANDA platform carry DC current, which may induce voltage drop 

affecting the DC bias conditions and may also destroy the circuit functionality. Increasing 
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the TG size reduces the resistance, but it also increases the parasitic capacitance, which 

in-turn decreases the maximum operating frequency of the platform. Hence TG sizing is 

critical for the overall functionality and performance of the platform. NMOS transistor is 

sized to 3m/60nm and PMOS transistor to 6m/60nm to reduce the maximum ON 

resistance of TG switch to 400, whereas the approximate capacitance of the switch is 

10fF. External I/Os are also connected to the internal routing tracks through the same 

reconfiguration switches. 

2.4. Configuration Interface and System Integration 

 Memory required to store the PANDA cell sizing, connection block and switch 

block connectivities is placed in each tile. Byte-wise addressable memory is distributed 

into two columns in each tile for ease in routing of the memory outputs to the 

reconfiguration switches. Although the cells have different dimensions, in order to 

maintain the uniform array structure, all the tiles are designed to have uniform width 

while two tile heights are chosen based on the number of reconfiguration switches. This 

gives different ratios of area of actual transistor to that of the entire tile as 0.05% for the 

smallest cell and 17% for the largest cell. This shows that over 80% of the total chip area 

is occupied by the reconfigurable routing fabric. 

To transfer configuration bit-stream from computer to the PANDA platform a 

customized Serial Peripheral Interface (SPI) protocol is used. Using 8 row address bits 

and 6 column address bits, 16KB of configuration memory can be accessed using this 

customized SPI protocol. A SPI slave along with row/column address decoding logic, 

data/address buffers is incorporated into the system to help in reconfiguration. To 

simplify the circuit, only write access is provided to the configuration memory whereas 
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both read and write access is given to the test registers distributed across the system, to 

help debug the SPI interface. The micrograph of the PANDA die fabricated in a standard 

65nm digital CMOS technology with 1-poly and 8 metal layers is shown in Figure 2.6. It 

occupies a total area of 3.46 mm
2
 including the ESD protection diodes and I/O bonding 

pads. 

Figure 2.6. Layout (left) and die micrograph (right) of the 65nm PANDA chip. 

The parameters of the designed 65nm PANDA platform are summarized in Table 

2.3. The CAD tool flow and the methodology to implement any AMS circuit on the 65nm 

PANDA platform are detailed in the next chapter. 
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Table 2.3. Summary of Parameters in PANDA Platform 

Process node 65 nm 

Die size 1.86mm × 1.86mm 

Power supply 1.2 V 

PANDA cells 600 

Programmable I/Os 24 

Width programming control bits 3,368 

Total routing switches 32,040 
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CHAPTER 3 

COMPUTER AIDED DESIGN (CAD) METHODOLOGY 

The digital FPGA platforms gained popularity in the design community since they 

facilitate rapid prototyping and design validation of digital circuits. Computer Aided 

Design (CAD) tools play a major role in the development of FPGAs as they efficiently 

map the design to the logic cells in FPGAs. In previous FPAAs which had only few 

CABs, manual placement and routing is feasible. On the other hand, the number of cells 

and the complexity of interconnect in PANDA platform makes it impractical to manually 

place and route the cells. The main tasks of an effective CAD tool in the PANDA 

methodology are partitioning of the analog circuit into discrete transistors, mapping of 

each transistor to PANDA cells, placement, routing and configuration bit-stream 

generation. Despite the mature FPGA CAD methodologies, they do not quite suit well for 

PANDA because of the following intrinsic differences.  

 Heterogeneity: All the logic blocks in typical digital FPGAs are identical, whereas 

PANDA has heterogeneous cells with different transistor sizes, resistors, capacitors 

etc. Recent FPGAs have heterogeneous blocks such as memory, arithmetic units 

along with conventional logic blocks and there are also tools available for such 

architectures [47]. However, these tools are not customized for mapping analog 

circuits to PANDA. 

 Routing Parasitics: Parasitics from routing not only degrade circuit performance as 

that happens in digital FPGAs, but can also completely destroy the functionality of 

analog circuits because of the DC and AC voltage drops in switches. Hence 
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performance degradation because of interconnect fabric must be fully addressed at 

each step of placement and routing. 

 Special Requirements for Analog Circuits: The new analog synthesis tool should 

be aware of different constraints such as circuit topology, matching and sensitive 

nodes etc., which are specific for analog circuits, but not required in FPGAs. 

 Design Scale: Modern FPGAs typically have 0.1-4 million reconfigurable logic cells 

[48]; hence the CAD tools need to trade-off the quality of final solution for 

configuration speed. In a typical analog circuit which only has 100-1000 transistors, 

the tool can afford multiple placement and routing iterations to achieve the target 

performance and related accuracy. 

Hence a new CAD tool, PANDA-PRO is developed overcoming the above 

shortcomings of FPGA CAD tools, to implement AMS circuits on PANDA platform. The 

steps involved in PANDA-PRO starting from mapping to bit-stream generation are 

summarized in Figure 3.1. 

Input netlist

Transistor-level 

mapping

Placement & Routing

Constraint generation

Bit-stream generation

Constraints: 
critical nets, 

matched pairs etc. 

Meet spec?

Simulate with P&R 

parasitics

Yes

No

Resize cells

 

Figure 3.1. PANDA-PRO CAD tool flow. 
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3.1. Automatic Mapping 

Mapping of the input design to PANDA cells is the fundamental and critical step 

in the implementation. First, the input design SPICE netlist is hierarchically partitioned 

and operating bias conditions of each transistor are extracted. From the circuit 

connectivity generic constraints such as input differential transistors and matched pairs 

are extracted. These constraints will be used in placement and routing phase. Then, each 

transistor is mapped to the PANDA cells for the extracted voltage bias conditions. 

Mapping involves sizing the transistors of the PANDA cell to match its I-V 

characteristics to that of the target transistor, thereby matching ID, Gm and Rout. First, a 

coarse search on the discrete-sized 1-transistor and 3-transistor PANDA cell types in 

Table-2.1 is performed and the cell types which yield smaller error in ID, Gm and Rout 

with respect to target transistor are selected for a detailed-search. In the detailed search, 

the transistor sizes in the selected PANDA cells are iteratively changed in the direction to 

reduce the error in ID, Gm and Rout. The PANDA cell that achieves least error is selected 

as the final solution for that target transistor. Transmission gate switches are included into 

the cell in mapping stage, so that their impact is compensated during cell sizing.  

3.2. Placement 

PANDA-PRO placer is based on simulated-annealing [49], similar to traditional 

FPGA placers [50]; however the main differences being the heterogeneous cell types and 

additional design constraints of analog circuits. Simulated-annealing is a probabilistic 

global optimization method, emulating a physical process called annealing, where a 

material at high temperature (T) is gradually cooled to achieve a minimum energy state. 
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PANDA-cell mapped netlist is given to the placement tool which minimizes the 

placement cost given in the following equation. 

  
Nets

k

jijik yyxxwtcostPlacement 

 

(1) 

where wtk is the weight assigned to each net, (xi,yi) and (xj,yj) are the coordinates of 

source and every destination cells for that net. Critical nets can be assigned higher 

weights so that its net length is optimized. 

