
Scheduled Routing for the Numesh

by

Milan Singh Minsky

B.S., Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 1986

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1993

© Massachusetts Institute of Technology 1993. All rights reserved.

/1/7- If

Author ... -
Department of Electrical Engineering and Computer Science

August 6, 1993

Certified by........... *..... c -..... /...-
Stephen A. Ward

Professor of Elecrical Engineering and Computer Science
Thesis Supervisor

2I- A .

Accepted by
Accpte]y. '~...V I ~ Fredric R. Morgenthaler

airman, Co fittee on Graduate Students

O:~~~~~~~Ad f,.\. ,

1Al

2

Scheduled Routing for the Numesh
by

Milan Singh Minsky

Submitted to the Department of Electrical Engineering and Computer Science
on August 6, 1993, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

A framework for the expression and analysis of statically defined communication patterns
present in computations targeted for execution in the NuMesh multicomputer environment
is developed. A system which solves optimization problems to statically allocate network
resources for network traffic with real time constraints has been implemented. Results
from the system, which uses simulated annealing and linear programming techniques to
automate the process of placing and routing this traffic are presented.

Thesis Supervisor: Stephen A. Ward
Title: Professor of Electrical Engineering and Computer Science

3

Acknowledgements

To Professor Steve Ward:

During one's stay at university
(In this case one called M.I.T.)
There is with no great trouble found
Professors professing knowledge sound.
Seen with a little less likelihood
Are those who teach more than equa-

tions would.
For in Education's ivied walls,
Its fabled classrooms, hallowed halls,
One's not quite as sure to find
An Educator's kind of mind.
With great good fortune I found such
And worked with him to my good luck.
This tome and my education owes
A debt of guidance to one who knows
The gentle art of teaching minds
With knowledge, kindness,
Enthusiasm, humor, (and beer sometimes).

For my parents:

Parents come and parents go
(Well no, this isn't really so)
But parents like the ones I've got
Can't be sold and can't be bought
For they taught us quite carefully
The following philosophy:
Life improves when one can find
A way to open up one's mind
More than this we also learned:
While education's often earned
With sweat and candles two ends burned
Love is one commodity
That should be given constantly
And priced quite fairly when it's free
So while parents come and parents go
(Again this is not true, you know)
These two are top of the parent line
And this rhymster's thankful
That they're mine.

To Henry:

To the other half
Of this life.
My husband, I,
His lucky wife.
There isn't room to list it all
But since this thesis was a small
Electric surge within my brain
Right through to this completion date
Your support has never waned,
Your love and laughter's kept me sane,
And it's finally finished, dear! (Though

somewhat late)

To Andy Ayers:

Where heaven meets earth there's a sign
that reads:

Wherever you go whatever your deeds
However life for you proceeds
If luck smiles a little you might just find
That friend in a million - one of a kind
Working with that friend, if done
Will be less like work and more like fun
And talking to that friend as well
(About 6.004 or Compilers of L)
Will improve the aspect of your days
And when you move to other phases
Of your lives, whatever the cost,
Make sure this friendship's never lost

For Marvin and Gloria:

If there's one conception has a flaw
It's that of the Wicked Parent-In-Law.
This old legend has me troubled,
For when I was married, my parents

doubled.
The love and care flowing from these

two
The soft good humor and strong sup-

port,
I can't describe these things to you
And also keep this poem short.
But if I continued on and on,
Listing golden qualities,

4

You might stop reading 'fore too long,
So I'll finish up and hope you've seized
The value which they hold for me.

To John Nguyen:

An officemate who shares your space
But manages with great good grace
To offer help when its most required
To provide, diversion when you are tired
Of working. And who with quiet dig-

nity
Hacks hacks of legendary quality
Such an officemate is hard to find
But such was the one who once was

mine

To Sharon:

I'm certain that the thesis
Which follows these first lines
Would still be all in pieces
If not for Sharon's kind
And gentle-strong persuasion
To finish what you start,
And to follow your imagination,
Which she gives from her heart.

To Asim:

Thanks to my brother, Asim Singh
Who makes me laugh about everything.
Who's made me laugh since we were

small
Who's never let me take a fall
Without being there with his helping

hand
And making sure I still could stand.

To Margaret, Julie and Meher:

Through no fault of my parents
But because of the chromosome X
I never had any siblings
Who shared my particular sex
Now I do
And I'm thankful too
For their brilliant example
Which proves to me just one thing
If a man can do what a man can do
Then a woman can do everything

6

Thank you to Anne for putting up with my wanderings into her office over the years to ask for so many
things which she so cheerfully provided.

This project benefitted a great deal from interesting discussions with Kathy Knobe, Mike Noakes, Glenn
Adams, Frank Honore, Norman Margolus, Nate Osgood, John Pezaris, Ian Eislick, David Shoemaker, Russ
Tessier, Gill Pratt, and Anant Agarwal. Very valuable too, was the general environment of creative curiosity
encouraged at M.I.T.

A special thanks to Tom Knight who is a constant source of clearly described good ideas, and to Clark
Thomburson who took the time to help me understand linear programming basics and to find lp solve.

Thanks to Professor D. Troxel, a patient and helpful course advisor.
Thanks very much to Chris Metcalf for a careful reading of initial drafts of this thesis and for many

constructive comments regarding the material.
Thanks to good friends: Melissa Cohen, and Michael Fredkin who never let me go too long without

having some fun, Yen-Kuei Chuang for always taking time to send warm and interesting email from the land
of sunshine, busy as she was, Carol for taking wonderful loving care of the dogs during these busy last few
weeks, Julie Fouquet for teaching me how to organize the time devoted to a thesis. I only wish I'd been a better
student.

This thesis is dedicated to my aunt, Nirmila Beniwal.

Contents

1 Introduction to the Problem
1.1 The NuMesh Project: An Approach to Multicomputer Communication Sub-

strate Design
1.1.1 Motivation for Static Routing

1.2 This Thesis

2 Background
2.1 Communication in Multiprocessors

2.1.1 Dynamic Versus Static Routing
2.2 Mapping an Application to a MultiComputer

2.2.1 Partitioning
2.2.2 Placement
2.2.3 Routing in Networks

2.3 Performance of Multiprocessor Interconnection Networks ...
2.4 What Kinds Of Applications Can Benefit From Static Routing?
2.5 Motivation for Scheduled Routing Backend

3 The NuMesh
3.1 Architecture of the NuMesh

3.1.1 NuMesh modules
3.1.2 CFSM Structure
3.1.3 CFSM Programming

3.2 Comparison With Systolic Arrays
3.3 The NuMesh Programming Environment: Work to Date

4 Implementation of the Backend.
4.1 Intermediate Form

4.1.1 Implementation Details of TTDL
4.1.2 Basic Language Constructs

4.2 The Backend
4.2.1 Placement
4.2.2 Routing
4.2.3 Alternative Approaches to Offline Path Assignment . .
4.2.4 Linear Programming Formulation of the Scheduling Problem .

7

10

10
11
11

12
12
12
13
13
13
13
15
16
18

19
19
19
20
21
22
22

23
23
25
25
28
28
31
37
38

CONTENTS

5 Results
5.1 Jacobi Relaxation Problem

5.1.1 TTDL Description of Jacobi Relaxation Problem
5.1.2 Results of Routing and Scheduling

5.2 One Dimensional FFT Problem

5.3 Viterbi Search Communication Graph

6 Conclusions and Extensions
6.1 Conclusions
6.2 Extensions

6.2.1 Compact Representation of Network Traffic

6.2.2 Feedback Between Scheduling and Routing
6.2.3 Implementation of Multicast Service
6.2.4 Extensions to Support Applications Which are More Dynamic . . .
6.2.5 Integration With the NuMesh Simulator and Hardware

8

43
. 44
. 44
. 47
. 47
. 49

63
63
64
64
64
65
65
65

List of Figures

2-1 Circuit Simulation as a Candidate for Static Routing. 17
2-2 Front End of Speech Recognition System Implemented for the NuMesh. . 17

3-1 Configuration of NuMesh nodes in a diamond lattice. 20
3-2 Communciation Finite State Machine. 20

3-3 CFSM activity during a given clock cycle 21

4-1 Structure of Backend Placement, Routing, and Scheduling System. 24
4-2 A Simple Example of TTDL. 27

4-3 Pseudo-code for Critical Path Algorithm 29

4-4 Critical Path Algorithm. 29
4-5 Structure of Simulated Annealing Algorithm 32

4-6 Dimensional Routing Versus More Flexible Path Assignment Algorithm. 33
4-7 Path Assignment Algorithm Using Maximal Matching to Assign Routes. . 36

5-1 Communication Pattern for Jacobi Relaxation Problem. 44
5-2 TTDL For Jacobi 45
5-3 Invoking TTDL Functions 46

5-4 DAG Generated by Evaluation of TTDL for 2d Jacobi Problem. 46
5-5 File Format Output by Execution of TTDL 48

5-6 2d Jacobi Problem on 2d Mesh East-West Transmission. 50
5-7 2d Jacobi Problem on 2d Mesh North-South Transmission. 51
5-8 3d Jacobi Problem on 3d Mesh North-South Transmission. 52
5-9 Example Switching Schedule 53

5-10 Communication Graph for 16 Node One Dimensional FFT 54
5-11 TTDL For FFT 55

5-12 Pipelined FFT Problem on 2d Mesh. 56
5-13 Pipelined FFT Problem on 2d Mesh 57
5-14 Pipelined FFT Problem on 3d Mesh 585-15 TTDL For Viterbi Search (b) 59
5-16 TTDL For Viterbi Search (b) 60
5-17 Viterbi Frame One 61
5-18 Viterbi Frame Two 62

9

Chapter 1

Introduction to the Problem

1.1 The NuMesh Project: An Approach to Multicomputer Commu-
nication Substrate Design

Research in multicomputer design has resulted in a variety of approaches to the problem
of communicating information between the various elements of a distributed machine
architecture. Interconnection networks in particular form a critical component of any
parallel computer and have received much attention from the architects of these machines.
Several popular concurrent architectures including shared memory machines such as the
M.I.T. Alewife and Stanford Dash architectures as well as distributed memory model based
systems such as the M.I.T. J Machine and Caltech Cosmic Cube, [ACD+91, D+89, DS87,
G+91, Sei85] have opted for a general purpose network design which is optimized for a
dynamic approach to handling network traffic.

Thus dynamic routing, in which arbitration of contention for network resources is rele-
gated to the run time system, has been incorporated at a very low level into the design of
many of today's multicomputer networks. While this approach results in general purpose
network architectures, there is a potential loss in network performance for applications
with highly predictable communication needs.

An alternative approach, systolic architectures [Kun82] uses compile-time approaches
to communication scheduling that offer potential cost/performance advantages in appli-
cations where communication patterns are largely predictable.

An important goal of the NuMesh project is to study the degree to which dynamic
routing is a necessary component of parallel computer network design. This research goal
is being pursued at several different levels.

At the hardware level several different network node designs [Hon92, Pez92] are cur-
rently being explored in order to decide what hardware mechanisms will best support
the mix of communication requirements characteristic of applications typically executed
on parallel machines. At the software (compiler) level, techniques are being developed to
identify and express the mix of communication requirements which characterize a particu-
lar application. These requirements tend to form a spectrum: purely static communication,
for which the point in time when an application transmits a message is known to within
some upper bound, and the size, source, and destination of the message are each known

10

CHAPTER 1. INTRODUCTION TO THE PROBLEM

at compile time lies at one end of the spectrum. Completely dynamic communication
for which nothing about the message traffic can be predicted at compile time, defines the
opposite end. In many cases only partial information about the parameters describing
application communication requirements may be available statically. The communication
patterns generated by a particular computation executing on a parallel machine may oc-
cupy one or more points or ranges in this 'communication characterization spectrum'. A
subgoal of this larger effort to characterize application communication requirements is the
use of this type of characterization to optimize the allocation of network resources. This
subgoal is the subject of the thesis work described here.

1.1.1 Motivation for Static Routing

One advantage of precompiled communication patterns is hardware simplicity. Run-
time routing decisions can be eliminated altogether or handled infrequently with little
dedicated routing hardware. More significant is a potential for reduced contention for
network resources because of the predictability of such traffic. In particular, applications
with hard real time constraints are excellent candidates for static allocation of network
resources. Detecting and avoiding network congestion at compile time for applications of
this type can ensure that a particular desired throughput is achieved.

