
Reconfigurable Architectures and Systems for IoT Applications

by

Naveen Suda

A Dissertation Presented in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Approved December 2015 by the

Graduate Supervisory Committee:

Yu Cao, Chair

Bertan Bakkaloglu

Sule Ozev

Shimeng Yu

Jae-sun Seo

ARIZONA STATE UNIVERSITY

May 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/79582529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

ABSTRACT

Internet of Things (IoT) has become a popular topic in industry over the recent

years, which describes an ecosystem of internet-connected devices or things that enrich

the everyday life by improving our productivity and efficiency. The primary components

of the IoT ecosystem are hardware, software and services. While the software and

services of IoT system focus on data collection and processing to make decisions, the

underlying hardware is responsible for sensing the information, preprocess and transmit it

to the servers. Since the IoT ecosystem is still in infancy, there is a great need for rapid

prototyping platforms that would help accelerate the hardware design process. However,

depending on the target IoT application, different sensors are required to sense the signals

such as heart-rate, temperature, pressure, acceleration, etc., and there is a great need for

reconfigurable platforms that can prototype different sensor interfacing circuits.

This thesis primarily focuses on two important hardware aspects of an IoT

system: (a) an FPAA based reconfigurable sensing front-end system and (b) an FPGA

based reconfigurable processing system. To enable reconfiguration capability for any

sensor type, Programmable ANalog Device Array (PANDA), a transistor-level analog

reconfigurable platform is proposed. CAD tools required for implementation of front-end

circuits on the platform are also developed. To demonstrate the capability of the platform

on silicon, a small-scale array of 24×25 PANDA cells is fabricated in 65nm technology.

Several analog circuit building blocks including amplifiers, bias circuits and filters are

prototyped on the platform, which demonstrates the effectiveness of the platform for

rapid prototyping IoT sensor interfaces.

 ii

IoT systems typically use machine learning algorithms that run on the servers to

process the data in order to make decisions. Recently, embedded processors are being

used to preprocess the data at the energy-constrained sensor node or at IoT gateway,

which saves considerable energy for transmission and bandwidth. Using conventional

CPU based systems for implementing the machine learning algorithms is not energy-

efficient. Hence an FPGA based hardware accelerator is proposed and an optimization

methodology is developed to maximize throughput of any convolutional neural network

(CNN) based machine learning algorithm on a resource-constrained FPGA.

 iii

DEDICATION

To my parents

 iv

ACKNOWLEDGMENTS

The years of research at Nanoscale Integration and Modeling (NIMO) group have

given me opportunities to meet and collaborate with many inspiring people. It is a

pleasure to convey my gratitude to all of them in my humble acknowledgement. First and

foremost, I would like to thank my advisor Dr. Yu Cao for his supervision,

encouragement and motivation on my research. I appreciate all his contributions of time,

ideas and tremendous intellectual and moral support throughout this pursuit.

I would like to extend my gratitude to my co-advisor Dr. Bertan Bakkaloglu, for

his support and guidance through the countless hours of inspiring discussions and

constructive suggestions, all of which were required for the continued progress towards

the end goal. I would also like to show my appreciation to Dr. Jae-sun Seo for his

constant encouragement and insightful suggestions on the reconfigurable hardware

accelerators, which were crucial for successful completion of this research.

I am also grateful to my other committee members Dr. Sule Ozev and Dr.

Shimeng Yu for their precious time and effort in reviewing this work and providing

invaluable inputs. I would also like to convey thanks to my mentors Dr. Nagib Hakim,

Intel Corp., Santa Clara and Dr. Vikas Chandra, ARM Research, San Jose for their

constructive discussions and suggestions on this research work, during my summer

internships in 2014 and 2015.

The members of our Research group have contributed immensely for successful

completion of this research work. I would like to thank Jounghyuk Suh, Cheng Xu, Ketul

Sutaria, Zihan Xu, Raveesh Magod, Rongjun Zhu, Venkatesa Ravi, Abinash Mohanty,

Atul Ramkumar, Pei An and Jyothi Bhaskarr Velamala (Amar) for their immense support

 v

providing valuable feedback on my research. The group has been a great source of

friendship and motivation. I would also like to thank James Laux for all his support with

PDKs and help in solving technical issues during the tape-outs.

I am deeply indebted to my family, especially to my wife, Gayathri, for the

unconditional love and support throughout my PhD. Finally, I would like to thank all my

friends who were also important in the successful realization of this thesis.

 vi

TABLE OF CONTENTS

 Page

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

CHAPTER

1 INTRODUCTION ... 1

1.1 Previous Research on FPAAs .. 5

1.2 Previous Research on Hardware Accelerators 6

1.3 Contribution of this Work .. 7

1.4 Thesis Organization ... 9

2 OVERVIEW OF 65NM PANDA PLATFORM .. 10

2.1 PANDA Cell Structure .. 11

2.2 Reconfigurable Interconnect .. 14

2.3 Reconfigurable Switches ... 16

2.4 Configuration Interface and System Integration 17

3 COMPUTER AIDED DESIGN (CAD) METHODOLOGY 20

3.1 Automatic Mapping ... 22

3.2 Placement ... 23

3.3 Routing ... 24

4 CIRCUIT MEASUREMENTS AND LIMITATIONS .. 27

4.1 Benchmark Circuit Measurements .. 28

4.2 Dynamic Reconfiguration Capability .. 34

4.2 Other Applications ... 35

 vii

CHAPTER Page

4.3 Limitations ... 36

5 RECONFIGURABLE PROCESSING SYSTEM .. 38

5.1 Overview of CNN Operations ... 39

5.2 Hardware Implementation Challenges ... 41

5.3 Precision Study for Hardware Accelerator Modules 42

5.4 OpenCL Implementation of CNN Layers .. 43

5.5 Design Space Exploration ... 50

5.6 Experimental Results ... 57

6 CONCLUSION AND FUTURE WORK .. 64

6.1 Thesis Conclusions .. 64

6.2 Future Work .. 65

REFERENCES... 67

 viii

LIST OF TABLES

Table Page

2.1. Transistor Size Discretization ... 12

2.2. Summary of PANDA Cell Types ... 13

2.2. Summary of Parameters in PANDA Platform ... 19

4.1. Measured Performance of 65nm PANDA-mapped OTAs 29

4.2. Measured Performance of 65nm PANDA-mapped Circuits 33

4.3. Design Scale, Routing Switches and Time to Place and Route 33

5.1. Comparison of FPGA Accelerator Boards ... 58

5.2. Optimized Parameters ... 58

5.3. Classification Time/Image and Overall Throughput .. 60

5.4. Model Accuracy Comparison ... 62

 ix

LIST OF FIGURES

Figure Page

1.1. A Typical IoT Application Scenario ... 2

1.2. Block Diagram of a Typical IoT Sensor Node ... 3

2.1. Architecture of PANDA .. 10

2.2. Programmable Cell Structure .. 11

2.3. Measured I-V Characteristics of 1-Transistor PANDA Cell 13

2.4. Measured I-V Characteristics of 3-Transistor PANDA Cell 14

2.5. Mesh Interconnect Architecutre used in FPGAs... 15

2.6. Layout and Die Micrograph of the 65nm PANDA Chip 18

3.1. PANDA-PRO CAD Tool Flow ... 21

3.2. Pseudo-code for Placement Algorithm based on Simulated Annealing 24

3.3. Illustration of Routing for Parasitic Reduction ... 25

4.1. Typical Measurement Setup for Configuration and Circuit Measurements 27

4.2. Test Board used for Circuit Measurements ... 28

4.3. Schematics of Bandgap Voltage Reference Circuit 30

4.4. Measured Bandgap Reference Voltage of the PANDA Implementation 31

4.5. Current Reference Generator using Bandgap Voltage Reference 31

4.6. Measured Current Reference of the PANDA Implementation 32

4.7. Block Diagram to Demonstrate Offset Cancellation Circuit 35

5.1. Architecture of AlexNet CNN ... 38

5.2. AlexNet and VGG Model Accuracies for Different Weight Precisions 43

5.3. OpenCL based FPGA Accelerator for CNN ... 44

 x

Figure Page

5.4. Mapping 3D Convolutions to Matrix Multiplication Operations 46

5.5. Pseudo-code for Convolution Implementation ... 47

5.6. Accelerating Matrix Multiplications in OpenCL .. 48

5.7. Pseudo-code for Normalization Implementation .. 50

5.8. Kernel Frequency Model for Convolution Module 52

5.9. Run-time Model vs. Measured Time of Convolution Layers of AlexNet ... 53

5.10. Execution Time Model vs. Data of Normalization and FC Layers 54

5.11. Resource Utilization Models for Normalization Block 55

5.12. Execution Time of AlexNet and VGG models on P395-D8 FPGA Board.. 59

5.13. Measured Time and Resource Utilization of AlexNet Implementation 61

 1

CHAPTER 1

INTRODUCTION

Internet of Things (IoT) is a popular topic in industry that has emerged over the

recent years. The term “IoT” is used to describe an ecosystem of smart devices or things

connected through internet that improve the quality of life by increasing our productivity

and efficiency. It encompasses a wide range of applications such as wearables, smart

appliances, home and industrial automation, automobiles and security. IoTs have already

been experimentally and commercially deployed in some applications [1], such as health

monitoring wearable devices, smart water and energy meters, asset tracking and

manufacturing quality control in industrial applications, etc. However, there still are

many critical challenges for large scale deployment of IoT devices in the real world, the

most important of which is the energy efficiency.

The primary components of the IoT ecosystem are hardware, software and

services. Software and services play a crucial role in functioning of the IoT ecosystem by

collecting the sensor data, uploading it to cloud servers, processing or analyzing the data

and presenting in an efficient and easily interpretable form in order to make decisions

from the sensed information in real-time. The hardware sensor node is responsible for

sensing the information and transmitting it to the cloud servers via the IoT gateway as

shown in a typical IoT application scenario depicted in Figure 1.1. Actuator nodes, on the

other hand, provide a means to act based on the decision made from the sensed

information. For example, based on the detected motion and temperature, light and AC or

heat can be automatically controlled to reduce overall energy usage.

 2

Energy Meter

HVAC Control

Light Sensor

Motion Sensor

Temp. Sensor

Video Camera

Microphone

RFID Tag

WiFi

Ethernet

Bluetooth

RFID

NFC

ZigBee

IoT Gateway

User Interface Devices:

Smart Phone, watch,

tablet PC, ...

WiFi

Ethernet

4G/LTE

Ethernet
Cloud Servers

Control & Monitoring

Data Analytics &

Automation Software

IoT Sensors/Actuators

Figure 1.1. A typical IoT application scenario.

All the sensors and actuators are connected to the cloud via a local IoT gateway to

enable remote monitoring and control and to perform data analytics or to run automation

software on the sensed data. The sensors and actuators connect to IoT gateway through

WiFi, Bluetooth, NFC, RFID, ZigBee or Ethernet cable, depending on multiple factors

such as data volume to be transferred, input power supply of the sensor/actuator node and

proximity of the node to the gateway. IoT gateway also allows node-to-node low-latency

communication without having to connect to the cloud for small automation tasks.

The block diagram of a typical IoT sensor node is shown in Figure 1.2. It consists

of a sensor, an Analog Front-End (AFE) circuit, an optional processing unit and a

transceiver. Depending on the target IoT application, different sensors are required to

sense the physical phenomena such as heart-rate, sound, temperature, pressure,

acceleration, proximity, light intensity, etc. Sensors convert these physical phenomena to

electrical property such as voltage, current, charge, impedance (resistance or

capacitance), which is detected by subsequent analog front-end (AFE) signal

conditioning circuits. Depending on the type of input sensor, AFE circuit consists of

 3

trans-impedance amplifier, capacitive sensing charge amplifier or variable gain amplifier,

filters and ADC to convert the conditioned analog signal to digital format. It is followed

by pre-processing unit and transceiver to send the data to the cloud server for further

processing or analytics.

Figure 1.2. Block diagram of an IoT smart sensor node.

Since the IoT ecosystem is still in a developing phase, rapid prototyping platforms

would help accelerate the hardware design process. Furthermore, rapid prototyping

platforms are required for validation of IoT sensor AFE circuits before an expensive tape-

out. However, designing a generic sensor front-end circuit to handle all the different

signal types and magnitudes is non-trivial. Field-Programmable Analog Arrays (FPAAs)

provide a good solution for rapid prototyping of such sensor AFE circuits.

IoT systems typically employ machine learning algorithms, especially artificial

neural networks that run on the servers to process the data in order to make decisions. If

the sensed data is directly transmitted to the cloud, it could consume large amount of

network bandwidth and also lead to high latency. However, if the sensed data is

processed at sensor node or at the IoT gateway, it reduces the consumption of the

expensive network bandwidth and also minimizes the overall latency of the IoT

application. Moreover, if pre-processing or analytics of the data is performed locally,

Sensor Analog

Front-end Circuit
Processing Unit Transceiver

Temperature, pressure,

humidity, acceleration, ...
Embedded CPU or SoC

NFC, Bluetooth,

WiFi, Zigbee, ...

Sensor

Amplifier, filter, ADC, ...

 4

then only required information is transmitted to the next tier, i.e. the cloud, thus

offloading the datacenters to perform other critical tasks.

Sensor nodes in most IoT applications would be powered from battery or energy

harvesters and hence high energy-efficiency is of paramount importance. It is not energy-

efficient to perform compute and memory intensive processing required for neural

networks algorithms on such energy-constrained sensor nodes. Hence, it is more suitable

to pre-process the data at an IoT gateway, which is powered from wall outlet.