Placement process using simulated annealing is summarized as pseudo-code 

shown in Figure 3.2. The placement starts with an initial random placement at a high 

initial temperature (T), which is determined based on the circuit size [51]. If Ninst is the 

number of instances, then the initial temperature is set to 20 times the standard deviation 

of placement costs of Ninst random placements. Since different types of cells are present 

in the array, a lookup table is utilized to aid the placement process with information about 

the cell type, its locations in the array and whether the location is already occupied. First, 

a randomly chosen instance (I1) is moved to a new location (X1) of the same cell type. If 

this new cell location is already occupied by another instance (I2), then the instances I1 

and I2 are swapped. If it leads to a better placement, the move is accepted. If the new 

placement has higher cost, the move is accepted with certain probability and the 

acceptance probability reduces as the process continues. Temperature is slowly decreased 

while performing N moves at each temperature, where N=10Ninst
4/3

 [52]. The process is 

terminated when the placement cost converges. 

  



  24 

 

Figure 3.2. Pseudo-code for placement algorithm based on simulated-annealing. 

3.3. Routing 

PANDA-PRO router is based on Dijkstra’s algorithm [53] to find the shortest path 

from a source to destination utilizing fixed routing resources. For each net, the router 

starts expanding all possible connectivities from the source connection block, which is 

termed as wavefront expansion. Then the routing cost at each expanded node is computed 

from the following equation. 

segsegSB1-ii costL  cost  costcost   (2) 

____________________________________________________________ 

1. Start with an initial random placement. 

2. While (placement cost decreasing) 

3.  Do N times at each temperature (T) 

4.   Select a random instance-I1. 

5.   Select a random location-X1 based on type of I1. 

6.   If X1 is already occupied with I2. 

7.    Swap I1 and I2. 

8.   Else 

9.    Place I1 at X1. 

10.   Compute new cost and cost = (new cost-old cost). 

11.   If (cost<0) or (random[0,1] < exp(-cost/T)) 

12.    Accept this move. 

13.   Else 

14.    Reject this move. 

15.  Decrease T=0.95*T 

________________________________________________________________________ 
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where costi-1 is the cost at the previous node, costSB is the cost of switch block, Lseg is the 

length of the segment, costseg is the cost of segment of length 1. The last term in the cost 

function (Lsegcostseg) is added to penalize longer routing segments. When a wavefront 

reaches the destination, the routing cost is noted and wavefront expansion is continued till 

all the other nodes either exceed this routing cost or reach the destination. This makes 

sure that short segments are given higher priority than long segments for the same 

number of passing switches. The costSB is set a large number compared to costseg, so that 

the router selects a route with a longer segment than the route that passes through 

multiple switch blocks, thereby reducing switch parasitics. An example of routing for 

reduced parasitics is shown in Figure 3.3. Using costSB=50 and costseg=1, the costs of 

route-1, 2 and 3 to route a net from source cell ‘S’ to destination cell ‘D’ are 154, 54 and 

61, respectively. Route-1 passes through 3 switches and thus, has a high routing cost. 

Both route-2 and 3 pass through only 1 switch, but route-2 uses shorter length segments 

than route-3 and hence it has lower cost.  

1

S

D

2

3

Length = 8
 

Figure 3.3. Illustration of routing for parasitic reduction: Among multiple routing 

solutions, route-2 is the final solution since it passes through only 1 switch block and uses 

routing segments of smaller length. 
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After placement and routing, parasitics from routing including are stitched back to 

PANDA-mapped netlist and simulated to verify if target circuit specifications are met. If 

the target specifications are not met, then the cells which are connected through large 

number of switches are resized to compensate for the DC drop across the switches. This 

process is repeated till the target specifications are met and then configuration bit-stream 

that controls the cell sizing is generated. To generate configuration bit-stream 

corresponding to the routing, all the nets in the circuit are traversed again from source to 

destination cell(s) using the final routing solution obtained in previous step. The CB and 

SB switches through which the net is routed are noted while traversing and the 

corresponding memory locations from look-up tables are set. Then, all the non-zero 

memory locations are written into a file in a {row address, column address and data} 

format, which will be serially transferred to the PANDA platform to configure the array. 

The overall tool flow including the netlist parsing, constraint generation, 

transistor-level mapping using HSPICE simulations, place and route and post-route 

netlist generation is coded in Perl; while the placement, routing and bit-stream generation 

from the PANDA-mapped netlist are implemented in C. For graphical visualization of the 

placement and routing for debugging purposes, VPR tool [50] is customized for PANDA 

architecture. 

Measurement results of the several analog circuit building blocks such as 

amplifiers, biasing circuits and active filters that are mapped to the 65nm PANDA 

platform are detailed in the next chapter. 
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CHAPTER 4 

CIRCUIT MEASUREMENTS 

Several fundamental AMS building blocks, such as amplifiers, filters, voltage and 

current reference circuits, are designed in 65nm technology and mapped to the PANDA 

platform to demonstrate the potential of this methodology for rapid prototyping and 

validation. Each of these designs including the biasing circuits are mapped to PANDA 

cells, placed, routed and configuration bit-stream is generated using the developed 

PANDA-PRO tool. This bit-stream is transferred from PC to the platform via an USB to 

SPI converter IC (MCP2210) [54]. SPI receiver in the PANDA platform receives the 

configuration bit-stream, decodes the addresses and sends the data to corresponding 

memory locations that configure the transistor sizing and connectivity of the routing 

network. Once programmed, the platform performs the functionality of the designed 

target circuit till power down, reset or reconfiguration. The typical measurement setup 

used for measurements of circuits implemented on PANDA platform is shown in Figure 

4.1. PANDA chip is integrated on to a test board in a socket along with the peripherals 

such as voltage regulators, USB to SPI protocol converter IC (MCP2210) etc., as shown 

in the Figure 4.2 to help in circuit measurements in different configurations. 

Oscilloscope/

Spectrum 

Analyzer

USB to SPI 

Converter

PANDA 

Platform

Signal 

Generator
Power Supply

 

Figure 4.1. Typical measurement setup for configuration and circuit measurements. 
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Figure 4.2. Test board consisting of PANDA chip in a socket, an add-on board with 

MCP2210 for reconfiguration and other components for flexibility in measurements. 

4.1. Benchmark Circuit Measurements 

Amplifiers are the fundamental building blocks in analog IC design ranging from 

biasing circuits to precision amplification stages and filters. Basic amplifier topologies 

such as 5-transistor operational transconductance amplifier (OTA) and 2-stage Miller-

compensated OTA are designed in 65nm technology and implemented on PANDA 

platform using the developed tool. The measured performance metrics such as DC gain, 

unity gain frequency, common mode rejection ratio (CMRR), power supply rejection 

ratio (PSRR), total harmonic distortion (THD) at 0.2 V output swing and current 

consumption of these circuits compared to the target design simulation results are shown 

in Table 4.1. The target circuits are simulated with a load capacitance of 15pF to account 

for pad and probe capacitance. The  measurement results show a good match in DC 

characteristics including gain, CMRR, PSRR, but show degradation in AC characteristics 

especially at frequencies >10MHz. Though AC performance can be improved to some 

extent by increasing bias current [17], it increases voltage drop in the routing switches 

and may further degrade the circuit performance. Output distortion, on the other hand, 
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shows significant degradation compared to that target circuits because of the non-

linearity in the transmission gate based switches.  

