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Summary

In the last ten years, we have witnessed a revolution in technology. The achieve-
ment of the physical limits of silicon lithography has required several architectural
innovations, both in the development and integration of dedicated accelerators and
in biomimetic systems that seek to change the traditional computational model
radically. Nowadays, heterogeneous architectures in a single silicon slice integrate
radically different computational models such as SIMD and MIMD, but also pro-
grammable logic (FPGA). In the same period Machine learning has developed enor-
mously, and with the advent of Deep Learning the demand for dedicated hardware
has led to an explosion of Cambrian accelerators and specialised architectures. In
the field of biomimetic systems, the scientific community and companies, like IBM
and Intel, have shown interest in neuromorphic systems. A neuromorphic system
can emulate at hardware or software level the electrical behaviour of neural net-
works.

In this context of heterogeneity and new paradigms in computing devices, my
research has focused on the programming models of these architectures and the
optimisation of their resources. My work has focused on neuromorphic architec-
tures based on manycore architectures and heterogeneous embedded architectures.
Neuromorphic architectures offer a new computational paradigm that requires the
careful use of communication resources and the development of the entire software
stack to provide an appropriate programming model capable of masking the inter-
nal architecture complexity to the user. Heterogeneous architectures also require
masking their complexity to the user. In this case, I worked on the strengthening
of the current compilation chains through the use of deep learning to perform code
analysis and to extract information useful to make complex decisions now dele-
gated to the programmer, for example choosing the most suitable calculation unit
for code execution.

In the first case, I worked on SpiNNaker within the European Human Brain Project
(HBP). SpiNNaker is a manycore neuromorphic architecture for which I developed
a network resource optimisation system. Specifically, I developed a toolchain for the
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mapping of Spiking Neural Network (SNN) within SpiNNaker measuring its per-
formance based on the reduction of communication on the architecture. By testing
my toolchain on a biological network simulation, I experimentally obtained a traffic
reduction of 90x compared to performance obtained using the official toolchain. I
also developed a communication middleware that exploits the architecture features
to implement an MPI-based programming model, providing the user with a library
able to abstract the architectural complexity of the architecture and allowing to
exploit the architecture easily even outside the neuromorphic simulation context.
Specifically, I developed a communication middleware (MCM) that exploits the
architecture features to provide broadcast and unicast communication mechanisms
and synchronisation primitives between SpiNNaker processors. It was then possi-
ble to implement a library (ACF) useful for the rapid reconfiguration of neuronal
simulations and to allow rapid exchange of data between the neuromorphic archi-
tecture and external architectures. The implementation of MPI relies on these two
libraries and allowed to implement two parallelised applications on SpiNNaker. The
first application was an N-Body simulation where 2 k particles were simulated on
240 processors with a speed-up of 194 x and efficiency of 80% when compared to the
serial version running on a single SpiNNaker core. The second application was a
DNA sequence matching algorithm. Results show that the scalability of the SpiN-
Naker board reaches a 98% efficiency when using more than 100 processors, a 90%
efficiency using 600 processors, achieving 88% efficiency when all 767 application
processors are used.

In the second case, I worked on source code classification via deep neural networks.
In particular, I built a source code classifier in the intermediate representation of
LLVM able to discriminate the most suitable calculation unit for fast execution of
the analysed code. During this work, I compared two network models, one based
on recurrent networks (RNN) and the other on convolutions (CNN). I showed that
code analysis at this level is possible by reaching an 85% accuracy in OpenCL
kernel classification to run on a multicore CPU or GPU. Besides, the CNN model
has proven to be more accurate and easier to train.

Overall this work has allowed exploring the potential of these new generation ar-
chitectures and will be useful technologies for future developments.
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Chapter 1

Research context

The research work, carried out during the three years of my PhD, focused on
programming models for the new generation of advanced multicore architectures.

In the last decade, we have witnessed a revolution in technology. The approach-
ing physical limits of silicon lithography has made it necessary to explore various
architectural innovations, both in the development and integration of dedicated
accelerators and in biomimetic systems that are trying to change the current com-
putational model radically. Among these new generation architectures are hetero-
geneous embedded architectures i.e. composed of several compute units specialised
in different tasks for which it becomes increasingly challenging to relieve the pro-
grammer from using and knowing specific libraries to exploit the resources offered
by the system. Another frontier of manycore architectures is the neuromorphic ar-
chitectures. They require an entirely new programming model and a software stack
that abstracts the functionality to allow the programmer to use them with the same
simplicity of traditional architectures. Moreover, in the latter type of architectures,
there is a need to optimise the allocation of communication as they are developed
to simulate biological neural networks whose computing units interact through an
intense exchange of messages.

Mapping tasks on hardware units available on heterogeneous and manycore systems
is one of the main challenges for software developers with a significant impact on
application reliability, performance, and energy consumption [67, 38, 104]. This
problem is common in many fields of applications that go from the mapping of
parallel applications on stream-oriented multiprocessor system-on-chip (MPSoC)
[78] to the mapping of Spiking Neural Networks on Neuromorphic Platforms [31].
Approaches at compiler, programming model [23, 88, 100, 77, 91], resource alloca-
tion and optimisation levels is ongoing to improve the exploitation of such complex
architectures.
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Research context

My thesis work presents different solutions in this field of research. In the case of
neuromorphic architectures, I focused on the development of a programming model
able to exploit its potential by masking the implementation details, and on the
strengthening of current resource management systems, in particular, the commu-
nication between computational nodes. In the case of heterogeneous architectures, I
focused on the already consolidated and state-of-the-art compilation chain, increas-
ing its capabilities through the use of deep learning techniques to support complex
decisions currently taken by the programmer, such as the allocation of tasks on
compute units.

1.1 Programming challenges for many core neu-
romorphic platforms

In the manycore neuromorphic platforms case, I worked on the in the context of
the , to study: i) the mapping impact of neural networks on the platform, ii) how
to implement a rapid reconfiguration of neural network simulations and iii) how to
provide of a more flexible and generic programming model.

The SpiNNaker architecture is a general-purpose, manycore, massively parallel ar-
chitecture. Since SpiNNaker is inspired by the human brain structure, this archi-
tecture tries to exploit the interconnection capabilities among the cores rather than
the computational power of the single computational unit. This peculiarity of the
SpiNNaker system presents some advantages, such as the low power consumption
compared with the classical approach to neural network simulation through the use
of standard computer architectures. For this reason, it can be potentially used for
a wide range of applications requiring intensive communication between parallel
computational elements [31].

Neuromorphic platforms represent an intensive research area because of their ca-
pability of efficiently simulating . The simulation of BNN, the structures compos-
ing neural tissue, is a promising methodology to gain novel insights into unclear
mechanisms underlying brain functions. BNNs are usually represented during the
simulations as [55] describing the behaviour of neurons by means of .

Although initially intended for brain simulations, the adoption of emerging neu-
romorphic architectures is also appealing in fields such as high-performance com-
puting and robotics [52]. It has been proved that neuromorphic platforms provide
better scalability than traditional multi-core architectures. Moreover, neuromor-
phic architectures have a native optimised support [14] so they are well suitable
for classes of problems which require massive parallelism as well as the exchange
of small messages. However, the tools currently available in this field miss many
useful features required to support the spreading of a new neuromorphic-based
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1.1 – Programming challenges for many core neuromorphic platforms

computational paradigm.

1.1.1 Configuration Time
SpiNNaker presents challenges in core resources management and external sources
communication. Currently, one of the biggest issue for this platform is the time
necessary to transfer data from the host server to the SpiNNaker board through a
single entry point.

Typically these platforms are connected to an external host computer where con-
figuration information is generated. A host-to-platform communication channel is
used to convey this data to an input port of the platform. From here, data should be
broadcasted to the computing nodes simulating the neuron models. Due to the high
degree of parallelism and the complexity of the interconnect, this communication
is in general time consuming and needs to be efficiently managed.

Previous approaches to the generation of the data for neural network simulation
have always involved the full generation of data on the host PC and, in a sec-
ond time, loaded into the simulator memory. From the programmer’s perspective,
this procedure has the apparent advantage that all the data are available to use,
whenever they are needed. However, this also has the disadvantage that repeated
patterns are transmitted without exploiting the possibility of compression.

Some advances in parallelise data generation has been made moving with the data
specification execution phase on-chip. Nevertheless, in this case, the transmission
of the data specifications scripts would still require a considerable amount of time.

This aspect becomes critical not only during initial network configuration time but
also when several simulations have to be performed to explore network parameters
in brain simulations, where configuration data must be reloaded. In a typical
SNN simulation, the configuration might take even more than ten hours against
a simulation runtime of few minutes [4]. On top of that, even a single simulation
parameter variation would require to restart the whole configuration from scratch.
Moreover, in SNN applications, it may be needed to update neuron models. For
instance, the host must trigger a switch from a “learning” neuron model used during
network training to a “test” neuron model during a classification task execution.
This would require a communication protocol supporting a host-controlled runtime
network update.

In general, these platforms would benefit from a mechanism supporting self-recon-
figuration triggered remotely, to reduce the cost of communication from the external
host and to better exploit their inherent parallelism. Also, implementing a cores
execution flow control by the host computer, their usage as accelerators would be
more effective and flexible.

3



Research context

Point to point communication between processors can cause severe bottlenecks
when configuring the board or during the execution of some applications. To over-
come the hardware limitation of the architecture, I have developed the capable
of diverting point to point broadcast and synchronisation communications on the
multicast network. The achievements were: i) Develop a routing key compression
system capable of reducing from 1600 to about 50 the rules necessary to obtain
point-to-point, broadcast and sync communications on the entire architecture al-
lowing the MCM implementation to be feasible. ii) Develop of the an abstraction
layer capable of managing Remote Procedure Calls, Memory Entities (ME) and
Virtual Memory Entities (vME): managed memory area, exposing remote proce-
dures to perform operations on them. iii) Develop of the for managing the Host
to Board and Board to Board communication in the ACF exploiting the MCM.
iv) Enhancement of the configuration phase of SpiNNaker architecture in the Host
to Board channel, minimising the communication through channel compression us-
ing Multiple Sequence Alignment for SNN simulations, and in the Board to Board
channel using ACF and the MCM broadcast communication.

1.1.2 Network Congestion
Given the complexity of the communication activity in simulated SNNs, another
significant challenge is to reduce the risk of unpredictable simulation behaviour and
failures in the absence of efficient exploitation of platform architectural resources.
In particular, how to map neural networks into SpiNNaker computational nodes
profoundly impacts the communication activity on the architecture network.

The problem I faced, concerns the mapping of a large number of light parallel
tasks with intensive communication into a manycore architecture. A non-efficient
communication, in the specific case of SNN execution, may impact real-time capa-
bilities as well as the reliability of the application. Indeed, spikes can be lost due to
congestion problems. In general, a possible approach to face the mapping problem
is to model the tasks and their communication as a graph to be mapped over the
underlying hardware architecture, represented by another graph.