Furthermore, processing capability of a single IoT gateway can be time-multiplexed and

shared among multiple IoT applications. Using conventional embedded CPU based

systems for implementing the neural network based processing systems is not energy-

efficient and may not meet the real-time performance requirements in some critical

applications. FPGA based hardware accelerators for neural networks have become

popular among researchers mainly because of their high reconfigurability, short

turnaround time, good performance and high energy-efficiency.

Convolutional Neural Networks (CNNs), inspired by visual cortex of the brain,

are a category of feed-forward artificial neural networks. CNNs, which are primarily

employed in computer vision applications such as character recognition [2], image

classification [3]-[6], video classification [7], face detection [8], gesture recognition [9],

etc., are also being used in a wide range of fields including speech recognition [10],

natural language processing [11] and text classification [12]. Over the past decade, the

accuracy and performance of CNN-based algorithms improved significantly, mainly due

to the enhanced network structures enabled by massive training datasets and increased

raw computational power aided by CMOS scaling to train the models in a reasonable

 5

amount of time. Because of their ability to achieve accuracy close to or even better than

human-level perception in a wide range of applications, CNNs are apt candidates that can

be implemented in processing units of the IoT gateways.

1.1. Previous Research on FPAAs

Previous academic and industrial efforts focused on Field Programmable Analog

Arrays (FPAA) with a wide variety of continuous time and discrete time based

Configurable Analog Blocks (CAB) consisting of coarse grained macros like operational

amplifiers [13], operational transconductance amplifiers [14]-[17], ADCs [18], DACs

[19], variable gain amplifiers and reconfigurable filters [20] along with common analog

primitives like capacitors and MOS resistors [21]. Some researchers focused on CABs

with medium grained primitives like differential pairs, matched loads and

transconductors [22], [23]. FPAAs with transistor-level CABs known as Field

Programmable Transistors Arrays (FPTAs) are explored in [24], [25] for evolvable

hardware applications. Some other researchers developed FPAAs with CABs consisting

of a combination of coarse-grained macros along with programmable transistors using

floating-gate transistor as reconfiguration switches [26]-[30]. However, due to the wide

variety of analog circuits like bias circuits, amplifiers, filters, switching circuits,

oscillators etc., it is not possible to map an arbitrary analog function of an IoT sensor

AFE circuit to a generic set of CABs.

Hence a transistor-level reconfigurable analog platform, named Programmable

ANalog Device Array (PANDA), is proposed in [31], which enables rapid prototyping

and validation of AMS circuits across different technology nodes. Previous work on

PANDA [32] focuses on the cell design based on the device physics and proposes a

 6

mapping methodology to match device characteristics like current (ID), transconductance

(Gm) and output resistance (Rout) of each transistor in the target circuit to a PANDA cell.

It further demonstrates the potential of the methodology by emulating a set of AMS

circuits designed in 22nm and 90nm nodes using a common 45nm PANDA platform,

which is termed as forward emulation (FE) and backward emulation (BE). However, it is

primarily based on simulations using Predictive Technology Models (PTM) [33] and

does not consider circuit performance degradation because of the reconfigurable

interconnect.

1.2. Previous Research on Hardware Accelerators

A typical CNN architecture has multiple convolutional layers which extract

features from the input data, followed by classification layers. The operations in CNNs

are computationally intensive with over billion operations per input image [4]-[6], thus

requiring high performance server CPUs and GPUs to train the models. However, they

are not energy efficient and hence various hardware accelerators have been proposed

based on FPGA [34]-[38], SoC (CPU + FPGA) [39] and ASIC [40]. FPGA based

hardware accelerators have gained momentum owing to their reconfigurability and fast

development time, especially with the availability of high-level synthesis (HLS) tools

from FPGA vendors. Moreover, FPGAs provide flexibility to implement the CNNs with

limited data precision which reduces the memory footprint and bandwidth requirements,

resulting in a better energy efficiency (e.g. GOPS/Watt).

Previous FPGA-based CNN accelerator designs primarily focused on optimizing

the computational resources without considering the impact of the external memory

transfers [34]- [36] or optimizing the external memory transfers through data reuse [37],

 7

[38]. Majority of the previous work implemented generic CNN accelerators that are

independent of the model configuration (i.e., the number of layers and convolution kernel

size) [34]-[37], [39] and hence they do not fully utilize the hardware resources to

maximize the throughput. The authors of [38] proposed a design space exploration

methodology for CNN accelerator by optimizing both computation resources and external

memory accesses, but implemented only convolution layers.

1.3. Contribution of this work

This thesis mainly focuses on two important hardware aspects of an IoT system:

(a) an FPAA based reconfigurable sensing front-end and (b) an FPGA based hardware

accelerator for reconfigurable processing system. To enable reconfiguration capability for

any sensor type, Programmable ANalog Device Array (PANDA), a transistor-level

analog reconfigurable platform is proposed in [31]. This work extends the previous

simulation framework on PANDA [32] to silicon implementation of the full system in

65nm CMOS technology, including an array of 24×25 PANDA cells, reconfigurable

interconnect, configuration memory and interface for programming.

To map AMS circuits onto the PANDA platform, a new set of computer-aided

design (CAD) tools are required for design partitioning, technology mapping, placement,

routing and configuration bit-stream generation. Despite the mature FPGA CAD

methodologies, they do not quite suit well for PANDA because of the intrinsic

differences in nature of analog circuit behavior with routing switches, heterogeneous cell

types and special requirements like circuit topology, matching and sensitive nodes etc.

Hence a new CAD tool, PANDA-PRO is developed for implementation of AMS circuits

on the designed platform.

 8

Several analog circuit building blocks including amplifiers, voltage and current

references and active filters are designed in 65nm technology and mapped to the platform

using PANDA-PRO. Measured performance metrics of these circuits show a good match

with those of target designs, demonstrating the effectiveness of the platform for rapid

prototyping IoT sensor front-end circuits. Dynamic reconfiguration capability of the

platform is demonstrated through input offset cancellation of an amplifier implemented

on the platform along with an FPGA in a closed loop. This capability, which enables on-

the-fly reconfiguration of the PANDA cell size and connectivity, provides new

opportunities for validation of self-calibrating and adaptive circuits which cost

considerable amount of simulation time to validate.

An FPGA based hardware accelerator for Convolutional Neural Networks (CNN)

is proposed for implementing in the processing unit in an IoT gateway. CNN model

consisting of all the layers: convolution, normalization, pooling and classification layers

with fixed-point operations are implemented on FPGA using OpenCL based high-level

synthesis (HLS) framework. Critical design variables that impact the throughput are

identified for optimization. Execution time of each CNN layer is analytically modeled as

a function of the design variables and validated on FPGA. Logic utilization is empirically

modeled using FPGA synthesis data for each CNN layer as a function of the design

variables. A systematic methodology is proposed to minimize total execution time of a

given CNN algorithm, subject to the FPGA hardware constraints of logic utilization,

computational resources, on-chip memory and external memory bandwidth.

The new methodology is demonstrated by implementing and maximizing the

throughput of two state-of-the-art large-scale CNNs: AlexNet [4] and VGG [5] (which

 9

achieved top accuracies in ImageNet challenges 2012 and 2014, respectively), on two

Altera FPGA platforms with different hardware resources.

1.4. Thesis Organization

The organization of the thesis report is as follows: chapter 2 presents the overview

of developed 65nm PANDA platform for rapid-prototyping IoT sensor front-end circuits.

It also details the PANDA cell structure, architecture of reconfigurable interconnect and

presents the cell-level measured I-V characteristics to validate the approach at device-

level. Chapter 3 presents computer aided design (CAD) tool methodologies developed for

implementing any analog circuits on PANDA platform, which includes automatic

mapping, placement, routing and bit-stream generation. Chapter 4 presents the

measurement results of benchmark circuits implemented on 65nm PANDA platform and

outlines the limitations and other applications of the platform. Chapter 5 presents the

FPGA based hardware accelerator for a class of neural networks known as convolutional

neural networks that can be used in IoT pre-processing unit. Chapter 6 summarizes the

key contributions of this work along with recommendations for future work.

 10

CHAPTER 2

OVERVIEW OF 65NM PANDA PLATFORM

Figure 2.1 shows the block diagram of PANDA system, which consists of an

array of reconfigurable cells along with island-style interconnect and segmented routing

channels similar to digital FPGAs [41]. Since each cell can be connected to any other cell

through the reconfigurable connection block (CB) and switch blocks (SB) as shown in

Figure 2.1(b), this platform is versatile for implementation of any analog circuit. To

demonstrate the potential of PANDA for hardware validation on silicon, a full system

consisting of 24×25 array of programmable cells, reconfigurable interconnect,

configuration memory and computer interface for configuration is designed and

fabricated in a 65nm CMOS technology.

Figure 2.1. Architecture of PANDA. (a) Island-style reconfigurable interconnect similar

to FPGAs. (b) A typical tile consisting of a PANDA cell connected to the reconfigurable

interconnect via connection blocks (CB) and switch blocks (SB). A PANDA cell with 3-

transistor stack is shown as an example.

PANDA

cell

PANDA

cell

PANDA

cell

PANDA

cell

PANDA

cell

PANDA

cell

PANDA

cell

IO IO

IO
IO

IO

IO

PANDA

cell

PANDA

cell

(a) (b)

C
B

CB

CB

SB

1

 11

2.1. PANDA Cell Structure

Implementation of an AMS circuit on PANDA platform requires mapping of each

transistor to a PANDA cell to match the drain current (ID), output resistance (Rout) and

transconductance (Gm). To implement any generic AMS circuit, PANDA cells comprise

of transistors with different widths and lengths. For practical implementation, transistor

widths are discretized using binary weighted transistors (1x, 2x and 4x) in parallel to a

fixed transistor (Fx) as shown in Figure 2.2(a), such that the effective transistor width can

be configured from Fx to Fx+7x using the digital controls (b0, b1, b2). 6 different types of

PANDA cells each with different fixed and variable programmable width transistors are

designed to achieve an effective width coverage of 80nm to 10m with a maximum

discretization error of 10%. The transistor sizes in these 6 cell types are shown in Table

2.1. If a circuit demands for more accuracy, PANDA cells with coarse width transistors

can be used in parallel to cells with fine width transistors.

1

G

D

S

D

G

S

T3T2

T1

D

G

Fx 1x 2x 4x

S

D

G

S

D

S

G
b0

b0

b1

b1

b2

b2

Figure 2.2. (a) Programmable NMOS transistor using digital controls (b0, b1, b2) (b)

Target analog transistor mapped to either 1-transistor PANDA cell (left) or 3-transistor

PANDA cell (right) based on ID, Rout and Gm requirements.

 12

To map long-channel transistors that have higher output resistance, transistors T1

is stacked to T2 to form a cascode pair as shown in Figure 2.2 (b). Transistor T3 with its

gate connected to VDD is added to the stack for flexibility in matching ID, Rout and Gm.

Two variants of transistor length L=60nm and L=120nm are provided in the platform for

flexibility to map a wide range of target transistors. To add versatility to the platform,

programmable resistors, capacitors and parasitic BJTs are also incorporated into the

array. The different types of PANDA cells, their sub-types and number of cells of each

type present in the array are summarized in Table 2.2.

To demonstrate the transistor-level I-V characteristic matching between a target

transistor and PANDA cell, an NMOS transistor of W/L=560nm/60nm is mapped to a 1-

transistor PANDA cell at bias conditions of VG=0.4V, VD=0.5V and VS=0V. Measured I-

V characteristics of the mapped PANDA cell compared to the simulated characteristics of

the target transistor is shown in Figure 2.3. ID-VD characteristics show a close match at

the nominal bias of VG=0.4V. ID-VG characteristics match till VG=0.5 V, but after that

voltage drop across the routing switches increases which reduces the effective VD at the

transistor drain terminal.

Table 2.1. Transistor Size Discretization

Type Fixed Width Programmable width

1 - 80nm, 120nm, 160nm

2 - 90nm, 100nm, 140nm

3 320nm 80nm, 160nm, 320nm

4 850nm 170nm, 340nm, 680nm

5 2.0m 400nm, 800nm, 1.6m

6 5.76m 960nm, 1.92m, 3.84m

 13

Figure 2.3. Measured I-V characteristics of PANDA cell with effective W/L =

8×80nm/60nm emulating a target transistor of W/L=560nm/60nm mapped at nominal

VG=0.4V, VD=0.5V, VS=0.

Figure 2.4 shows the measured I-V characteristics of a 3-transistor PANDA cell

which maps to a long-channel transistor of W/L=560nm/260nm at bias conditions of

VG=0.6V, VD=0.6, VS=0V. In Figure 2.4 ID-VG characteristics, the change in ID with VD

is minimal due to the high output resistance of the long-channel transistor.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60
Lines - Target transistor (560nm/60nm)

Symbols - 65nm PANDA

 cell data

D
ra

in
 c

u
rr

e
n

t,
 I

D
 (

A

)

Drain voltage, V
D
 (V)

V
G
 = 0.35, 0.4, 0.45 V

0.2 0.3 0.4 0.5 0.6

0

20

40

60

80

100

120

140
Lines - Target transistor (560nm/60nm)

Symbols - 65nm PANDA cell data

D
ra

in
 c

u
rr

e
n

t,
 I

D
 (

A

)

Gate voltage, V
G
 (V)

V
D
 = 0.4, 0.5, 0.6 V

Table 2.2. Summary of PANDA Cell Types

PANDA cell type No. of sub-types No. of cells

1-Transistor cell with L=60nm NMOS: 6, PMOS: 6 132

1-Transistor cell with L=120nm NMOS: 6, PMOS: 6 132

3-Transistor cell with L=60nm NMOS: 6, PMOS: 6 120

3-Transistor cell with L=120nm NMOS: 6, PMOS: 6 120

Programmable resistor

(4k to 252k in steps of 8k)
1 32

Programmable capacitor

(0.4pF to 1.6pF in steps of 0.4pF)
1 32

Parasitic BJTs NPN: 1, PNP: 1 32

 14

Figure 2.4. Measured I-V characteristics of a 3-transistor PANDA cell with T1 and T2 as

230nm/120nm and T3 is OFF emulating an analog transistor of W/L=560nm/260nm at

nominal VG=0.6V, VD=0.6V, VS=0.