 

Using these OTAs as building blocks, biasing circuits like bandgap voltage 

reference and current reference circuits are implemented on PANDA platform. Voltage 

reference circuit is one of the most widely used circuits in AMS designs such as ADCs, 

DACs, and power supply regulators. One of the most commonly used voltage reference 

circuit is the bandgap circuit, which uses a signal (current or voltage) that varies in 

proportional to absolute temperature (PTAT) in conjunction with another signal that 

varies complementary to absolute temperature (CTAT) to generate a final output voltage 

which is independent of temperature. Figure 4.3 shows the low voltage band gap 

Table 4.1. Measured Performance of 65nm PANDA-mapped OTAs  

 Target design
1
 65nm PANDA 

5-transistor OTA   

DC Gain 19.2 dB 19.4 dB 

Unity gain frequency 13.6 MHz 8.6 MHz 

CMRR 36.2 dB 35.0 dB 

PSRR 20.9 dB 20.5 dB 

THD 49.1 dB 41.1 dB 

Current consumption 280 A 320 A 

2-stage Miller OTA   

DC Gain 41.9 dB 41.7 dB 

Unity gain frequency 4.1 MHz 3.3 MHz 

CMRR 50.2 dB 47.1 dB 

PSRR 49.7 dB 45.4 dB 

THD 38.3 dB 25.2 dB 

Current consumption 25.2 A 31 A 

   
1
Simulated with load capacitance of 15pF. 
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reference circuit that is commonly used in latest technologies with scaled power supplies. 

An NMOS input 2-stage opamp is used in the bandgap reference to achieve higher power 

supply rejection. The opamp is self-biased with the tail NMOS gate and load PMOS gate 

tied together. The bandgap reference along with its startup circuit is designed for a 

reference voltage of 950mV with 50ppm temperature variation across 27
o
C to 80

o
C. It is 

designed with capability to digitally trim the resistances LR and NR so as to center the 

temperature curvature for the required operating temperature in the presence of process 

variations. Bandgap reference voltage of PANDA implementation measured from room 

temperature to 80
o
C compared to that of custom designed bandgap reference circuit after 

trimming is shown in Figure 4.4. 

R

D1,1

VBGR

NR

D2,K

LRLR

ICTAT+IPTAT

ICTAT

IPTAT

 

Figure 4.3. Schematics of bandgap voltage reference circuit (start-up circuit not shown). 

Current reference circuit as shown in Figure 4.5 is designed and  implemented on 

the platform, where a reference voltage (VREF) is forced on a resistor (R) using negative 

feedback which defines the current through the resistor as VREF/R. Measured reference 
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current of PANDA implementation shows a good match to the target design as shown in 

Figure 4.6. 

 

 

Figure 4.4. Measured bandgap reference voltage of the 65nm PANDA implementation 

compared to target bandgap reference circuit on the same die. 
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Figure 4.5. Current reference generator using bandgap voltage reference 
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Figure 4.6. Measured current reference from PANDA-implemented circuit. 

An amplifier with resistive feedback, a first order Gm-C filter, active RC low pass 

and high pass filters are also implemented on the platform. The measured performance 

metrics of these circuits match with the simulation results of the target designs as shown 

in Table 4.2. Since ID, Rout and Gm of each transistor of the target analog circuit is 

reproduced by PANDA cells successfully, circuits implemented on PANDA capture the 

essential DC and AC characteristics of the target circuits.  

The number of programmable cells along with the number of reconfiguration 

switches and the time taken for place and route of some circuits implemented on the 

platform are summarized in Table 4.3. Applications of the proposed PANDA 

methodology for rapid prototyping sensor front-end circuits for IoT applications as well 

as limitations of the methodology are presented in next chapter. 
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Table 4.2. Measured Performance of 65nm PANDA-mapped Circuits 

 Target design
1
 65 nm PANDA  

Amplifier with feedback   

DC Gain 20.5 dB 19.5 dB 

Unity gain frequency 606 KHz 560 KHz 

Gm-C low pass filter   

Pass band gain -1.3 dB -1.1 dB 

3-dB corner frequency 57 KHz 41 KHz 

Active RC low pass filter   

Pass band gain -0.6 dB -0.8 dB 

3-dB corner frequency 204 KHz 195 KHz 

Active RC high pass filter   

Pass band gain -1.1 dB -1.2 dB 

3-dB corner frequency 120 KHz 108 KHz 

   
1
Simulated with load capacitance of 15pF. 

 

Table 4.3. Design Scale, Routing switches and Time to Place & Route 

Circuit No. of cells No. of switches Time (s) 

5-transistor OTA 11 51 0.84 

2-stage OTA 14 70 1.74 

Active RC filter 19 92 3.47 

Bandgap reference 26 109 4.31 
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4.2. Dynamic Reconfiguration Capability 

 Since configuration bit-stream is sent to the byte-wise addressable memory that 

stores cell sizing and connectivity information, any memory location can be manually 

rewritten after configuration, thus enabling dynamic reconfiguration capability of 

PANDA. This capability to reconfigure only a part of the circuit facilitates multiple 

applications like calibration/trimming, automatic gain control, offset cancellation etc.  

Dynamic reconfiguration capability of PANDA is demonstrated via offset 

cancellation of a 2-stage OTA by using FPGA to detect the offset error and correct it by 

sending the bit-stream to resize its input transistors. The block diagram of offset 

calibration is shown in Figure 4.7 (a) and Figure 4.7 (b) shows the circuit used to measure 

offset. To cancel the offset of the OTA, a comparator is configured in PANDA and its 

output is fed to FPGA. The status of the comparator output is read from the FPGA using 

SPI interface. Based on the output of the comparator, new bit-stream that resize the input 

transistors to cancel the offset is generated and sent to the platform. For demonstration 

purposes, transistor sizing update based on comparator output is implemented in 

software, which could easily be implemented in FPGA to make it a standalone platform. 

The offset cancellation loop continues till the system converges i.e. when the residual 

offset is limited by the LSB of the input transistor size. Using this technique the offset of 

the 2-stage OTA is reduced from 452V to 29V. If the application demands for higher 

accuracy, smaller cells can be used in parallel to original input transistors to have finer 

control over the sizing. 
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Figure 4.7. (a) Block diagram to demonstrate offset cancellation circuit using a 

comparator and FPGA in a closed loop. (b) Offset measurement circuit. 

4.3. Other Applications 

FPGAs are successful as both rapid prototyping tools and application platforms 

for digital circuits. On the other hand, due to the variety and complexity of analog 

circuits, FPAAs are very specific to a limited set of applications depending on the type of 

building blocks and routing architecture used in them. FPAAs are deployed in a wide 

range of applications like bio-medical applications [55], sensor readouts [56] [57], audio 

processing [58], emulation of smart power grids [59], etc. Depending on scale of the 

design, PANDA platform is also capable of implementing the above-mentioned 

applications. Furthermore, owing to its transistor-level fine granularity, PANDA provides 

a unique opportunity for analog designers to validate new circuit topologies by rapid 

prototyping before an expensive tape-out. PANDA also provides opportunity for tuning 

the circuit components to match the target performance.  
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There is a growing demand for integrated sensors in mobile platforms, where low 

power consumption is critical. These sensors need diverse front-end circuits for signal 

conditioning of the different signal types to be sensed like current, voltage, charge, 

resistance etc. A generic multi-sensor front-end circuit design to meet the requirements of 

all the diverse sensors is non-trivial [60] and might lead to over-design and/or high power 

consumption. Moreover, with the increasing demand for low cost consumer electronics 

and shrinking time-to-market, PANDA presents a viable solution for multi-sensor front-

end circuit implementation with its ability to reconfigure on-the-fly to any sensor front-

end circuit.  