Whereas in this work, I have used the cortical microcircuit application as a test case
for demonstrating that an enhanced partitioning and placement system studied for
the SNN topology can produce a more reliable and stable configuration for the
simulation on the SpiNNaker system [96, 94].

The achievements were: i) Become familiar with the neuromorphic manycore com-
putation paradigm and, in particular, with the SpiNNaker neuromorphic platform.
Understanding the challenges and the limits of the architecture in the field of Spik-
ing Neural Network (SNN) simulations. ii) Formalise the SNN mapping problem
breaking it into two phases: Partitioning and Placement. For the Partitioning
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1.1 – Programming challenges for many core neuromorphic platforms

phase, I used a multilevel k-way graph partitioning strategy capable of generating
network-partitions implemented in state-of-art programs for graphs like METIS.
The Placement phase, instead, has been formalised as a problem of minimisation of
synaptic elongation and solved through Spectral Analysis, Integer Linear Program-
ming, Multilevel Static Mapping (SCOTCH), and Simulated Annealing techniques.
iii) I developed the as an interface to the programming environment of SpiNNaker.
The tool exploits Spectral Analysis to perform SNN mapping. I made a perfor-
mance comparison between GHOST and the SpiNNaker toolchain for executing
SNN simulations on SpiNNaker.

1.1.3 Program model flexibility
SpiNNaker is under study for accelerating communication-intensive applications
involved in computational physics and biology applications for its efficient support
for inter-chip communication.

I studied how its programming model limits the usage of SpiNNaker and how to
overcome these limitations. These limitations distress both for SNN simulation as
well as its usage as an accelerator.

Other works have used this platform to execute general-purpose parallel computa-
tion, with positive outcomes both for scaling performances and energy efficiency.
In Blin et al. [14], authors have customised the neural model and reproduced the
connection graph of a page rank problem as an SNN. They show that the scalability
rate of the neuromorphic platform outperforms the general purpose architectures
Sugiarto et al. [90] have implemented on SpiNNaker an image processing algorithm
using a task graph representation.

However, none of these two approaches has tested synchronous applications, since
both of them used an adapted SNN simulated with the standard framework. Since
SpiNNaker has mainly been developed to run brain simulations, it does not natively
support a general-purpose programming model, like the Message Passing Interface
(MPI). In my work, I explore the potential of this type of architectures to accelerate
communication-intensive applications by exploiting the MPI library that I devel-
oped and optimised from scratch leveraging the SpiNNaker interconnect support. I
evaluated the developed library using an N-body simulation kernel, typically used
in computational biology tasks such as molecular dynamics. Results suggest that
the considered neuromorphic platform with our MPI implementation is promising
for tasks where communication is prevalent.
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1.2 Programming challenges for heterogeneous
platforms

In the context of programming models and compilers for heterogeneous architec-
tures, despite the availability of machine-independent languages, like the Inter-
mediate Representation (IR) [50], and interfaces supporting code-fragments (ker-
nels) offloading to hardware accelerators (GPUs, DSPs and FPGA) [23, 88, 100],
a consistent amount of research is still in progress for defining automatic mapping
techniques aimed at improving the available computational power and avoiding the
effort of manual profiling and code manipulations.

While code analysis based on deep learning methods have been developed for high-
level languages, such as OpenCL [22], the potential of IR has been exploited to this
purpose in recent academic papers [9, 12, 3]. LLVM representation is hardware-
independent, and it is a general representation that can be reached from different
high-level languages. For this reason, developing a code classifier for IR would be
more generally applicable and robust. At this level, source code has undergone
a preliminary optimisation pass during high-level code transformation. Various
strategies have been applied to improve the classifier performance such as the re-
moval of unnecessary elements [9], contextual flow graph analysis and immediate
values usage [12] and code vectorisation [3].

In my work, I addressed this issue, designing a method able to identify, select,
and encode the syntactic language elements (tokens) of source code of a kernel
compiled in the LLVM - Intermediate Representation (LLVM-IR), I will refer to it
as DeepLLVM . I used the generated sequence of tokens as input for training a to
recognise which is the most appropriate architectural component for each piece of
code evaluated.

I compared our approach based on LLVM-IR with the state-of-art solution based
on high-level source code (e.g. OpenCL) showing that our solution produces a more
accurate mapping, with the advantage of working on a layer decoupled from the
code-language.

Our results show that LLVM-IR keeps the informative content needed to perform
an effective classification, making possible the application of our classifier to any
source code for which an LLVM compiler exists.

Moreover, I present a new method for classification of LLVM source code where I
introduce the use of in code classification.

More specifically, DeepLLVM integrates convolutional (Conv1D), and layers to ex-
tract knowledge from syntactic language elements (tokens) of a kernel compiled in
IR. I performed an extensive exploration of the hyper-parameter space composed
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of both network and training. The best set was used as a reference for comparison
between the CNN model and the solution proposed in [9] and [22] accounting also
for the impact of kernel optimisations and token filtering strategies.

Results confirm that IR based classifiers achieve similar or better performance than
OpenCL based ones, with the advantage of the generality of the IR representation.
Moreover, CNN model outperforms RNN in terms of training time, classification
accuracy and overall speedup.
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Chapter 2

Background

2.1 Neuromorphic Architectures
Computational neuroscience aims at studying the brain functions in terms of the
information processing properties of the structures that make up the nervous sys-
tem. The nervous system can be studied at different levels of grains and with many
methodologies [46]. At fine-grain level, the neurons can be modelled, considering
atomic and electrical interactions between the molecules that constitute neurons.
On the other hand, at coarse-grain, interactions between brain zones can be mod-
elled through the simulations of neural networks able to reproduce the biological
behaviours. These types of networks are called Spiking Neural Networks (SNN) or
Neural Networks of Third Generation (3rd Gen. NN) [55].

2.1.1 SNN
Biological neurons collect and transmit action potentials called spikes. A spike is
transmitted from a neuron (presynaptic neuron) along a wire, called “axon”, to
the dendrites of other neurons (postsynaptic neurons). The axon-dendrite contact
is called “synapse”. A neuron, when receives a spike, detects a change in the
electric membrane potential, depending on the weight of that specific synapse. If
the membrane voltage reaches a threshold value, the neuron fires a spike. Otherwise,
the reached potential will decay over time.

Each synapse is characterized by a specific weight that influences the changes in-
duced by the presynaptic spike in the electric membrane potential of the postsy-
naptic neuron. On average, the neuron spiking rate (spike/second) ranges from
10 to 100 Hz. The nervous system networks make the importance of every single
neuron relatively low. This is due to its very high level of parallelism and its ability
to adapt to unknown environments. Remarkable fault tolerance is provided even
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after the loss of many neurons.

A neuron can be modelled as a simple processing element that integrates signals
coming from its predecessors (pre-synaptic neurons) and transmits the computed
value, represented as a spike, to all the neurons connected to the output (post-
synaptic neurons). Nowadays, the main used approach is to model the parameters
of the neurons such as synaptic currents, firing frequency and membrane potentials.
SNNs make use of Ordinary Differential Equations (ODE) to describe the behaviour
of biological neurons, therefore introducing the concept of time in the model. Two
of the most adopted neuron models are the Leaky Integrate and Fire (LIF) [1] and
Izhikevich (IZK) [40], because they are able to ensure a plausible picture of the
biological behaviours with reduced computational costs.

SNN simulations, compared with in-vivo experiments, allow accurate neuron dy-
namics observation, exploration and validation of plausible theories regarding brain
functions. Moreover, SNN simulations can reproduce the experiments with the
same conditions. An SNN can be described as a graph where each node, called
Population, is a homogeneous group of neurons sharing the same model and pa-
rameters. Whereas, each edge (Projection) represents the rule used to generate
synaptic connections between the neurons of two Populations.

PyNN [25] and Nengo [11] are the most used APIs to define SNN simulations. Both
of them allow the description of many neurons and synapses models (including
LIF and IZK neuron models). They can be exploited in a transparent mode on
different back-ends such as neuromorphic platforms or software simulators running
on general-purpose workstations.

The Neuromorphic engineering aims to mimic biological networks of the nervous
system developing neuromorphic simulators.

Neuromorphic simulators allow the study of the working mechanisms acting in
the brain and allow the investigation of biological processes underlying neural dis-
eases. Many research groups have developed neuromorphic simulators to develop
neuromorphic applications and study brain functions [19]. At the same time, neu-
romorphic engineers take inspiration from biology to design brain-like systems with
brain-specific features. These include extreme parallelism, adaptive responsiveness
to unknown environments, fault-tolerance, and very low-power consumption [59].

Simulators can be divided into two main categories: Software Simulators and Hard-
ware Simulators. Hardware simulators can be analogic, digital or implement both
technologies. The common aim of these devices is the computation of mathematical
models to describe biological neurons and synapses behaviours [55].

Hardware neuromorphic platforms are going to be pervasive in the field of com-
putational neuroscience. This trend is confirmed by the new emerging hardware
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architectures that try to emulate the human brain behaviour. These architectures
have been recently developed in order to solve complex problems and to overcome
the limitations of classical von-Neumann architectures. Some of the most promising
examples are represented by the IBM TrueNorth chip [58], the BrainScaleS system
[57], and the SpiNNaker machine [31].

There are two main approaches to neuromorphic computing—VLSI architectures:
i) where neurons are modelled at transistor-level and communications are handled
with connection crossbar array. ii) Custom architectures where general-purpose
cores are connected to form a mesh of processors optimised for the transmission of
small packets [28, 83, 103]. In the following, I provide a background on neuromor-
phic representative architectures.

BrainScaleS is a VLSI platform developed at the University of Heidelberg [81].
The main idea behind this project is to use above-threshold analogue circuits to
physically model neuronal processes, exploiting analogy between electronic circuits
and the ionic circuits in biological neurons. Analogue neurons are delivered using
wafer-scale integration.

Dynap-SEL is a VLSI chip called Dynamic Asynchronous Processor Scalable and
Learning that is produced with four neural processing cores which implement 256
analogical Adaptive Exponential Integrate and Fire neurons placed in a 16 × 16 grid
with 64 programmable synapses for each neuron. In the Dynap-SEL architecture,
it is available also a supplementary core 64 analogical neurons and 8192 plastic
synapses with on-chip learning and 4096 programmable synapses [61].

Loihi is a neuromorphic processor produced by Intel [24]. It features a manycore
mesh comprising 128 neuromorphic cores, three embedded x 86 processor cores and
off-chip communication interfaces that extend the mesh in 4-planar directions to
other chips. All logic in the chip is digital and implemented as an asynchronous
bundled-data design.