2.2. Reconfigurable Interconnect

 Previous FPAAs comprised of opamp based Configurable Analog Blocks (CABs)

used crossbar interconnects, where each cell I/O has a dedicated routing channel that runs

over the entire length of the array. This routing segment has switches to each of the

perpendicular routing channels. Since the array has less number of such coarse-grained

CABs, the crossbar interconnect architecture is feasible in those FPAAs. On the contrary,

in PANDA where there are 100’s of PANDA cells distributed across the platform,

crossbar interconnects are not feasible as the routing switch cost increases in the order of

O(N
2
) [42]. PANDA utilizes the island-style routing architecture in conjunction with

segmented routing architecture [41] from FPGAs as shown in Figure 2.5, where each cell

connects to any other cell in the array through the reconfigurable interconnect. Each tile

consists of a PANDA cell, connection blocks (CB), switch block (SB) and configuration

memory. Connection block is required for each terminal of the PANDA cell, to connect a

cell to the routing tracks. Switch blocks are located at intersection of horizontal and

0.2 0.3 0.4 0.5 0.6

0

10

20

30

Lines - Target transistor(560nm/260nm)

Symbols - 65nm PANDA cell data

D
ra

in
 c

u
rr

e
n

t,
 I

D
 (

A

)

Gate voltage, V
G
 (V)

V
D
 = 0.5, 0.6, 0.7 V

0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

15

20

25

Lines - Target transistor(560nm/260nm)

Symbols - 65nm PANDA cell data
D

ra
in

 c
u

rr
e

n
t,

 I
D
 (

A

)

Drain voltage, V
D
 (V)

V
G
 = 0.55, 0.6, 0.65 V

 15

vertical tracks to connect a source track to destination track(s). Each tile is carefully

designed so that the configuration memory required for configuring the transistor widths,

CB and SB connectivity, is present in the same tile.

Figure 2.5. Mesh Interconnect architecture used in FPGAs [42]

The main drawback of island-style architecture with routing segments that extend

only one block length is that a signal from a cell to other cell which is ‘n’ blocks away

has to pass through ‘n’ SB switches and 2 CB switches. This degrades/destroys the

analog circuit functionality for large ‘n’, because of the resistance of the each switch

along the path. Hence segmented routing similar to FPGAs is used, where each routing

track extends to more than one block length before ending at a SB. This reduces the

number of passing SB switches when connecting two distant cells. In the current

implementation, routing tracks with segments which extend up to 16 blocks are provided

for parasitic reduction while routing. Routing tracks with smaller segment lengths are

also provided in the platform for flexibility in routing when connecting nearby cells.

Switch block (SB) is situated at the intersection of horizontal and vertical routing

tracks and connects an incoming track to some specific outgoing tracks based on the

 16

architecture of the switch block. The number of tracks to which each incoming track can

connect is known as switch block flexibility (Fs), where Fs=3 in typical FPGAs. There

are different switch block architectures available in FPGA literature such as disjoint [43],

universal [44], Wilton [45] and Imran switch block [46] each having its own

advantages/disadvantages. Imran switch block is used in PANDA, as it is area efficient

and gives best routable designs for segmented routing architecture [46]. The number of

tracks to which connection block connects, is called connection block flexibility (Fc),

which should be half the total number of tracks for best routability and area efficiency

[41]. Hence the connection block in PANDA is designed such that it connects to 7

routing tracks among the total of 13 tracks.

The extracted parasitic resistance and capacitance of a routing line that connects

two adjacent cells are 7 and 1fF, respectively, which are considerably less than those of

the switches. The total capacitance associated with a routing line can be evaluated as sum

of parasitic capacitance of all the switches connected to that line and the capacitance of

the routing segment itself. For example, the total estimated capacitance on a long routing

line that extends to 16 blocks is 216 fF, whereas the total capacitance on a short line that

connects adjacent cells is 21 fF.

2.3. Reconfiguration switches

Similar to FPGAs, transmission gate (TG) based switches are used in the

reconfigurable routing, as they can easily be configured by changing the memory

locations that drive the gates of the TG. However, different from the switches in FPGAs,

switches in the PANDA platform carry DC current, which may induce voltage drop

affecting the DC bias conditions and may also destroy the circuit functionality. Increasing

 17

the TG size reduces the resistance, but it also increases the parasitic capacitance, which

in-turn decreases the maximum operating frequency of the platform. Hence TG sizing is

critical for the overall functionality and performance of the platform. NMOS transistor is

sized to 3m/60nm and PMOS transistor to 6m/60nm to reduce the maximum ON

resistance of TG switch to 400, whereas the approximate capacitance of the switch is

10fF. External I/Os are also connected to the internal routing tracks through the same

reconfiguration switches.

2.4. Configuration Interface and System Integration

 Memory required to store the PANDA cell sizing, connection block and switch

block connectivities is placed in each tile. Byte-wise addressable memory is distributed

into two columns in each tile for ease in routing of the memory outputs to the

reconfiguration switches. Although the cells have different dimensions, in order to

maintain the uniform array structure, all the tiles are designed to have uniform width

while two tile heights are chosen based on the number of reconfiguration switches. This

gives different ratios of area of actual transistor to that of the entire tile as 0.05% for the

smallest cell and 17% for the largest cell. This shows that over 80% of the total chip area

is occupied by the reconfigurable routing fabric.

To transfer configuration bit-stream from computer to the PANDA platform a

customized Serial Peripheral Interface (SPI) protocol is used. Using 8 row address bits

and 6 column address bits, 16KB of configuration memory can be accessed using this

customized SPI protocol. A SPI slave along with row/column address decoding logic,

data/address buffers is incorporated into the system to help in reconfiguration. To

simplify the circuit, only write access is provided to the configuration memory whereas

 18

both read and write access is given to the test registers distributed across the system, to

help debug the SPI interface. The micrograph of the PANDA die fabricated in a standard

65nm digital CMOS technology with 1-poly and 8 metal layers is shown in Figure 2.6. It

occupies a total area of 3.46 mm
2
 including the ESD protection diodes and I/O bonding

pads.

Figure 2.6. Layout (left) and die micrograph (right) of the 65nm PANDA chip.

The parameters of the designed 65nm PANDA platform are summarized in Table

2.3. The CAD tool flow and the methodology to implement any AMS circuit on the 65nm

PANDA platform are detailed in the next chapter.

1.86 mm

1
.8

6
 m

m

Row
decoder

24x25
PANDA cell

array

Column
decoder Serial

Interface

 19

Table 2.3. Summary of Parameters in PANDA Platform

Process node 65 nm

Die size 1.86mm × 1.86mm

Power supply 1.2 V

PANDA cells 600

Programmable I/Os 24

Width programming control bits 3,368

Total routing switches 32,040

 20

CHAPTER 3

COMPUTER AIDED DESIGN (CAD) METHODOLOGY

The digital FPGA platforms gained popularity in the design community since they

facilitate rapid prototyping and design validation of digital circuits. Computer Aided

Design (CAD) tools play a major role in the development of FPGAs as they efficiently

map the design to the logic cells in FPGAs. In previous FPAAs which had only few

CABs, manual placement and routing is feasible. On the other hand, the number of cells

and the complexity of interconnect in PANDA platform makes it impractical to manually

place and route the cells. The main tasks of an effective CAD tool in the PANDA

methodology are partitioning of the analog circuit into discrete transistors, mapping of

each transistor to PANDA cells, placement, routing and configuration bit-stream

generation. Despite the mature FPGA CAD methodologies, they do not quite suit well for

PANDA because of the following intrinsic differences.

 Heterogeneity: All the logic blocks in typical digital FPGAs are identical, whereas

PANDA has heterogeneous cells with different transistor sizes, resistors, capacitors

etc. Recent FPGAs have heterogeneous blocks such as memory, arithmetic units

along with conventional logic blocks and there are also tools available for such

architectures [47]. However, these tools are not customized for mapping analog

circuits to PANDA.

 Routing Parasitics: Parasitics from routing not only degrade circuit performance as

that happens in digital FPGAs, but can also completely destroy the functionality of

analog circuits because of the DC and AC voltage drops in switches. Hence

 21

performance degradation because of interconnect fabric must be fully addressed at

each step of placement and routing.

 Special Requirements for Analog Circuits: The new analog synthesis tool should

be aware of different constraints such as circuit topology, matching and sensitive

nodes etc., which are specific for analog circuits, but not required in FPGAs.

 Design Scale: Modern FPGAs typically have 0.1-4 million reconfigurable logic cells

[48]; hence the CAD tools need to trade-off the quality of final solution for

configuration speed. In a typical analog circuit which only has 100-1000 transistors,

the tool can afford multiple placement and routing iterations to achieve the target

performance and related accuracy.

Hence a new CAD tool, PANDA-PRO is developed overcoming the above

shortcomings of FPGA CAD tools, to implement AMS circuits on PANDA platform. The

steps involved in PANDA-PRO starting from mapping to bit-stream generation are

summarized in Figure 3.1.

Input netlist

Transistor-level

mapping

Placement & Routing

Constraint generation

Bit-stream generation

Constraints:
critical nets,

matched pairs etc.

Meet spec?

Simulate with P&R

parasitics

Yes

No

Resize cells

Figure 3.1. PANDA-PRO CAD tool flow.

 22

3.1. Automatic Mapping

Mapping of the input design to PANDA cells is the fundamental and critical step

in the implementation. First, the input design SPICE netlist is hierarchically partitioned

and operating bias conditions of each transistor are extracted. From the circuit

connectivity generic constraints such as input differential transistors and matched pairs

are extracted. These constraints will be used in placement and routing phase. Then, each

transistor is mapped to the PANDA cells for the extracted voltage bias conditions.

Mapping involves sizing the transistors of the PANDA cell to match its I-V

characteristics to that of the target transistor, thereby matching ID, Gm and Rout. First, a

coarse search on the discrete-sized 1-transistor and 3-transistor PANDA cell types in

Table-2.1 is performed and the cell types which yield smaller error in ID, Gm and Rout

with respect to target transistor are selected for a detailed-search. In the detailed search,

the transistor sizes in the selected PANDA cells are iteratively changed in the direction to

reduce the error in ID, Gm and Rout. The PANDA cell that achieves least error is selected

as the final solution for that target transistor. Transmission gate switches are included into

the cell in mapping stage, so that their impact is compensated during cell sizing.

3.2. Placement

PANDA-PRO placer is based on simulated-annealing [49], similar to traditional

FPGA placers [50]; however the main differences being the heterogeneous cell types and

additional design constraints of analog circuits. Simulated-annealing is a probabilistic

global optimization method, emulating a physical process called annealing, where a

material at high temperature (T) is gradually cooled to achieve a minimum energy state.

 23

PANDA-cell mapped netlist is given to the placement tool which minimizes the

placement cost given in the following equation.

  
Nets

k

jijik yyxxwtcostPlacement

(1)

where wtk is the weight assigned to each net, (xi,yi) and (xj,yj) are the coordinates of

source and every destination cells for that net. Critical nets can be assigned higher

weights so that its net length is optimized.

Placement process using simulated annealing is summarized as pseudo-code

shown in Figure 3.2. The placement starts with an initial random placement at a high

initial temperature (T), which is determined based on the circuit size [51]. If Ninst is the

number of instances, then the initial temperature is set to 20 times the standard deviation

of placement costs of Ninst random placements. Since different types of cells are present

in the array, a lookup table is utilized to aid the placement process with information about

the cell type, its locations in the array and whether the location is already occupied. First,

a randomly chosen instance (I1) is moved to a new location (X1) of the same cell type. If

this new cell location is already occupied by another instance (I2), then the instances I1

and I2 are swapped. If it leads to a better placement, the move is accepted. If the new

placement has higher cost, the move is accepted with certain probability and the

acceptance probability reduces as the process continues. Temperature is slowly decreased

while performing N moves at each temperature, where N=10Ninst
4/3

 [52]. The process is

terminated when the placement cost converges.

 24

Figure 3.2. Pseudo-code for placement algorithm based on simulated-annealing.

3.3. Routing

PANDA-PRO router is based on Dijkstra’s algorithm [53] to find the shortest path

from a source to destination utilizing fixed routing resources. For each net, the router

starts expanding all possible connectivities from the source connection block, which is

termed as wavefront expansion. Then the routing cost at each expanded node is computed

from the following equation.

segsegSB1-ii costL cost costcost  (2)

__

1. Start with an initial random placement.

2. While (placement cost decreasing)

3. Do N times at each temperature (T)

4. Select a random instance-I1.

5. Select a random location-X1 based on type of I1.

6. If X1 is already occupied with I2.

7. Swap I1 and I2.

8. Else

9. Place I1 at X1.

10. Compute new cost and cost = (new cost-old cost).

11. If (cost<0) or (random[0,1] < exp(-cost/T))

12. Accept this move.

13. Else

14. Reject this move.

15. Decrease T=0.95*T

__

 25

where costi-1 is the cost at the previous node, costSB is the cost of switch block, Lseg is the

length of the segment, costseg is the cost of segment of length 1. The last term in the cost

function (Lsegcostseg) is added to penalize longer routing segments. When a wavefront

reaches the destination, the routing cost is noted and wavefront expansion is continued till

all the other nodes either exceed this routing cost or reach the destination. This makes

sure that short segments are given higher priority than long segments for the same

number of passing switches. The costSB is set a large number compared to costseg, so that

the router selects a route with a longer segment than the route that passes through

multiple switch blocks, thereby reducing switch parasitics. An example of routing for

reduced parasitics is shown in Figure 3.3. Using costSB=50 and costseg=1, the costs of

route-1, 2 and 3 to route a net from source cell ‘S’ to destination cell ‘D’ are 154, 54 and

61, respectively. Route-1 passes through 3 switches and thus, has a high routing cost.