4.4. Limitations 

Measurement results of circuits implemented on PANDA demonstrate a good 

match in primary performance metrics with those of the targets circuits like gain, CMRR, 

PSRR, bandwidth, etc., which depend on the transistor’s intrinsic properties – ID, Rout and 

Gm. Second-order performance metrics like noise, distortion, matching etc., which 

depend more on technology parameters and physical layout than transistor properties, 

cannot be matched exactly by PANDA-implemented circuits. 

PANDA cells are interconnected by transmission gate based switches that have a 

finite resistance (<400), which places an upper limit on the current per circuit branch 

from VDD to GND. As the DC current increases, voltage drop across the transmission 

gate switches increase which may destroy the circuit functionality by changing the bias 

conditions. Depending on the number of transistors in each branch, required voltage 

headroom for biasing each transistor and number of switches that connect them after 

placement and routing, the current per branch is limited to 100 A. For example, if a 
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circuit branch consists of 2 transistors connected by a total of 5 switches from the supply 

(1.2 V) to the ground and if it can tolerate a maximum voltage drop of 0.2 V across the 

switches, then the maximum current through that branch is 100 A. This current 

limitation in turn limits the maximum operating frequency of the PANDA-implemented 

circuits driving external components to 10’s of MHz, unless driven by custom on-chip 

analog buffers. However, in this work the maximum measured frequency of the 

implemented OTA shown in Table 4.1 is only 8.6 MHz, because of the passive probes 

used in measurements, which add a load of 12pF to the circuit. 

Implementation of large-scale AMS circuits with 1000’s of transistors is not 

feasible in the current implementation of the platform because of the limited number of 

PANDA cells. For such large-scale AMS circuit implementation, it is desirable to have a 

platform with a combination of coarse-grained macros like opamps, ADCs, DACs along 

with fine-grained transistor-level cells such that it will have the ease of mapping with 

coarse-grained macros and versatility and flexibility of fine-grained configurable blocks.  

Although digital circuits can be implemented by mapping each transistor to PANDA 

cells, it is quite cumbersome and area inefficient. It is preferable to have field 

programmable mixed-signal array [61] with a combination of configurable logic blocks 

(CLB) with look-up tables, SRAMs and registers like in FPGAs in combination with 

PANDA cells and coarse-grained macros so that any digital circuit in feedback loop with 

the primary analog circuit can also be implemented and validated using the same 

platform. Nevertheless, PANDA provides a promising solution for rapid prototyping and 

validation of analog circuits with versatility and flexibility of transistor-level granularity. 
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CHAPTER 5 

RECONFIGURABLE PROCESSING SYSTEM 

5.1. Overview of CNN Operations 

A typical CNN is comprised of multiple convolutional layers, interspersed by 

normalization, pooling and non-linear activation function. These convolution layers 

decompose the input image to different features maps varying from low-level features 

such as edges, lines, curves, etc., in the initial layers to high-level/abstract features in the 

deeper layers. These extracted features are classified to output classes by fully-connected 

classification layers that are similar to multi-layer perceptrons. For example, Figure 5.1 

shows the architecture of AlexNet CNN [4], which won the ImageNet challenge in 2012. 

It consists of 5 convolutional layers each with a Rectified Linear Unit (ReLU) based 

activation function, interspersed by 2 normalization layers, 3 pooling layers and 

concluded by 3 fully connected layers which classify the input 224×224 color images to 

1,000 output classes. The ImageNet database-based models are characterized by top-1 

and top-5 accuracies, which represent that the input image label matches with top-1 and 

top-5 predictions respectively.  
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Figure 5.1. Architecture of AlexNet CNN [4]. 
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5.1.1. Convolution 

Convolution is the most critical operation of CNNs and it constitutes over 90% of 

the total operations in AlexNet model [38]. It involves 3-dimensional multiply and 

accumulate operation of Nif input features with K×K convolution filters to get an output 

feature neuron value as shown in Equation (1).  

 

(1) 

where out(fo,x,y) represents the output neuron at (x,y) position in the feature map fo, 

in(fi,x,y) denotes the input neuron in the feature map fi and wt(fo,fi,kx,ky) is the kernel 

weights at position (kx,ky)  that gets convolved with input feature map fi to get the output 

feature map fo. The kernels and convolution filter weights are learned during the training 

phase.  

5.1.2. Normalization 

Local Response Normalization (LRN) or simply normalization implements a form 

of lateral inhibition [4] by normalizing each neuron value by a factor that depends on the 

neighboring neurons. Mathematically LRN across neighboring features and within the 

same feature are computed as shown in Equations (2) and (3), respectively. 

 

(2) 

 

(3) 

 

),,(),,,(),,(
0 0 0

yx

N

f

K

k

K

k

iyxioo kykxfinkkffwtyxfout
if

i x y


  


























2/

2/

2 ),,(1

),,(
),,(

Kf

Kff

i

o
o

o

oi

yxfin
K

yxfin
yxfout





















 








2/

2/

2/

2/

2

2
),,(1

),,(
),,(

Kx

Kxk

Ky

Kyk

yxo

o
o

x y

kykxfin
K

yxfin
yxfout



  40 

where K in Equation (2) is the number of neighboring features considered for LRN 

computation, K in Equation (3) is the number of neurons in x, y directions in the same 

feature, while  and  are constants. 

5.1.3. Pooling  

Spatial pooling or subsampling is utilized to reduce the feature dimensions as we 

traverse deeper into the network. As shown in Equation (4), pooling computes the 

maximum or average of neighboring K×K neurons in the same feature map, which also 

provides a form of translational invariance [62]. Although max-pooling is popularly used, 

average pooling is also used in some CNN models [62]. Reducing the dimensionality of 

lower-level features while preserving the important information, the pooling layer helps 

abstracting higher-level features without redundancy. 

 

(4) 

5.1.3. Fully Connected Layer 

Fully-connected layer or inner product layer is the classification layer where all 

the input features (Nif) are connected to all of the output features (Nof) through synaptic 

weights (wt). Each output neuron is the weighted summation of all the input neurons as 

shown in Equation (5). 

 

(5) 

5.1.4. Activation Function 

 The commonly used activation functions in traditional neural networks are non-

linear functions such as tanh and sigmoid, which require a longer training time in CNNs 

[4]. Hence, Rectified Linear Unit (ReLU) defined as y = max(x,0) has become the popular 
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activation function among CNN models as it converges faster in training. Moreover, 

ReLU has less computational complexity compared to exponent functions in tanh and 

sigmoid, also aiding hardware design. 

The outputs of the inner-product layer traverse through ReLU based activation 

function to the next inner-product layer or directly to a Softmax function that converts 

them to probability in the range (0, 1). The final accuracy layer compares the labels of the 

top probabilities from softmax layer with the actual label and gives the accuracy of the 

CNN model. 

5.2. Hardware Implementation Challenges 

While CNNs are proven indispensable in many computer vision applications, they 

consume significant amount of storage, external memory bandwidth, and computational 

resources, which makes it difficult to implement on an embedded platform. The 

challenges in implementation of a large-scale CNN on FPGAs are illustrated using 

AlexNet model as an example. It has over 60 million model parameters, which needs 

~250MB of memory to store the weights using 32-bit floating point representation and 

hence they cannot be stored in on-chip memory of commercially available FPGAs. They 

need to be stored in an external memory and transferred to the FPGA accelerator at the 

time of computation, which could become a performance bottleneck. The AlexNet model 

consists of 5 convolution layers with ReLU, 2 LRN layers, 3 pooling layers and 3 fully 

connected layers, where each layer has different number of features, input and output 

dimensions. If they are implemented independently without resource sharing, it would be 

either hardware-inefficient or may not fit on the FPGA due to the limited computational 

and memory resources. The problem gets exacerbated in the state of the art models such 
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as VGG [5] and GoogLeNet [6], which have a larger number of repeated CNN layers. To 

efficiently share hardware resources, repeated computation (e.g. convolution) should be 

implemented with a scalable hardware [38], such that the same hardware is reused by 

iterating the data through them in software. The performance limitation due to the 

external memory bandwidth can be alleviated by using reduced precision model weights. 