1.2 This Thesis

The work done for this thesis ties compiler analysis of communication requirements for a
limited set of applications to (the low level) hardware design of the NuMesh network, sup-
plying offline placement, routing and scheduling modules to allocate network resources
for computations with static communication needs. Applications which are periodic and
have real time constraints are targeted in particular.

Methods from an approach developed by researchers at the North Carolina State Uni-
versity [SA91], called scheduled routing have been adapted and modified here in a first
attempt to provide network resource allocation software for the NuMesh environment.

This thesis is divided into 6 chapters. Chapter 2 presents some background on network
design and discusses some of the motivation behind implementing a scheduled router for
the NuMesh. Chapter 3 describes the current prototype NuMesh network architecture.
Chapter 4 contains an overview of the scheduling router as well as a detailed description
of each component of the system, contrasting different approaches to the problems solved
by each subsystem. Chapter 5 presents results of applying the scheduled router to various
applications. Finally, chapter 6 discusses limitations and explores possible extensions to
the system.

11

Chapter 2

Background

2.1 Communication in Multiprocessors

2.1.1 Dynamic Versus Static Routing

In many modem multicomputer networks, the routing of network traffic is handled dy-
namically. Communication processing hardware, resident at each network node, inspects
a portion of an incoming message deriving control information which is then used to route
the associated data portion of the message. Thus network nodes in these architectures
are often designed as general purpose interpreters of encoded communication control
information. A clear benefit of static routing techniques (when they can be applied) is
the elimination of network cycles devoted to decoding routing information encoded in
network traffic. 1

A second advantage of static routing is compile time elimination of network contention.
Messages propagating through any but the most powerful (all to all) interconnection
topologies must share network resources. Building fully connected networks, in which
each node is directly connected to all others, become prohibitively expensive beyond a
very small number of nodes. Thus most multicomputer networks are based on various
approximations to this topology.

Contention for network resources is dictated primarily by network topology, available
network resources and network traffic patterns. The degree to which these parameters
influence contention depends in turn on a host of design and implementation issues. The
physical network design is often based on cost, packaging, and availability of hardware,
as well as the requirements of the processor and memory configuration for which the
network is targeted. Traffic patterns depend on the network, on the kinds of applications
which actually run on the machine and the effectiveness of task allocation, placement, load
balancing, and routing algorithms which distribute the work load amongst the resources
available in the system. The following subsections discuss typical strategies used to
map an application to a parallel environment and describe some results from theory and
simulations developed by researchers to model how contention actually affects network
performance.

1 However, when messages are long and routing information in a header can be shared by multiple bytes
of data, performance loss due to dynamically routing data is minimized

12

CHAPTER 2. BACKGROUND

2.2 Mapping an Application to a MultiComputer

Communication (and thus contention) patterns which arise in an interconnection network
when an application executes on a parallel machine are the direct result of several stages
of processing which transform source code written by the programmer to executable
code resident on the machine's processing elements. These stages and their influence on
network traffic are outlined below.

2.2.1 Partitioning

Partioning divides a program into chunks of computation (tasks) suitable for execution on a
parallel machine. Partitioning algorithms attempt to balance parallelism with the amount
of data which must be exchanged through the network. Data partitioning distributes data
across processors executing a single program. Distributing an algorithm across multiple
processors which execute code in a pipelined fashion is an alternative approach to the
problem. This second strategy is more common in real time processing applications which
require high throughput, as the data distribution step required in data partitioning can
degrade system performance. For applications where computation can proceed indepen-
dently on easily seperable data sets data partioning is preferred. In general, partitioning
determines how much message traffic travels through the interconnection network. Pari-
tioning is not addressed in this thesis. The assumption is that a higher level compiler or
the programmer has already specified a set of tasks which will execute in the NuMesh
environment as well as the communication edges present between the tasks.

2.2.2 Placement

Placement or task allocation maps tasks created by partioning to the physical nodes of the
multicomputer. Because tasks generate message traffic, task placement affects the spatial
and temporal distribution of message traffic in the network. Issues such as communication
locality are considered and exploited in typical placement strategies; if two tasks commu-
nicate repeatedly with each other they are placed in close proximity. In systems which
support dynamic placement, changing communication and processing requirements can
result in task migration from node to node at run time [Fox88]. Static placement however
tries to map a group of tasks to processor nodes based on information about an applica-
tion's communication requirements specified at compile time. This information may be a
single collapsed graph expressing all of the communication which must take place during
the application's execution, or it may be several separate graphs each of which describes
communication patterns in separate phases of the application's execution. In general,
placement influences where and when message traffic is active in the interconnection
network.

2.2.3 Routing in Networks

Rings, meshes, hypercubes, k-ary n cube, busses, multistage switch networks and cross-
bars have all been proposed and implemented as interconnection network topologies for
various parallel architectures. In all of these non fully connected topologies, contention for

13

CHAPTER 2. BACKGROUND

network resources contributes to the latency and throughput available for network traffic.
A network's routing technique determines how contention is handled when it actually oc-
cours. Typically, different routing techniques perform better or worse depending on the
amount of loading present in the network.

Dynamic routing techniques include store and forward routing which requires every
node to store an entire message in node memory before the message can be transferred to
the next node in its path, cut through routing which still requires buffering at intermediate
nodes when messages collide but which allows messages to traverse several hops if the
links involved are not busy, and wormhole routing [DS87] which is essentially a blocking
version of cut through routing. The head of a message advances along its path as long
as the required links are available. If the message encounters a link which is occupied,
the message blocks. All previous network links being used by the message remain busy
and unavailable to other messages until the link which blocked the head of the message is
released.

While oblivious routing determines a single possible route based on a message's source
and destination, adaptive routing strategies exploit multiple available paths from source to
destination. Simulation of adaptive routing techniques [Nga89] have shown that the point
at which a network saturates under high load conditions shifts by a factor of two when
adaptive rather than oblivious routing is used. However the complexity of switching
decisions made by routers increases when adaptive routing techniques are used. Thus
some simple greedy strategies which do not require too much routing logic complexity
have been adopted. Always routing incoming packets to an available idle channel if the
idle channel is one of the profitable channels for the packet, is one suggested approach.
Since this technique uses only local information to decide which way to route a message, it
is possible for it to make suboptimal decisions. Offline routing can use global information
to make routing decisions at compile time. Adaptive routing is also susceptible to deadlock.

Deadlock Avoidance

Deadlock [DS87] is a condition in which traffic can not advance in the network because
of a circularity in network resource usage. Routing techniques which are susceptible to
deadlock must reliably avoid it. In dynamically routed networks which use wormhole
routing, deadlock is typically avoided by assigning paths to all messages in which the
use of network resources always proceeeds in a fixed order. Thus dimensional routing
routes a message completely in a given dimension before moving on to the next. Since all
messages are routed this way: first in x, then in y, etc., deadlock is not possible. Message
MA can not be waiting for resources currently occupied by another message, MB which is
in turn waiting for resources occupied by message MA. A method to avoid deadlock when
the existence of communication operations but not their execution times are predictable at
compile time is outlined in [Kun88]. Developed for a systolic communication environment,
this technique defines a 'crossing off' procedure which analyzes a given communication
program to determine if it is deadlock free. It avoids overwhelming network resources
by only allowing users to write communication programs consisting of executable pairs of
read and write operations, where every read operation matches a write operation in the
crossing off procedure.

14

CHAPTER 2. BACKGROUND

Static routing avoids deadlock completely. If messages have known arrival times
and orders, flow control evaporates, resource usage is determined at compile time, and
deadlock is not possible.

2.3 Performance of Multiprocessor Interconnection Networks

In an effort to provide a metric by which interconnection network designs can be eval-
uated and compared, researchers have developed analytical techniques to measure the
performance of communication networks in parallel computers. Modelling of network
contention in direct and indirect buffered networks has produced closed form expressions
which describe the latency and throughput of these networks. This analytical work allows
designers to evaluate a network architecture by choosing the appropriate parameters and
examining the resulting values for network performance under different conditions.

Some of the factors incorporated in these performance models include parameters
which characterize the physical network, such as bisection width, network dimension,
and topology. Considered as well are parameters describing the nature of network traffic
such as packet size, request rate, and degree of communication locality. Because successful
application of static routing techniques can eliminate the contention component of expres-
sions for network latency and throughput, it is important to understand the root of this
contention in various network models.

A Model For Direct Buffered Networks

Models of traffic congestion in a data network are often developed in terms of the statistics
of the arrival of packets at the network queues. In a model developed by[Aga91], the
author derives expressions for network performance in the presence of contention for a
direct buffered network using oblivious wormhole routing. By making a few simplifying
assumptions about the nature of message traffic in the network, and invoking queuing
analysis to compute the average number of cycles a packet or message waits before being
routed, a simple expression for network latency is developed:

T = nkd + B +pB(+)1-p
In the above equation, TC is the average transit time through the network taking into

account contention. p, the channel or link utilization is given by

p = mkd

Tc, the latency increases rapidly as p, the link utilization, approaches one. In the above
expression, m is the probability that a node will generate a message, B is a factor reflecting
the packet size of the message, kd is the average number of hops travelled by a message in
a given dimension. 2 Assuming n dimensions, nkd is the average total distance traversed.
Here, the assumption of a dimensional routing protocol results in a probability that goes
as 1 /kd that a message will switch dimensions as it travels through the network.

2This expression results from simplifying a previous expression with the assumption that kd is > > 1

15

CHAPTER 2. BACKGROUND

Wormhole routing results in second order effects. If a message is blocked from ad-
vancing it remains in the network blocking resources along its length from the node with
the blocked resource all the way back to the source node and thus prevents other traffic
from moving. These second order effects are hard to model; the above expression for
latency has been compared to simulation results under varying conditions and has proven
surprisingly accurate.

A Model For Indirect Buffered Networks

In [Kru83], a model applicable to buffered Banyan networks results in an equation for
average network transit time:

T = log k Ntk

Where tk, the average transit time of a packet through a kXk switch, is given by:

(1-)p
tk = tr + t 2(- p)

Here (1 is the average number of queueing cycles suffered by a packet. p is the
probabilty that a packet arrives at each input of a kXk switch. The component of transit
time due to network loading for this model is also derived using queuing theory. Again,
t k rises rapidly with increasing network load.

2.4 What Kinds Of Applications Can Benefit From Static Routing?

Programs with highly predictable communication requirements are often found in circuit
simulators, CAD development software 3, and in speech and video processing code. Repet-
itive execution of simple computations, as well as the real-time constraints present in the
latter types of applications, combine to provide problems to which static routing methods
can be applied and the technique evaluated. Circuit simulation, though usually without
real-time constraints, often proceeds by repeatedly invoking a statically defined circuit on
changing input sets. Data flows from input to output in the circuit in a predictable fashion
with only the results of the simulation changing from cycle to cycle.

Figure 2-1 shows a potential candidate for static routing. Simulation of a pipelined
circuit with each component or gate assigned to an individual NuMesh node proceeds
with inputs arriving at the input task nodes in waves. Communication operations which
will take place between the different components is known at compile time and does not
change during this particular phase of the simulation.

As an example real-time application, Figure 2-2 shows a task level description of code
written for the NuMesh as part of an implementation of a real time speech recognition
system. [Duj92]. The execution of the subtasks shown proceeds in a pipelined fashion,

3There is an interesting recursive aspect to targeting CAD as a candidate for static routing: The techniques
which are used to place and route components and wires in CAD systems mirror the techniques used here to
place tasks and route communication

16

CHAPTER 2. BACKGROUND

Figure 2-1: Circuit Simulation as a Candidate for Static Routing.

Figure 2-2: Front End of Speech Recognition System Implemented for the NuMesh.
- 1 - I. - ·

-- Audio Model r

Audio Model 1

Pitch Detector

-- ~ n~~lcTr

Dend. Gauss Viterbi

with each subtask assigned to a seperate NuMesh processor/communication finite state
machine pair. Task placement and communication routing and scheduling was optimized
manually for this implementation in the absence of available tools.

For periodic real time applications in particular, traditional networks which support
completely dynamic routing protocols often do not provide the required network per-
formance. Especially if they are executed in a pipelined fashion, these applications are
susceptible to throughput loss if the network's routing protocol handles data transfers
without regard to the hard real time constraints governing the generation and arrival
times of messages communicated through the network. In [SA91] the authors argue that
cut-through and wormhole routing techniques, while offering minimum latency for traffic
under light load conditions, do not meet real time constraints when the network loading is
high. Static network resource allocation policies which explicitly incorporate the through-
put requirements of a particular application can identify potential congestion 'hotspots'
at compile time and reroute or reschedule communication operations if needed. This can
lead to improved network throughput. A condition that the authors calls output inconsis-

17

I '. -. ,dy . ,

CHAPTER 2. BACKGROUND

tency can result when periodic execution of a pipelined task flow graph 4 relies on worm
hole routing to deliver network message traffic.