Both route-2 and 3 pass through only 1 switch, but route-2 uses shorter length segments

than route-3 and hence it has lower cost.

1

S

D

2

3

Length = 8

Figure 3.3. Illustration of routing for parasitic reduction: Among multiple routing

solutions, route-2 is the final solution since it passes through only 1 switch block and uses

routing segments of smaller length.

 26

After placement and routing, parasitics from routing including are stitched back to

PANDA-mapped netlist and simulated to verify if target circuit specifications are met. If

the target specifications are not met, then the cells which are connected through large

number of switches are resized to compensate for the DC drop across the switches. This

process is repeated till the target specifications are met and then configuration bit-stream

that controls the cell sizing is generated. To generate configuration bit-stream

corresponding to the routing, all the nets in the circuit are traversed again from source to

destination cell(s) using the final routing solution obtained in previous step. The CB and

SB switches through which the net is routed are noted while traversing and the

corresponding memory locations from look-up tables are set. Then, all the non-zero

memory locations are written into a file in a {row address, column address and data}

format, which will be serially transferred to the PANDA platform to configure the array.

The overall tool flow including the netlist parsing, constraint generation,

transistor-level mapping using HSPICE simulations, place and route and post-route

netlist generation is coded in Perl; while the placement, routing and bit-stream generation

from the PANDA-mapped netlist are implemented in C. For graphical visualization of the

placement and routing for debugging purposes, VPR tool [50] is customized for PANDA

architecture.

Measurement results of the several analog circuit building blocks such as

amplifiers, biasing circuits and active filters that are mapped to the 65nm PANDA

platform are detailed in the next chapter.

 27

CHAPTER 4

CIRCUIT MEASUREMENTS

Several fundamental AMS building blocks, such as amplifiers, filters, voltage and

current reference circuits, are designed in 65nm technology and mapped to the PANDA

platform to demonstrate the potential of this methodology for rapid prototyping and

validation. Each of these designs including the biasing circuits are mapped to PANDA

cells, placed, routed and configuration bit-stream is generated using the developed

PANDA-PRO tool. This bit-stream is transferred from PC to the platform via an USB to

SPI converter IC (MCP2210) [54]. SPI receiver in the PANDA platform receives the

configuration bit-stream, decodes the addresses and sends the data to corresponding

memory locations that configure the transistor sizing and connectivity of the routing

network. Once programmed, the platform performs the functionality of the designed

target circuit till power down, reset or reconfiguration. The typical measurement setup

used for measurements of circuits implemented on PANDA platform is shown in Figure

4.1. PANDA chip is integrated on to a test board in a socket along with the peripherals

such as voltage regulators, USB to SPI protocol converter IC (MCP2210) etc., as shown

in the Figure 4.2 to help in circuit measurements in different configurations.

Oscilloscope/

Spectrum

Analyzer

USB to SPI

Converter

PANDA

Platform

Signal

Generator
Power Supply

Figure 4.1. Typical measurement setup for configuration and circuit measurements.

 28

Figure 4.2. Test board consisting of PANDA chip in a socket, an add-on board with

MCP2210 for reconfiguration and other components for flexibility in measurements.

4.1. Benchmark Circuit Measurements

Amplifiers are the fundamental building blocks in analog IC design ranging from

biasing circuits to precision amplification stages and filters. Basic amplifier topologies

such as 5-transistor operational transconductance amplifier (OTA) and 2-stage Miller-

compensated OTA are designed in 65nm technology and implemented on PANDA

platform using the developed tool. The measured performance metrics such as DC gain,

unity gain frequency, common mode rejection ratio (CMRR), power supply rejection

ratio (PSRR), total harmonic distortion (THD) at 0.2 V output swing and current

consumption of these circuits compared to the target design simulation results are shown

in Table 4.1. The target circuits are simulated with a load capacitance of 15pF to account

for pad and probe capacitance. The measurement results show a good match in DC

characteristics including gain, CMRR, PSRR, but show degradation in AC characteristics

especially at frequencies >10MHz. Though AC performance can be improved to some

extent by increasing bias current [17], it increases voltage drop in the routing switches

and may further degrade the circuit performance. Output distortion, on the other hand,

 29

shows significant degradation compared to that target circuits because of the non-

linearity in the transmission gate based switches.

Using these OTAs as building blocks, biasing circuits like bandgap voltage

reference and current reference circuits are implemented on PANDA platform. Voltage

reference circuit is one of the most widely used circuits in AMS designs such as ADCs,

DACs, and power supply regulators. One of the most commonly used voltage reference

circuit is the bandgap circuit, which uses a signal (current or voltage) that varies in

proportional to absolute temperature (PTAT) in conjunction with another signal that

varies complementary to absolute temperature (CTAT) to generate a final output voltage

which is independent of temperature. Figure 4.3 shows the low voltage band gap

Table 4.1. Measured Performance of 65nm PANDA-mapped OTAs

 Target design
1
 65nm PANDA

5-transistor OTA

DC Gain 19.2 dB 19.4 dB

Unity gain frequency 13.6 MHz 8.6 MHz

CMRR 36.2 dB 35.0 dB

PSRR 20.9 dB 20.5 dB

THD 49.1 dB 41.1 dB

Current consumption 280 A 320 A

2-stage Miller OTA

DC Gain 41.9 dB 41.7 dB

Unity gain frequency 4.1 MHz 3.3 MHz

CMRR 50.2 dB 47.1 dB

PSRR 49.7 dB 45.4 dB

THD 38.3 dB 25.2 dB

Current consumption 25.2 A 31 A

1
Simulated with load capacitance of 15pF.

 30

reference circuit that is commonly used in latest technologies with scaled power supplies.

An NMOS input 2-stage opamp is used in the bandgap reference to achieve higher power

supply rejection. The opamp is self-biased with the tail NMOS gate and load PMOS gate

tied together. The bandgap reference along with its startup circuit is designed for a

reference voltage of 950mV with 50ppm temperature variation across 27
o
C to 80

o
C. It is

designed with capability to digitally trim the resistances LR and NR so as to center the

temperature curvature for the required operating temperature in the presence of process

variations. Bandgap reference voltage of PANDA implementation measured from room

temperature to 80
o
C compared to that of custom designed bandgap reference circuit after

trimming is shown in Figure 4.4.

R

D1,1

VBGR

NR

D2,K

LRLR

ICTAT+IPTAT

ICTAT

IPTAT

Figure 4.3. Schematics of bandgap voltage reference circuit (start-up circuit not shown).

Current reference circuit as shown in Figure 4.5 is designed and implemented on

the platform, where a reference voltage (VREF) is forced on a resistor (R) using negative

feedback which defines the current through the resistor as VREF/R. Measured reference

 31

current of PANDA implementation shows a good match to the target design as shown in

Figure 4.6.

Figure 4.4. Measured bandgap reference voltage of the 65nm PANDA implementation

compared to target bandgap reference circuit on the same die.

-
+

Vbp

VBGR

R

Figure 4.5. Current reference generator using bandgap voltage reference

20 30 40 50 60 70 80
850

900

950

1000

B
a
n
d
g
a
p
 R

e
fe

re
n
c
e
 (

m
V

)

Temperature (
o
C)

 65 nm Target design

 65 nm PANDA

 32

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
e

fe
re

n
c
e
 c

u
rr

e
n
t
-

I R
E

F
 (

A

)

Voltage reference - V
REF

(V)

 Target design (simulated)

 65nm PANDA (measured)

Figure 4.6. Measured current reference from PANDA-implemented circuit.

An amplifier with resistive feedback, a first order Gm-C filter, active RC low pass

and high pass filters are also implemented on the platform. The measured performance

metrics of these circuits match with the simulation results of the target designs as shown

in Table 4.2. Since ID, Rout and Gm of each transistor of the target analog circuit is

reproduced by PANDA cells successfully, circuits implemented on PANDA capture the

essential DC and AC characteristics of the target circuits.

The number of programmable cells along with the number of reconfiguration

switches and the time taken for place and route of some circuits implemented on the

platform are summarized in Table 4.3. Applications of the proposed PANDA

methodology for rapid prototyping sensor front-end circuits for IoT applications as well

as limitations of the methodology are presented in next chapter.

 33

Table 4.2. Measured Performance of 65nm PANDA-mapped Circuits

 Target design
1
 65 nm PANDA

Amplifier with feedback

DC Gain 20.5 dB 19.5 dB

Unity gain frequency 606 KHz 560 KHz

Gm-C low pass filter

Pass band gain -1.3 dB -1.1 dB

3-dB corner frequency 57 KHz 41 KHz

Active RC low pass filter

Pass band gain -0.6 dB -0.8 dB

3-dB corner frequency 204 KHz 195 KHz

Active RC high pass filter

Pass band gain -1.1 dB -1.2 dB

3-dB corner frequency 120 KHz 108 KHz

1
Simulated with load capacitance of 15pF.

Table 4.3. Design Scale, Routing switches and Time to Place & Route

Circuit No. of cells No. of switches Time (s)

5-transistor OTA 11 51 0.84

2-stage OTA 14 70 1.74

Active RC filter 19 92 3.47

Bandgap reference 26 109 4.31

 34

4.2. Dynamic Reconfiguration Capability

 Since configuration bit-stream is sent to the byte-wise addressable memory that

stores cell sizing and connectivity information, any memory location can be manually

rewritten after configuration, thus enabling dynamic reconfiguration capability of

PANDA. This capability to reconfigure only a part of the circuit facilitates multiple

applications like calibration/trimming, automatic gain control, offset cancellation etc.

Dynamic reconfiguration capability of PANDA is demonstrated via offset

cancellation of a 2-stage OTA by using FPGA to detect the offset error and correct it by

sending the bit-stream to resize its input transistors. The block diagram of offset

calibration is shown in Figure 4.7 (a) and Figure 4.7 (b) shows the circuit used to measure

offset. To cancel the offset of the OTA, a comparator is configured in PANDA and its

output is fed to FPGA. The status of the comparator output is read from the FPGA using

SPI interface. Based on the output of the comparator, new bit-stream that resize the input

transistors to cancel the offset is generated and sent to the platform. For demonstration

purposes, transistor sizing update based on comparator output is implemented in

software, which could easily be implemented in FPGA to make it a standalone platform.

The offset cancellation loop continues till the system converges i.e. when the residual

offset is limited by the LSB of the input transistor size. Using this technique the offset of

the 2-stage OTA is reduced from 452V to 29V. If the application demands for higher

accuracy, smaller cells can be used in parallel to original input transistors to have finer

control over the sizing.

 35

Figure 4.7. (a) Block diagram to demonstrate offset cancellation circuit using a

comparator and FPGA in a closed loop. (b) Offset measurement circuit.

4.3. Other Applications

FPGAs are successful as both rapid prototyping tools and application platforms

for digital circuits. On the other hand, due to the variety and complexity of analog

circuits, FPAAs are very specific to a limited set of applications depending on the type of

building blocks and routing architecture used in them. FPAAs are deployed in a wide

range of applications like bio-medical applications [55], sensor readouts [56] [57], audio

processing [58], emulation of smart power grids [59], etc. Depending on scale of the

design, PANDA platform is also capable of implementing the above-mentioned

applications. Furthermore, owing to its transistor-level fine granularity, PANDA provides

a unique opportunity for analog designers to validate new circuit topologies by rapid

prototyping before an expensive tape-out. PANDA also provides opportunity for tuning

the circuit components to match the target performance.

R1
+

-
R2

AV VO

Voff

1
1

1

1

1

2

1

2























V

off

O

AR

R

R

R
V

V

(a)

(b)

VCM

+

_

_

+

VCM

Update Size

FPGA

 36

There is a growing demand for integrated sensors in mobile platforms, where low

power consumption is critical. These sensors need diverse front-end circuits for signal

conditioning of the different signal types to be sensed like current, voltage, charge,

resistance etc. A generic multi-sensor front-end circuit design to meet the requirements of

all the diverse sensors is non-trivial [60] and might lead to over-design and/or high power

consumption. Moreover, with the increasing demand for low cost consumer electronics

and shrinking time-to-market, PANDA presents a viable solution for multi-sensor front-

end circuit implementation with its ability to reconfigure on-the-fly to any sensor front-

end circuit.

4.4. Limitations

Measurement results of circuits implemented on PANDA demonstrate a good

match in primary performance metrics with those of the targets circuits like gain, CMRR,

PSRR, bandwidth, etc., which depend on the transistor’s intrinsic properties – ID, Rout and

Gm. Second-order performance metrics like noise, distortion, matching etc., which

depend more on technology parameters and physical layout than transistor properties,

cannot be matched exactly by PANDA-implemented circuits.

PANDA cells are interconnected by transmission gate based switches that have a

finite resistance (<400), which places an upper limit on the current per circuit branch

from VDD to GND. As the DC current increases, voltage drop across the transmission

gate switches increase which may destroy the circuit functionality by changing the bias

conditions. Depending on the number of transistors in each branch, required voltage

headroom for biasing each transistor and number of switches that connect them after

placement and routing, the current per branch is limited to 100 A. For example, if a

 37

circuit branch consists of 2 transistors connected by a total of 5 switches from the supply

(1.2 V) to the ground and if it can tolerate a maximum voltage drop of 0.2 V across the

switches, then the maximum current through that branch is 100 A. This current

limitation in turn limits the maximum operating frequency of the PANDA-implemented

circuits driving external components to 10’s of MHz, unless driven by custom on-chip

analog buffers. However, in this work the maximum measured frequency of the

implemented OTA shown in Table 4.1 is only 8.6 MHz, because of the passive probes

used in measurements, which add a load of 12pF to the circuit.