Hence, precision study is performed by sweeping model weights and chose the precision 

values that have minimal impact on the classification accuracy.  

5.3. Precision Study for Hardware Accelerator Modules 

Traditionally CNN models are trained in CPU/GPU environments using 32-bit 

floating point data. Such high precision is not necessarily required in the testing or 

classification phase, owing to the redundancy in the over-parameterized CNN models 

[63]. Reducing data precision of the weights/data without any impact on the accuracy 

directly reduces the storage requirement as well as the energy for memory transfers.  

Precision requirements of convolution and fully connected layer weights are 

explored using AlexNet and VGG models from Caffe framework [64]. First, the pre-

trained models from Caffe are obtained, convolution weights and inner product weights 

are rounded off separately, and the models are tested on the ImageNet-2012 validation 

dataset of 50K images. Although data precision is reduced, Caffe tool still performs CNN 

operations in 32-bit floating point precision using the truncated weights. Figure 5.2 shows 

the top-1 and top-5 accuracies of the model for a precision sweep of the weights. It shows 

that the accuracy steeply drops if the weight precision reduces below 8 bits. Since the 

same hardware block will be reused for all the convolution layer iterations, a common 

precision is used for the weights in all convolution layers. 8-bit precision is chosen for the 
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convolution weights and 10-bit precision is chosen for inner product weights, which 

degrades the accuracy by only <1% compared to full precision weights. Similarly, by 

performing the precision study, 16-bit precision is chosen for the intermediate layer data.  

 

Figure 5.2. AlexNet and VGG model classification accuracies are shown for different 

weight precisions of convolution and inner-product layers. 

5.4. OpenCL Implementation of CNN Layers 

High Level Synthesis (HLS) tools are gaining popularity in the FPGA 

community, as they enable faster hardware development by automatically synthesizing an 

algorithm in high-level language (e.g. C) to RTL/hardware. There is a recent interest in 

using OpenCL, a C-based programming language, for FPGAs because of its parallel 

programming model [65] which matches with the parallel computation capabilities of 

FPGAs. Moreover, the same OpenCL codes can easily be ported to different platforms: 
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CPUs, GPUs, DSPs or heterogeneous systems consisting of a combination of them. 

OpenCL compilers not only compile an OpenCL code to RTL, but also integrate it with 

the interfacing IPs for external memory and for communication between host CPU and 

FPGA accelerator board. They abstract the designer/user from the intricacies of 

traditional FPGA design flow such as RTL coding, integration with interfacing IPs and 

timing closure, which considerably reduces the design time, while achieving performance 

comparable to the traditional flow, but possibly at the expense of higher on-chip memory 

utilization [66]. 

The design flow of the OpenCL based FPGA accelerator for CNN used in this 

work is shown in Figure 5.3. It consists of an FPGA accelerator board that is integrated 

into the PCIe slot of a desktop CPU that acts as the OpenCL host. In general, OpenCL 

framework consists of two components (a) an OpenCL code that is compiled and 

synthesized to run on the FPGA accelerator and (b) a C/C++ based host code with 

vendor-specific application program interface (API) to communicate with the FPGA 

accelerator. 

PCIe

Standard C/C++ 

Compiler

Host 

executable

Altera OpenCL 

Compiler

FPGA 

config file

C/C++ Host code OpenCL kernel

FPGA Accelerator

(OpenCL device)

Desktop CPU

(OpenCL host)  

Figure 5.3. OpenCL based FPGA accelerator for CNN. 
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In this work, Altera OpenCL software development kit (SDK) is used for 

compilation of OpenCL code to RTL, which takes a few minutes for initial compilation, 

followed by full synthesis which could take hours depending on the size of the design. 

The tool-kit provides support for emulation, which runs the OpenCL code on host CPU, 

thus allowing for quick functional verification before going to the full FPGA 

implementation. The Altera SDK for OpenCL provides different synthesis constructs to 

enable acceleration of OpenCL kernels such as loop unroll factor and Single-Instruction-

Multiple-Data (SIMD) vectorization factor. The details about how these factors improve 

the performance of the OpenCL kernels and impact the logic utilization are discussed in 

the following sections. 

5.4.1. 3-D Convolution 

Convolutions are the most performance-critical operations in CNNs, constituting 

up to 91% of the total operations in AlexNet model [4]. It involves computationally 

intensive 3-D multiply and accumulate (MAC) operations of the input features with the 

convolution weights as given in Equation (1). To maximize the overall throughput of the 

accelerator and also make the design portable to any other CNN model, a scalable 

convolution block is needed such that the data can be iterated through it in software. 

A scalable convolution block is implemented by mapping the 3-D convolutions as 

matrix multiplication operations similar to that in [67] by flattening and rearranging the 

input features. As an example, Figure 5.4 illustrates how Convolution-1 layer in AlexNet 

is mapped from 3 input features with dimensions 224×224 to a rearranged matrix with 

dimensions of (3×11×11) × (55×55). The input features from the first convolution 

window of 11×11 are flattened and arranged vertically as shown in Figure 5.4. Similarly, 
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the entire rearranged matrix can be generated by sliding the 11×11 convolution filter 

across the input features. After input features are rearranged, the convolution operation 

transforms to a generic matrix multiplication operation. Input feature rearrangement is 

performed on-the-fly by storing them in the FPGA on-chip memory before performing 

the matrix multiplication, which reduces the external memory requirement by eliminating 

the need to store the entire rearranged input feature matrix. 
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Figure 5.4. Mapping 3D convolutions to matrix multiplication operations. 

The pseudo-code for matrix multiplication based convolution implementation in 

OpenCL is shown in Figure 5.5. It can be summarized as the following three basic 

operations which are repeated over each row of the weight matrix. 

a) Fetch the convolution weights to the local memory which is implemented using 

FPGA on-chip memory.  

b) Compute the input feature actual address locations before flattening and fetch them to 

local memory. 
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c) Compute NCONV multiply and accumulate operations in parallel on the weights and 

inputs from local memory.  

 

Figure 5.5: Pseudo code of convolution implementation based on matrix multiplication. 

Input feature rearranging operation is appended with matrix multiplication 

OpenCL code from [68]. Understanding the matrix multiplication OpenCL 

implementation is critical for acceleration of the convolution operation. The 

implementation of matrix multiplication operation in OpenCL is illustrated in Figure 5.6, 

which consists of convolution weight matrix A (M×N), multiplied by the rearranged 

input feature matrix B (N×P) to compute the output feature matrix C (M×P). It consists of 

NCONV×NCONV threads or OpenCL work-items, which fetch the first NCONV×NCONV inputs 

to the local memory where NCONV=4 in this example. Each thread performs NCONV 

parallel multiply and accumulate (MAC) operations on the local memory data, which is 

accomplished by loop unrolling that replicates the hardware resources for acceleration. 