Latency as well as throughput is an important performance measurement. If a task
emits a long message repeatedly at a predictable frequency and the message blocks at a
resource because of contention, the latency of the computation waiting for the arrival of
this message may needlessly increase, if the receiving computation is tightly coupled to
the sending task.

When network traffic is statically predictable, the processor-network interface benefits
as well. Since message arrival order at a processor node is known at compile time there is
little overhead associated with transferring a message from the network to the processor.

2.5 Motivation for Scheduled Routing Backend

Given the improved bandwidth available in a network when static routing techniques
can be applied, it seems worthwhile to develop techniques to statically place tasks and
route and schedule communication for those applications which can take full advantage
of this bandwidth. This thesis implements a set of algorithms for this purpose. A sim-
ulated annealing algorithm places statically specified tasks. Statically declared messages
are assigned routes through the network using an iterative path assignment algorithm.
Scheduling of communication on network links solves a linear programming formulation
of the system constraints to allocate switching schedules for the Communication Finite
State Machines.

The framework for the system, tasks are first placed, routes are then assigned, and
finally messages scheduled on network links, as well as the algorithms used to solve the
scheduling problems use scheduled routing techniques described in [SA91]. These tech-
niques were originally developed to solve the problem of handling high bandwidth com-
munication for vision processing code with hard real time constraints. Since the NuMesh
will be a platform for many applications of this kind, the framework developed here to
place, route, and schedule communication will hopefully form an important component
of the overall NuMesh programming environment. Scheduled routing allows real time
constraints to act as inputs of the network resource allocation problems which should be
solved in order to map an application with static communication needs to the NuMesh
environment.

4The task flow graph representation of a periodic real time application partitions the application (using
algorithm partitioning) into a set of tasks which executes in a pipelined fashion

18

Chapter 3

The NuMesh

3.1 Architecture of the NuMesh

Abstractly, a NuMesh consists of modules, or nodes, that may be connected together to
populate a three-dimensional mesh. For example, Figure 3-1 shows a simplified view of a
small mesh of current prototype nodes. This figure depicts each module as a unit whose
peripheral connectors provide signal and power contacts to four immediate neighbors.

Each node in the mesh constitutes a digital subsystem that communicates directly with
each of its neighbors through dedicated signal lines. During each period of the globally-
synchronous clock, one datum may be transferred between each pair of adjacent modules.
Currently, our prototype runs at just over 1.2 Gbits/second per port; next-generation
modules will be clocked faster.

3.1.1 NuMesh modules

The approach in the design of the NuMesh communication substrate involves standardiz-
ing the mechanical, electrical, and logical interconnect among modules that are arranged in
a three-dimensional mesh whose lowest-level communications follow largely precompiled
systolic patterns. The attractiveness of this scheme derives from the separation of com-
munication and processing components, and the standardization of the interface between
them. By making the communications hardware as streamlined and minimal as possible,
and requiring the compiler to do almost all the work for routing data within the mesh,
it should be possible to maintain high-bandwidth, low-latency communications between
the processing nodes distributed throughout the NuMesh.

An idealized NuMesh module is a roughly rectangular solid with edge dimension on
the order of two inches. A node is logically partitioned into two parts: a local processor that
implements the node's particular functionality, and a communications finite state machine
(CFSM), replicated in each node, that controls low-level communications and interface
functions. A node's local processor may consist of a CPU, I/O interface, memory system, or
any of the other subsystems out of which traditionally-architected systems are constructed.
A node's CFSM consists of a finite state machine, data paths for inter-node communication,
and an internal interface to the local processor. A typical module is depicted schematically
in Figure 3-2.

19

CHAPTER 3. THE NUMESH

Figure 3-1: Configuration of NuMesh nodes in a diamond lattice.

3.1.2 CFSM Structure

The core of the CFSM control path is a programmable finite state machine. The transition
table, held in RAM, is programmed to control all aspects of routing data to other nodes
and interfacing with the local processor. A small amount of additional hardware reduces
the required number of states by providing special-purpose functionality such as looping
counters.

The CFSM data path consists of a number of ports connected through a switching
network allowing data from one port to be routed to another. Most of the ports are
for communication to other CFSMs; however, one port supports CFSM-local processor

Figure 3-2: Communciation Finite State Machine.

To
Neighboring

Nodes

ocal Processor

temal Interface

To
Neighboring
Nodes

20

CHAPTER 3. THE NUMESH

Figure 3-3: CFSM activity during a given clock cycle.

transfers and allows the CFSM to move data between the processor and the mesh. This
port may be wider than the network ports, and provide out-of-band signals in addition to
the ordinary data path. Optimally, any combination of ports may be read or written on
each clock cycle, but this flexibility may be constrained in a given implementation.

Each CFSM also contains an oscillator to generate the node's clock (the local processor
has the option of an independent clock), and circuitry to control the phase of the oscillator.
The clocks can be kept globally synchronized by any of a number of methods [PN93]).
The clock cycle time is constrained by the time necessary to transfer a data word between
adjacent nodes, which can be made quite short because of the prescribed limited dis-
tances between nodes, the point-to-point nature of the links, and the use of synchronous
communications.

3.1.3 CFSM Programming

The transition table of the CFSM is typically programmed to read inputs from various
neighbors or the local processor into port registers and send outputs from various port
registers to other neighbors or the local processor on each clock cycle. It may be thought
of as a programmable pipelined switch.

The CFSMs in a mesh, operating synchronously at the frequency of the communication
clock, follow a compiler-generated preprogrammed, systolic communication pattern. The
aggregate CFSM circuitry constitutes a distributed switching network that is customized
for each application; its programmability allows this customization to be highly optimized.

�

21

1~7

CHAPTER 3. THE NUMESH

3.2 Comparison With Systolic Arrays

Arrays of synchronous processors connected together in fixed interconnection topologies
[Kun82] offer a high peformance environment for certain kinds of applications. Code
which can be partitioned into a tightly coupled set of computations exchanging data in
fixed communication patterns fits very well into this model of distributed computing.
Reconfigurable communication paths have not been a part of traditional systolic array
designs. However the IWarp [PSW91] computer does allow 1D and 2D mesh connectivity
between computing units. Software technology developed for this kind of environment
may offer a good starting point for further development of compilation technology which
predicts and schedules communication in the broader set of topologies and applications
currently being studied in the NuMesh project. A scheduling compiler in particular
[Lam89] as well as improvements to the lower level static routing methods implemented
for this thesis will need to be implemented.

3.3 The NuMesh Programming Environment: Work to Date

Previous work on the NuMesh programming environment has centered on a static pro-
gramming model. A high performance approach [Fet90] relies on a precise cycle count
of the computation performed on each node's processor to efficiently schedule communi-
cation between the nodes. This work has resulted in the specification of an intermediate
language to which programs written in (restricted subsets of) higher level programming
languages can be compiled and executed on the Numesh.

Language and user interface issues associated with providing the programmer with an
environment in which to develop programs whose dynamic behavior does not depend on
run-time data have also been investigated in some detail [Tro89] Results include a pictorial
stream-based front end implemented for the development of real time applications such
as digital signal processing for speech and video applications.

A C-language interface for writing programs with flow controlled communication
requirements has also been implemented [Ngu91]. The user of this system is able to write
programs in a restricted subset of C and produce compiled processing element code as
well as binary executables for CFSMs.

This thesis extends some of the language and user interface components required to
express static communication. It also automates much of the placement and network re-
source allocation to message traffic which must be done in order to automatically generate
Communication Finite State Machine Programs.

22

Chapter 4

Implementation of the Backend.

Allocation of network resources to message traffic proceeds in several stages in the sched-
uled router backend. Figure 4-1 gives a block diagram description of the system. Even-
tually a source level scheduling compiler will extract communication pattern descriptions
from application code and generate an intermediate form representation. This form will
be the input for the placement, routing and message scheduling back end. Currently how-
ever, a Lisp like intermediate level language is supplied as the front end to the system. The
programmer can express an application's task communication graph in this intermediate
language. Execution of forms written in this language generates a representation of the
message traffic which will be present in the network at run time. This traffic information
is then passed to the placement, routing, and scheduling subsystems. A placement algo-
rithm based on simulated annealing places all tasks specified in the intermediate language
description onto physical network nodes. After placement, a path assignment phase dis-
tributes the message traffic in space, assigning routes through the network to each message.
Finally, a linear programming based scheduling phase distributes the message traffic in
time. In this phase, communication finite state machine switching schedules are arranged.
Messages which conflict in space but which are allowed a degree of freedom in time, are
assigned transmission intervals ensuring that messages are not simultaneously scheduled
onto the same links.

4.1 Intermediate Form

For the purposes of this thesis, a somewhat restricted intermediate form representation
language was designed and implemented in Common Lisp. The approach taken here
is similar to, though less sophisticated than the work done to develop LaRCS [LRea90],
a language to express regular communication structures. T(ask) T(raffic) D(escription)
L(anguage) is a simple intermediate representation in which static communication pat-
terns characteristic of a particular application can be expressed as functional definitions
in a Lisp like syntax. It defines a language interface at a level intermediate to the source
level compiler and the scheduled routing backend so that users of the system may express
application communication patterns at a moderately high level in a friendly Lisp-like en-
vironment. The execution of special forms provided in the language ultimately results in

23

CHAPTER 4. IMPLEMENTATION OF THE BACKEND. 24

Figure 4-1: Structure of Backend Placement, Routing, and Scheduling System.

- - - -I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I

I

I
I
I
I
IIIII
I
I
I
I
I
I
I
I
I

I
reeme

I

I
I
I
I
I

I

I I
L- - - - - -

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

the generation of a communication graph with nodes which are placed, and edges which
are routed and scheduled by the backend network resource allocation modules. Thus this
description language enables the programmer or compiler of parallel algorithms 1 to spec-
ify information about the static and dynamic communication behavior of the computation
being mapped onto the NuMesh.

TTDL's model of communication is based on streams. To communicate via the network
a task opens a set of output and input streams 2 and sends and receives data to and from
other tasks in the system. A regular expression describes the traffic which flows along
a stream during a particular communication phase. The regular expression represents
statically the traffic which will be present on a stream during a real time interval.

The TTDL intermediate form evaluation environment is written in Common Lisp
[Ste90] The choice of Common Lisp as an intermediate form and interpretation envi-
ronment has several advantages over using C. 3 Since parsing and lexical analysis are
implemented as part of the primitive Common Lisp read facility, this analysis need not
be reimplemented as part of the current system. The special forms provided in the lan-
guage, which are used to describe communication patterns in TTDL, fit naturally into the
paranthesis based prefix notation of a Lisp like language. Finally, an extensive macro def-
inition facility which allows the definition of arbitrary functions that convert Lisp forms
into different forms before evaluating them is provided in Common Lisp. This facility is
exploited here to define evaluation functions for TTDL language special forms.

4.1.1 Implementation Details of TTDL

The structure of TTDL at the level implemented for this thesis is quite simple. Methods to
establish definitions for:

1. A function which encapsulates a particular communication pattern

2. An iteration function which applies this function to a prescribed set of tasks (which
in turn can be specified functionally) and

3. Mapping functions which capture known optimal mappings from logical to physical
communication topologies

have been provided as part of the initial programming environment.
Communication patterns themselves are expressed in terms of special forms which

allow iteration, sequential execution, a compute operation 4 and write and read operations
to stream objects.

4.1.2 Basic Language Constructs

TTDL language forms play the role of special forms in Lisp. Each form is defined either as a
macro or a function in the toplevel Lisp environment. Execution of programs written with

'if this or a similar intermediate form is eventually adopted by source level compiler(s) developed for the
NuMesh

2 where a stream is specified completely by a source task and a destination task
3As one example of an alternative language
4Which is a general escape mechanism to represent processor computation

25

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

these special forms builds a directed acyclic graph (or DAG) representing computation
and communication operations.

This representation is then used to assign release and deadline times. Time in the
current system is assumed to be expressed in terms of network clock cycles, and the
processor and network are assumed to have an integer ratio [PW92]. The actual degree of
synchronization between processor clocks and between the processor and network clock
is assumed to be quite accurate [PN93]. Message objects created by the execution of
the special forms write-stream and read-stream are assigned release and deadline
times based on the execution environment's representation of time.