Implementation of large-scale AMS circuits with 1000’s of transistors is not

feasible in the current implementation of the platform because of the limited number of

PANDA cells. For such large-scale AMS circuit implementation, it is desirable to have a

platform with a combination of coarse-grained macros like opamps, ADCs, DACs along

with fine-grained transistor-level cells such that it will have the ease of mapping with

coarse-grained macros and versatility and flexibility of fine-grained configurable blocks.

Although digital circuits can be implemented by mapping each transistor to PANDA

cells, it is quite cumbersome and area inefficient. It is preferable to have field

programmable mixed-signal array [61] with a combination of configurable logic blocks

(CLB) with look-up tables, SRAMs and registers like in FPGAs in combination with

PANDA cells and coarse-grained macros so that any digital circuit in feedback loop with

the primary analog circuit can also be implemented and validated using the same

platform. Nevertheless, PANDA provides a promising solution for rapid prototyping and

validation of analog circuits with versatility and flexibility of transistor-level granularity.

 38

CHAPTER 5

RECONFIGURABLE PROCESSING SYSTEM

5.1. Overview of CNN Operations

A typical CNN is comprised of multiple convolutional layers, interspersed by

normalization, pooling and non-linear activation function. These convolution layers

decompose the input image to different features maps varying from low-level features

such as edges, lines, curves, etc., in the initial layers to high-level/abstract features in the

deeper layers. These extracted features are classified to output classes by fully-connected

classification layers that are similar to multi-layer perceptrons. For example, Figure 5.1

shows the architecture of AlexNet CNN [4], which won the ImageNet challenge in 2012.

It consists of 5 convolutional layers each with a Rectified Linear Unit (ReLU) based

activation function, interspersed by 2 normalization layers, 3 pooling layers and

concluded by 3 fully connected layers which classify the input 224×224 color images to

1,000 output classes. The ImageNet database-based models are characterized by top-1

and top-5 accuracies, which represent that the input image label matches with top-1 and

top-5 predictions respectively.

11

11

11

11

224

224

48

55

55

48

55

55

5

3

5

5

3

128

128

27

27

27

27

3

3

3

3

3

3

3

3

13

13

3

3

13

13

192

192

3

3

13

3

3

13

192

192

128

13

13

13

13

128

13

13

2048

2048

2048

2048

1000

3 Stride

of 4 Max

Pooling

Max

Pooling Max

Pooling

dense dense

dense

Figure 5.1. Architecture of AlexNet CNN [4].

 39

5.1.1. Convolution

Convolution is the most critical operation of CNNs and it constitutes over 90% of

the total operations in AlexNet model [38]. It involves 3-dimensional multiply and

accumulate operation of Nif input features with K×K convolution filters to get an output

feature neuron value as shown in Equation (1).

(1)

where out(fo,x,y) represents the output neuron at (x,y) position in the feature map fo,

in(fi,x,y) denotes the input neuron in the feature map fi and wt(fo,fi,kx,ky) is the kernel

weights at position (kx,ky) that gets convolved with input feature map fi to get the output

feature map fo. The kernels and convolution filter weights are learned during the training

phase.

5.1.2. Normalization

Local Response Normalization (LRN) or simply normalization implements a form

of lateral inhibition [4] by normalizing each neuron value by a factor that depends on the

neighboring neurons. Mathematically LRN across neighboring features and within the

same feature are computed as shown in Equations (2) and (3), respectively.

(2)

(3)

),,(),,,(),,(
0 0 0

yx

N

f

K

k

K

k

iyxioo kykxfinkkffwtyxfout
if

i x y


  


























2/

2/

2),,(1

),,(
),,(

Kf

Kff

i

o
o

o

oi

yxfin
K

yxfin
yxfout





















 








2/

2/

2/

2/

2

2
),,(1

),,(
),,(

Kx

Kxk

Ky

Kyk

yxo

o
o

x y

kykxfin
K

yxfin
yxfout

 40

where K in Equation (2) is the number of neighboring features considered for LRN

computation, K in Equation (3) is the number of neurons in x, y directions in the same

feature, while  and  are constants.

5.1.3. Pooling

Spatial pooling or subsampling is utilized to reduce the feature dimensions as we

traverse deeper into the network. As shown in Equation (4), pooling computes the

maximum or average of neighboring K×K neurons in the same feature map, which also

provides a form of translational invariance [62]. Although max-pooling is popularly used,

average pooling is also used in some CNN models [62]. Reducing the dimensionality of

lower-level features while preserving the important information, the pooling layer helps

abstracting higher-level features without redundancy.

(4)

5.1.3. Fully Connected Layer

Fully-connected layer or inner product layer is the classification layer where all

the input features (Nif) are connected to all of the output features (Nof) through synaptic

weights (wt). Each output neuron is the weighted summation of all the input neurons as

shown in Equation (5).

(5)

5.1.4. Activation Function

 The commonly used activation functions in traditional neural networks are non-

linear functions such as tanh and sigmoid, which require a longer training time in CNNs

[4]. Hence, Rectified Linear Unit (ReLU) defined as y = max(x,0) has become the popular

 ),,(emax/averag),,(
),(0

yxo
Kkk

o kykxfinyxfout
yx








if

i

N

f

iioo finffwtfout
0

)(),()(

 41

activation function among CNN models as it converges faster in training. Moreover,

ReLU has less computational complexity compared to exponent functions in tanh and

sigmoid, also aiding hardware design.

The outputs of the inner-product layer traverse through ReLU based activation

function to the next inner-product layer or directly to a Softmax function that converts

them to probability in the range (0, 1). The final accuracy layer compares the labels of the

top probabilities from softmax layer with the actual label and gives the accuracy of the

CNN model.

5.2. Hardware Implementation Challenges

While CNNs are proven indispensable in many computer vision applications, they

consume significant amount of storage, external memory bandwidth, and computational

resources, which makes it difficult to implement on an embedded platform. The

challenges in implementation of a large-scale CNN on FPGAs are illustrated using

AlexNet model as an example. It has over 60 million model parameters, which needs

~250MB of memory to store the weights using 32-bit floating point representation and

hence they cannot be stored in on-chip memory of commercially available FPGAs. They

need to be stored in an external memory and transferred to the FPGA accelerator at the

time of computation, which could become a performance bottleneck. The AlexNet model

consists of 5 convolution layers with ReLU, 2 LRN layers, 3 pooling layers and 3 fully

connected layers, where each layer has different number of features, input and output

dimensions. If they are implemented independently without resource sharing, it would be

either hardware-inefficient or may not fit on the FPGA due to the limited computational

and memory resources. The problem gets exacerbated in the state of the art models such

 42

as VGG [5] and GoogLeNet [6], which have a larger number of repeated CNN layers. To

efficiently share hardware resources, repeated computation (e.g. convolution) should be

implemented with a scalable hardware [38], such that the same hardware is reused by

iterating the data through them in software. The performance limitation due to the

external memory bandwidth can be alleviated by using reduced precision model weights.

Hence, precision study is performed by sweeping model weights and chose the precision

values that have minimal impact on the classification accuracy.

5.3. Precision Study for Hardware Accelerator Modules

Traditionally CNN models are trained in CPU/GPU environments using 32-bit

floating point data. Such high precision is not necessarily required in the testing or

classification phase, owing to the redundancy in the over-parameterized CNN models

[63]. Reducing data precision of the weights/data without any impact on the accuracy

directly reduces the storage requirement as well as the energy for memory transfers.

Precision requirements of convolution and fully connected layer weights are

explored using AlexNet and VGG models from Caffe framework [64]. First, the pre-

trained models from Caffe are obtained, convolution weights and inner product weights

are rounded off separately, and the models are tested on the ImageNet-2012 validation

dataset of 50K images. Although data precision is reduced, Caffe tool still performs CNN

operations in 32-bit floating point precision using the truncated weights. Figure 5.2 shows

the top-1 and top-5 accuracies of the model for a precision sweep of the weights. It shows

that the accuracy steeply drops if the weight precision reduces below 8 bits. Since the

same hardware block will be reused for all the convolution layer iterations, a common

precision is used for the weights in all convolution layers. 8-bit precision is chosen for the

 43

convolution weights and 10-bit precision is chosen for inner product weights, which

degrades the accuracy by only <1% compared to full precision weights. Similarly, by

performing the precision study, 16-bit precision is chosen for the intermediate layer data.

Figure 5.2. AlexNet and VGG model classification accuracies are shown for different

weight precisions of convolution and inner-product layers.

5.4. OpenCL Implementation of CNN Layers

High Level Synthesis (HLS) tools are gaining popularity in the FPGA

community, as they enable faster hardware development by automatically synthesizing an

algorithm in high-level language (e.g. C) to RTL/hardware. There is a recent interest in

using OpenCL, a C-based programming language, for FPGAs because of its parallel

programming model [65] which matches with the parallel computation capabilities of

FPGAs. Moreover, the same OpenCL codes can easily be ported to different platforms:

16 14 12 10 8 6 4
0

20

40

60

80

 Top-1 Accuracy

 Top-5 Accuracy

A
le

x
N

e
t

A
c
c
u

ra
c
y
 (

%
)

Precision of convolution weights

AlexNet model

16 14 12 10 8 6 4
0

20

40

60

80

 Top-1 Accuracy

 Top-5 Accuracy

A
le

x
N

e
t

A
c
c
u

ra
c
y
 (

%
)

Precision of Innerproduct weights

AlexNet model

16 14 12 10 8 6 4
0

20

40

60

80

100

 Top-1 Accuracy

 Top-5 AccuracyV
G

G
 A

c
c
u

ra
c
y
 (

%
)

Precision of Convolution weights

VGG model

16 14 12 10 8 6 4
0

20

40

60

80

100

 Top-1 Accuracy

 Top-5 AccuracyV
G

G
 A

c
c
u

ra
c
y
 (

%
)

Precision of Innerproduct weights

VGG model

 44

CPUs, GPUs, DSPs or heterogeneous systems consisting of a combination of them.

OpenCL compilers not only compile an OpenCL code to RTL, but also integrate it with

the interfacing IPs for external memory and for communication between host CPU and

FPGA accelerator board. They abstract the designer/user from the intricacies of

traditional FPGA design flow such as RTL coding, integration with interfacing IPs and

timing closure, which considerably reduces the design time, while achieving performance

comparable to the traditional flow, but possibly at the expense of higher on-chip memory

utilization [66].

The design flow of the OpenCL based FPGA accelerator for CNN used in this

work is shown in Figure 5.3. It consists of an FPGA accelerator board that is integrated

into the PCIe slot of a desktop CPU that acts as the OpenCL host. In general, OpenCL

framework consists of two components (a) an OpenCL code that is compiled and

synthesized to run on the FPGA accelerator and (b) a C/C++ based host code with

vendor-specific application program interface (API) to communicate with the FPGA

accelerator.

PCIe

Standard C/C++

Compiler

Host

executable

Altera OpenCL

Compiler

FPGA

config file

C/C++ Host code OpenCL kernel

FPGA Accelerator

(OpenCL device)

Desktop CPU

(OpenCL host)

Figure 5.3. OpenCL based FPGA accelerator for CNN.

 45

In this work, Altera OpenCL software development kit (SDK) is used for

compilation of OpenCL code to RTL, which takes a few minutes for initial compilation,

followed by full synthesis which could take hours depending on the size of the design.

The tool-kit provides support for emulation, which runs the OpenCL code on host CPU,

thus allowing for quick functional verification before going to the full FPGA

implementation. The Altera SDK for OpenCL provides different synthesis constructs to

enable acceleration of OpenCL kernels such as loop unroll factor and Single-Instruction-

Multiple-Data (SIMD) vectorization factor. The details about how these factors improve

the performance of the OpenCL kernels and impact the logic utilization are discussed in

the following sections.

5.4.1. 3-D Convolution

Convolutions are the most performance-critical operations in CNNs, constituting

up to 91% of the total operations in AlexNet model [4]. It involves computationally

intensive 3-D multiply and accumulate (MAC) operations of the input features with the

convolution weights as given in Equation (1). To maximize the overall throughput of the

accelerator and also make the design portable to any other CNN model, a scalable

convolution block is needed such that the data can be iterated through it in software.

A scalable convolution block is implemented by mapping the 3-D convolutions as

matrix multiplication operations similar to that in [67] by flattening and rearranging the

input features. As an example, Figure 5.4 illustrates how Convolution-1 layer in AlexNet

is mapped from 3 input features with dimensions 224×224 to a rearranged matrix with

dimensions of (3×11×11) × (55×55). The input features from the first convolution

window of 11×11 are flattened and arranged vertically as shown in Figure 5.4. Similarly,

 46

the entire rearranged matrix can be generated by sliding the 11×11 convolution filter

across the input features. After input features are rearranged, the convolution operation

transforms to a generic matrix multiplication operation. Input feature rearrangement is

performed on-the-fly by storing them in the FPGA on-chip memory before performing

the matrix multiplication, which reduces the external memory requirement by eliminating

the need to store the entire rearranged input feature matrix.

11

11 R
G

B

R

G

B

55x553x11x11

3
x
1
1

x
1
1

9
6

55x55

9
6

Convolution

filter weights

Input features

Output features

2
2

4

Flatten and

rearrange

Figure 5.4. Mapping 3D convolutions to matrix multiplication operations.