SpiNNaker, the Spiking Neural Network Architecture is a real-time neural network
simulator following an event-driven computational approach [31, 32]. This architec-
ture is able to emulate neural populations and to simulate an entire Spiking Neural
Network (SNN) in real-time. What sets SpiNNaker apart from all the above plat-
forms is the fact that its architecture does not implement neurons via custom VLSI
designed circuits, but it consists of a mesh of general-purpose ARM cores with a
neuromorphic connectivity scheme. While the platform is designed to run SNN
simulations and a software stack is provided to facilitate this purpose, in principle,
the general-purpose cores can run any C program compiled for ARM.

The communication inside the neural networks is usually represented using an asyn-
chronous event-driven model. The Address Event Representation (AER) protocol
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Figure 2.1: SpiNNaker board with 48 multi-core chips connected in a toroidal-
shaped triangular mesh.

is implemented to distribute spikes across the system [15] to reproduce this com-
munication procedure in neuromorphic platforms,

AER defines the transmission rules across the network: i) The packet containing the
address of the neuron that generated the spike is sent through the communication
links without information regarding target neurons; ii) If a post-synaptic neuron
recognizes a specific address (belonging to one of the pre-synaptic neurons), it takes
in charge the packet and starts its elaboration. This is the most adopted method
in state-of-the-art technologies [62].

Using this snn description system, Van Albada et al. [97] designed an snn imple-
menting the cell-type specific cortical microcircuit (CM) model created by Potjans
et al. [70]. Then they simulated this snn on a neuromorphic multi-chip manycore
platform called SpiNNaker [32] using the standard application partitioning and
placement system for setting up the simulation on the board.

2.1.2 SpiNNaker
The Spiking Neural Network Architecture (SpiNNaker) has been developed in 2006
by Furber et al. [31] at The University of Manchester in the context of The Human
Brain Project (HBP). The idea was to create a massively parallel manycore system
Globally Asynchronous Locally Synchronous (GALS) inspired by the mammalian
brain, trying to emulate its connectivity and simulating a large scale SNNs in real-
time with a low power impact [89]. The whole system is composed of 1 036 800
general-purpose CPU and 7 TBs of RAM distributed throughout 1 200 SpiNNaker
boards each one containing 864 ARM processors [32].

This system mimics the features of a biological neural network through the imple-
mentation of several features:
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• Native parallelism: Each biological neuron is a fundamental computational
element within a massively parallel system. Likewise, SpiNNaker uses parallel
computation.

• Spiking communications: In biology, neurons communicate through spikes.
The SpiNNaker architecture uses source-based Address Event Representation
(AER) packets to transmit the equivalent of neural signals (i.e. action poten-
tials) [71]. Each AER packet identifies the event source through an addressing
scheme.

• Event-driven behaviour: Neurons are very power efficient and consume much
less power than other modern hardware. The hardware is put into “idle”
state until an interrupt event does not trigger an action to reduce power
consumption, [42].

• Distributed memory: In biology, neurons use only local information to pro-
cess incoming stimuli. The SpiNNaker architecture features a hierarchy of
memories: memory local to each of the cores and an SDRAM local to each
chip.

The spinnaker connectivity is built such a two-dimensional toroidal shaped trian-
gular mesh of SpiNNaker chips Figure 2.1. Each chip is made of general-purpose
ARM cores. These processors are flexible and capable of aiding the rapid evolution
of neuroscience research. Each core represents the processing node, where neurons
activities are simulated. The populations of neurons are described in software, and
the spikes are represented as packets. These packets are propagated through the
on-chip and inter-chip communication links via routers.

Platform configuration requires several software modules for converting the SNNs
simulations, designed by neuroscientists, into executable and configuration files to
set-up the board [76, 43].

Further details about the SpiNNaker architecture can be found in [31, 74]. Sup-
porting tools are described in [17] while Rast et al. in [72, 73] describe spinnaker
communication protocols and systems.

In the following sections you will find detailed information about the hardware and
software structure required to present the contributions of next chapters.

2.1.3 Hardware
The basic building block of the SpiNNaker system is the Spin5, a Printed Circuit
Board (PCB) that hosts 48 SpiNNaker chips. The SpiNNaker chips are placed to
form a toroidal shaped triangular mesh where each chip is connected to six nearby
chips Figure 2.2. Each Spin5 has a Board Management Processor (BMP), two

13



Background

100 Mbit/s Ethernet interfaces for linking the board with external devices and three
FPGA for linking the board with others six Spin5 PCBs. The first ethernet interface
is directly connected to a chip (the Root chip), the second ethernet interface is used
to communicate with the BMP.

Chip

Figure 2.2: The SpiNNaker chip architecture.

The SpiNNaker chip is a System-in-Package (SiP). The package is composed of two
VLSI die, the first one host a Low-Power Double-Data-Rate Synchronous Dynamic
Random-Access Memory (LP-DDR-SDRAM, aka. SDRAM) with 128 MiB and the
second one a System-on-Chip (SoC) [30].

The SoC is physically connected to the SDRAM via a PL340 interface and hosts
[72]:

• 32 KiB Static RAM (aka. System RAM or SysRAM)

• 32 KiB ROM (which contains the software necessary for the machine boot-
strap, aka. System ROM or SysROM)

• 18 ARM processors

• Ethernet interface

• Router, custom designed for manage six external links to other SpiNNaker
chips (inter-chip communication) and eighteen internal links to the hosted
processors (intra-chip communication)
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In the SpiNNaker SoC, the eighteen processors are connected through the Sys-
tem NoC to the custom router and to the others resources: System ROM, System
Controller, System RAM, SDRAM and the ethernet physical interface (PHY) (Fig-
ure 2.2).

At the board start-up, each SpiNNaker chip runs a hardware check at the end of
which, if some component is not responding, it is disabled. After the check-phase,
each SpiNNaker chip selects a processor to be used as for managing the entire
node. All the other seventeen cores are available for the execution of user-defined
applications [43]. This last class of cores are called .

More schematically in a SpiNNaker chip, the cores are organised as follows: i)
One Monitor Processor (MP), it executes the SC&MP program, which is a sort of
monitor which performs whole chip management tasks, it performs operations of
memory management and acting as a packet manager, able to receive and transmit
packet traffic to the other cores. ii) One Spare Processor (SP), reserved for man-
ufacturing yield-enhancement purposes. iii) Sixteen Application Processors (APs),
used for application processing.

During the boot procedure, called by the host computer, all chips set theirs coordi-
nates respect to the ethernet enabled chip (0,0), initialise the router, and selects the
core for the monitor processor role [84]. The ethernet enabled chip (Root Chip) is
the only one that is physically connected to the 100 Mbit Ethernet interface of the
PCB. During this phase, SC&MP is loaded on all MPs, and the is loaded into all
others APs. The user applications can be executed on top of SARK [84]. The host
computer can now communicate with all processors using the Monitor Processor of
the Root Chip.

Core

Each processor of the eighteen available in a SpiNNaker chip, is an ARM 968 a 32-
bit RISC ARM processor with ARMv5TE microarchitecture. The operative clock
frequency of the processor is 200 MHz.

The processor has its own DMA controller and two private tightly-coupled memories
(TCM) one for instructions (ITCM) and one for data (DTCM). In this way the
processor can access four memory areas: i) a 96 KiB . It is divided into ITCM
containing instructions (32 KiB) and DTCM containing application data (64 KiB).
ii) The 32 KiB System RAM integrated into the chip and shared between all the
cores. iii) The 32 KiB System ROM shared between all processors that contains
the bootstrap software. iv) The 128 MiB SDRAM shared between all cores.

The processor lack floating-point unit, since the differential equations of the neural
models, are in the domains of real numbers a programmer needs to use a mechanism
of value rescaling that allows working with only fixed-point numbers.
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Communications

The SpiNNaker chips have six bidirectional links that allow connections to form a
triangular lattice which is folded onto the surface of a toroid. A custom Router
incorporated in each chip manages inter-chip and intra-chip communication [31].
This structure of link allows each router to communicate with its own six neighbours
chips [53].

Three different packet routing mechanisms can be identified:

• The communication among SpiNNaker chips inside the same PCB, mediated
only by the routers Figure 2.3.c

• The communication among SpiNNaker chips inside different PCB through
the six SATA-like links, mediated by routers and three FPGAs mounted on
each PCB. In this way, a PCB can be connected with other six PCB.

• The communication among SpiNNaker chips and Host Computer via Ethernet
interface, mediated by the routers, MPs and Root Chip of the involved PCB.
The off-board communication between the Host Computer and the SpiNNaker
cores is supported using a 100 Mbit Ethernet interface physically connected
to the Root Chip. The Root Chip that receives UDP packets from the Host
is in charge of forwarding the UDP payload within the network of SpiNNaker
chips.

The kernel of the interconnection among all cores of all SpiNNaker chips is the
Router (Figure 2.3), specifically designed to deliver packets as fast as possible (0.1
µs per hop) [17].

The particular design of the Router, despite limitations on the synchronous trans-
mission of packets [94, 96] allows dispatching the incoming packets, coming both
from external links and from internal cores, to multiple outputs [30].

The length of these packets can be up to 72bit. The packet is divided into 8bit of
packet header 32bit of protocol header and 32bit of optional payload. The Router
operates with four types of packets:

• are used for reaching many cores across the board. They are widely used
during neural simulations for spreading neural potentials to multiple destina-
tions (emulating synapses potential transmission). These packets are routed
using a routing table of 1024 entries, stored in a ternary CAM with three
values per entry: routing key, routing mask and routing rule. The protocol
header of an incoming multicast packet is compared with all table entries.
The matching operation is performed concurrently to improve performances
the packet routing key is filtered with the routing mask and then compared
with the routing key of each entry in the routing table. In case of a match,
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Figure 2.3: SpiNNAker Router details: a) the principal branch that merge the
incoming packets (external and internal) to be provided on the routing engine input;
b) the multiplexer tree that connect the internal cores to the principal branch; c)
the six external link of the chip.

the Router sends the packet to the destinations specified in the associated
routing rule. This type of packet can transport a payload of 32bits.

• packets are used for reaching an exact core of the board uniquely identified by
the coordinates of the belonging chip and its virtual processor ID (a number
from 0 to 17). These packets are routed using a dedicate routing table. For
each possible destination coordinates, there is a 3-bit entry which is decoded
and used to recognise if the packet should be sent over an external link. If
the destination is within the local chip, the packet is always delivered to the
monitor processor. It is in charge to forward the payload to the destination
core. This type of packet transports a payload of 32bits.

• packets are used for initialising the board and for implementing a keep-alive
mechanism useful for understanding if there are broken links and, in this case,
calculate a different path. This packet can only be managed by MPs and can
be routed only to MPs of neighbours chips. Moreover, during the board
configuration phase, they are used for loading the applications in the cores
using a flood-fill mechanism. This type of packet can transport a payload of
32bits.
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• packets are used for reaching a fixed destination, by default, the chip attached
to the ethernet controller. The advantage of this type of packet is that it
provides 64 bits of payload.