A short description defining the semantics of each primitive form and some simple
programming examples are presented in the following section.

Primitive Forms

define-comm (macro) (define-comm <name> <args> <body>) Define-comm is a macro
which establishes a function name with arguments args in the toplevel Lisp environ-
ment. The body of the function contains one or more Lisp forms but must end with
a regular expression describing the communication pattern to be associated with
<name>. Define-comm is the basic means of associating a communication pattern
definition with a name in the Lisp environment.

sequence (macro) (sequence <statementO> <statementl>) Sequence allows concatena-
tion of statements in a communication pattern description.

iterate (macro) (iterate <body> <n>) Iterate allows repeated execution of statements in a
communication pattern description.

compute (function) (compute <t>) Compute is a general escape mechanism to represent
computation. It advances time by <t> cycles.

read-stream (function) (read-stream <message> <stream>) Read-stream checks a queue
of pending writes to match this read from <stream> with any previously encountered
writes. If a matching write is not found, a message instance is created and placed in
the pending read queue.

write-stream (function) (write-stream <message> <stream>) Write-stream checks a queue
of pending reads to match this write from <stream> with any previously encountered
reads. If a matching read is not found, a message instance is created and placed in
the pending write queue.

broadcast (function) (broadcast <message> <streamO> <streaml> ... <streamn>) Broad-
cast iterates write-stream of <message> over the argument streams <streamO> <streaml >
<stream2> .. Low level support for broadcast does not yet exist. The routing and
message scheduling programs do not currently allocate routes and time intervals to
messages broadcast to more than one destination.

synchronize (function) (synchronize <P>) Synchronize creates a seperation of commu-
nication into different phases, emitting an instruction in the communication finite

26

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

state machine code stream to check for flow control before beginning the execution
of a schedule. Synchronize is useful if the execution time of code distributed over
multiple processors is not accurately known, but relative timing information is avail-
able. All nodes executing a schedule which begins with a synchronization point will
switch data on cycles measured relative to this point.

A simple example program is shown in Figure 4-2. mO is a message type describing
the size of the message transmitted or received. When the form (reader tO t1) is
invoked, the call to read-stream in the body of the function reader is encountered.
Execution of (read-stream mO t-north) with t-north bound to tO results in the
creation of a subtask object. The read-stream code searches for a pending write from
t 0. Since the read is evaluated before the write, no message is found and a message from
tl to tO is enqueued on the pending read queue, marking it as read and the destination
task field of the message is filled in with the id of the subtask object. Evaluation of the
compute form assigns a computation time to the subtask created by read-stream When
the write-stream in reader is evaluated, a pending read is searched for. None will be
found and a message with a source field filled in with the subtask id is enqueued on the
pending write queue. When an invokation of writer, (writer tl tO), is evaluated, a
match is found for both the write-stream and read-stream. This entire operation is
iterated n times, creating the communication graph which is then passed to the backend.

Figure 4-2: A Simple Example of TTDL.

(define-comm reader
(source-task t-north n)
(iterate

(read-stream mO t-north)
(compute 100)

(write-stream mO t-north)
n))

(define-comm writer
(source-task t-south n)
(iterate

(write-stream mO t-south)
(read-stream mO t-south)

n))

(reader tO tl)
(writer tl tO)

Evaluation of TTDL Forms and Generation of Task Flow Graphs

A task flow graph is generated when a program description is evaluated in the task
description language. The task flow graph is analyzed to compute the message release
and deadline times. An auxiliary task flow graph is used to do the detailed analysis
of task dependencies. For each message which is sent or received by a task in the task
description, a subtask is created in the auxiliary task flow graph. A critical path algorithm

27

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

is run for each subtask in the graph. Each subtask in the task flow graph sends and
receives at most two messages; one message to the next node in the subtask graph (an
intra-task message) and one message to or from a subtask which belongs to another task (an
intertask message). Intra-task messages are really an artificial construct to account for the
serial order in which messages have already been ordered by the compiler; the intra-task
message adds the constraint that a subtask cannot begin execution before the completion
time of the preceding block of code in the task's execution sequence.

The critical path algorithm must find, for each subtask, the earliest time at which
that task could possibly be activated, based on the latest arrival time of the (at most two)
received messages. This is called the subtask delay time. The subtask delay time is added to
its computation time to produce the release time of its outgoing messages. For each outgoing
message, the deadline time of that message is set to be delay time of the destination of that
message. In Figure 4-4, the release time of the outgoing message from subtask b has a
release time of 10, and a deadline time of 50, which is the delay time of the destination task,
e. The dotted line shows the critical path through the graph, which determines the total
latency task. The difference between the release and deadline times of a message, and the
message length, determine the amount of slack which the scheduler/router has to shift
the message in time, without adding to the latency of the task flow graph. In a pipelined
application, there will be extra permissble slack between tasks based on the clock rate of
the pipeline.

The delay times of subtasks, and hence the release and deadline times of messages, are
computed recursively using the algorithm shown in Figure 4-3.

4.2 The Backend

4.2.1 Placement

Placing computational tasks on multicomputer processor nodes is quite analogous to
placing components in a VLSI layout. Algorithms to solve the placement problem have
thus been well explored in both contexts. General task assignment algorithms which place
multiple tasks per physical node seek to balance goals which sometimes conflict: good load
balancing, minimization of interprocess communication, and a high degree of parallelism
should all result from a good solution. Task assignment formulations are known to be
NP-complete in all but a very few restricted cases [GJ79].

Solutions to this assignment problem impact the resulting routing and scheduling
problems and optimal placement of tasks is a key component of any system designed to
efficiently allocate network resources (whether statically or dynamically). Graph theoretic
techniques to derive optimal mappings for regular communication topologies exist and
are often available as system level software in parallel machine environments [Lo88].
When the communication topology is irregular, however, there is no standard way of
assigning tasks to physical processors. The approach for this thesis has been to implement
a task assignment module which automates placement when required using a very simple
version of the more general method of simulated annealing.

In addition, since a placement routine that generates results for the diamond lattice

28

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

Figure 4-3: Pseudo-code for Critical Path Algorithm

Figure 4-4: Critical Path Algorithm.

[10]

msg latency

[delay]
-- - critical path

FIND-TASK-DELAYS> Find delay, release, deadline times in graph
1 IF task.state = DONE return;
2 ELSE
3 LOOP for msg in task.dmsgs > loop over all arriving messages
4 FIND-TASK-DELAYS(msg.src);> finding max arrival time
5
6 LOOP for msg in task.dmsgs
7 delay max(delay,msg.arrival-time);
8
9 LOOP for msg in task.dmsgs
10 msg.deadline - delay > Set deadline of arriving msgs
11 SEND-MSGS(task);
12 task.state -- DONE
13 end

SENI)-MSGS(task)
1 xmit , task.delay + task.compute-time
2 >. add in task computation time to task start time
3 LOOP for msg in task.smsgs loop over all outgoing messages
4 msg.release-time - xmit > set release time of outgoing msg
5 msg.arrival-time - xmit + msg.length > set arrival time to msg length + start

time
6
7 end

29

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

was desired, 5 automating the placement process using simulated annealing seemed like
a useful approach. The diamond lattice is currently being studied within the NuMesh
project as an alternative four neighbor topology. Details of the topology can be found in
[PWM+93, WAD+93]

The task placement module allows a two-fold strategy for placing. If a mapping from
a particular logical configuration to a physical network has been defined within TTDL, it
is used to place tasks. Ultimately, the Numesh programming environment should include
a library of such "canned" mapping which can be directly applied to specific regular
communication problems as specified in the intermediate representation language. Simple
mappings from a logical torus to a physical mesh have already been provided within
TTDL and were used to place examples of the Jacobi relaxation problem . These results
are discussed in more detail in Chapter 5. If mappings are not available, the placement
module tries to optimally place tasks using simulated annealing.

Simulated Annealing

Simulated annealing [KJV83] provides a powerful method of solving optimization prob-
lems. The technique, which is rooted in statistical mechanics, has been used extensively
to optimize the allocation of resources in computer design. Simulated annealing uses
iterative improvement to arrive at a system configuration which minimizes some objective
function. Changes to the system configuration which lower the objective function are
always accepted. However if a change raises the objective function, it is accepted with
probability given by the Boltzmann distribution, exp6 C/T, where 6C is the change in
the value of the objective function. This feature prevents the optimization process from
settling into local minima. T is a parameter analogous to temperature in a physical system,
and its value relative to the objective function value may be varied during the execution
of the simulated annealing problem. A drawback of using simulated annealing is that no
useful upper bound exists on the time it takes to find an optimal solution.

In general, objective functions appropriate to task placement should include the effect
of both communication cost and dependencies between tasks. Thus tasks which are inde-
pendent should be placed on different physical nodes and tasks which must communicate
should be placed close to each other. For the purposes of this thesis, the task assigment
module places a single task per processor. Thus only communication cost is considered in
the objective function computed during placement.

Communication cost can be estimated with varying degrees of precision. Usually the
more accurate the model of communication cost, the more expensive it is to calculate this
cost. An example of a simple cost function computes the Manhattan distance between a
message source and destination. This cost obviously does not incorporate the presence of
contention for network resources, but it is simple. A more sophisticated cost function might
include the effect of path assignment, increasing the placement cost of a configuration
which results in two messages sharing the same link. An even more detailed placement
algorithm might schedule all the communication and calculate the placement cost based

5For which canned mappings did not exist at the time this subsystem was being developed, although they
are an area of active exploration within the NuMesh project [KP931

30

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

on actual collisions between messages in both space and time. Clearly the placement
algorithm's running time is strongly affected by the choice of cost function.

Figure 4-5 shows the structure of the simulated annealing algorithm used for placement,
routing and rerouting in the current system. The application communication graph, as
expressed in TTDL, is reduced to a set of messages with sources, destinations and lengths.
Tasks which send and receive these messages are placed in one or two phases, depending
on the application requirements. It is possible to specify an initial configuration for the
system. If an initial configuration is not specified, one is chosen at random. The placement
proceeds by swapping two tasks at random and computing the incremental change in
configuration cost. Negative changes are always accepted. Positive changes are accepted
with a probability given by the Boltzmann distribution function.

Task Placement Cost Function

The cost metric used to place tasks in the current system varies during different place-
ment phases. If a coarse placement phase is used, the cost function simply computes a
sum of message source-destination Manhattan distances. The Manhattan distance is the
total number of hops travelled from message source to message destination. Thus for a
message sent from Task A located at a node in a network with n dimensions, with address
xoA, xl A..., xA to Task B located at a node with address xoB, xl B..., x,B, this distance is:

i=(n-1)
Md = E abs(xiB - xiA)

i=O

The option to run a fine placement phase is also available in the system. The cost
metric for this phase combines the Manhattan distance with an estimate of network link
utilization in a product. Since link utilization is considered in the fine placement phase,
message paths are assigned by this module and the resulting network peak and aggregate
utilizations 6 are evaluated. This metric is more expensive to compute than the Manhattan
distance. However it allows a more accurate estimate of the cost of a particular placement
configuration since contention for network links is captured in the cost function. 7

4.2.2 Routing

The goal of the routing module is to assign paths to all message source destination pairs
such that some measure of the network congestion is minimized. In particular, the peak link
utilization [Shu91] is required to be below one at the completion of the routing phase. This
requirement increases the likelihood of computing a feasible set of switching schedules for
the communication finite state machine during the scheduling phase. Path assignments
which result in a peak network utilization > 1 always lead to infeasible solutions.

6Link utilization is defined in the next section
7Currently the necessity of a fine placement phase is not computed automatically,it is up to the programmer

to specify that it is required. Ultimately, the system should decide based for example on whether a feasible
schedule is computable, whether to run a fine placement phase

31

CHAPTER 4. IMPLEMENTATION OF THE BACKEND. 32

Figure 4-5: Iterative Improvement Using the Boltzmann Probability Distribution Function.

simanneal(Network *nw, void initialconfig() ,void compute_new_config()
void reset_configuration(),
float decidingcost(),
float min_acceptable_cost(), Sasched *sched)

float initialtemp = sched->startt;
float final_temp = sched->fin_t;
float tempstep = sched->tstep;
int n_iter = sched->n_iter_start;
int niterstep = sched->n_iterstep;
float delta_cost,t;
int i = 0;

float olddelta_cost = 0;
initial_config(nw);
for(t=initialtemp;t>finaltemp;t=(t-temp-step)){

i = 0;

for(i=0;i<niter;i++){
compute_new_config (nw);
deltacost = nw->cost - nw->previous_cost;
if(delta_cost>=0){
if(!should_accept (delta_cost,t, history)){
resetconfiguration(nw);

}

else acceptconfig(nw)
else if(deltacost<O)
accept_config(nw);

}
n_iter += n_iterstep;

/* If we still haven't reached min acceptable cost,
keep going.