_______________________________________________________________________ 

1. Get current work-item/thread identifiers (x, y). 

2. For each NCONV elements width-wise in weight matrix: 

3.     Compute address locations for input features and weights. 

4.     Fetch input features to inputs[x][y] in local memory. 

5.     Fetch convolution weights to weights[y][x] in local memory. 

6.     Wait till NCONV×NCONV inputs and weights are loaded. 

7.     Do the following NCONV MAC operations in parallel: 

8.         convolution output += weight[x][k]*input[y][k]. 

9.     Wait till all work-items complete computation on fetched data. 

10. Save convolution output to output buffer.  

_______________________________________________________________________ 
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Each thread waits till all the other threads complete the MAC operations, which is 

achieved by the OpenCL synchronization construct ‘barrier’. This process is repeated by 

sliding the NCONV×NCONV window column-wise in matrix A and row-wise in matrix B 

and performing the MAC operations to get NCONV×NCONV output elements in the product 

matrix C. 

A1 A2 A3 B1

B2

B3

C1

C1 = A1×B1 + A2×B2 + A3×B3 

M

N

N

P

P

M× =

 

Figure 5.6. Accelerating matrix multiplications in OpenCL. 

From Figure 5.6, we see that the input and output matrix dimensions must be a 

multiple of NCONV, which might not always be possible because of different number of 

input and output features and different feature dimensions in different convolution layers. 

Hence zero padding is applied the input matrices to make their dimensions a multiple of 

NCONV. Increasing NCONV boosts the throughput as it fetches larger number of inputs to 

the local memory and performs computations on them without having to wait for external 

data. On the other hand, it increases the logic utilization and overhead in case zero-

padding is excessive in some layers.  

SIMD vectorization factor (SCONV) is used as the design variable to accelerate the 

convolution operation, which represents the factor by which computational resources are 

vectorized to execute in a Single-Instruction-Multiple-Data (SIMD) fashion. This factor 

improves the throughput by a factor of SCONV. The allowed values for SCONV are 1, 2, 4, 8, 
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and 16. OpenCL standard imposes a restriction on work-group size (i.e. NCONV) such that 

it has to be a multiple of SCONV. Depending on the model configuration parameters such 

as feature dimensions, number of features, and number of convolution layers, choosing 

an appropriate combination of (NCONV, SCONV) maximizes the overall throughput of CNN. 

5.4.2. Normalization 

Local response normalization (LRN) implementation requires an exponent 

operation as shown in Equation (2), which is expensive to precisely implement in 

hardware. Hence the exponent function f1(xo) shown in Equation (6) is implemented 

using a piece-wise linear approximation function pwlf(xo). 

 

(6) 
 

(7) 

Here K represents the number of features used for normalization. Using the 

AlexNet model data as an example, the exponent function f1(xo) is approximated using a 

piece-wise linear function using 20 points with a maximum error of 1%. Because of the 

wide dynamic range of values involved in xi computation, normalization is implemented 

in 32-bit floating point representation. Normalization is implemented as a single-threaded 

code using loop unroll factor (NNORM), which represents the number of normalization 

operations it performs in a single cycle. The Altera OpenCL compiler automatically 

infers pipelining whenever there are no data dependencies between multiple iterations. 

The pseudo code for normalization is shown in Figure 5.7. It uses local memory to store 

the sum of squares of a sliding window of K input features, while performing the 
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normalization operation on the computed sum of squares using the piece-wise linear 

approximation function, pwlf(xo). 

 

Figure 5.7. Pseudo-code for normalization implementation. 

5.4.3. Other Layers 

Pooling is implemented using a single work-item kernel where acceleration is 

achieved by unrolling the loop to generate NPOOL parallel outputs in a single cycle. Fully-

connected layer or inner-product layer is also implemented as single work-item kernel, 

where acceleration is achieved by performing NFC parallel multiply and accumulate 

operations, which accelerates the performance by a factor of NFC. Nonlinear activation 

function ReLU, which performs the function y=max(x,0) is incorporated at the output of 

convolution and inner product implementations with a flag to enable or disable it. 

5.5. Design Space Exploration 

Choosing the best combination of the design variables (NCONV, SCONV, NNORM, 

NPOOL, NFC) that maximizes the performance of the CNN accelerator, while still being 

able to fit in the limited FPGA resources is a non-trivial task, which emphasizes the need 

______________________________________________________________________ 

1. Compute sum_of_squares of first K/2 features. 

2. For each input_feature i: 

3.     For each neuron j in feature i: 

4.         Do the following for NNORM neurons in parallel: 

5.             Compute sum_of_squares[j] += input_feature[i+K/2][j] 

6.             Compute output_feature[i][j] = input_feature[i][j] 

7.              *pwlf(/K*sum_of_squares[j]) 

8.             Update sum_of_squares[j] –= input_feature[i–K/2][j] 

______________________________________________________________________ 
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for a systematic design space exploration methodology. Optimization framework that 

relies on full FPGA synthesis at each design point may not be feasible especially because 

of the long run time, which could take hours, or potential synthesis failures that occur due 

to utilization of hardware resources. Hence performance and resource utilization are 

modeled and used for fast design space exploration.  

In this section, optimization problem formulation is presented and then analytical 

and empirical modeling of the performance and FPGA resource utilization as a function 

of the design variables for each CNN layer are presented using AlexNet as an example. 

5.5.1. Problem Formulation 

The resource-constrained throughput optimization problem can be formulated as follows. 

 

(8) 
 

(9) 

 

(10) 

 

(11) 

where TL represents the total number of CNN layers in the model, L denotes the total 

number of CNN layer types and runtimei is the execution time of the layer-i. DSPMAX, 

MemoryMAX, and LogicMAX represent the total DSP, on-chip memory and FPGA logic 

resources, respectively, available in a given FPGA. 

5.5.2. Performance Modeling 

The execution time of each CNN layer is analytically modeled as a function of the 

respective design variables and validated on the actual execution time obtained by 
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performing full synthesis at selective design points and running them on the FPGA 

accelerator. 

The execution time of convolution layer-i is modeled as follows. 

 

(12) 

 

(13) 

where PADNCONV ceils its inputs to the multiple of NCONV. Maximum frequency of the 

kernel, which is also a function of NCONV and SCONV, is modeled empirically from the 

synthesis data with different random seeds, as shown in Figure 5.8. The run time model 

and the actual measured run times of convolution layers 1-4 of AlexNet implementation 

for a sweep of NCONV at different SCONV values are compared in Figure 5.9. 

 

Figure 5.8. Kernel frequency modeling from full synthesis data at 5 random seeds. (RMS 

error of the fit: 12.57 MHz). 
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Figure 5.9. Run time model vs. measured time of convolution layers 1-4 of AlexNet CNN 

model for a sweep of NCONV with SCONV = 1 and 4. 

Similarly, the execution time of normalization, pooling and fully connected layers 

are modeled as functions of their respective loop unroll factors used for acceleration as 

follows. 

 

(14) 

The execution time model vs. measured run time of normalization and fully connected 

classification layers are shown in Figure 5.10.  