The pseudo-code for matrix multiplication based convolution implementation in

OpenCL is shown in Figure 5.5. It can be summarized as the following three basic

operations which are repeated over each row of the weight matrix.

a) Fetch the convolution weights to the local memory which is implemented using

FPGA on-chip memory.

b) Compute the input feature actual address locations before flattening and fetch them to

local memory.

 47

c) Compute NCONV multiply and accumulate operations in parallel on the weights and

inputs from local memory.

Figure 5.5: Pseudo code of convolution implementation based on matrix multiplication.

Input feature rearranging operation is appended with matrix multiplication

OpenCL code from [68]. Understanding the matrix multiplication OpenCL

implementation is critical for acceleration of the convolution operation. The

implementation of matrix multiplication operation in OpenCL is illustrated in Figure 5.6,

which consists of convolution weight matrix A (M×N), multiplied by the rearranged

input feature matrix B (N×P) to compute the output feature matrix C (M×P). It consists of

NCONV×NCONV threads or OpenCL work-items, which fetch the first NCONV×NCONV inputs

to the local memory where NCONV=4 in this example. Each thread performs NCONV

parallel multiply and accumulate (MAC) operations on the local memory data, which is

accomplished by loop unrolling that replicates the hardware resources for acceleration.

1. Get current work-item/thread identifiers (x, y).

2. For each NCONV elements width-wise in weight matrix:

3. Compute address locations for input features and weights.

4. Fetch input features to inputs[x][y] in local memory.

5. Fetch convolution weights to weights[y][x] in local memory.

6. Wait till NCONV×NCONV inputs and weights are loaded.

7. Do the following NCONV MAC operations in parallel:

8. convolution output += weight[x][k]*input[y][k].

9. Wait till all work-items complete computation on fetched data.

10. Save convolution output to output buffer.

 48

Each thread waits till all the other threads complete the MAC operations, which is

achieved by the OpenCL synchronization construct ‘barrier’. This process is repeated by

sliding the NCONV×NCONV window column-wise in matrix A and row-wise in matrix B

and performing the MAC operations to get NCONV×NCONV output elements in the product

matrix C.

A1 A2 A3 B1

B2

B3

C1

C1 = A1×B1 + A2×B2 + A3×B3

M

N

N

P

P

M× =

Figure 5.6. Accelerating matrix multiplications in OpenCL.

From Figure 5.6, we see that the input and output matrix dimensions must be a

multiple of NCONV, which might not always be possible because of different number of

input and output features and different feature dimensions in different convolution layers.

Hence zero padding is applied the input matrices to make their dimensions a multiple of

NCONV. Increasing NCONV boosts the throughput as it fetches larger number of inputs to

the local memory and performs computations on them without having to wait for external

data. On the other hand, it increases the logic utilization and overhead in case zero-

padding is excessive in some layers.

SIMD vectorization factor (SCONV) is used as the design variable to accelerate the

convolution operation, which represents the factor by which computational resources are

vectorized to execute in a Single-Instruction-Multiple-Data (SIMD) fashion. This factor

improves the throughput by a factor of SCONV. The allowed values for SCONV are 1, 2, 4, 8,

 49

and 16. OpenCL standard imposes a restriction on work-group size (i.e. NCONV) such that

it has to be a multiple of SCONV. Depending on the model configuration parameters such

as feature dimensions, number of features, and number of convolution layers, choosing

an appropriate combination of (NCONV, SCONV) maximizes the overall throughput of CNN.

5.4.2. Normalization

Local response normalization (LRN) implementation requires an exponent

operation as shown in Equation (2), which is expensive to precisely implement in

hardware. Hence the exponent function f1(xo) shown in Equation (6) is implemented

using a piece-wise linear approximation function pwlf(xo).

(6)

(7)

Here K represents the number of features used for normalization. Using the

AlexNet model data as an example, the exponent function f1(xo) is approximated using a

piece-wise linear function using 20 points with a maximum error of 1%. Because of the

wide dynamic range of values involved in xi computation, normalization is implemented

in 32-bit floating point representation. Normalization is implemented as a single-threaded

code using loop unroll factor (NNORM), which represents the number of normalization

operations it performs in a single cycle. The Altera OpenCL compiler automatically

infers pipelining whenever there are no data dependencies between multiple iterations.

The pseudo code for normalization is shown in Figure 5.7. It uses local memory to store

the sum of squares of a sliding window of K input features, while performing the

)().,,(),,(1 ooo xfyxfinyxfout 

),,(;)1()(
2/

2/

2

1 yxfin
K

xxxf i

Kf

Kff

ooo

o

oi






 


 50

normalization operation on the computed sum of squares using the piece-wise linear

approximation function, pwlf(xo).

Figure 5.7. Pseudo-code for normalization implementation.

5.4.3. Other Layers

Pooling is implemented using a single work-item kernel where acceleration is

achieved by unrolling the loop to generate NPOOL parallel outputs in a single cycle. Fully-

connected layer or inner-product layer is also implemented as single work-item kernel,

where acceleration is achieved by performing NFC parallel multiply and accumulate

operations, which accelerates the performance by a factor of NFC. Nonlinear activation

function ReLU, which performs the function y=max(x,0) is incorporated at the output of

convolution and inner product implementations with a flag to enable or disable it.

5.5. Design Space Exploration

Choosing the best combination of the design variables (NCONV, SCONV, NNORM,

NPOOL, NFC) that maximizes the performance of the CNN accelerator, while still being

able to fit in the limited FPGA resources is a non-trivial task, which emphasizes the need

__

1. Compute sum_of_squares of first K/2 features.

2. For each input_feature i:

3. For each neuron j in feature i:

4. Do the following for NNORM neurons in parallel:

5. Compute sum_of_squares[j] += input_feature[i+K/2][j]

6. Compute output_feature[i][j] = input_feature[i][j]

7. *pwlf(/K*sum_of_squares[j])

8. Update sum_of_squares[j] –= input_feature[i–K/2][j]

__

 51

for a systematic design space exploration methodology. Optimization framework that

relies on full FPGA synthesis at each design point may not be feasible especially because

of the long run time, which could take hours, or potential synthesis failures that occur due

to utilization of hardware resources. Hence performance and resource utilization are

modeled and used for fast design space exploration.

In this section, optimization problem formulation is presented and then analytical

and empirical modeling of the performance and FPGA resource utilization as a function

of the design variables for each CNN layer are presented using AlexNet as an example.

5.5.1. Problem Formulation

The resource-constrained throughput optimization problem can be formulated as follows.

(8)

(9)

(10)

(11)

where TL represents the total number of CNN layers in the model, L denotes the total

number of CNN layer types and runtimei is the execution time of the layer-i. DSPMAX,

MemoryMAX, and LogicMAX represent the total DSP, on-chip memory and FPGA logic

resources, respectively, available in a given FPGA.

5.5.2. Performance Modeling

The execution time of each CNN layer is analytically modeled as a function of the

respective design variables and validated on the actual execution time obtained by




LT

i

FCPOOLNORMCONVCONVi NNNSNruntime
0

),,,,(Minimize





L

j

MAXj DSPDSP
0

 Subject to





L

j

MAXj MemoryMemory
0





L

j

MAXj LogicLogic
0

 52

performing full synthesis at selective design points and running them on the FPGA

accelerator.

The execution time of convolution layer-i is modeled as follows.

(12)

(13)

where PADNCONV ceils its inputs to the multiple of NCONV. Maximum frequency of the

kernel, which is also a function of NCONV and SCONV, is modeled empirically from the

synthesis data with different random seeds, as shown in Figure 5.8. The run time model

and the actual measured run times of convolution layers 1-4 of AlexNet implementation

for a sweep of NCONV at different SCONV values are compared in Figure 5.9.

Figure 5.8. Kernel frequency modeling from full synthesis data at 5 random seeds. (RMS

error of the fit: 12.57 MHz).

0 2 4 6 8 10 12 14 16
120

140

160

180

200

220

240

K
e
rn

e
l

F
re

q
u

e
n

c
y
 (

M
H

z
)

S
CONV

(N
CONV

=32)

 Data

 Model

0 20 40 60 80 100 120 140
160

180

200

220

240

K
e
rn

e
l

F
re

q
u

e
n

c
y
 (

M
H

z
)

N
CONV

(S
CONV

=1)

 Data

 Model

FrequencySN

OpsnConvolutioofNo
RuntimenConvolutio

CONVCONV

i

i




.

)dimensionsfeature(output

features)output of.(No

features)input of.Nodimensionsfilter (Conv

.

NCONV

NCONV

NCONV

i

PAD

PAD

PAD

OpsnConvolutioofNo







 53

Figure 5.9. Run time model vs. measured time of convolution layers 1-4 of AlexNet CNN

model for a sweep of NCONV with SCONV = 1 and 4.

Similarly, the execution time of normalization, pooling and fully connected layers

are modeled as functions of their respective loop unroll factors used for acceleration as

follows.

(14)

The execution time model vs. measured run time of normalization and fully connected

classification layers are shown in Figure 5.10.

Input data, weights, intermediate data and output data are stored on the external

memory that is present on the FPGA accelerator board. During computation of each

layer, the inputs are loaded from the external memory to the FPGA and the computation

results are stored back in the external memory. For this purpose, Altera OpenCL compiler

generates complex load/store units similar to those in GPUs, which combine multiple

0 50 100 150 200 250
0

20

40

60

80

100

120

140

C
o

n
v

-1
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
CONV

 (S
CONV

=1)

 Model

 Data

Conv-1

0 50 100 150 200 250
0

20

40

60

80

100

120

140

C
o

n
v

-2
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
CONV

 (S
CONV

=1)

 Model

 Data

Conv-2

0 50 100 150 200 250
0

20

40

60

80

100

120

140

C
o

n
v

-3
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
CONV

 (S
CONV

=1)

 Model

 Data

Conv-3

0 50 100 150 200 250
0

20

40

60

80

100

120

140

C
o

n
v

-4
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
CONV

 (S
CONV

=1)

 Model

 Data

Conv-4

0 50 100 150 200 250
0

10

20

30

C
o

n
v

-1
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
CONV

 (S
CONV

=4)

 Model

 Data

Conv-1

0 50 100 150 200 250
0

10

20

30

C
o

n
v
-2

 e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s
)

N
CONV

 (S
CONV

=4)

 Model

 Data

Conv-2

0 50 100 150 200 250

0

10

20

30
Conv-3

C
o

n
v

-3
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
CONV

 (S
CONV

=4)

 Model

 Data

0 50 100 150 200 250
0

10

20

30
Conv-4

C
o

n
v
-4

 e
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
CONV

 (S
CONV

=4)

 Model

 Data

FrequencyfactorUnroll

Operations
Runtime i

i




#

 54

external memory accesses into a single burst access, known as coalescing. This ensures

the efficient use of available external memory bandwidth with less contention for

memory accesses between multiple computational blocks. On the other hand, this makes

it difficult to model the external memory bandwidth usage with respect to the design

variables used for acceleration. This problem is aggravated by the reuse of the scalable

hardware blocks in multiple iterations of CNN layers with different input dimensions,

which will have different access patterns. For example, the execution time of fully

connected layers 6 and 7 of AlexNet model shown in Figure 5.10, shows that the model

matches well with the measured time till NFC=100. For NFC>100, the measured time

increases slightly, but the model still shows a reduction in execution time. This

discrepancy is caused by the bandwidth limitation of the FPGA board used for the model

validation. Hence, bandwidth limitation of the FPGA board is used to define the upper

limits for the design variables in our optimization framework.

Figure 5.10. The execution time model vs. measured data of normalization and fully

connected layers in AlexNet for sweep of loop unroll factors NNORM and NFC.

5.5.3. Resource Utilization Modeling

Analytically modeling the FPGA resource utilization of an algorithm in high-level

language such as OpenCL may not be feasible because of the optimizations performed in

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

N
o

rm
-1

 e
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

N
NORM

 Model

 Data

Norm-1

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

N
o

rm
-2

 e
x

e
c

u
ti

o
n

 t
im

e
 (

m
s

)

N
NORM

 Model

 Data

Norm-2

0 200 400
0

10

20

30

40

50

F
C

-6
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
FC

 Model

 Data

FC-6

Bandwidth limit

0 200 400
0

10

20

30
FC-7

F
C

-7
 e

x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

N
FC

 Model

 Data

Bandwidth limit

 55

the HLS tools. Hence, synthesis results are used to empirically model the FPGA resource

utilization. The post-synthesis resource utilization results are not precisely accurate due to

the optimizations performed after flattening the design hierarchy during the place and

route stage. However, resource utilization data acquired from synthesis is still a good

representative of the final resource utilization after place and route. DSP block usage, on-

chip memory and logic utilization from synthesis results of each CNN layer are fitted to

linear regression models as a function of the respective design variables.

Resource utilization models of normalization block are shown in Figure 5.11.

Logic element and DSP utilization from the synthesis data in Figure 5.11 show a linear

increase with the swept design variable NNORM. On the other hand, on-chip memory

utilization model shows small discrepancy with the synthesis data at intermediate points

because of the implementation of coalescing type load/store units, where the memory

resource utilization depends on whether the external memory data width is an integer

multiple of the design variables i.e. NNORM.

Figure 5.11. Resource utilization empirical models for normalization block.

5.5.4. Optimization Framework

From the convolution run time model in Figure 5.9, we see that it is non-

monotonic, because of the differences in dimensions of the CNN layers. Although

0 10 20 30
0

50k

100k

150k

200k

L
o

g
ic

 e
le

m
e
n

ts

N
NORM

 Model

 Data

0 10 20 30
200

250

300

350

400

M
2
0
K

 b
lo

c
k
 R

A
M

s

N
NORM

 Model

 Data

0 10 20 30
0

100

200

300

400

500

D
S

P
 b

lo
c

k
s

N
NORM

 Model

 Data

 56

exhaustive search of all the design variables could be done using the performance and

resource utilization models, it may not be feasible if the number of design variables

and/or the FPGA resources increase substantially. This calls for global optimization

methodologies such as simulated annealing, genetic algorithm or particle swarm

optimization with integer variables and multiple inequality constraints. In this work,

genetic algorithm with integer constraints from the global optimization toolbox in Matlab

is used for the design space exploration.