An emergency routing procedure is available to restore the connection when an
output link is stuck due to congestion or hardware failure and increase the router
reliability. Moreover, when an MC packet is not recognized in the internal rout-
ing table, it is routed by default on a predetermined output link to optimise the
multicast propagation

Payloads higher than 32 bit need the usage of SC&MP API. The MPs provide a
higher level of abstraction that simplifies the usage of chip interconnection. The
can be used to manage communication between processors up to 256 Bytes [32].
The Monitor Processors act as a middleware between the SDP protocol and the
on-board network. A Monitor Processor that receives an SDP packet splits the
whole frame into 32-bit fragments to be delivered in the internal network through
the PP packets.

2.1.4 Software
SpiNNaker usage is made possible thanks to a software library. The software library
can be split into two main groups:

• PyNN, a Python library used to describe and manage SNN simulations with-
out any particular knowledge of the board

• Host-side software, high level software written in Python

• Board-side software, low level software written in C and Assembly

The SNN simulation is managed in the host computer, where SNNs are described
using PyNN [25]. PyNN is a domain-specific Python library developed to define
SNN simulations and allows to use many neural and synapses models. It can be
used, in a transparent mode, to manage simulations on different backends such as
neuromorphic platforms or general-purpose workstations. The SNN simulation is
configured on the SpiNNaker system using a PyNN backend called sPyNNaker [76].
The sPyNNaker library translates the SNN description into configuration files to
be sent to the SpiNNaker board [96, 10]. During the execution of SNN simulations
on the SpiNNaker Machine, spikes are represented as MC packets and transmitted
through the network using the routers of the SpiNNaker chips [62].

Generally, to execute an application on SpiNNaker, like the Spiking Neural Network
(SNN) simulations, a programmer needs to use a set of high-level software modules
running on the host computer [32, 96].
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Host-side software

The host-side software, which is composed of several modules, is used to start
simulations and to map them on the SpiNNaker system. The modules used for
SNN simulations are:

• sPyNNaker: it contains the front-end specifications and implementation for
the PyNN API. This module is a wrapper of the PyNN simulator and is
responsible for translating the high-level description into populations of neu-
rons to be loaded onto the SpiNNaker system. This module is independent of
the PyNN version, there are two additional modules called sPyNNaker7 and
sPyNNaker8 that provide support to specific versions of the PyNN tool (0.7
and 0.8+ respectively)

• SpiNNMachine: it is a Python abstraction of a SpiNNaker machine. Its
functionality is to create a representation of the current state of the allocated
SpiNNaker machine in terms of chips, cores, routable links, available routing
entries and available SDRAM

• SpiNNMan: this module is used to communicate with a SpiNNaker board,
sending and receiving packets (using the UDP protocol) through the Transceiver
class which is its main component. The SpiNNMan module allows to get the
state of the machine, boot it with a specific version of the software, load
application binaries and access the SDRAMs of the single chips

• PACMAN: it is in charge of the Partitioning and Placement operation which
is performed by creating a graph representing the Application that will be ex-
ecuted (called Application Graph) and to partition it in order to fit the SpiN-
Naker system (performing a correct distribution on the available resources
and generating the routing information to implement the communication be-
tween vertices, obtaining the so-called Machine Graph). This module keeps
track of the size of the available system and of the usable memory into each
chip.

• Data Specification: this module is used to generate memory images, contain-
ing the Neuron Model Implementation configuration data needed during a
simulation, for each SpiNNaker core involved in the simulation. The Data
Specification tool is composed of two main parts: the Data Specification
Generator (which is in charge of generating the Data Specification Language
files, a set of text files containing the required instructions for generating the
memory images) and the Data Specification Executor (which is in charge of
executing the instructions contained in the generated files and of creating the
memory images)

• SpiNNFrontEndCommon: this module provides common functionalities to all
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others libraries

Steps in between the PyNN SNN description and its execution on the SpiNNaker
board are handled by a Python package called PArtition and Configuration MAN-
ager (PACMAN). This package provide utilities for SNN Partitioning, Placement
and Routing [33].

PACMAN uses the PyNN representation of SNN composed by Populations and
Projections to build the Population graph. This graph is elaborated following three
main phases.

• During the Partitioning phase, each neuron population is divided in por-
tions called part-population in order to satisfy the core constraint of maximum
number-of-neurons per core. This division is made by selecting a subset of
neurons without any consideration about the neuron connectivity.

• In the Placement phase, each part-population is assigned to a different core
by means of a simple algorithm performing the sequential positioning. Once
all the cores of a chip are filled, PACMAN starts to fill the cores of the next
chip following a radial order.

• During the Routing phase the part-populations disposition over the board
is evaluated in order to identify the best routing paths between chips. Once
the best paths are identified, the generation of routing tables is performed for
each chip involved in the simulation.

The partitioned and placed SNN is passed to the configuration pipeline in charge to
configure the SpiNNaker board with the files generated in the host. Finally, in the
Board configuration phase, configuration files and routing tables are sent through
the Ethernet connection to each core and chip that execute the simulation.

The phase of simulation is one of the most critical in terms of execution time as well
as resources management. The aim of this phase is to fill the APs memory with the
configurations data needed during a simulation. In order to spread these data to
each core involved in the simulation, the data specification phase is divided into two
steps. The first is the that uses a set of specific DS-Commands for the generation
of the configuration data that represent the SNN in the cores. The second step is
the , where DS-Commands are executed, and the computed values are stored in
the cores memories.

The DS-Commands allow defining a meta-language that let to perform some op-
erations in SpiNNaker Chip memory. The Data Specification Execution can be
performed on the host computer (DSE-OnHost) or directly on SpiNNaker Cores
(DSE-OnBoard). In the first DSE version, it is necessary to load the generated
simulation image to the SDRAM of each node. Whereas using the DSE-OnBoard,
the DS-Commands are sent to the board that will interpret and execute them.
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DSE-OnHost makes the host computer execute the DS-Commands for the on-host
configuration of each core. The generated configurations of memory dump of each
SpiNNaker Core are then saved in configuration files. Then, the files are read and
sent through the Ethernet to the SpiNNaker board in the form of packets. These
packets are saved in the chip SDRAM. With this DSE implementation, the compu-
tational effort of both phases of Data Specification (DSG and DSE) are performed
on the host side, and the intrinsic high-parallelism and low-power consumption of
the SpiNNaker system are not exploited at all. Indeed, the DSE phase is highly
parallelizable, but in the DSE-OnHost the implementation is very sequential by
causing a very slow configuration for the simulation.

DSE-OnBoard is a new implementation has been proposed in order to overcome
some of the limitations of the DSE-OnHost. The DSE-OnBoard allows sending
SCP packets to the SpiNNaker Chip in order to write the DS-Commands directly
in memory. Then, in each AP a special program is loaded. When executed, this
program starts to run the DS-Commands that it finds in the SDRAM and generates
the data structures itself directly on-board.

This new implementation allowed to move the computational effort necessary for
the creation of data structures from the Host Computer to the SpiNNaker Board.
However, the serial implementation and the sequential writing procedure of the
memory chunks to each SpiNNaker Chip remains a lack in terms of flexibility of the
configuration mechanism.

Board-side software

The board side software is built using a cross-compiler and converted into a binary
format ready to be uploaded on SpiNNaker (APLX). The Monitor Processor loads
the APLX into an area of chip shared memory where the application processors can
reach. The APLX is read by the APs and used to initialise the content of private
processors memory, DTCM with data and ITCM with instructions.

The board-side software includes C and ARM-Assembly libraries:

• SpiNNaker Control and Monitor Program (SC&MP), executed by all Monitor
Processors, manage the whole chip, the communications between application
processors via the SpiNNaker Data Protocol (SDP) and the communication
with external devices via the SpiNNaker Command Protocol (SCP).

• SpiNNaker Application Runtime Kernel (SARK), a minimal runtime kernel
executed by all Application Processors to support the execution of the code,
to manage the packet transmission and provides low-level functions to expose
hardware functionalities of the SpiNNaker chip to the application level.

• SpiNNaker API (Spin1) is developed on top of SARK and implements the

21



Background

Event-Driven Programming (EDP used by applications to build efficient code
[17].

Regarding the monitor processors, during the bootstrap, a software called SC&MP
(SpiNNaker Control & Monitor Program) is loaded. Its tasks are:

• Supervise the chip components

• Load application on APs

• Manage high-level communication protocols

• Manage communications with external devices

All the application processors, at the lowest level, run the SpiNNaker Application
Runtime Kernel (SARK), which performs three main functions

• to provide a library for memory management, interrupt control and other
low-level operations available to the application

• to provide mechanisms for the monitor core to communicate with application
processors and for external devices to control the application and access to
memory.

• to initialise the core by setting the stack and some peripherals and then to
call the main procedure of the application causing its start

The applications run on top of SARK, for instance, the Neuron Model Implemen-
tation (NMI) used in SNN simulations, are composed of a set of callback functions
registered on some events in order to react to software or hardware interrupt signals.
Spin1 library provides a software scheduler to implement event-driven programming
on SpiNNaker.

This programming model allows achieving low power consumptions, it maintains
the core in idle state and sensitive to only interrupts, until an event (associated to
a software or hardware interrupt) triggers a callback function execution. As soon
as an event is presented to the processor, it wake-up, performs the associated task
and then returns in idle state. It is possible to configure different priorities for
different events in order to set a callback hierarchy and to be sure to serve the most
important requests first. Depending on the role of the core there can be different
types of software running on it, the most common are timer tick, packet reception,
DMA transfer completion and a configurable user event (via software interrupt).

The callbacks can have different priority levels, a priority level of negative one
registers the callback on the Fast Interrupt (FIQ). A priority level of zero registers
the callback to a normal priority interrupt (IRQ) and priority level greater or equal
to zero indicate a queueable callback.
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2.1.5 Communication
The communications with external devices (like Host Computer) are made possible
through the Spinnaker Datagram Protocol (SDP) and the Ethernet interface con-
nected to the Board Root Chip (BRC), that redirects all the received SDP packets,
encapsulated in UDP/IP packets, to its Monitor Processors (BRC-MP) [92].

Spinnaker Datagram Protocol

Spinnaker Datagram Protocol (SDP) is a high-level protocol provided by the SpiN-
Naker APIs at the user level. This protocol can be used for both internal (core-to-
core) and external (core-to-device and device-to-core) communications. The current
implementation of the SDP protocol is based on packets that can contain up to 256
bytes of payload.

Each packet is composed of a header field used for addressing and control purposes
and a data field which contains the payload. The length of the payload must be
implicit to avoid the addition of a length field.