Input data, weights, intermediate data and output data are stored on the external 

memory that is present on the FPGA accelerator board. During computation of each 

layer, the inputs are loaded from the external memory to the FPGA and the computation 

results are stored back in the external memory. For this purpose, Altera OpenCL compiler 

generates complex load/store units similar to those in GPUs, which combine multiple 
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external memory accesses into a single burst access, known as coalescing. This ensures 

the efficient use of available external memory bandwidth with less contention for 

memory accesses between multiple computational blocks. On the other hand, this makes 

it difficult to model the external memory bandwidth usage with respect to the design 

variables used for acceleration. This problem is aggravated by the reuse of the scalable 

hardware blocks in multiple iterations of CNN layers with different input dimensions, 

which will have different access patterns. For example, the execution time of fully 

connected layers 6 and 7 of AlexNet model shown in Figure 5.10, shows that the model 

matches well with the measured time till NFC=100. For NFC>100, the measured time 

increases slightly, but the model still shows a reduction in execution time. This 

discrepancy is caused by the bandwidth limitation of the FPGA board used for the model 

validation. Hence, bandwidth limitation of the FPGA board is used to define the upper 

limits for the design variables in our optimization framework. 

 

Figure 5.10. The execution time model vs. measured data of normalization and fully 

connected layers in AlexNet for sweep of loop unroll factors NNORM and NFC. 

5.5.3. Resource Utilization Modeling 

Analytically modeling the FPGA resource utilization of an algorithm in high-level 

language such as OpenCL may not be feasible because of the optimizations performed in 
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the HLS tools. Hence, synthesis results are used to empirically model the FPGA resource 

utilization. The post-synthesis resource utilization results are not precisely accurate due to 

the optimizations performed after flattening the design hierarchy during the place and 

route stage. However, resource utilization data acquired from synthesis is still a good 

representative of the final resource utilization after place and route. DSP block usage, on-

chip memory and logic utilization from synthesis results of each CNN layer are fitted to 

linear regression models as a function of the respective design variables. 

Resource utilization models of normalization block are shown in Figure 5.11. 

Logic element and DSP utilization from the synthesis data in Figure 5.11 show a linear 

increase with the swept design variable NNORM. On the other hand, on-chip memory 

utilization model shows small discrepancy with the synthesis data at intermediate points 

because of the implementation of coalescing type load/store units, where the memory 

resource utilization depends on whether the external memory data width is an integer 

multiple of the design variables i.e. NNORM. 

 

Figure 5.11. Resource utilization empirical models for normalization block. 

5.5.4. Optimization Framework 

From the convolution run time model in Figure 5.9, we see that it is non-

monotonic, because of the differences in dimensions of the CNN layers. Although 
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exhaustive search of all the design variables could be done using the performance and 

resource utilization models, it may not be feasible if the number of design variables 

and/or the FPGA resources increase substantially. This calls for global optimization 

methodologies such as simulated annealing, genetic algorithm or particle swarm 

optimization with integer variables and multiple inequality constraints. In this work, 

genetic algorithm with integer constraints from the global optimization toolbox in Matlab 

is used for the design space exploration.  

Genetic algorithm is a stochastic optimization technique that mimics the 

biological evolution process and is popularly used to find the global minimum of an 

objective function subject to a set of constraints. It can also handle mixed integer 

programming problems, where some design variables are integers. It iteratively improves 

the quality of the solution by generating a set of candidate solutions at each iteration or 

generation from a combination of the best solutions from the previous generation based 

on a set of genetic rules – selection, crossover and mutation. The solutions that violate the 

constraints (i.e. Equations (9)-(11)) are penalized with a higher objective function value 

to ensure convergence of the feasible solutions to a global minimum. 

The design space of the OpenCL-based FPGA accelerator design is illustrated in 

Equation (15). 

 

(15) 

168,4,2,1      orSCONV 

MAXCONVCONV NNSNN  0, 

)(0 MAXNORMNORM NN 

)(0 MAXPOOLPOOL NN 

)(0 MAXFCFC NN 
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where all the design variables are integers, and upper limits of the design space 

exploration such as NMAX, NNORM(MAX), NPOOL(MAX), and NFC(MAX) are determined by the 

external memory bandwidth of the FPGA board. For example, in a fully connected layer 

implementation where k bytes are required for each MAC operation, NFC of an 

accelerator board with external memory bandwidth of MBW is computed as shown in 

Equation (16). 

 

(16) 

For an FPGA system with 6 GB/s external memory bandwidth, requiring 2 bytes 

per MAC operation in a fully connected layer with 100MHz kernel frequency, the upper 

limit for NFC can be computed from Equation (16) as 30. Similarly, the upper limits of 

other blocks can be computed based on the number of external memory transfers required 

for each operation.  

5.6. Experimental Results 

The proposed optimization framework is validated by implementing and 

accelerating two large-scale CNN models: AlexNet and VGG (16-layer) models on two 

FPGA boards with different hardware resources. The hardware specifications of the two 

Altera Stratix-V based boards are summarized in Table 5.1. 

Both networks are implemented in OpenCL with fixed-point operations using 8-

bit weights for convolution and fully connected layers as obtained from the precision 

study in Section 5.3. Although 10 bit precision is chosen for inner product weights, they 

are still represented in 8-bits because of their limited range. Using the performance and 

resource utilization models and the maximum hardware resources available in the two 

Frequencyk
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boards, optimization framework is run on both AlexNet and VGG models to find the 

optimal combination of design variables (NCONV, SCONV, NNORM, NPOOL, NFC) that 

maximizes the throughput. The final values of the design variables for both networks 

optimized for the two FPGA boards are shown in Table 5.2. VGG model does not include 

normalization layers; hence the corresponding kernel is removed for the FPGA 

implementation. 

 

 

Using Altera OpenCL SDK, the OpenCL kernel codes for AlexNet and VGG 

models are compiled for the two boards using the corresponding optimized parameters 

from Table 5.2. Using the host code APIs, FPGA is programmed and the CNN model is 

run by queueing the OpenCL implemented CNN kernels with appropriate arguments that 

Table 5.1. Comparison of FPGA Accelerator Boards. 

Specification P395-D8 [69] DE5-Net [70] 

FPGA Stratix-V D8 Stratix-V A7 

Logic elements 695K 622K 

DSP blocks 1,963 256 

M20K RAMs 2,567 2,560 

External memory 4× 8GB DDR3 2× 2GB DDR3 

 

Table 5.2. Optimized Parameters. 

Parameter 
P395-D8 board DE5-Net board 

AlexNet VGG AlexNet VGG 

NCONV 64 64 32 64 

SCONV 8 8 4 2 

NNORM 2 - 2 - 

NPOOL 1 1 1 1 

NFC 71 64 32 30 
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consist of input/output buffer address locations and the layer dimensions. The execution 

time of each kernel and the entire model are measured and throughput is computed as 

(total number of operations)/(execution time). 

The execution time of the CNN layers in AlexNet and VGG models implemented 

on P395-D8 board with kernel profiling support) is shown in Figure 5.12. The final 

classification time without kernel profiling will be significantly lower than that shown in 

Figure 5.12 because of the delay involved with kernel profiling itself. The execution of 

fully-connected layers can be overlapped with the initial convolution layers of the next 

image, which increases the overall throughput of the accelerator (by 27% in AlexNet 

implementation on P395-D8). The next input image transfer from the OpenCL host to the 

off-chip memory on the FPGA board is overlapped with current CNN operations, thus 

not hampering the throughput. The initial model weight transfer from the host to the 

board, which only occurs once in the beginning, is not included for throughput 

computation. 

 

Figure 5.12. The execution time of CNN layers in (a) AlexNet and (b) VGG 

models on P395-D8 FPGA accelerator. 