Genetic algorithm is a stochastic optimization technique that mimics the

biological evolution process and is popularly used to find the global minimum of an

objective function subject to a set of constraints. It can also handle mixed integer

programming problems, where some design variables are integers. It iteratively improves

the quality of the solution by generating a set of candidate solutions at each iteration or

generation from a combination of the best solutions from the previous generation based

on a set of genetic rules – selection, crossover and mutation. The solutions that violate the

constraints (i.e. Equations (9)-(11)) are penalized with a higher objective function value

to ensure convergence of the feasible solutions to a global minimum.

The design space of the OpenCL-based FPGA accelerator design is illustrated in

Equation (15).

(15)

168,4,2,1 orSCONV 

MAXCONVCONV NNSNN  0,

)(0 MAXNORMNORM NN 

)(0 MAXPOOLPOOL NN 

)(0 MAXFCFC NN 

 57

where all the design variables are integers, and upper limits of the design space

exploration such as NMAX, NNORM(MAX), NPOOL(MAX), and NFC(MAX) are determined by the

external memory bandwidth of the FPGA board. For example, in a fully connected layer

implementation where k bytes are required for each MAC operation, NFC of an

accelerator board with external memory bandwidth of MBW is computed as shown in

Equation (16).

(16)

For an FPGA system with 6 GB/s external memory bandwidth, requiring 2 bytes

per MAC operation in a fully connected layer with 100MHz kernel frequency, the upper

limit for NFC can be computed from Equation (16) as 30. Similarly, the upper limits of

other blocks can be computed based on the number of external memory transfers required

for each operation.

5.6. Experimental Results

The proposed optimization framework is validated by implementing and

accelerating two large-scale CNN models: AlexNet and VGG (16-layer) models on two

FPGA boards with different hardware resources. The hardware specifications of the two

Altera Stratix-V based boards are summarized in Table 5.1.

Both networks are implemented in OpenCL with fixed-point operations using 8-

bit weights for convolution and fully connected layers as obtained from the precision

study in Section 5.3. Although 10 bit precision is chosen for inner product weights, they

are still represented in 8-bits because of their limited range. Using the performance and

resource utilization models and the maximum hardware resources available in the two

Frequencyk

MbandwidthMemory
N BW

MAXFC



)(

)(

 58

boards, optimization framework is run on both AlexNet and VGG models to find the

optimal combination of design variables (NCONV, SCONV, NNORM, NPOOL, NFC) that

maximizes the throughput. The final values of the design variables for both networks

optimized for the two FPGA boards are shown in Table 5.2. VGG model does not include

normalization layers; hence the corresponding kernel is removed for the FPGA

implementation.

Using Altera OpenCL SDK, the OpenCL kernel codes for AlexNet and VGG

models are compiled for the two boards using the corresponding optimized parameters

from Table 5.2. Using the host code APIs, FPGA is programmed and the CNN model is

run by queueing the OpenCL implemented CNN kernels with appropriate arguments that

Table 5.1. Comparison of FPGA Accelerator Boards.

Specification P395-D8 [69] DE5-Net [70]

FPGA Stratix-V D8 Stratix-V A7

Logic elements 695K 622K

DSP blocks 1,963 256

M20K RAMs 2,567 2,560

External memory 4× 8GB DDR3 2× 2GB DDR3

Table 5.2. Optimized Parameters.

Parameter
P395-D8 board DE5-Net board

AlexNet VGG AlexNet VGG

NCONV 64 64 32 64

SCONV 8 8 4 2

NNORM 2 - 2 -

NPOOL 1 1 1 1

NFC 71 64 32 30

 59

consist of input/output buffer address locations and the layer dimensions. The execution

time of each kernel and the entire model are measured and throughput is computed as

(total number of operations)/(execution time).

The execution time of the CNN layers in AlexNet and VGG models implemented

on P395-D8 board with kernel profiling support) is shown in Figure 5.12. The final

classification time without kernel profiling will be significantly lower than that shown in

Figure 5.12 because of the delay involved with kernel profiling itself. The execution of

fully-connected layers can be overlapped with the initial convolution layers of the next

image, which increases the overall throughput of the accelerator (by 27% in AlexNet

implementation on P395-D8). The next input image transfer from the OpenCL host to the

off-chip memory on the FPGA board is overlapped with current CNN operations, thus

not hampering the throughput. The initial model weight transfer from the host to the

board, which only occurs once in the beginning, is not included for throughput

computation.

Figure 5.12. The execution time of CNN layers in (a) AlexNet and (b) VGG

models on P395-D8 FPGA accelerator.

(a)

(b)

 60

The total classification time per image and overall throughput of AlexNet and

VGG models on P395-D8 and DE5-Net boards are compared with Caffe tool [20]

running on Intel core i5-4590 CPU (3.3 GHz) in Table 5.3. Although both FPGAs have

similar number of logic elements and on-chip memory blocks, the smaller number of

DSP blocks in DE5-Net accounts for its lower throughput compared t that of P395-D8.

The software implementation in Caffe tool uses libraries optimized for basic vector and

matrix operations (i.e., ATLAS [71]) for performing CNN operations. Our OpenCL

based FPGA implementations on P395-D8 achieve 9.5x and 5.5x speedups for AlexNet

and VGG models, respectively, compared to the CPU implementation in Caffe tool.

The execution time, throughput and the resource utilization of each kernel type of

the AlexNet on P395-D8 and DE5-Net FPGA accelerator boards are shown in Figure

5.13. VGG implementation on P395-D8 achieves a peak throughput of 136.5 GOPS for

convolution layers, and 117.8 GOPS including all layers and operations while performing

image classification. From the implementation results, we see that throughput of the

accelerator is largely proportional to the number of DSP blocks used in the

Table 5.3: Classification Time/Image and Overall Throughput.

 FPGA
Classification

time/image (ms)

Throughput

(GOPS)

AlexNet

P395-D8 20.1 72.4

DE5-Net 45.7 31.8

CPU 191.9 7.6

VGG

P395-D8 262.9 117.8

DE5-Net 651.2 47.5

CPU 1437.2 21.5

 61

implementation. AlexNet implementation on P395-D8 board is limited by the number of

available M20K block RAMs, while only 727 out of 1963 available DSP blocks are

utilized. On the other hand, the implementation on DE5-Net FPGA board is limited by

the lower number of available DSP blocks, although the on-chip memory resources are

not fully utilized.

Figure 5.13. Execution time and resource utilization of each CNN layer type for

AlexNet implementation on P395-D8 and DE5-Net FPGA boards.

The optimization framework reports the hardware resource that causes the

performance bottleneck, such that the user can choose another FPGA hardware, which

P395-D8

DE5-Net

0 200 400 600 800

DSP blocks

Max. limit

P395-D8

DE5-Net

0 400 800 1200 1600

M20K block RAMs

 Conv

 Norm

 Pool

 FC

P395-D8

DE5-Net

0 30k 60k 90k 120k

Logic Elements

P395-D8

DE5-Net

0 10 20 30 40 50

Execution time (ms)

 62

has larger number of the specific hardware resources (e.g. DSP blocks). This

methodology can also be used to find the ideal specifications of an FPGA suited for

CNN, by performing optimization with relaxed constraints for the bottleneck hardware

resource. For example, increasing the on-chip memory resources on P395-D8 FPGA by

10% directly increases the throughput of AlexNet implementation by ~10%.

The top-1 and top-5 accuracies of FPGA implementation of AlexNet and VGG

models compared to those of the full-precision Caffe models are summarized in Table

5.4. The accuracy degradation due to fixed-point operations in FPGA implementation is

<2% for top-1 accuracy and <1% for top-5 accuracy for both AlexNet and VGG models.

Both DE5-Net and P395-D8 boards are connected to a PCIe slot of a desktop

computer whose CPU operates as the OpenCL host. Since the FPGA board receives

power from external power port as well as PCIe slot, the power measurement of the

FPGA board itself is not straightforward. We attempted to block the power connection

through PCIe and have the FPGA board powered only through the external power port.

This way, the average power consumption of DE5-Net board was measured as 24.2W

after programming AlexNet configuration, and as 25.8W while performing classification.

On the other hand, the same measurement method was not feasible on P395-D8 board as

Table 5.4. Model Accuracy Comparison.

Accuracy
Full precision in Caffe tool

Fixed-point FPGA

implementation

Top-1 Top-5 Top-1 Top-5

AlexNet 56.82% 79.95% 55.41% 78.98%

VGG 68.35% 88.44% 66.58% 87.48%

 63

it was designed to use both power supplies. Nonetheless, its power consumption was

measured as 19.1W after programming with AlexNet configuration file, using a utility

function provided by board manufacturer that measures the steady state power of the

board. The power consumption difference between the desktop computer without FPGA

and with FPGA running AlexNet is measured as 26W for DE5-Net and 35W for P395-D8

boards. This difference includes the power consumption of CPU running the OpenCL

host code, which could be much smaller with embedded processors in FPGA chips.

 64

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Thesis Conclusions

 The application fields for Internet of Things are expanding at a rapid pace and the

expected time for an idea to reach the market is shrinking. In order to accelerate the IoT

sensor node hardware design process, this work presents an FPAA based solution for

rapid-prototyping sensor analog front-end circuit and an FPGA based processing unit. To

enable reconfiguration capability for any sensor analog front-end circuit, a Programmable

ANalog Device Array (PANDA) is developed with transistor-level fine granular

configurable analog blocks. A full system consisting of an array of 24×25 PANDA cells,

mesh-style reconfigurable interconnect and configuration memory is developed, which is

presented in Chapter 2.

 Although FPGA CAD tools are quite mature, they are not well suited for PANDA

platform because of the intrinsic differences between analog and digital circuits. Hence, a

new CAD tool, PANDA-PRO, is developed to implement analog circuits on the

implemented platform, which is presented in chapter 3. Methodologies for transistor-level

mapping of target circuits to PANDA cells, automatic placement and routing of the

mapped cells are also presented in Chapter 3.

 In Chapter 4, measurement results of several benchmark circuits including

amplifiers, voltage and current references and active filters are presented. The

measurements match the simulation results of the target designs, demonstrating the

efficacy of the platform to rapid-prototype and validate IoT sensor front-end circuits.

Dynamic reconfiguration capability is demonstrated through offset cancellation of an

 65

amplifier using an FPGA in a closed loop. This capability which enables on-the-fly

reconfiguration of transistor sizes and connectivity opens up new realms such as self-

calibrating circuits, adaptive circuits, reconfigurable multi-sensor readout circuits,

evolvable hardware etc.

 In Chapter 5, an FPGA based hardware accelerator for Convolutional Neural

Networks (CNN) is proposed for implementing in the processing unit of IoT gateways. A

systematic methodology is proposed to maximize the throughput of a given CNN

algorithm, subject to the FPGA hardware constraints of logic utilization, computational

resources, on-chip memory and external memory bandwidth. The new methodology is

demonstrated by implementing and maximizing the throughput of two state-of-the-art

CNNs: AlexNet [4] and VGG models [5], on two Altera FPGA platforms with different

hardware resources, achieving a peak performance of 136.5 GOPS.

6.2. Future Work

 This work could be extended in several research directions, some of which are

described as follows. While transistor-level granularity of PANDA cells is ideal for

implementing an arbitrary analog function, implementing large-scale circuits would be

cumbersome at that granularity. Further investigation could be required to explore the

design space to find an optimal combination of transistor-level PANDA cells and coarse-

grained macros (e.g., Opamps, OTAs, ADCs, etc.) suitable for a set of target applications.

 The developed design space exploration methodology to maximize the

performance of the hardware accelerator for CNNs can be extended to any other feed-

forward class of neural networks. Furthermore, it could be extended to different classes

of deep learning, for instance, recurrent neural networks (RNN), where the connections

 66

between different units form a directed cycle. RNNs, analogous to state machines in

digital circuits, are different from CNNs, which are analogous to combinational circuits

in digital circuits, in the network structure as they have feedback connections. This

creates an internal state of the network that makes them suitable for a wider class of

applications including language modeling, speech recognition and data analytics.

 67

REFERENCES

[1] Global IoT Deployments. Available at www.iotwf.com/iotwf2015/deployment-

map.

[2] Y. LeCun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, D.

Henderson, “Handwritten digit recognition with a back-propagation network,”

Advances in Neural Information Processing Systems, 396-404, 1990.

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei, “ImageNet large-scale

visual recognition challenge,” In Int. J. Computer Vision, 2015.

[4] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” In Advances in Neural Information Processing

(NIPS), 1097-1105, 2012.

[5] K. Simonyan, A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv:1409.1556.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, A. Rabinovich, “Going deeper with convolutions,” In CVPR, 1-9,

2015.

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, L. Fei-Fei, “Large-

scale video classification with convolutional neural networks,” CVPR, 1725-1732,

2014.

[8] H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, “A convolutional neural network

cascade for face detection,” CVPR, 5325-5334, 2015.

[9] P. Barros, S. Magg, C. Weber, S. Wermter, “A multichannel convolutional neural

network for hand posture recognition,” Int. Conf. on Artificial Neural Networks

(ICANN), 403-410, 2014.

[10] O. Abdel-Hamid, A.R. Mohamed, H. Jiang, G. Penn, “Convolutional neural

networks for speech recognition,” In IEEE Trans. on Audio, Speech and Language

Processing, 1533-1545, Oct 2014.