* /
if((t <= final_temp) &&

(decidingcost(nw)>minacceptable_cost(nw)) &&
(sched->start_t> BAIL_OUTTEMP)) {

sched->start_t = (initial_temp / 2);

sched->n_iter_start = n_iter;
simanneal(nw, donothing, compute_new_config,

reset_configuration,deciding_cost,
min_acceptable_cost, sched);

}

}I

I

I

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

Number of Available Paths

While oblivous routing limits the number of alternative paths available to a message,
offline path assignment can take advantage of multiple alternative paths from source to
destination. When congestion occours in time alternate paths in space can be exploited.

Consider as an example, an image processing application running on the NuMesh
which requires the following simple operation: two streams, S1 and S2 of video input
data are merged together at a node, M, using some operation like xor. The data in each
stream must first pass some sort of threshold operation at the source node in order to
qualify for merging with the other stream. This example is sketched in Figure 4-6. Assume
that a high volume stream, S4, is also active during this communication phase. Suppose
that S2 is allocated the route shown. Data can be efficiently routed to node C using
these assigned paths. This happens without the danger of contention between S2 and S4
which might occour at the East port of node B if the routers were programmed to route
dimensionally, first in x and then in y.

Figure 4-6: Dimensional Routing Versus More Flexible Path Assignment Algorithm.

The number of available paths rises rapidly with path length and depends also on the
distribution of the total distance over all available dimensions. For a two dimensional
mesh, the number of available paths is given by:

(6x + y)!
bx!by!

and for a three dimensional mesh it is:

(6x + y + z)!
6x!6y!6z!

33

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

Finally the number of shortest paths available in the diamond lattice is:

(6x + by)!(6z + 6t)!
bx!6y!bz!6t!

Path Assignment Strategy in the Current System

The simulated annealing based optimization code written for the placement phase of the
current system was written in terms of a general notion of configuration and functional
abstractions to change a given configuration, evaluate the cost of the configuration, and
restore the state of the system to a previous configuration if a new configuration is to
be rejected. The same code used in placement was reused for routing; only the cost
evaluation functions are different. This approach makes the software in the different
phases of the system quite modular. Thus the routing module can search for a solution to
the path assignment problem using the same general simulated annealing method used
for placement.

The path assignment module allocates an initial route to each message active in the
system. This assignment can be done in various ways: randomly assigning an initial route
(a coin flip at every junction decides which link to take to reach the destination), allocating
a path using dimensional routing, or assigning a route using a shortest path algorithm are
all supported. Once the paths are assigned, a link utilization function [Shu91] is calculated
for each link in the network. This utilization function measures the amount of traffic
supported by each link in the entire time interval during which traffic is being analyzed.
If the message length for the pth message 8 is given by Lp, the link utilization, luji for the
jth link may be computed for n messages as:

u = E-l bmpl Lp

EkeQp tik+l - tik

Where Qp is the set of indices of time intervals ik during which the n messages are
active, tik+1 - tik is the length of the interval ik, and bmplj is a variable which is equal to one
if message mp is active on link Ij and zero otherwise. The division of time into intervals
during which messages are active is determined by message release and deadline times.

Intuitively, this equation expresses the notion that the amount of data carried by a
particular link in a given time interval must not exceed the time alloted to switch this
data. Note that if luj > 1, link j is required to carry more message traffic in the given time
interval than it physically can.

The amount of slack available to a message is the difference between its length and
the time available to transmit it. Thus a message with a large number of network cycles
available for its transmission (as determined by the difference between the message's
deadline and release times) compared to its length has slack.

The path assignment module in the current system first searches through the network
for a peak value of link utilization 9. The messages on this peak link are next targeted for
rerouting. The cost of the rerouted configuration is computed by summing link utilization

8normalized by a bandwidth B
9if there are several peaks of equal value, one is chosen at random

34

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

over all the links in the network. If the new cost is less than the previous cost, it is accepted.
If it is greater it is accepted with a probability given by the Boltzmann distribution. The
entire procedure continues until a minimal acceptable routing cost 0 is reached.

The rerouting module prioritizes messages based on a measure of their flexibility, l
targeting the most flexible message for rerouting. It reroutes messages using a weighted
shortest path algorithm instead of randomly trying one of a set of precomputed available
shortest paths. This eliminates the need to compute these paths. It also allows rerouting to
sense and avoid congested paths. Taking a longer than physically shortest path is a degree
of freedom available to messages which do not affect the critical path of the computation.
If messages are forced to choose from a precomputed set of physically shortest paths, as
in [Shu91], this flexibility is not exploited.

Rerouting Using Weighted Shortest Path

Once the placement phases and initial routing phases are complete, the simulated anneal-
ing code is reused yet again in a rerouting phase. The rerouting module identifies peak link
utilization in the network and reassigns paths to certain messages to alleviate congestion.
Messages assigned to the link with peak utilization are ordered according to their flexibil-
ity. The message with the greatest flexibility is rerouted using a weighted shortest path
algorithm. An all pairs shortest path algorithm such as Dijkstra's has a complexity that
goes as (N3) 12 where N is the number of nodes in the graph for which shortest paths
are being computed. Thus it would be quite expensive to route all messages in the system
using this algorithm. Targeting only those messages which are involved in a hot spot
limits the number of messages which must be routed using the shortest path algorithm.
In pathological cases it is possible that all messages may need to be rerouted using the
shortest path algorithm (i.e. if all messages end up using the same link) but these cases
are hopefully relatively rare.

Using a weighted shortest path algorithm implies that messages may take a longer route
than just a shortest path from source to destination. If there is a lot of traffic already present
on a particular link this link will be avoided by a message being rerouted After a reroute,
a message may no longer travel from source to destination via a physically shortest path.
However if a particular message is not the limiting factor in the system throughput or if
all messages in the system are long compared with the distances they travel, rerouting to a
longer path will not cause much of a performance loss. In the current system a maximum
misrouting distance is associated with each message 13. If a message must be misrouted
beyond this distance the next most flexible message is chosen for rerouting. The rerouting
process is iterated using the same basic optimization code used in the coarse and fine
placement phases. Again only the function which changes or resets a configuration and
the cost evaluation function are changed.

1°currently this cost is determined by the user
"Message A is more flexible than message B if it has a greater number of shortest paths available from

source to destination
1201r at best as (N 2 1ogN) if heaps are used
' 3The maximum misrouting offset is based on the message length, the Manhattan distance between message

source and destination, and the message release and deadline times

35

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

Figure 4-7: Path Assignment Algorithm Using Maximal Matching to Assign Routes.

0
(D)
®-2-

®

@)
0
03

X: Chordal Communication Y: Links

36

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

4.2.3 Alternative Approaches to Offline Path Assignment

Maximal Matching

Alternative approaches to allocating routes to messages in a network have been explored in
the literature. Maximal matching, a general technique applied to the problem of optimally
routing network traffic has been used by researchers at the University of Oregon [LRea90]
and by [Dah9O] in a comparison of Connection Machine [Hil85] performance of some
scientific computing code with and without static routing. Routing by maximal matching
proceeds by examining in a given cycle, the messages emitted by each node in the system
and building a bipartite graph with messages as source nodes and links as destination
nodes of the graph. The edges in the graph represent allowed assignments. The messages
are matched to available links using the algorithm illustrated in Figure 4-7. The left half
of the bipartite graph shows messages active on this particular time step. The right half
shows links available in the network. The arrows represent possible assignments from
message to link. The figure shows a message travelling from node 0 to node 8 which can
reach its destination with a minimal number of hops if it advances during the illustrated
time step onto link 4 or link 9.

Adopting this technique has some advantages. The algorithm has a complexity of
order Q((M2) * N) where M is the number of messages routed and N is the number of links
in the network. Maximal matching is iterated for K timesteps where K is the maximum
number of cycles it takes to deliver all messages starting out at an initial time, TO.

One disadvantage of this method is that the algorithm proceeds locally. When a link
is allocated to a message at a particular network node, there is no attempt made to predict
and avoid congestion which might occour at a subsequent node. Allocation of routes is
greedy with respect to a given node. Thus if the maximal matching approach is used, and
link assignment is done at every node for every time step, a particular route chosen based
on traffic present in previous cycles may lead to a collision later on.

Computing link utilization as described above avoids this problem by incorporating
temporal information into route assignment. Since link utilization includes message ac-
tivity times, the value computed is actually an estimate of the fraction of time a link will
be occupied.

Force Driven Routing

In [HL87], the authors introduce a global router for IC layout based on the novel idea of
allocating paths by computing the trajectory of a moving particle in a force field created
by point masses representing the path source and destination. This method has some
advantages. By incorporating 'force fields' from all active source destination pairs during
routing, results are not as dependent on the order in which wires are routed as they would
be in a more traditional sequential router. It may be worthwhile to test this algorithm or
some variant as an alternative routing strategy for the current system.

37

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

A Linear Program Global Router

[Tho87] presents a linear programming formulation for a global router. This approach,
similar to the one adopted here for scheduling has the advantage that the entire problem
is solved globally. Nets are routed simultaneously rather than sequentially, with no back-
tracking. The paper shows good results for run time of the algorithm: a feasible solution
for input data net sizes of upto 1266 connections was found in less then a minute.

Multiflow Approach

Probably the most promising approach to solving the problem of optimally allocating
routes and transmission intervals to messages is the use of network flow algorithms.
Recent work by [LMP+91] presents a fast method for solving the multicommodity flow
problem. If the multicommodity flow formulation can be modified to accomodate message
traffic which starts and stops intermittently it may be very useful in the current context.

4.2.4 Linear Programming Formulation of the Scheduling Problem

[SA91] have developed a linear programming formulation of the problem of scheduling
messages onto network links once the messsages have been assigned routes. This formu-
lation is based on standard scheduling techniqes used to schedule processes on multiple
processors [Hor71]. If the problem is feasible, solution of the formulation generates cycle
by cycle switching schedules for communication processors. The technique has the ad-
vantage of expressing the problem globally. All constraints are solved for simultaneously.
In addition, allocation of bandwith to messages proceeds at a relatively coarse scale in
time and is thus computationally less expensive than (for example) simulation of traffic at
every time step in the network. An important disadvantage of this approach is that the
formulation assumes link simultaneity when a message is transmitted. As in a circuit
switching model of network operation, a channel is opened from source to destination
when a node begins transmitting and all links in the path must be available for the dura-
tion of the message transmission. Messages are first divided into maximal subsets. They
are then assigned the bandwidth they require based on their length and on their release
and deadline times. Finally each message is simultaneously scheduled onto all links used
by the message during its transmission.

Maximal Subsets

In order to reduce the number of constraints which must be satisfied in solving the message
scheduling problem, all the messages active in a given phase are first divided into maximal
subsets. These sets are then treated as independent groups of messages for which the
message interval allocation and interval scheduling problems (described below) are solved.
Maximal subsets contain messages which conflict with each other in both space and time
either directly or transitively. Thus if both message A and message B occupy link lo and
time interval io, they are assigned to the same maximal subset. If A conflicts in this way
with B and B conflicts with C than B and C are assigned to the same maximal subset as A.

38

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

Once messages have been grouped into maximal subsets, constraint equations based
on message interval allocation and interval scheduling are generated.

Message Interval Allocation

Message interval allocation is the problem of assigning transmission times to messages
within a given interval. Two conditions must be satisfied in order for the linear program-
ming module to find a feasible solution to the message scheduling problem. Consider
a maximal subset of messages Sm = mo, ml, ...mn which are active in a set of intervals
Si = io, il,...i, and active on a set of links Sl = 1o, 11, ...l, For each message mp E S,m the
following equation must hold:

lmp
ampik Xmpik -B

/=1

This equation merely states that the sum of all transmission intervals alloted to a mes-
sage must be equal to the length of the message (normalized by the network bandwidth).
ampik is a variable which is equal to one if mp is active in interval ik and equal to zero if it is
not. Xmpik is the transmission time assigned to message p in interval k and is the variable
being solved for. Thus the message interval allocation problem assigns values of xmpik for
each message in each interval.