(a) 

(b) 
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The total classification time per image and overall throughput of AlexNet and 

VGG models on P395-D8 and DE5-Net boards are compared with Caffe tool [20] 

running on Intel core i5-4590 CPU (3.3 GHz) in Table 5.3. Although both FPGAs have 

similar number of logic elements and on-chip memory blocks, the smaller number of 

DSP blocks in DE5-Net accounts for its lower throughput compared t that of P395-D8. 

The software implementation in Caffe tool uses libraries optimized for basic vector and 

matrix operations (i.e., ATLAS [71]) for performing CNN operations. Our OpenCL 

based FPGA implementations on P395-D8 achieve 9.5x and 5.5x speedups for AlexNet 

and VGG models, respectively, compared to the CPU implementation in Caffe tool. 

 

The execution time, throughput and the resource utilization of each kernel type of 

the AlexNet on P395-D8 and DE5-Net FPGA accelerator boards are shown in Figure 

5.13. VGG implementation on P395-D8 achieves a peak throughput of 136.5 GOPS for 

convolution layers, and 117.8 GOPS including all layers and operations while performing 

image classification. From the implementation results, we see that throughput of the 

accelerator is largely proportional to the number of DSP blocks used in the 

Table 5.3: Classification Time/Image and Overall Throughput. 

 FPGA  
Classification 

time/image (ms) 

Throughput 

(GOPS) 

AlexNet 

P395-D8 20.1 72.4 

DE5-Net 45.7 31.8 

CPU 191.9 7.6 

VGG 

P395-D8 262.9 117.8 

DE5-Net 651.2 47.5 

CPU 1437.2 21.5 
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implementation. AlexNet implementation on P395-D8 board is limited by the number of 

available M20K block RAMs, while only 727 out of 1963 available DSP blocks are 

utilized. On the other hand, the implementation on DE5-Net FPGA board is limited by 

the lower number of available DSP blocks, although the on-chip memory resources are 

not fully utilized. 

 

Figure 5.13. Execution time and resource utilization of each CNN layer type for 

AlexNet implementation on P395-D8 and DE5-Net FPGA boards. 

The optimization framework reports the hardware resource that causes the 

performance bottleneck, such that the user can choose another FPGA hardware, which 
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has larger number of the specific hardware resources (e.g. DSP blocks). This 

methodology can also be used to find the ideal specifications of an FPGA suited for 

CNN, by performing optimization with relaxed constraints for the bottleneck hardware 

resource. For example, increasing the on-chip memory resources on P395-D8 FPGA by 

10% directly increases the throughput of AlexNet implementation by ~10%. 

The top-1 and top-5 accuracies of FPGA implementation of AlexNet and VGG 

models compared to those of the full-precision Caffe models are summarized in Table 

5.4. The accuracy degradation due to fixed-point operations in FPGA implementation is 

<2% for top-1 accuracy and <1% for top-5 accuracy for both AlexNet and VGG models.  

 

Both DE5-Net and P395-D8 boards are connected to a PCIe slot of a desktop 

computer whose CPU operates as the OpenCL host. Since the FPGA board receives 

power from external power port as well as PCIe slot, the power measurement of the 

FPGA board itself is not straightforward. We attempted to block the power connection 

through PCIe and have the FPGA board powered only through the external power port. 

This way, the average power consumption of DE5-Net board was measured as 24.2W 

after programming AlexNet configuration, and as 25.8W while performing classification. 

On the other hand, the same measurement method was not feasible on P395-D8 board as 

Table 5.4. Model Accuracy Comparison. 

Accuracy 
Full precision in Caffe tool 

Fixed-point FPGA 

implementation 

Top-1 Top-5 Top-1 Top-5 

AlexNet 56.82% 79.95% 55.41% 78.98% 

VGG 68.35% 88.44% 66.58% 87.48% 
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it was designed to use both power supplies. Nonetheless, its power consumption was 

measured as 19.1W after programming with AlexNet configuration file, using a utility 

function provided by board manufacturer that measures the steady state power of the 

board. The power consumption difference between the desktop computer without FPGA 

and with FPGA running AlexNet is measured as 26W for DE5-Net and 35W for P395-D8 

boards. This difference includes the power consumption of CPU running the OpenCL 

host code, which could be much smaller with embedded processors in FPGA chips. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1. Thesis Conclusions 

 The application fields for Internet of Things are expanding at a rapid pace and the 

expected time for an idea to reach the market is shrinking. In order to accelerate the IoT 

sensor node hardware design process, this work presents an FPAA based solution for 

rapid-prototyping sensor analog front-end circuit and an FPGA based processing unit. To 

enable reconfiguration capability for any sensor analog front-end circuit, a Programmable 

ANalog Device Array (PANDA) is developed with transistor-level fine granular 

configurable analog blocks. A full system consisting of an array of 24×25 PANDA cells, 

mesh-style reconfigurable interconnect and configuration memory is developed, which is 

presented in Chapter 2. 

 Although FPGA CAD tools are quite mature, they are not well suited for PANDA 

platform because of the intrinsic differences between analog and digital circuits. Hence, a 

new CAD tool, PANDA-PRO, is developed to implement analog circuits on the 

implemented platform, which is presented in chapter 3. Methodologies for transistor-level 

mapping of target circuits to PANDA cells, automatic placement and routing of the 

mapped cells are also presented in Chapter 3. 

 In Chapter 4, measurement results of several benchmark circuits including 

amplifiers, voltage and current references and active filters are presented. The 

measurements match the simulation results of the target designs, demonstrating the 

efficacy of the platform to rapid-prototype and validate IoT sensor front-end circuits. 

Dynamic reconfiguration capability is demonstrated through offset cancellation of an 
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amplifier using an FPGA in a closed loop. This capability which enables on-the-fly 

reconfiguration of transistor sizes and connectivity opens up new realms such as self-

calibrating circuits, adaptive circuits, reconfigurable multi-sensor readout circuits, 

evolvable hardware etc. 

 In Chapter 5, an FPGA based hardware accelerator for Convolutional Neural 

Networks (CNN) is proposed for implementing in the processing unit of IoT gateways. A 

systematic methodology is proposed to maximize the throughput of a given CNN 

algorithm, subject to the FPGA hardware constraints of logic utilization, computational 

resources, on-chip memory and external memory bandwidth. The new methodology is 

demonstrated by implementing and maximizing the throughput of two state-of-the-art 

CNNs: AlexNet [4] and VGG models [5], on two Altera FPGA platforms with different 

hardware resources, achieving a peak performance of 136.5 GOPS. 

6.2. Future Work 

 This work could be extended in several research directions, some of which are 

described as follows. While transistor-level granularity of PANDA cells is ideal for 

implementing an arbitrary analog function, implementing large-scale circuits would be 

cumbersome at that granularity. Further investigation could be required to explore the 

design space to find an optimal combination of transistor-level PANDA cells and coarse-

grained macros (e.g., Opamps, OTAs, ADCs, etc.) suitable for a set of target applications.  

 The developed design space exploration methodology to maximize the 

performance of the hardware accelerator for CNNs can be extended to any other feed-

forward class of neural networks. Furthermore, it could be extended to different classes 

of deep learning, for instance, recurrent neural networks (RNN), where the connections 
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between different units form a directed cycle. RNNs, analogous to state machines in 

digital circuits, are different from CNNs, which are analogous to combinational circuits 

in digital circuits, in the network structure as they have feedback connections. This 

creates an internal state of the network that makes them suitable for a wider class of 

applications including language modeling, speech recognition and data analytics. 
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