The SDP Header has eight fields (one byte per field):

• The Flag field is used to indicate if a response is expected or not.

• The IPTag field is used for external communication purposes.

• Source Chip X, contains the X coordinate of the sender

• Source Chip Y, contains the Y coordinate of the sender

• Destination Chip X, contains the X coordinate of the receiver

• Destination Chip Y, contains the Y coordinate of the receiver

• Source Processor / Communication Port, contains the Virtual CPU identifier
(5bit) and the communication port (3bit) of the sender

• Destination Processor / Communication Port, contains the Virtual CPU iden-
tifier (5bit) and the communication port (3bit) of the receiver

When SDP is used for internal communications, the Source and Destination fields
in the header indicate the X and Y coordinates of the involved chips (range 0-
255), the CPU fields indicate the desired core (valid range 0-17) for the specified
chip, and the Port field (range 0-7) can be used to address specific functions and
communication flows.

Monitor processors manage the forwarding of SDP packets to the SpiNNaker Chip
Network splitting a whole SDP packet (header and payload) in fragments of 32
bits to be sent as PP packets to the desired core. For reliability purposes, SC&MP
implements an acknowledgement system. The sender MP after sending sixteen
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packets enters in a wait state until the receiver MP sends an acknowledgement.
When all the fragments of the whole SDP packet are received, the receiver MP
copies the reconstructed SDP packet into the Message Box, a portion of System
RAM, and triggers an interrupt to the target core. Then, the target core can react
to the interrupt and read the SDP from the Message Box. When an AP receives
an SDP on communication port zero it is caught and processed by SARK, for all
others communication ports is necessary to register a function callback to manage
the SDP payload.

SDP can also be used for external communications. In this context the SpiNNaker
Datagram Protocol is used to establish communication over the 100 Mb/s Ethernet
link that connects external devices with the SpiNNaker board. To indicate that an
external device is involved in the transmission and that the packet will be routed
outside the SpiNNaker network, the Processor/CommunicationPort field present in
the SDP Header must be set to 0xFFFF in order to invalidate the Destination or
the Source fields.

When the destination field is invalidated, all packets are automatically sent to the
BRC-MP that start the procedure to send the whole SDP outside the board. In this
case, an SDP packet needs to be embedded into the data field of a UDP datagram.
This field contains 2 bytes of padding used to align the start of the SDP packet
to a 4-byte boundary, simplifying the packet manipulations inside the SpiNNaker
system.

The BRC-MP use the IPTag field, a 8-bit number, as an index for a table available
only in BRC, in which for each IPTag corresponds an IP address and UDP port.
This mechanism is used to avoid to store the complete IP address in each SDP
packet. IPTags can be permanent or transient. A permanent IPTag is created
and removed manually. A transient IPTag is created when an SDP packet (with a
reply-expected flag set) is received and removed when the SDP reply packet is sent
back over the Ethernet interface.

The SDP bandwidth from Host to Root Processor is ~10 MiB/s and drops to
2 MiB/s from the Root Processor to another SpiNNaker Core.

Spinnaker Command Protocol

The data field of an SDP packet could be formatted to follow the specifications
of the SpiNNaker Command Protocol (SCP) [93]. This protocol is used for low-
level interactions with the SpiNNaker system for debugging purposes and program
loading. Commonly it is used to send a command to a specific processor and to
convey the response from that processor. The packet format consists of the SDP
header (8 Byte) followed by a fixed-length header of 16 Byte plus a variably sized
data field up to 256 Bytes. The first two bytes of an SCP header indicate the
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conveyed command in case of a command packet or, otherwise, the return code
after the execution of that command in case of a response packet. The following
two bytes are used to detect lost packets (indicating the sequence number of the
command). The three Arg fields can be used as 32-bit arguments or return values.
The remaining bytes (up to 256) are used for data.

This protocol is used to initially control the SpiNNaker system from the host com-
puter by sending commands to the kernel running on every active core (SC&MP on
Monitor Processors and SARK on Application processors). These commands are
typically used to download application programs and perform low-level functions
such as getting kernel version running on the SpiNNaker processors, reading/writ-
ing the memory locations, and triggering the execution of programs.

The SCP provides four low-level instructions for accessing chip resources and ex-
tracting debugging information, such as the working state of the APs or the number
of packets processed by the Router. Furthermore, SCP provides signals for control-
ling the application execution state and for modifying the AP memory at low-level.

The implementation of this protocol is embedded in the kernel (SARK) that must
be kept as light as possible because of the limited memory resources and small
computational power of the cores. Working at the kernel level and missing a direct
interface to applications, SCP cannot be used effectively on the application layer.

2.2 Heterogeneus Architecture and Code Analy-
sis

Programming models like LLVM, GLOW [77] and XLA [91] are emerging as they
are suitable to support dedicated HW accelerators in heterogeneous platforms such
as Apple A12, Nvidia Tegra and Xilinx Zynq embedding specialised compute-units
such as ARM big.LITTLE, GPU, FPGA.

Besides the offloading mechanisms, techniques for automatic source code analysis to
decide how to map computational kernels on the available accelerators are emerging.

In recent years the scientific community has tried to answer the question “can we
analyse the code like text?” exploiting natural language translations, classifications
and code modelling.

As shown in the survey of Allamanis [5], the source code maintains some properties
of natural languages (it can be considered, like text, a human communication form)
but it has profound differences. Some of the code properties like executability,
formality and structure make it more complex to analyse than text.

Compiler designers started considering the adoption of machine learning techniques
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to obtain heuristic compilers capable of learning from the data [99, 7].

Several techniques have been proposed in the literature to represent programs using
a set of quantifiable properties or features compatible with the inputs of the learning
module [60]. Standard machine learning algorithms typically work on fixed-length
inputs, so the selected properties shall be transformed into a fixed-length vector
of features (boolean, integer, or real values). Compiler researchers have designed,
during the years, various forms of program features for their machine learning al-
gorithms. These include static code structures extracted from the source code or
the compiler intermediate representation [41] and dynamic profiling information
obtained through run-time profiling of the program execution [20]. Compiler opti-
misation methods based on supervised learning have been proposed using Bayesian
Networks [8], Support Vector Machines [87, 66], Decision Trees [60, 26] and Graph
Kernels [65].

In 2013, D. Grewe [36] develop a workflow to translate an OpenMP program in
OpenCL and to decide for each generated OpenCL kernel the most suitable compute
unit between CPU and GPU. Usually, an OpenCL developer defines a kernel when
it knows that the code fragment is better to be accelerated in an OpenCL device
(usually a GPU). However, when the kernels are built automatically, a decision
process is necessary. In [36], the authors define metrics manually to extract from the
code (like the number of calculation operations or local and global memory access)
to make decisions based on a probabilistic method (C4.5 decision tree classifier).

In Cummins et al. [22], the decision tree classifier had been replaced with a deep
learning model based on a RNN. Using deep learning is no more necessary to extract
the features manually since they are inferred automatically during the training
phase. The authors show an improvement in the classification accuracy compared
to the previous work presented in [36].

In my works described in the last chapter, the methodologies were developed and
customised for analysing kernels implemented in OpenCL. I adopted the intermedi-
ate representation (IR) level of the LLVM compiler. LLVM is increasingly adopted
in the embedded system world, because it is capable of decoupling the front-end
compiler from the target architecture, in this way many optimisation steps can be
performed at the IR level before generating the binary machine code. Source code
features, at this intermediate level, can be exploited to perform complex compila-
tion decisions, including allocating code fragments to architecture devices. Machine
learning techniques can be applied to learn these characteristics by creating a learn-
ing model based on training code fragments.

One of the challenging issues in this field is the problem of projecting the source
code in a continuous metric space. In my work [9] I use a simple method to
introduce the code stream directly into the network, after a filtering phase, and let
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the Embedding Layer learn the best token projection. A couple of other teams have
proposed two alternative solutions. In Ben-Nun et al. [12], the authors propose
Inst2Vec a system to pre-train the embedding layer analysing the Contextual Flow
Graph (XFG). In Aggarwal et al. [3], they propose IR2Vec, a procedure to project
an IR in a continuous metric space directly.

In this work, I explore the usage of two well known DNN structures used in the
state-of-the-art natural language processing methodologies: CNN and RNN [102,
35].

RNNs are a particular type of model developed to process temporal sequences [79].
An RNN maintains an internal state, acting as a memory, that summarises the
information extracted from the input sequence. In literature, a standard RNN
implementation is the Long Short-Term Memory (LSTM), a network able to learn
when to memorise or forgot information of the input sequence and correlate together
elements at different times. RNN are used in state-of-art papers [22, 12, 3].

Convolutional Neural Networks are successfully used in the context of image recog-
nition [51]. Behind the success of this type of network, there is the assumption
of information locality in the input data. All data inside a region called “ker-
nel” are considered correlated, and this correlation is weighed by a filter, identical
for any region considered in the input. For image classification, the kernel shape
has two dimensions, but this technique can also be used in temporal signals us-
ing one-dimensional kernels. The convolution operation performs an element-wise
multiplication between the input data in the kernel region and the filter and accu-
mulates the results in a single scalar. The filter moves along all input dimensions
by a fixed step called stride. A convolution layer uses multiple filters to explore a
different type of kernel relationship. Each filter contributes to building a channel
of the output tensor. In this work CNN is for the first time introduced in a code
classifier method, fully characterising its performance with an extensive exploration
and comparison with LSTM. To make this comparison fair, we implemented the
LSTM model in our architecture.
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Chapter 3

Programming tools and
middleware for manycore
neuromorphic platforms

3.1 Architecture Profiling
In this chapter, I describe a top-down profiling approach that evaluates the per-
formance of the neuromorphic platform during SNN simulations. For this purpose,
several SNN configurations were designed and executed on a SpiNNaker board
(Spin5).Each configuration was customized in terms of:

• SNN topology;

• Neuron model type;

• Neuron parameters;

• Neuron placement on the SpiNNaker cores.

The profiling procedure can exploit the SNN configurations to evaluate the com-
plex problems revealed during SNN simulations. This goal is to investigate how
to decrease the packets traffic circulating over the inter-chip network to improve
simulation reliability and communication efficiency. The research developed over
two main phases: A top-down profiling analysis to detect bottlenecks in the SpiN-
Naker communication system, followed by the development of an SNN Mapping
algorithm inspired by the analysis performed in the first phase.
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3.1.1 Profiling data
I monitored three different traffic counters available at the chip level and collected
warnings at the core level to extract useful data for board profiling:

• Router Multicast Local counter traces the number of packets sent by the
internal cores to the router and correctly propagated;

• Router Multicast External counter considers the packets incoming to the
router from the external port and correctly retransmitted;

• Router Multicast Dumped counter is incremented when a processed packet,
ready to be transmitted, is dropped for some reasons. Usually, the principal
cause of this event is a busy state of receiver chip.