To ensure that no link is overutilized during any given interval, the following equation
must also hold for every link, Ij and every interval ik used by message mp in maximal
subset Sm:

E ampikbmplj mpik < ik
mpESm

This equation ensures that on any given link, the sum of transmission times alloted
to all messages using this link in a given interval does not exceed the size of the interval.
Here bmplj is a variable which is equal to 1 if message mp occupies link j.

These constraints, along with the objective function:

5C = E ampik bmpljZ mpik -ik
mpESm

were supplied to lp solve as a file of equations. As an objective function I chose
the excess capacity on network links. This choice of objective function is similar to the
approach taken by [Tho871, where a linear programming formulation for global routing of
VLSI components is developed. The excess capacity of a link is the difference between the
amount of traffic allocated to the link in a given interval and the size of the interval.

Interval Scheduling

Message interval allocation allocates transmission time for each message in each interval.
Interval scheduling adds the constraint of simultaneous link availability. This constraint

39

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

14 requires that a clear path is available for a particular message when the message is
scheduled for transmission. Again, a set of equations enforce this constraint. Figure ??
shows a simple example of a case where a solution to the message interval allocation
problem has been found, the constraint of simultaneous link availability is not satisfied.

Interval scheduling groups the messages in a maximal subset into link feasible sets. The
intersection of the set of links used by ma and the set of links used by mb is 0 if ma and mb
are in the same link feasible set. Messages in the same link feasible set can be transmitted
simultaneously. The link feasible sets are then assigned transmission times yj during
which all the messages in the link feasible set are transmitted simultaneously such that the
following constraint holds for each interval ik and each message mp

Yj = Xmpik

where j E Qp and Qp is the set of indices of link feasible sets in the maximal subset
which contain message mp. The objective function minimized is:

j=N-link-f easible-sets

E Yj
j=1

Again, a file of equations is input to the linear program solving program lp solve,
described below, which produces transmission times for each message in each interval.

Linear Programming Module: lp solve

Given the constraints described in the previous section, it is straightforward to set up a
system of equations and associated objective functions which can then be solved by a linear
programming module. Lp solve [Ber], a shareware program integrated into the current
system to handle message scheduling problems, was developed to solve mixed integer
linear programming problems. Lp solve uses a 'Simplex' algorithm and sparse matrix
methods for pure LP problems. If one or more of the variables is declared integer the
Simplex algorithm is iterated with a branch and bound algorithm until the desired optimal
solution is found. For the problems analyzed in this thesis (some of which produced close
to one hundered variables) lp solve proved efficient and reliable. Thus any future versions
of the scheduling component of the current system would do well to include some of the
lp solve technology. Ideally, lp solve source code should probably be revised to identify
which messages, links and intervals are the cause of infeasibility in generating schedules
and should provide this information to the rest of the system.

Propagation of Results from Message Scheduling

In the current system results from the linear programming solver do not propagate back
to the rest of the system. If a feasible schedule can not be found for a given configuration
information from this module about which messages are responsible for the intractibility of

' 4which should utlimately be relaxed in the next generation of scheduled routing software developed for
the NuMesh

40

CHAPTER 4. IMPLEMENTATION OF THE BACKEND.

the problem, and thus which message deadline times should be relaxed should propagate
back up towards the higher level compilation modules. Communication can then be
rearranged and schedules recomputed if necessary. In the time frame during which the
current system was developed, code to isolate this information and communicate it to other
parts of the system was not implemented. The linear programming solver was instead
used as a black box. This should certainly be rectified in any revisions to the system since
the freedom to move deadline times forward would provide an important relaxation step
in the overall optimization problem.

Problems with Linear Programming Approach

There are a number of problems with the approach taken here to schedule messages onto
network links. The current formulation of the problem allows messages to be fragmented
across intervals. Messages are not constrained to remain contiguous. This assumption
leads to an interesting breakdown when messages are broken up by the scheduler. Every
message transmission time must be padded out with a 'drain time' to allow the message
fragment transmitted during a given interval to reach its destination. If a message fragment
relinquishes the network links to which it has been assigned before the entire message
fragment has reached its destination message data will be lost. Thus every message
transmission interval must be padded with enough cycles to allow for the worst case
distance a message might travel which is typically taken to be the network diameter. If
messages are long compared to the network diameter, this padding is not a large percentage
of the total message transmission time in the network. However if messages are short they
should not be fragmented across time intervals. Keeping messages contiguous leads to
difficulties in expressing the problem as a simple linear program, however.

Refining the Approach to Scheduling Messages on Links

Assuming that messages are simultaneously active on all links used during transmission
leads to potential performance loss. A refinement of the message scheduling system
implemented here is needed. One approach is to build a more complete representation
of communication operations. Currently the module which assigns release and deadline
times to messages assumes that a message is released from its source at a particular network
clock cycle and that it arrives at its destination by some deadline time. The DAG currently
used to assign release and deadline times could be refined to include a cycle by by cycle
representation of what links the message traverses from source to destination. This allows
a message to get scheduled onto a link which has been relinquished by some other message
before all the data in this other message has completely arrived at its destination.

In the limit this approach amounts to simulating message traffic cycle by cycle in order
to more accurately schedule messages onto links. There is a tradeoff here between the size
of the time interval in which message link usage is accurately known, and the space and
time required to represent and make use of this information.

41

CHAPTER 4. IMPLEMENTATION OF THE BACKEND. 42

u

Chapter 5

Results

This chapter presents the results of applying the backend placement, routing and message
scheduling software described in Chapter 4 to example communication graphs. As test
examples I chose some simple problems which had previously been hand-coded for the
NuMesh environment. An implementation of the Multigrid algorithm was programmed
manually and simulated in the NuMesh simulation environment [Met91] when the sim-
ulator was first developed. The Jacobi relaxation problem which has similar, though less
complicated, communication characteristics was expressed in T'DL and routed and sched-
uled by the backend. Because TTDL functions can be applied to network objects of varying
sizes and topologies, it was a simple matter to generate results for different instances of
the Jacobi problem. Thus routing and scheduling for an instance of the two dimensional
Jacobi problem on two dimensional meshes of four, sixteen and sixty-four nodes and an
instance of the three dimensional Jacobi problem on a three dimensional mesh of twenty-
seven nodes were programmed and the resulting DAG structure input to the backend.
The communication patterns present in the Jacobi relaxation problem are very simple. All
nodes communicate repeatedly with their nearest neighbors. Thus it provided a nice test
example for debugging purposes. It also allowed a test of the mapping function facility
which calls a user-defined mapping function to place tasks for a given problem onto a
particular toplogy. The mapping function supplied for this problem maps tasks defined
in a logical torus to a physical mesh.

Results were also generated for a decomposition of the one dimensional FFT algorithm.
Again it was straightforward to express the communication graph for the one dimensional
fft in TTDL. This example is more characteristic of the types of applications for which the
software developed here is targeted. Periodic real time applications for image and audio
processing compute FFTs repeatedly and typically require high throughput from both the
computation and communication hardware on which they execute. The backend software
identified and extracted the maximum possible throughput for this simple problem.

Finally the communication graph for the lexical search module of a real time speech
recognition application previously hand coded for the NuMesh was expressed in TTDL
and input to the backend.

43

CHAPTER 5. RESULTS

5.1 Jacobi Relaxation Problem

Jacobi relaxation is an iterative algorithm which, given a set of boundary conditions finds
discrete solutions to differential equations of the form V2A + B = 0. The difference
equation

A+1 i+lj + A lj + ,j+ + Aj- bA k+I i+11,3 2- , '91- __ t' -1 + bidtj 4

Jacobi differs from other iterative relaxation alogrithms in that the update of each point
(at iteration step k+l) requires the previous values of the neighboring points. Figure 5-
1 gives an example of a four node Jacobi relaxation problem. The circles representing
processors are shown exchanging data during one iteration of the relaxation.

Figure 5-1: Communication Pattern for Jacobi Relaxation Problem.

5.1.1 TTDL Description of Jacobi Relaxation Problem

Figure 5-2 shows a program which expresses this same communication pattern in TTDL. A
logical definition for a two dimensional Jacobi relaxation problem giving the communica-
tion pattern between a source task and its north, south, east and west neighbors is defined
using define--comm A definition for the three dimensional version of the problem, which
is different only in that information is exchanged between (logical) neighbors in all three
dimensions, is also shown.

A DAG representation of the communication is generated from an invokation of this
definition of the two dimensional Jacobi problem, as shown in Figure 5-4. An embedding
function was also provided in TTDL to map a logical torus to a physical mesh.

The backend was passed the file shown in Figure 5.1.1. This file contains:

1. A description of the physical network for which the problem is targeted.

44

CHAPTER 5. RESULTS 45

Figure 5-2: A Call to Define-comm Establishes the Definition of a Communication Pattern
for the Two and Three Dimensional Jacobi Problem.
;; Two dimensional Jacobi problem

(define-comm jacobi-2d
(nw source-task t-north t-east t-west t-south n)
(let ((compute-time 10))

(sequence
(synchronize 0)

(iterate
(sequence

(write-stream mO t-north)

(read-stream mO t-south)

(write-stream mO t-east)

(read-stream mO t-west)

(write-stream mO t-west)

(read-stream mO t-east)

(write--stream mO t-south)

(read-::stream m t-north)
(compute compute-time)

)
n)))))

;; Three dimensional Jacobi problem is very similar

(define-comm jacobi-3d
(nw source-task t-north t-east t-west t-south t-up t-down n)
(let ((compute-time 10))

(sequence
(synchronize 0)

(iterate
(sequence

(write--stream mO t-north)

(read-stream mO t-south)
(write--stream mO t-east)

(read-stream mO t-west)

(write-stream mO t-west)

(read-stream mO t-east)

(write--stream mO t-south)

(read-stream mO t-north)
(write-stream mO t-up)

(read-stream mO t-down)

(compute compute-time)

n))))

CHAPTER 5. RESULTS

Figure 5-3: Invoking Jacobi-2d on a Logical Mesh, a Physical Mesh, a Placement Strategy and
a File Name
;; two dimensional Jacobi problem mapped to two dimensional mesh
(jacobi-2d *med-2d* *med-2d* *dont-place*

"-milan/rathesis/bin/test-med-j-2d.tasks"
;; two dimensional Jacobi problem mapped to diamond mesh
(jacobi-2d *med-2d* *diamond* *do-place*

"-milan/mathesis/bin/med-j-diamond.tasks")
three dimensional Jacobi problem mapped to three dimensional mesh

(jacobi-3d *med-3d* *med-3d* *dont-place*
"~milan/mathesis/bin/test-med-j-2d.tasks")

three dimensional jacobi problem mapped to two dimensional mesh
;; no mapping was specified in definition of 3 dimensional Jacobi problem
(jacobi-3d *small-3d* *med-2d* *do-place*

"~milan/mathesis/bin/test-med-j-2d3d.tasks")

a network object
(defvar *med-2d*

(make-network :topology "2d-mesh"
:routing "random" :n 16 :ndim 2 :nx 4 :ny 4))

Figure 5-4: DAG Generated by Evaluation of TTDL for 2d Jacobi Problem.

Task 0O Task 1 Task 2 Task 3

· · · ·
* 0 *

* * 0 0

46

CHAPTER 5. RESULTS

2. A description of message traffic in the network with message source and destination
tasks, message size (which is 8 units for all messages) and release and deadline times.

3. A directive to the backend about which placement strategy to use. This can be a request
to place (possibly providing an initial configuration) or an indication that a mapping
is already specified in the file.

Since a mapping function was defined for this problem, a placement is already provided
in this file.

5.1.2 Results of Routing and Scheduling

Figures 5-6 and 5-7 show snapshots of the communication pattern as scheduled and
routed onto a physical two dimensional four by four mesh. Circles represent processor
nodes and are labeled with the id of the resident task. A total of sixty-four messages,
four from each processor, are transmitted during execution of the communication pattern.
Transmission of sixteen messages exchanged along the x axis in the East-West directions
is scheduled for nine network cycles, as shown in Figure 5-6. Similarly transmission of
sixteen messages along the y axis in the North-South direction is shown in Figure 5-7. A
total of thirty-six network cycles are used to fully exchange data between all nodes in the
mesh.

Schedules generated and assigned to communication finite state machines resident on
processors 0 - 2 are shown in Figure 5-9.