[11] R. Collobert, J. Weston, “A unified architecture for natural language processing:

deep neural networks with multitask learning,” In Int. Conf. on Machine Learning,

160-167, 2008.

[12] S. Lai, L. Xu, K. Liu, J. Zhao, “Recurrent convolutional neural networks for text

classification,” In AAAI Conf. on Artificial Intelligence, 2267-2273, 2015.

 68

[13] C.A. Looby, C. Lyden, "Op-amp based CMOS field-programmable analogue

array," IEE Proc. Circuits, Devices and Systems, vol.147, no.2, pp.93-99, Apr

2000.

[14] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, Y. Sun, “A field programmable

analog array for CMOS continuous-time OTA-C filter applications,” IEEE J.

Solid-State Circuits, vol. 37, no. 2, pp. 125–136, Feb. 2002.

[15] T. Hall, C. Twigg, J. Gray, P. Hasler, D. Anderson, “Large-scale field-

programmable analog arrays for analog signal processing,” IEEE Trans. Circuits

and Syst. I: Reg. Papers, vol. 52, no. 11, pp. 2298-2307, Nov. 2005.

[16] J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns, Y. Manoli, “A continuous-

time hexagonal field-programmable analog array in 0.13μm CMOS with 186MHz

GBW,” IEEE Int. Solid-State Circuits Conf., ISSCC 2008. Dig. Tech. Papers.,

pp.70,596, 3-7 Feb. 2008.

[17] S. Mahmoud, K. Ali, M. Rabea, A. Amgad, A. Adel, A. Nasser, H. Mohamed, Y.

Ismail, “Low power FPAA design based on OTA using 90nm CMOS

technology,” Int. Conf. on Energy Aware Computing (ICEAC), 2011 , pp.1-4, Nov.

30 - Dec. 2 2011.

[18] Dynamically Reconfigurable dpASP: Anadigm AN231E04 datasheet. Available

online: http://www.anadigm.com/_doc/DS231000-U001.pdf.

[19] C.R. Schlottmann, S. Shapero, S. Nease, P. Hasler, “A digitally enhanced

dynamically reconfigurable analog platform for low-power signal

processing," IEEE J. Solid-State Circuits, vol.47, no.9, pp. 2174-2184, Sept. 2012.

[20] W.H. Fu, J. Jiang, X. Qin, T. Yi, Z.L. Hong, "A reconfigurable analog processor

based on FPAA with coarse-grained, heterogeneous configurable analog

blocks," Int. Conf. on Field Programmable Logic and Applications, pp.211-216,

2010.

[21] J. Yasunari, T. Inoue, A. Tsuneda, "A CMOS continuous-time FPAA analog core

using automatically-tuned MOS resistors," 47th Midwest Symp. on Circuits and

Syst., 2004, , vol.1, pp.153-156, July 2004.

[22] E.K.F. Lee, P.G. Gulak, "A CMOS field-programmable analog array," IEEE J.

Solid-State Circuits, vol.26, no.12, pp. 1860–1867, Dec 1991.

[23] E.K.F. Lee, P.G. Gulak, “A transconductor-based field programmable analog

array,” IEEE Int. Solid-State Circuits Conf., pp. 198–199, Feb. 1995.

[24] J. Langeheine, J. Becker, S. Folling, K. Meier, J. Schemmel, “A CMOS FPTA chip

for intrinsic hardware evolution of analog electronic circuits,” Proc of NASA/DoD

Workshop on Evolvable Hardware, pp.172-175, 2001.

 69

[25] A. Stoica, R. Zebulum, D. Keymeulen, R. Tawel, T. Daud, A. Thakoor,

“Reconfigurable VLSI architectures for evolvable hardware: from experimental

field programmable transistor arrays to evolution-oriented chips,” IEEE Trans.

VLSI Systems, vol.9, no.1, pp.227-232, Feb. 2001.

[26] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol, F.

Baskaya, C.M. Twigg, P. Hasler, “A floating-gate based field programmable

analog array,” IEEE J. Solid State Circuits, vol. 45, no. 9, pp. 1781-1794, Sept.

2010.

[27] A. Basu, C. Twigg, S. Brink, P. Hasler, C. Petre, S. Ramakrishnan, S. Koziol, C.

Schlottmann, “RASP 2.8: A new generation of floating-gate based field

programmable analog array,” Proc. IEEE Custom Integrated Circuits Conference

(CICC), pp. 213-216, Sept. 2008.

[28] C.R. Schlottmann, D. Abramson, P.E. Hasler, “A MITE-based translinear FPAA,”

IEEE Trans. VLSI Systems, vol. 20, no.1, pp.1-9, Jan. 2012.

[29] A. Basu, S. Ramakrishnan, C. Petre, S. Koziol, S. Brink, P.E. Hasler, “Neural

dynamics in reconfigurable silicon,” IEEE Trans. Biomedical Circuits and

Systems, vol. 4, no. 5, pp. 311-319, Oct. 2010.

[30] R.B. Wunderlich, F. Adil, P. Hasler, “Floating gate based field programmable

mixed-signal array,” IEEE Trans. Very Large Scale Integration (VLSI) Systems,

vol.21, no.8, pp.1496-1505, Aug. 2013.

[31] R. Zheng, J. Suh, C. Xu, N. Hakim, B. Bakkaloglu, Y. Cao, “Programmable analog

device array: a platform for transistor-level analog reconfigurability,” Design

Automation Conference, pp.322-327, June 2011.

[32] J. Suh, N. Suda, C. Xu, N. Hakim, Y. Cao, B. Bakkaloglu, "Programmable ANalog

Device Array (PANDA): A methodology for transistor-level analog emulation,"

IEEE Trans. Circuits and Syst. I: Reg. Papers, vol.60, no.6, pp.1369-1380, June

2013.

[33] W. Zhao, Y.Cao, “New generation of predictive technology model for sub-45nm

early design exploration,” IEEE Trans. on Electron Devices, vol. 53, no. 11,

pp.2816-2823, Nov. 2006 (available at http://ptm.asu.edu).

[34] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, E. Culurciello, “Hardware

accelerated convolutional neural networks for synthetic vision systems,” In Int.

Symp. Circuits and Systems (ISCAS), 257-260, 2010.

[35] C. Farabet, B. Martini, B. Corda, P. Akselrdo, E. Culurciello, Y. Lecun,

“NeuFlow: A runtime reconfigurable dataflow processor for vision,” In Computer

Vision and Pattern Recognition workshops, 109-116, 2011.

 70

[36] S. Chakradhar, M. Sankaradas, V. Jakkula, S. Cadambi, “A dynamically

configurable coprocessor for convolutional neural networks,” In Int. Symp. on

Computer Architecture, 247-257, 2010.

[37] M. Peemen, A. Setio, B. Mesman, H. Corporaal, “Memory-centric accelerator

design for convolutional neural networks,” In Int. Conf. on Computer Design

(ICCD), 13-19, 2013.

[38] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, J. Cong, “Optimizing FPGA-based

accelerator design for deep convolutional neural networks,” In ACM Int. Symp. On

Field-Programmable Gate Arrays, 161-170, 2015.

[39] V. Gokhale, J. Jin, A. Dundar, B. Martini, E. Culurciello, “A 240 G-ops/s mobile

coprocessor for deep neural networks,” In IEEE Conf. on Computer Vision and

Pattern Recognition Workshops, 696-701, 2014.

[40] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun,

O. Temam, “DaDianNao: A machine-learning supercomputer,” In IEEE/ACM Int.

Symp. on Microarchitecture, 602-622, 2014.

[41] V. Betz and J. Rose, “FPGA routing architecture: segmentation and buffering to

optimize speed and density”, ACM/SIGDA Int. Symp. on Field Programmable

Gate Arrays, p.p. 59-68, 1999.

[42] H. Zhang, M. Wan, V. George, and J. Rabaey, “Interconnect architecture

exploration for low-energy reconfigurable single-chip DSPs,” in Proceedings IEEE

Computer Society Workshop VLSI ’99, pp. 2–8, 1999.

[43] G.G. Lemieux and S.D. Brown, “A detailed router for allocating wire segments in

field programmable gate arrays,” Proc. of ACM Physical Design Workshop, April

1993.

[44] Y.W. Chang, D. Wong, C. Wong, “Universal switch modules for FPGA design,”

ACM Trans. on Design Automation of Electronic Syst., vol. 1, pp. 80-101, January,

1996.

[45] S.J.E. Wilton, “Architectures and algorithms for field programmable gate arrays

with embedded memory”, PhD thesis, Univ. of Toronto, 1997.

[46] M.I. Masud, S.J.E. Wilton, “A new switch block for segmented FPGAs”, Proc. of

9th Int. Workshop on Field Programmable Logic, pp. 274-281, 1999.

[47] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. Fang, and J. Rose, “VPR

5.0: FPGA CAD and architecture exploration tools with single-driver routing,

heterogeneity and process scaling,” ACM/SIGDA Int. Symp. on Field-

Programmable Gate Arrays, pp. 133–142, 2009.

 71

[48] Xilinx 7 series FPGAs Overview. Available online:

http://www.xilinx.com/support/

documentation/data_sheets/ds180_7Series_Overview.pdf.

[49] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simulated

Annealing,” Science, pp. 671 – 680, May 13, 1983.

[50] V. Betz, J. Rose, “VPR: A new packing, placement and routing tool for FPGA

research”, Proc. of 7th Int. Workshop on Field Programmable Logic, pp. 213-222,

1997.

[51] M. Huang, F. Romeo, A. Sangiovanni-Vincentelli, “An efficient general cooling

schedule for simulated annealing,” ICCAD, pp. 381 – 384, 1986.

[52] W. Swartz, C. Sechen, “New algorithms for the placement and routing of macro

cells,” Int. Conf. on Computer-Aided Design, pp. 336 – 339, 11-15 Nov. 1990.

[53] C.Y. Lee, “An algorithm for path connections and its applications,” IRE Trans. on

Electronic Computers, vol. EC-10, pp. 346 – 365, 1961.

[54] Microchip MCP2210, USB-to-SPI Protocol Converter with GPIO (Master Mode).

Available online:

http://ww1.microchip.com/downloads/en/DeviceDoc/22288A.pdf.

[55] U.F. Chan, W.W. Chan, S.H. Pun, M.I. Vai, P.U. Mak, "Flexible implementation

of front-end bioelectric signal amplifier using FPAA for telemedicine

system," IEEE Int. Conf. Engineering in Medicine and Biology Society, pp.3721-

3724, Aug. 2007.

[56] A. Baccigalupi, A. Liccardo, “Field programmable analog arrays for conditioning

ultrasonic sensors," IEEE J. Sensors, vol.7, no.8, pp.1176-1182, Aug. 2007.

[57] D.P. Morales, A. Garcia, A.J. Palma, A. Martinez-Olmos, “Merging FPGA and

FPAA Reconfiguration Capabilities for IEEE 1451.4 Compliant Smart Sensor

Applications,” 3rd Southern Conf. on Programmable Logic, pp.217-220, 28-26

Feb. 2007.

[58] P. Falkowski, A. Malcher, “Audio signal processing based on dynamically

programmable analog arrays," Int. Conf. on Signals and Electronic Syst., pp.29-

32, 7-10 Sept. 2010.

[59] A.S. Deese, C.O. Nwankpa, “Design and testing of custom FPAA hardware with

improved scalability for emulation of smart grids,” IEEE Trans. Smart Grid, vol.5,

no.3, pp.1369-1378, May 2014.

 72

[60] J. Zhang, J. Zhou, P. Balasundaram, A. Mason, “A highly programmable sensor

network interface with multiple sensor readout circuits,” Proc. of IEEE Sensors,

Vol.2, pp.748-752, 2003.

[61] R.B. Wunderlich, F. Adil, P. Hasler, “Floating gate based field programmable

mixed-signal array,” IEEE Trans. Very Large Scale Integration (VLSI) Systems,

vol.21, no.8, pp.1496-1505, Aug. 2013.

[62] Y.L. Boureau, J. Ponce, Y. Lecun, “A Theoretical Analysis of Feature Pooling in

Visual Recognition,” In Int. Conf. on Machine Learning, 2010.

[63] M. Denil, B. Shakibi, L. Dinh and N. D. Freitas, “Predicting parameters in deep

learning,” In Advances in Neural Information Processing Systems, 2148–2156,

2013.

[64] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.

Guadarrama, T. Darrell, “Caffe: Convolutional architecture for fast feature

embedding.” arXiv:1408.5093.

[65] Khronos OpenCL Working Group. The OpenCL Specification, version 1.1.44,

2011.

[66] M. S. Abdelfattah, A. Hagiescu, D. Singh, “Gzip on a chip: high performance

lossless data compression on FPGAs using OpenCL,” In Int. Workshop on

OpenCL 2014.

[67] K. Chellapilla, S. Puri, P. Simard, “High performance convolutional neural

networks for document processing,” In Int. Workshop on Frontiers in Handwriting

Recognition, 2006.

[68] Altera OpenCL design examples. Available online at

https://www.altera.com/support/support-resources/design-examples/design-

software/opencl.html

[69] Nallatech P395-D8 OpenCL FPGA accelerator cards. Available online at

http://www.nallatech.com/wp-content/uploads/openclcardspb_v1_51.pdf

[70] DE5-Net FPGA kit user manual. Available online at

ftp://ftp.altera.com/up/pub/Altera_Material/Boards/DE5/DE5_User_Manual.pdf

[71] R.C. Whaley and J.J. Dongarra, “Automatically tuned linear algebra software,” In

Proc. SuperComputing 1998: High Performance Networking and Computing,

2001.