• Warning Output Queue Full (WOQF) indicates the amount of internally gen-
erated packets that cannot be transmitted to the router. These events can
increment the computational loading of those cores that have to retransmit
packets, sometimes leading to the saturation of queues and consequent packet
missing or packet delay;

• Physical to Virtual core ID conversion list allows identifying the physical
core position into the chip where the simulated populations are executed.
This information becomes essential, during the simulations, to investigate
the core/router transmission channel limits and the related maximum core
load.

In order to evaluate SpiNNaker performances on real SNNs I executed the sim-
ulation of the Cortical Microcircuit (CM) proposed by Potjans et al. [70]. This
network represents the four layers constituting 1mm2 of human brain cortex (L23,
L4, L5, and L6). Each layer consists of inhibitory and excitatory neuron populations
modelled through the setting of specific parameters in the IF neuron model. Exci-
tatory populations have positive synaptic weight while inhibitory neuron synapses
are negative. The network represented in Figure 3.1 is described in PyNN [13]. It is
composed by 77 k neurons, grouped in eight populations, and about 3∗108 synapses.
Special source populations (SRCPops) are used to generate spikes with a Poisson
probabilistic process. These SRCPops are connected to each IF population of the
CM to simulate the background activity of adjacent areas.

During the analysis, the network has been reduced in terms of neurons and synapses
number to satisfy execution time and resources availability constraints. Adopted
scaling factors are in the range from 1% to 20% both for neurons and synapses.

The simulation is monitored and the spikes are detected using the standard method,
that consists of the interrogation of each core running a part-population.
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Figure 3.1: Graph representation of the SNN populations used to simulate the
Cortical Microcircuit behaviour. The four layers are represented with different
colors, the square represents Excitatory populations while Inhibitory are drawn as
circle. The hexagon in grey stand for spike sources.

Three unexpected behaviours were pointed out during the CM simulations on the
SpiNNaker board for some network scaling factors:

• The simulation does not begin if the PACMAN generated part-populations
do not respect the physical core constraints (DTCM saturation).

• The simulation starts but some cores enter in Error state, and consequently
the simulation is aborted (Network congestion and communication buffer sat-
uration)

• The produced results are biologically plausible, but some spikes are missed
(Network congestion)

The simulated network is evolving based on the circulating spikes. Being the impact
of the missed packets not predictable a-priori it is fundamental to avoid these events
that can lead to reliability problems.

3.1.2 Method
A significant amount of research has been done to highlight the capability of simu-
lating large SNNs on neuromorphic platforms such as SpiNNaker [75, 85]. However
the behaviour of the network is generally evaluated from a biological point of view
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Figure 3.2: The Base Configuration Network (BC): in orange are described the
SRC Chip while in blue the IF Chip. The white circle represents the cores of chip.

without considering hardware faults or packets missing. Indeed, is well accepted
that the SNN simulations are relatively uninfluenced by system variations and im-
perfections [63].

In order to execute an accurate profiling, I designed a customised SNN able to
stimulate the critical behaviours of SpiNNaker. This customized SNN is flexible
enough to be used as the basic component for the design of complex use cases.
One of those behaviours arises when a large amount of packets are transmitted in a
single link at the same time in both directions with the consequent loss of packets.

The Base Configuration is build using two populations placed on two different
chips (Figure 3.2). The first population called Spike Source (SRCPop) is used to
send spikes to a connected target population following a predefined time vector.
The second population, IFPop, is composed by Integrate and Fire neurons and
connected one-to-one to the SRCPop.

The behaviour of both populations is deterministic, since the IFPop parameters
have been set to generate a new spike when a spike from the SRCPop is received.
During the simulation, spikes generated by the IFPop are stored and counted in
order to be compared with the number of packets generated in those cores running
the SRCPop.

At the end of the simulation, all cores are queried to provide the information de-
scribed in subsection 3.1.1 (i.e. number of warnings and dropped packets).

The Base Configuration can be parametrised at three levels: i) The population size,
responsible for the modulation of the number-of-cores used in the analysis, and the
consequent number-of-packets circulating on the segments of network under test;
ii) The max number-of-neurons that can be simulated over a single core; iii) The
exact location of chips and cores running the two populations.

Using these parameters, several customised configurations can be build to force the
overload of specific communication segments providing useful information about
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the traffic sustainability. The Base Configuration allowed us to highlight a critical
problem represented by the loss of packets. This occurs when all the neurons of
SRCPop fire together and generate a huge amount of traffic over the lines of the
router under investigation.

In particular, I investigated two classes of traffics: The Core to Router traffic
generated when packets come from the Cores to the Router of a chip, and the
Router to Router traffic generated when packets are transmitted from a Router to
another Router through one or more chips.

Core to Router traffic analysis

The Core to Router (C2R) traffic analysis is exploited to study the behaviour of the
Router overloading its first multiplexer branch with packets coming from internal
cores (Figure 2.3.b).

The SRCPop are manually placed in selected cores and connected to a IFPop
located in another chip. Many placement configurations have been tested in order
to identify those able to avoid packet conflicts when the maximum traffic is reached.

In order to simulate a huge number of packets accessing the first internal layer of
the router I adopted the Basic Configuration (in Figure 3.2) letting the neurons
belonging to SRCPop to fire all together at the same time.

Moreover, in order to show a counter example where an additional software compo-
nent can solve the detected problem, the same analysis has been performed using
two SRCPop models. The first model exploits a software buffer to store the un-
transmitted packets that have to be re-introduced into the router, whereas in the
second model this buffer is not used.

In Figure 3.3 are reported four configurations (from E1 to E4) designed to show
the C2R traffic response of the board with different load scenarios.

In the experiment E 1 the two populations of 4096 neurons grouped in 16 part-
population are placed on two different chips. The SRC neurons models without
retransmission buffer are used. The neurons of SRCPop fire at the simulation time
of 100 ms and send spikes to the connected IF neurons. When the IF neurons
receive a spike they generate a new packet and store the event. At the end of
the simulation these events are counted and their occurrence compared with the
number of packets conflicts collected in the SRCPop cores.

The SRCPop modelled without SW buffer lead to a correlation one-to-one between
the number of packets conflicts and the number of packets missed in the IFPops.
Missing packets are dropped by the SRCPop and do not produce an increment of
the Router Multicast Dumped since the packets do not reach the router.
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Figure 3.3: The four experiments are represented in the router internal branch of
chip executing the SRCPop. Red circles identify cores running simulation while
in the connection nodes (in yellow or green) are reported the number of conflicts
detected. In the experiment E 1 256 SRC neurons without retransmission buffer are
placed in each of the 16 cores. Experiment E 2 is executed using only 50 neurons
per core. Experiment E 3 run 256 neurons per core on 12 cores. Experiment E 4
run 256 neurons per core with retransmission buffer on 16 cores.

In Figure 3.3.E1 are reported the configuration and the results of experiment E1.
It can be observed that cores connected to the same first layer of the router internal
branch (yellow and green rectangles) miss an equal amount of packet between each
other; 109 packets for cores 0 and 16, while 2 packets for all the odd cores.

The first hypothesis assumes that the observed relationship is caused by bandwidth
limitations on the internal router tree (Figure 2.3.b) even if the bandwidth reported
on the data-sheet (1250 packets/ms per core) is sufficient to support a communi-
cation rate of 256 packets/ms per core [29], that produce an overall traffic on the
router of 4096 packets/ms.

Two configurations are then executed to evaluate the reasonableness of this band-
width limitation hypothesis.

The configuration E2 (Figure 3.3.E2) reduces the number of neurons per core from
256 to 50 in order to decrease the C2R traffic on the router to 800 packets/ms.

The configuration E3 (Figure 3.3.E3) avoids concurrent packets in the first layer
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of router (where the majority of packet conflicts are detected), applying a delay of
1 ms to the cores 0-16 and 1-17. This configuration generates a C2R traffic on the
router equal to 3584 packets/ms.

Results in Figure 3.3.E2 show that even in the configuration E2 some packets are
dropped in the first router layer shared by cores 0 and 16. Instead, in configuration
E3 all the 3584 packets were simultaneously transmitted without losses. These
results highlight that conflicts are generated in the first internal router layer and
are related to the SRCPops placement on the cores, disproving the hypothesis of
router bandwidth limitation.

Finally, as last analysis, the first configuration is re-executed using the SRC neuron
model with retransmission buffer. SRC models that make use of this buffer are
able to store the conflicting packets and re-inject them as soon as possible. This
re-injection system allow the correct transmission of all the 4096 generated packets.

However, during this experiment I detected an higher number of conflicts with
respect to the unbuffered solution (Figure 3.3.E4). An average of 151 conflicts
per core for the buffered SRCPops versus 13 conflicts per core for the unbuffered
version. All neuron models implements this technique and for this motivation
it is difficult to lose internally generated packets. However, in case of congested
configurations or for highly synchronous applications this solution can be time
spending. Indeed, supplementary computational load is required from cores to
sustain the re-transmission operations. Moreover, the adoption of these neuron
models can cause premature termination of simulations due to the accumulation of
delays by cores that are busy to retransmit packets.

Router to Router traffic analysis

The Router to Router (R2R) traffic analysis is designed to investigate traffic con-
figurations that cause dropped packets in the inter-chip network.

The identification of such configurations is fundamental to define reliable rules
about traffic fluxes that can be used by the SNN-PP software to avoid the creation
of hot spots.

I designed several configurations, three of which proposed in Figure 3.4, using
multiple instances of the Basic Configuration (Figure 3.2) to simulate traffic peaks
on routers and links. In these configurations, the SRCPops are placed on different
chips, connected to IFpops and configured to fire all together at the same time.

In accordance with the schemes proposed in Figure 3.4:

• The SRCPops and IFpops chips are represented as orange and blue hexagon.
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Figure 3.4: Three configurations investigated for the R2R traffic analysis. Config-
urations have three main characteristics: i) the orange and blue hexagon represent
the SRCPops and IFpops; ii) SRCPops and the connected IFpops are placed sym-
metrically in relation to the chip under investigation and marked with the same
letter; iii) the hot-spot chip is represented as the white central hexagon. In the
traffic section is reported the percentage of packets reaching the destinations.

• SRCPops and the connected IFpops are placed symmetrically in relation to
the chip under investigation, Cross Chip, and marked with the same letter

• The Cross Chip is represented as the white central hexagon;

The three selected configurations allow us to make some considerations about traffic
fluxes responsible for the reduction in system reliability during the simulations.

In the first configuration called F (Figure 3.4.F) the SRCPops are placed to transmit
packets through 4 ports of the Cross Chip.