An example of the three dimensional Jacobi relaxation problem mapped to a three
dimensional grid is also shown, in Figure 5-8. The define-comm for Jacobi 3d is quite
similar to the Jacobi 2d define-comm. The Jacobi-3d function was invoked on a three
dimensional network object to generate a graph representing the communication pattern
and this graph was passed to the backend.

5.2 One Dimensional FFT Problem

The Fast Fourier Transform (FFT) [Opp75] is a common operation in real time processing of
video and audio signals. Figure 5-10 shows the communication graph for a decomposition
of a one dimensional FFT. Computation times are shown in the circles representing tasks.
Messages travelling between nodes are shown as arrows labeled with message lengths in
units of network bandwidth.

The TTDL expression describing this decomposition of the FFT is shown in figure 5-11
the DAG produced by executing this code was passed to the backend.

Once the DAG is generated, the message release and deadline times are assigned.
These times are computed using the recursive procedure described in Chapter 4. If the
programmer has specified that the maximum thruput of the system should be computed,
code to search the DAG for the maximum length computation or communication stage in
the graph is executed. A relaxation step which moves deadline times forward for messages
which have some slack relative to this execution time, is then performed. In this example,
each node reads a 4 or 8 unit message from either one or two sources, computes for 12 units,

47

CHAPTER 5. RESULTS

Figure 5-5: File Format Output by Execution of TDL
#Model

TDL
#Ntasks

16

#Nphases
1

#nNodes

16

#nx

4

#ny
4

#nz

0

#nt

0

#*************************

Message Traffic Description
#ft****************** *******

#Nth phase
0

#Nmsgs

64
#******************************

Message format:
msg := src-task release deadline size dest-task
#******************** ************ ****************

0 8 4 12

40840

15 24 32 4 14

#ft************************

Placement Description
#****************************

#Placement mode
1 directs backend to place using simulated annealing
2 directs backend to use specified mapping which follows
2

#N tasks to read for specified placement for this problem
16

Task format: task-id wired-down-or-not x-loc y-loc
where wired-down-or-not identifies tasks which should
not be moved by the placer.

0100
1102

14 1 1 3

15 1 1 1

48

CHAPTER 5. RESULTS

and writes a 4 or 8 unit message to either one or two destinations. Thus the maximum
thruput for this example, if the task flow graph is to be invoked periodically is 12. Slack
of 4 units is available to message M16, for example, as it travels from task 8 to task 12.

Routes for messages were allocated randomly and congestion was detected and elim-
inated using the rerouting algorithm outlined in Chapter 4. Snapshots of message traffic
during the steady state execution of the FFT are shown in Figures 5-12 and 5-13. Figure
5-13 shows a simple example of two messages M5 and M7 which the offline router rerouted,
avoiding a collision. M5 is transmitted first in the y dimension and then in x, while M7 is
transmitted in x and then in y. In this case messages could also have been reordered at a
higher level to avoid a collision. It's simpler here to rely on the routing software which
is actually allocating the paths to avoid congestion when it can, rather than propagating
information back up to the compiler about reordering messages.

Figure 5-14 shows the same problem routed and scheduled onto a three dimensional
mesh. In three dimensions the path for message M5 is two hops instead of three.

5.3 Viterbi Search Communication Graph

As a final example, a communication graph corresponding to the Viterbi search algorithm 1
was expressed in TTDL, the optimal thruput was computed, and the graph was placed
and routed. Figures 5-15 and 5-16 show the TTDL description of this graph. This
decomposition also uses algorithmic partitioning to implement a pipelined version of the
Viterbi search used to perform lexical access as part of a real time speech recognition
system. Communication and computation alternate in phases. First the host node, Node
0, distributes the lexical network to each processor. Each processor is then able to perform
a Viterbi search for its own part of the lexical network. Figure 5-17 shows the execution of
the first phase of communication, distribution of the lexicon data. Figure 5-18 shows the
steady state execution of the pipeline, with each of nodes 1 through 7 receiving broadcast
speech data from the host. As will be discussed in Chapter 6 there was not enough time to
implement a multicast facility to route and schedule a single message destined for multiple
locations as part of the current system. In future versions of this system the data shown
here travelling thru a linear pipeline from host to nodes 1 - 7 would be simultaneously
transmitted from the host node 0 to the destination Viterbi nodes.

'which had previously been manually implemented for the NuMesh environment [Duj92]

49

CHAPTER 5. RESULTS

Figure 5-6: 2d Jacobi Problem on 2d Mesh East-West Transmission.

Interval 0 -> 8

50

CHAPTER 5. RESULTS

Figure 5-7: 2d Jacobi Problem on 2d Mesh North-South Transmission.

Interval 17 -> 25

51

CHAPTER 5. RESULTS 52

Figure 5-8: 3d Jacobi Problem on 3d Mesh North-South Transmission.

CHAPTER 5. RESULTS 53

Figure 5-9: Switching Schedule Assigned to Communication Finite State Machine Resident
on Processors 0-2.

[Schedule for node : 0]

#Instruction# WAIT-FOR-VALID-BIT
#Instruction# SWITCH Msg:0 Start:
#Instruction SWITCH Msg:l Start:
#InstructionM SWITCH Msg:2 Start:
#Instruction# SWITCH Msg:3 Start:
#Instruction# SWITCH Msg:4 Start:
#Instruction# SWITCH Msg:5 Start:
#Instruction# SWITCH Msg:6 Start:
#Instruction# SWITCH Msg:7 Start:

0 End: 8 In: DownFifo Out: East

0 End: 9 In: East Out: UpFifo

17 End: 26 In: DownFifo Out: North

17 End: 25 In: North Out: UpFifo

34 End: 42 In: DownFifo Out: North

34 End: 43 In: North Out: UpFifo

51 End: 60 In: DownFifo Out: East

51 End: 59 In: East Out: UpFifo

[Schedule for node : 1]
Instruction WAIT-FOR-VALID-BIT
Instruction SWITCH Msg:20 Start: 0 End: 8 In: DownFifo Out: East

Instruction SWITCH Msg:21 Start: 0 End: 9 In: East Out: UpFifo

Instruction SWITCH Msg:16 Start: 17 End: 26 In: North Out: UpFifo

Instruction SWITCH Msg:2 Start: 17 End: 26 In: South Out: North

Instruction SWITCH Msg:3 Start: 17 End: 25 In: DownFifo Out: South

Instruction SWITCH Msg:17 Start: 34 End: 43 In: DownFifo Out: North

Instruction SWITCH Msg:4 Start: 34 End: 42 In: South Out: UpFifo

Instruction SWITCH Msg:5 Start: 34 End: 43 In: North Out: South

Instruction SWITCH Msg:22 Start: 51 End: 60 In: DownFifo Out: East

Instruction SWITCH Msg:23 Start: 51 End: 59 In: East Out: UpFifo

[Schedule for node : 2]

Instruction WAIT-FOR-VALID-BIT
Instruction SWITCH Msg:8 Start: 0 End: 8 In: DownFifo Out: East

Instruction SWITCH Msg:9 Start: 0 End: 9 In: East Out: UpFifo

Instruction SWITCH Msg:10 Start: 17 End: 25 In: DownFifo Out: North

Instruction SWITCH Msg:16 Start: 17 End: 26 In: North Out: South

Instruction SWITCH Msg:2 Start: 17 End: 26 In: South Out: UpFifo

Instruction SWITCH Msg:11 Start: 34 End: 42 In: North Out: UpFifo

Instruction SWITCH Msg:17 Start: 34 End: 43 In: South Out: North
Instruction SWITCH Msg:5 Start: 34 End: 43 In: DownFifo Out: South

Instruction SWITCH Msg:12 Start: 51 End: 60 In: DownFifo Out: East

Instruction SWITCH Msg:13 Start: 51 End: 59 In: East Out: UpFifo

CHAPTER 5. RESULTS

Figure 5-10: Communication Graph for 16 Node One Dimensional FFT

54

CHAPTER 5. RESULTS 55

Figure 5-11: A Call to Define-comm Establishes Definitions of Communication Patterns
for the One Dimensional FFT.

(defvar *compute-time* 12)

(define-comm fft-initial
(source-task task-a task-b task-c task-d)

(broadcast ml task-a task-b task-c task-d))

(define-comm fft-first-row
(source-task task-a task-b task-c n)

(sequence
(synchronize phase-zero)
(iterate
(sequence
(read-stream ml task-a)

(compute *compute-time*)
(write-stream ml task-b)

(write-stream ml task-c)

n))))

(define-comm f ft-second-row
(source-task task-a task-b task-c task-d n)

(sequence
(synchronize phase-zero)
(iterate
(sequence
(read-stream ml task-a)

(read-stream ml task-b)

(compute *compute-time*)
(write-stream ml task-c)

(write-stream ml task-d)

n))))

(define-comm f ft-third-row
(source-task task-a task-b task-c n)

(sequence
(synchronize phase-zero)
(iterate
(sequence

(read-stream ml task-a)

(read-stream ml task-b)

(compute *compute-time*)
(write-stream ml task-c)

n))))

(define-comm fft-fourth-row
(source-task task-a n)

(sequence
(synchronize phase-zero)
(iterate

(sequence
(read-stream ml task-a)

(compute *compute-time*)
n))))

CHAPTER 5. RESULTS

Figure 5-12: Pipelined FFT Problem on 2d Mesh.

4

56

CHAPTER 5. RESULTS

Figure 5-13: Pipelined FFT Problem on 2d Mesh.

5

57

CHAPTER 5.

Figure 5-14: Pipelined FFT Problem on 3d Mesh.

none

r-nc

none nerOe

-------- �

RESULTS 58

CHAPTER 5. RESULTS 59

Figure 5-15: A Call to Define-comm Establishes Definitions of Communication Patterns
for Host Node in Viterbi Search.

(defvar lexicon 1500)
(defvar speech-data 1500)

(defvar results 1500)

(define-comm vhost
(source-task dO dl d2 d3

(sequence
(synchronize phase-zero)
;; phase-zero distribute
(write-stream lexicon dO)
(write-stream lexicon dl)
(write-stream lexicon d2)
(write-stream lexicon d3)
(write-stream lexicon d4)
(write-stream lexicon d5)
(write-stream lexicon d6)
(synchronize phase-one)
;; phase-one send speech d
(iterate
(write-stream speech-data

d4 d5 d6 n m)

lexicon amongst viterbi nodes

n)

(synchronize phase-two)
;; phase-two receive results
(iterate
(read-stream results dO)
m)))

CHAPTER 5. RESULTS 60

Figure 5-16: A Call to Define-comm Establishes Definitions of Communication Patterns
for Nodes Executing Viterbi Search.

(define-comm viterbi
(source-task host prev next n m)

(let ((ct 3000))

(synchronize phase-zero)
(read-stream lexicon host)
(synchronize phase-one)
(iterate
(sequence
(read-stream speech-data prev)
(compute ct)

(write-:stream speech-data next))

n)

(synchronize phase-two)
(iterate
(sequence
(read-stream results next)
(compute ct)

(write-stream results prev)
m)))

(define-comm viterbi-end
(source-task host prev n m)

(let ((ct 2000))

(synchronize phase-zero)
(read-stream lexicon host)
(synchronize phase-one)
(iterate
(sequence

(read-stream speech-data prev)
(compute ct))

n)

(synchronize phase-two)
(iterate
(sequence
(compute ct)

(write-stream results prev))
m)))

Figure 5-17: Distribute Lexicon.

CHAPTER 5. RESULTS 61

e-

.d

4

Figure 5-18: Broadcast Speech Data.

CHAPTER 5. RESULTS 62

3

4

Chapter 6

Conclusions and Extensions

6.1 Conclusions

In a multicomputer, application communication patterns in time are translated by virtue of
a particular network configuration into spatial and temporal traffic patterns. When these
patterns are predictable and compact, compilation technology which solves optimization
problems of the sort described in this thesis can be applied to the problem of allocating
network bandwidth to network traffic.

One of the goals of the NuMesh project as a whole is to develop compilation techniques
which analyze communication in a distributed system. A subgoal of this larger work, the
use of these predictions to optimize the allocation of network resources, was the subject
of this thesis. This work explored some simple techniques to distribute network traffic in
space and time. An intermediate form to express communication patterns and a backend
placement, routing and scheduling system to allocate network bandwidth tailored to these
patterns was developed. Results from the system assigning schedules and paths to traffic
generated by some well known problems showed that we can automate the process of
allocating network bandwidth for applications with fairly static communication needs
using well known optimization techniques. In particular, results from offline routing of
the FFT example showed that by exploiting multiple available shortest paths from source
to destination, a high throughput for a pipelined task flow graph partioning of the FF1
problem was achieved.