Two out of these four ports are used both as inputs and outputs: The port East(0)
of the chip under investigation gets input traffic from SRCPops A and outputs
traffic from the SRCPops B. Similarly the West(3) port sustains the traffic of the
same populations with reversed order. Moreover, only for the East-West traffic, the
path is designed to pass the packets through a middle chip before to be introduced
in the Cross Chip. The other two ports North-Est(1) and North(2) are used in one
direction only to pass the spike generated from SRCPops D and C to the IFpops
connected on the port Sud-West(4) and Sud(5).
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Figure 3.5: Router counter values in configuration F and EF

During this analysis an unexpected number of Router Multicast Dumped events
with relative packets loss has been detected in all the chips involved in the traffic
with the exception of destinations C and D. Figure 3.5 reports on the number of
Internal, External and Dumped packets of each chip involved in the simulation. A
considerable amount of packets is lost in all the routers that try to send packets
through the chip under investigation Indeed even if 16 384 spikes are generated
by the SRCPops (4 SRCPops * 16 cores * 256 neurons per core) the router of
Cross Chip processed only 10 336 packets. The 6 048 lost packets can be due to
the simultaneous use of East-West communication links in both directions that
generate deadlock conditions in the routers involved in the transmission path.

The configuration EF (Figure 3.4.EF) is designed to investigate the hypothesis
that simultaneous bidirectional transmission from the same port can be the cause
of critical traffic situations. In this configuration all the four involved ports of the
Cross Chip are used as input/output at the same time.

Results are reported in Figure 3.5. This configuration accounts for an higher num-
ber of lost packets with respect the F case. Indeed, only 6 508 spikes are process
by Cross chip router, instead of the expected 16 384 spikes or the 10 336 packet
processed by F configuration. Whereas, the majority of packets are dumped in the
neighbour chips.

A punctual comparison between the amount of spikes that reached all the four chips
running the IFpops is provided for both the discussed configuration in Figure 3.6.

In both configurations all the routers of chips running SRCPops get all the packets
from their cores. Indeed in both figures (Figure 3.5 and Figure 3.5) the total amount
of packets introduced in the routers of the chips running SpikeSourcePops is 4096
(Internal + Dropped).
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Figure 3.6: Number of spikes detected in the Destination IFpops for configurations
F and EF.

However, because the Cross chip is in a busy state, that increase when the ports
are used in both directions at the same time, a deadlock chain effect is backwards
propagated from the busy router to the chips involved in the communication path
with relative loss of packets.

A third configuration called F-mono has been designed (Figure 3.4.F-mono) in
order to validate the hypothesis that a deadlock is more likely to occur if the links
are used at the same time in both directions, and to confirm that the packets loss
is not due to bandwidth problems.

In this configuration the traffic flows through the Cross chip in one direction only.
Three SRCPops send packets through the three inputs ports of the Cross chip
(Est(0), North-Est(1) and North(2)). These packets are then redirected respectively
to West(3), South-West(4) and South(5) where nine IFpops are connected. With
this configuration 36 864 spike packets (9 SpikeSourcePops * 16 cores * 256 neurons
per core) are sent through the Cross chip without any loss of packets.

The use of retransmission buffer for the simulation of configurations F and EF
determined a huge amount of conflicts, on average 6 conflicts per packet are gener-
ated. Indeed the transmission of 4096 packets in the first internal branch generated
about 30k conflict warnings as reported in Figure 3.7.

Furthermore, the number of links simultaneously accessed as input/output is related
to the number of detected WOQF, as reported in Figure 3.7 where more WOQF
are detected when four bidirectional links are used. Indeed, 108 k conflicts were
detected for the four bidirectional links configuration versus 94.5 k conflicts detected
in the F configuration.

These results demonstrate that the simultaneous communication involving opposite
router links give disadvantages even for the balancing of load per core.
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Figure 3.7: Output queue warning number detected in cores running SRCPops for
the configurations F and EF.

3.1.3 Results
In light of considerations made in previous section, I re-executed the Cortical Mi-
crocircuit (CM) simulation by adopting customized partition and mapping methods
designed to relax the requirements in order to match the board constraints. The
CM simulation is executed by imposing following parameters:

• 5% of neurons (N05)

• 20% of synapses (K20)

• 100 maximum allowed neurons-per-core

This configuration was chosen because N05 produces 3 854 IF neurons, the same
amount of SRC neurons and special populations used to extend the synaptic delay
called DelayExtension. These 11 562 neurons can be simulated over 144 cores in 10
chips with reasonable configuration and simulation time.

Maximum allowed neurons-per-core is an important parameter for a reliable sim-
ulation (low number, or no packet loss). If few neurons-per-core are set, to many
cores are used and a general traffic increasing is detected in the R2R link levels.
While an high number of neurons-per-core on one hand can impact on the R2R
traffic reduction, since less cores are used, but on the other hand cores may not be
able to update the neuron dynamic state in time and the C2R traffic is increased.

The first simulation is done using the standard partition and mapping procedure
applied by PACMAN while the second simulation exploits a customized partitioning
and mapping algorithm, MANUAL.

In Figure 3.8 are reported the populations arrangement in the SpiNNaker board
when PACMAN and the MANUAL procedures are adopted. The chips are coloured
with the same colors used to represent the populations in Figure 3.1.
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Figure 3.8: Placement of CM network: each hexagon represents a SpiNNaker chip.
The colors represent the CM populations executed in each chip, in gray chips that
contains the SRCPops.

Table 3.1: External, Internal and Dumped counters for the CM network with 5%
of size placed with PACMAN.

Chip Drop External Internal Neurons Description
0,0 276 3 773 911 4 882 847 2 IFpops
0,1 206 2 630 277 12 729 815 3 IFpops
1,0 114 5 587 441 3 334 710 3 IFpops
1,1 116 4 424 623 2 412 687 2 IFpops
1,2 0 0 2 672 252 795 1 SpikeSourcePops
2,0 0 2 692 613 9 471 795 1 IFpops
2,1 11 2 696 375 5 559 023 1 557 4 SpikeSourcePops
2,2 0 2 672 252 4 397 319 1 502 5 SpikeSourcePops

Total 723 24 477 492 12 661 422 7 708

Moreover, the overall data traffic collected by the router counters, during one second
of simulation, is reported below the configurations, together with the missed spikes
and in Table 3.1.

In the first CM simulation, when PACMAN is adopted, a total of 723 packets have
been dropped. Whereas, the R2R packets characterizing the on board traffic are
about 24M. Even if the number of dropped packets can be considered very low with
respect to the overall number of circulating packets, it is a good practice to ensure
the correct transmission in order to prevent unreliable simulation results.
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In the second CM simulation, the populations are mapped on the board applying
the MANUAL algorithm. On the right side of Figure 3.8 it is shown this positioning
where a full chip is used to run a single population. In order to optimise the packets
flow among the chips, SRCPops are executed in the perimeter chips while other
populations are placed in the middle. For populations L23E, L23I and L5I the re-
spective SRCPops are distributed according to the scheme identified in the F-mono
configuration with respect to the chip (2,2) avoiding bidirectional transmission on
the links.

The use of MANUAL mapping procedure, that prevented sub-optimal configura-
tions, is useful to reduce the number of R2R packets and to eliminate the dropping
events. Indeed this customized procedure produces a reduction of 33% of the num-
ber of R2R packets, from 24 M to 16 M.

3.1.4 Final Remarks
In this chapter I proposed a methodology for profiling densely interconnected neu-
romorphic multi-chip manycore platforms for real-time SNN simulations. The
methodology has been used to characterise reliability issues in the SpiNNaker plat-
form, taken as case study. More specifically, the methodology has been used to
highlight the impact of neuron population mapping on the optimal platforms re-
source exploitation.

A simulation of a cortical microcircuit network has been evaluated with different
scale factors to characterise its unreliable behaviour such as packet losses in com-
munication links and simulation failure. The complexity of the network makes it
impossible to investigate these problems using the original biological network, there-
fore I designed a methodology based on the usage of custom SNN configurations to
unveil both local and external network traffic issues.

Exploiting the local traffic analysis I proven that one of the causes of unreliability
was due to packet conflicts in the internal router tree related to traffic congestion
caused by unbalanced population placement.

Exploiting the external traffic analysis, I found out that unreliability is due to
simultaneous occupation of communication links by packet flows in both directions
when the traffic flows through a hot-spot router of the network.

Finally, a customized mapping procedure, based on the performed characterisation,
was applied to the cortical microcircuit SNN simulation on the SpiNNaker board.
Results show that, thanks to an effective neuron population placement, it is pos-
sible to improve simulation reliability by decreasing the total number of packets
exchanged between chips and removing the packet losses. This last experiment
demonstrated that the HW limits can be in part exceeded if smart hardware aware
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Table 3.2: External, Internal and Dumped counters for the CM network with 5%
of size placed with CUSTOM method.

Chip Drop External Internal Neurons Description
0,0 0 3 456 4 351 DelayExtension
0,1 0 3 146 0 Not Used
1,0 0 8 232 9 129 DelayExtension
1,1 0 17 740 704 983 291 Source_L23I
1,2 0 18 001 161 580 53 Source_L5I
2,0 0 2 092 0 Not Used
2,1 0 15 040 2 647 850 1 034 Source_L23E
2,2 0 3 532 713 0 CROSS_CHIP
2,3 0 2 675 945 878 1 034 L23E
3,0 0 1 264 0 Not Used
3,1 0 828 0 Not Used
3,2 0 191 753 490 53 L5I
3,3 0 727 444 1 047 291 L23I
3,4 0 3 706 900 4 260 1 095 L4E
3,5 0 0 3 681 697 1 095 Source_L4E
4,1 0 1 264 3 333 150 719 Source_L6E
4,2 0 3 364 249 828 719 L6E
4.3 0 856 929 1 919 273 L4I
4,4 0 800 847 2 040 242 L5E
5,1 0 0 493 013 147 Source_L6I
5,2 0 520 765 1 264 147 L6I
5,3 0 10 144 0 Not Used
5,4 0 6 300 830 338 273 Source_L4I
5,5 0 0 773 424 242 Source_L5E

Total 0 16 465 052 12 652 241 7 708

configuration tools are used.

This profiling approach can be generalized in order to be used on different neuro-
morphic architectures to discover which are the best traffic fluxes and the optimal
configurations to be applied. In the next chapter the results of these analysis will
be the basis for the development of a tool for optimal partitioning and placement
of neuron populations.
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3.2 SNN Mapping
In this chapter, I present a methodology for mapping a task graph representing
the snn computation on a multi-chip manycore architecture with communication
awareness. To achieve this target, I designed a task mapping framework capable of
analysing the network of neurons to find a configuration with the goal of reducing
the communication between computational nodes. The neuron-to-core mapping
problem has been formalised as a problem of minimisation of synaptic elongation.
Intuitively, this metric represents the cumulative distance that spikes generated by
neurons running on a specific core have to travel to reach their destination core.