The techniques used to allocate routes and schedules to messages used in this thesis,
simulated annealing and global allocation of schedules using linear programming, worked
well for the simple and rather small applications analyzed by the system. As problem
sizes grow, more sophisticated methods will need to be applied. Since static routing of
network traffic shares many of the characteristics of static placement and routing of VLSI
components (with the added dimension of time), it may be worthwhile to harness some
of the state of the art industrial technology already developed to solve such problems.
A useful next step in developing more accurate and efficient network resource allocation
modules for the next generation of scheduled routing software developed for the NuMesh
would be to explore the extent to which algorithms used in commercially available CAD
systems might be incorporated into the general framework for analysis setup in this thesis.

In general, network flow methods such as the multicommodity flow approach men-

63

CHAPTER 6. CONCLUSIONS AND EXTENSIONS

tioned in Chapter 4 should be examined as possible approaches to solving the problems
outlined in this thesis. These algorithms will probably yield the best solutions. They also
have the advantage that unlike simulated annealing, which arrives at a solution iteratively,
an upperbound exists on their running time.

6.2 Extensions

6.2.1 Compact Representation of Network Traffic

One of the most interesting problems which results from trying to statically route network
traffic is the question of how to compactly represent at compile time, the traffic which
will be present in the network at run time. Since placement, routing and scheduling
algorithms all depend on the amount of traffic analyzed, it is important to identify traffic
patterns. Patterns provide an efficient representation of data since they capture the structure
of repeated information. Consider the problem of describing traffic present in the network
when the components of a program distributed amongst the processors of a multicomputer
send data repeatedly at some characteristic frequenc(ies). If the distributed components
of the program send data at the same frequency w and with the same phase (to within
the accuracy of available clock synchronization technology) and for an infinite interval,
there is no need to analyze all messages generated over the interval (which is after all
infinite). It is sufficient to statically route message traffic present in an interval with period
1/w. This traffic simply repeats over time and thus minimum-contention routes and
schedules allocated for one period of data transfer will apply to each repeated iteration. A
generalization of this technique might look for the least common multiple of traffic source
repetition frequencies to determine an interval in which to analyze contention.

At a high level, the knowledge of repetition present in network communication patterns
may be extracted from the source level language. The same compiler which computes
upper bounds on block execution times will have access to iteration constructs which,
when executed, result in repeated insertion or extraction of network traffic.

Thus, analysis of network transfer operations executed withing loop constructs exe-
cuted on different processors to determine resultant traffic patterns should form an impor-
tant component of compiler technology developed for the NuMesh. In fact the benefits
of this analysis (and perhaps backend analysis which might use data compression tech-
niques to extract pattern information) will probably be important at multiple levels in the
NuMesh system, from reducing the computation requirements of placement routing and
scheduling algorithms to minimizing the length of schedules stored at individual NuMesh
Communication Finite State Machines.

6.2.2 Feedback Between Scheduling and Routing

In an ideal realization of this system, the backend modules allocating network resources
should serve as advisors to a higher level scheduling compiler which actually analyzes
programs written in a high level language. Congestion information should flow back
from this analysis to the compiler. The compiler can then make effective decisions about
whether or not to reorder writes and reads at communication sources and destinations.

64

CHAPTER 6. CONCLUSIONS AND EXTENSIONS

If the compiler's initial ordering results in traffic congestion as detected by the backend
and the congestion is such that the network becomes the bottleneck in an application's
performance, the compiler can decide whether it is possible to reorder communication at a
high level and still maintain the same computational throughput for the application while
improving its communication performance.

6.2.3 Implementation of Multicast Service

Since all communication emitted from or destined for a processor is serialized at the
processor/network interface, methods to broadcast data to multiple destinations and to
combine data arriving at a single destination will improve system performance when they
can be applied. Network bandwidth and communication latency in the current system
can be improved if a service to allocate routes for messages which are multicast to several
destinations is provided. Basically what is needed is a routine to allocate a set of routes
for a statically specified multicast such that multicast data can travel along paths with
maximum overlap.

6.2.4 Extensions to Support Applications Which are More Dynamic

Probably the most important set of extensions to be made to this framework will allow
the analysis which takes place here for a very limited set of applications to be applied
to a applications with a richer set of communication requirements. Many applications
[WAD+93] require flow controlled communication, where message transmission times are
not well defined at compile time but the order of communication is predictable. In such
cases, it may be worthwhile to extract contention information from a dependency analysis
of the communication. For example, if it is known at compile time from analysis of an
application's communication code that message A is always transmitted during a time
interval mutually exclusive of the time interval in which message B is transmitted, this
information can be exploited by a router which assigns both messages to the same network
link. The use of explicit barriers to establish a point of synchrony so that static routing
techniques can be applied to route and schedule traffic in time intervals measured relative
to such points should also be studied. The tradeoff which exists between the cost of
the barrier and the performance gained by statically routing communication should be
evaluated.

6.2.5 Integration With the NuMesh Simulator and Hardware

In the time frame during which this thesis was developed, it was not possible to integrate
the current system with the NuMesh simulation environment. A valuable next step would
be to combine the two systems so that testing of the entire environment from intermediate
form to cycle by cycle simulation can be done and alternative strategies for offline routing
evaluated for a wide range of applications. Testing on actual NuMesh hardware should
follow.

65

Bibliography

[ACD+91] Anant Agarwal, David Chaiken, Godfrey D'Souza, Kirk Johnson, David
Kranz, John Kubiatowicz, Kiyoshi Kurihara, Beng-Hong Lim, Gino Maa, Dan
Nussbaum, Mike Parkin, and Donald Yeung. The MIT Alewife machine: A
large-scale distributed-memory multiprocessor. In Proceedings of Workshop on
Scalable Shared Memory Multiprocessors. Kluwer Academic Publishers, 1991.
An extended version of this paper has been submitted for publication, and
appears as MIT/LCS Memo TM-454, 1991.

[Aga91] Anant Agarwal. Limits on interconnection network performance. IEEE Trans-
actions on Parallel and Distributed Systems, 2(4):398-412, Oct 1991.

[Ber] M.R.C.M. Berkelaar. Lp solve, a shareware program to solve mixed integer
linear programming problems. Eindhoven University of Technology, Design
Automation Section, michel@es.ele.tue.nl.

[D+89] W. J. Dally et al. The J-Machine: A fine-grain concurrent computer. In Infor-
mation Processing 89, Elsevier, 1989.

[Dah90] E. Denning Dahl. Mapping and compiled communication on the connection
machine. IEEE, pages 756-766, March 1990.

[DS87] W. J. Daily and C. L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Transactions on Computers, C-36(5):547-553,
May 1987.

[Duj92] Rajeev Dujari. Parallel viterbi search algorithm for speech recognition. Mas-
ter's thesis, MIT, 545 Technology Square, Cambridge MA 02139, 1992.

[Fet90] Michael A. Fetterman. Backend code generation with highly accurate timing
models for numesh. Master's thesis, MIT, 545 Technology Square, Cambridge
MA 02139, 1990.

[Fox88] Geoffrey C. Fox. Solving Problems On Concurrent Processors: Volume I. Prentice
Hall, 1988.

[G+91] D. Gustavson et al. Scalable Coherent Interface: Logical, physical, and cache
coherence specifications, January 1991. Preliminary draft, P1596 Working
Group of the IEEE Microprocessor Standards Committee.

66

BIBLIOGRAPHY

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. W. H. Freeman and
Company, 1979.

[Hil85] D.W. Hillis. The Connection Machine. MIT Press, Cambridge, Mass, 1985.

[HL87] N. Hasan and C.L. Liu. A force-directed global router. In Advanced Research in
VLSI. The MIT Press, 1987.

[Hon92] Frank Honore. Redesign of a prototype numesh module. M.I.T. Bachelor's
Thesis, EECS, February 1992.

[Hor71] W. A. Horn. Some simple scheduling algorithms. Naval Journal of Operations
Research, February 1971.

[KJV83] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 200(4598):671-680, May 1983.

[KP93] Pekka A. Kauranen and John S. Pezaris. Graph embedding to the diamond
lattice. In Proceedings of the Student VLSI Conference, M.I.T., 1993.

[Kru83] Clyde P. Kruskal. The performance of multistage interconnection networks
for multiprocessors. IEEE Transactions on Computers, C-32(12):1091-1098, Dec
1983.

[Kun82] H. T. Kung. Why systolic architectures. IEEE Computer, pages 37-44, January
1982.

[Kun88] H. T. Kung. Deadlock avoidance for systolic communication. In Proc. 15th
Symposium on Computer Architecture, Honolulu, May 1988.

[Lam89] M. Lam. A Systolic Array Optimizing Compiler. Kluwer Academic Publishers,
Boston, 1989.

[LMP+91] Tom Leighton, Fillia Makedon, Serge Plotkin, Clofford Stein, Eva Tardos, and
Spyros Tragoudas. Fast approximation algorithms for multicommodity flow
problems. In Proceedings of the 23rd Annual Symposium on Theory of Computing,
pages 101-111, 1991.

[Lo88] Virginia Mary Lo. Heuristic algorithms for task assignment in distributed
systems. IEEE Transactions on Computers, 37(11):1384-1397, November 1988.

[LRea90] Virginia M. Lo, Sanjay Rajopadhye, and et. al. Oregami: Software tools for
mapping parallel computations to parallel architectures. Technical Report CIS-
TR-89-18, Dept. Of Computer Scienve, University of Oregon, Eugene, Oregon
97403-1202, 1990.

[Met91] Chris Metcalf. A NuMesh simulator. NuMesh Systems Memo 4, MIT Com-
puter Architecture Group, April 1991.

[Nga89] John Y. Ngai. A Framework for Adaptive Routing in Multicomputer Networks.
PhD thesis, California Institute of Technology, 1989.

67

BIBLIOGRAPHY

[Ngu91] John Nguyen. A C interface for NuMesh. NuMesh Systems Memo 3, MIT
Computer Architecture Group, February 1991.

[Opp75] Alan V. Oppenheim. Digital Signal Processing. Prentice Hall, 1975.

[Pez92] John S. Pezaris. Numesh cfsm revision 2: A comparative analysis of three can-
didate architectures. Master's thesis, MIT, 545 Technology Square, Cambridge
MA 02139, 1992.

[PN93] Gill Pratt and John Nguyen. Distributed synchronous clocking. IEEE Transac-
tions on Parallel and Distributed Systems, 1993.

[PSW91] C. Peterson, J. Sutton, and P. Wiley. iWarp: A 100-MOPS, LIW multiprocessor
for multicomputers. IEEE Micro, pages 26-29, 81-87, June 1991.

[PW92] Gill Pratt and S. A. Ward. Rationally clocked computing. Internal Memo, MIT
Computer Architecture Group, 1992.

[PWM+93] Gill Pratt, Stephen Ward, Chris Metcalf, John Nguyen, and John Pezaris. The
diamond interconnect. In process, 1993.

[SA91] Shridhar B. Shukla and Dharma P. Agrawal. Scheduling pipelined commu-
nication in distributed memory multiprocessors for real-time applications. In
18th Annual ACM SIGARCH Computer Architecture News, Vol. 19 No. 3, 1991.

[Sei85] C. L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1), January 1985.

[Shu91] S. B. Shukla. On Parallel Processing For Real-Time Artificial Vision. PhD thesis,
North Carolina State University, 1991.

[Ste90] Guy Steele. Common Lisp The Language. Digital Equipment Corp., 1990.

[Tho87] Clarke D. Thompson. Experimental results for a linear program global router.
In Computers and Artificial Intelligence, Vol. 6, No. 3., pages 229-242. 1987.

[Tro89] Sean Edwin Trowbridge. A programming environment for the numesh com-
puter. Master's thesis, MIT, 545 Technology Square, Cambridge MA 02139,
1989.

[WAD+93] Steve Ward, Karim Abdalla, Rajeev Dujari, Michael Fetterman, Frank HonorS,
Ricardo Jenez, Philippe Laffont, Ken Mackenzie, Chris Metcalf, Milan Minsky,
John Nguyen, John Pezaris, Gill Pratt, and Russell Tessier. The numesh: A
modular scalable communications substrate". In The International Conference
on Supercomputing, 1993.

68