The framework starts by extracting a graph of independent processes from a neural
network description. In the case of snn, the direction of a communication path is
also to be represented using a directed graph. On the platform side, the interconnect
structure is described as a graph where nodes represent on-chip cores while edges
represent physical communication links between them. In this way, I formalised
a neuron-to-core mapping as a graph-matching problem solvable through the ex-
ploitation of various algorithms available in the literature. The specific formulation
I devised for snn mapping takes into account the typical organisation of these type
of neural networks into neuron populations, sharing similar characteristics as well
as the neuron model.

The results obtained by comparing four mapping algorithms points out and quan-
tify the relevance of the communication direction information to achieve a better
mapping if compared with non-directional algorithms.

3.2.1 Method
The snn placement into the neuromorphic architecture can be view as an optimi-
sation problem that involves two graphs: GN and GCPU.

A graph G = (V, E, W) is a mathematical representation for describing a set of
elements V and a set of relations E ⊆ {(vi, vj) : vi, vj ∈ V } among them. The
elements are called nodes of the graph and the relations are called edges of the
graph. An edge eij ∈ E binds two nodes vi, vj ∈ V to each other. A graph can have
a W : E → W function that associates an edge eij ∈ E to a value wij ∈ W . The
value wij = W(eij) is called edge weight. A graph can be categorised according to
two properties: i) If the nodes on edges form unordered pairs eij : {vi, vj} the graph
is said undirected otherwise it is said directed and the nodes on edges form ordered
pairs eij : (vi, vj). ii) If the weight set W is empty the graph is said unweighted,
otherwise it is said weighed.

A Spiking Neural Network (snn) can be represented using a directed and weighted
graph called neuron graph GN . In GN the nodes are the snn neurons and the
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Figure 3.9: The distance matrix of a placement area using a coarse-grain and a
fine-grain target graph.

edges are the snn synapses. Taking into account a synapse eij : (vi, vj), the neuron
vi is called pre-synaptic neuron and the neuron vj is called post-synaptic neuron.
The edge weight wij (called synaptic weight) represents the synapse contribution
to injected current into the post-synaptic neuron after a stimulus received by the
pre-synaptic neuron.

The neuromorphic architecture can be represented using an undirected and weighed
graph, called target graph GT .

The target graph can be more or less detailed. If the nodes of the graph are the
SpiNNaker Chips, I define GT as coarse-grain. If the nodes of the graph are the
SpiNNaker Processors, I define GT as fine-grain.

If the target graph is coarse-grain, all edges represent the inter-chip communication
links. If the target graph is fine-grain, all edges between two processors located
on the same chip have a weight of one, while all edges between two processors
belonging to adjacent chips have a weight of two.

This choice is determined by the structure of the arbiter which feeds the SpiNNaker
Routers. A SpiNNaker Router has two branches for introducing packets according
to their origin: the 18 internal processors and the six nearby chips. It has been
demonstrated in [94] that the arbiter does not correctly manage some traffic config-
urations coming from the external links. It was therefore decided to disadvantage
all inter-chip communications with twice the weight of intra-chip communications.
The Figure 3.9 shows the differences between the coarse-grain model and the fine-
grain model through the distance matrices obtained from the graphs of the target
nodes.
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We can define the placement problem Π : GN → GT as a minimization problem
(Equation 3.1).

minimize
f(π)

f :
∑︂

eij∈EN

d(π(vi), π(vj)) (3.1a)

subject to π(i) = π(j) → M(i) = M(j), i, j ∈ VN (3.1b)
|π(i) = p| ≤ S(M(i)), i ∈ VN , p ∈ VT (3.1c)

Where π : VN → VT is the placement rule, M : VN → M is the neuron-model
association rule and, S : M → N is the association rule between a neuron model
and the maximum number of neurons per node. The goal of the placement proce-
dure is to minimise the overall synaptic stretching (Equation 3.1a) to reduce the
communication along the network nodes. The synaptic stretching is the distance
between the nodes where two adjacent neurons are placed. Two constraints affect-
ing the placement problem: i) All neurons mapped into a target node must be of
the same model (Equation 3.1b). ii) Each node can simulate only a certain num-
ber of neurons, and the quantity depends on the complexity of the neuron model
(Equation 3.1c).

Problem Relaxation

A snn is almost never described in GN form, due the high complexity in manage
all neurons and synapses, but it is normally described in terms of Populations and
Projections. A Population P is a set of neurons that share the same model and
the same properties. A Projection between two Population P(a) and P(b) defines
the rule in charge to generate a set of synapses where the pre-synaptic neurons are
in P(a) and the post-synaptic neurons are in P(b). I will refer to the Population-
Projection graph using the notation GP .

We can eliminate the two constrains (Equation 3.1b, Equation 3.1c) redefining
the problem Π working with GP and splitting each population P(i) into a set of
partial populations

{︂
P(i)

1 , P(i)
2 , . . . , P(i)

z

}︂
. All partial populations must contains at

most a number of neurons equal to the maximum number of neurons allowed to be
simulated in a target node: |P(i)

j | ≤ n(i) ∀j = 1, . . . , z, with n(i) = S(M(P(i))).

In this way we obtain the partial population graph Gpp. The edges of the partial
population graph are weighed and ordered. Given an edge eij ∈ Epp between two
partial population, its weight wij is equal to the number of synapses shared between
the neurons belonging to the two partial populations.

We can redefine (Equation 3.1) using the placement rule π : Vpp → VT that map a
partial population into a processor (Equation 3.2).
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minimize
f(π)

∑︂
eij∈Epp

d(π(vi), π(vj)) ∗ wij (3.2a)

subject to |π(i) = p| ≤ 1, i ∈ Vpp, p ∈ VT (3.2b)

In (Equation 3.2a) we modify the cost function to take into account the number of
synapses shared between the target nodes. The rule in (Equation 3.2b) describes
the single constraint of the problem: a target node can only contain one partial
population.

Graph Partitioning

The partition problem of GP can be solved in different ways. In [96] it was treated
as a problem of clustering. The provided solution was divided into three step:

• Graph expansion: GP → GN
• Spectral embedding: GN → L

• Clustering and legalisation: L → Gpp.

In the first step the neuron graph GN is created by applying the synaptic gener-
ation rules defined in GP (the populations graph). In the second step, a spectral
embedding procedure is applied to the neuron graph.

The spectral embedding involves the eigendecomposition of a representative matrix
of the graph. In the case of GN (a directed graph) it was used a Laplacian Matrix
(Equation 3.3) obtained throught a transition matrix induced by a random walk
[21].

L = I − (Φ 1
2 PΦ− 1

2 + Φ− 1
2 P T Φ 1

2 )
2 (3.3)

The results of the spectral embeddings is the rapresentation of GN in the eigenspace
L, a space belonging to R|VN |. The neurons can be clustered in the eigenspace
using the KMeans algorithm. After the clustering, a legalisation phase gathers in
groups all neurons belonging to the same cluster and the same population. Finally,
a second legalisation phase, called fusion, builds the partial populations putting
together the nearby groups of neurons until reach the maximum number of neurons
that a processor can simulate.

Other techniques of graph clustering are Multilevel Graph Partitioning and Markov
Cluster Algorithm [45, 98]. These techniques, like the Spectral Clustering, was born
for undirected graph and their usage should be analysed using different symmetri-
sation techniques if applied to a directed graph.
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3.2.2 Mapping
As seen in subsection 3.2.1 our goal is placing GN into a set of nodes GT . In
section 3.2.1 we have relaxed the constraints of the problem separating it into
two subproblems: i) Clustering GN (or partitioning if consider GP as a starting
point) into the partial population graph. ii) Placement of Gpp into GT . I have
briefly described the clustering (or partitioning problem) in the section 3.2.1. In
this section, I independently explore the placement problem by comparing different
techniques: Naïve, Spectral Embedding, Scotch and Simulated Annealing.

Naïve Placement

The Naïve approach is the standard mapping procedure adopted in the SpiNNaker
toolchain for assigning populations of neurons to be simulated on the cores available
in the SpiNNaker Platform. It is a computationally light method to perform the
graph placement without taking into account neither the connectivity of the source
graph and the connectivity of the target graph.

The target graph was ordered following a polar coordinate system (ρ, φ) starting
from a chip of choice. The radius ρ = max(|x|, |y|, |x−y|) has been calculated using
the hexagonal distance. The angle φ ∈ [0, 2π) is expressed in radians. The proce-
dure starts to place a partial population into each processor and change the chip
when all processors inside a chip are used. As the ρ increases, the sub-populations
will be distributed along chips separated by a greater and greater distance.

Spectral Embedding

The procedure involves the spectral analysis of the graph and a dimension reduction
procedure to obtain a planar representation of it. By doing so, the target graph
can be directly superimposed on the graph of the partial populations through an
Integer Linear Programming (ILP) problem.

This procedure requires the extraction of the first five eigenvalues, and the relative
eigenvectors, from the matrix L. The eigenvectors form a matrix Λ that represents
the partial populations in a R5 space. We apply a non-linear dimension reduction
procedure using Sammon Mapping obtaining a space in R2.

The Sammon Mapping algorithm minimise the error function in (Equation 3.4)
where dij is the distance in the high-dimensional space (eigenspace) and d∗ij is the
distance in the low-dimensional space (placement space) [80].

E = 1∑︁
i<j dij

∑︂
i<j

(dij − d∗ij)2

dij

(3.4)
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Each chip is represented as a point (x, y) using an axial coordinate system on an
hexagonal grid (the chip mesh). We superimpose the graph GT on Gpp projecting
the chip mesh in the placement space (Equation 3.5).

(︄
x∗

y∗

)︄
=
√︄

2Ah

3
√

3

⎛⎜⎜⎜⎝
√

3 −
√

3
2

0
3
2

⎞⎟⎟⎟⎠
(︄

x
y

)︄
(3.5)

Where (x, y) is the chip coordinate in the hexagonal grid, and (x∗, y∗) is the chip
coordinate in the placement space. The side length of the hex is used as a normal-
ising factor and calculated using the area Ah = A

m
occupied by each chip (with m

the number of chips). The normalising factor allows scaling the chip mesh making
it compatible with the area A occupied by the partial populations.

In the case where the target graph is fine-grain, we need to introduce the processors
in the placement space. To ensuring spatial coherence, it was decided to place them
equidistant along a circumference centred on the chip coordinate. The radius is
chosen in such a way that it is smaller than the distance between two processors
belonging to different chips.

After projecting the points into the placement space, they are translated to centre
them on the median of the points representing the partial populations. Now we
can describe the placement problem using the ILP formulation (Equation 3.6).

minimize
f(X)

f :
n∑︂

i=1

m∑︂
j=1

xi,jdi,j (3.6a)

subject to
n∑︂

i=1
xi,j ≤ k ∀j ∈ {1, . . . , m} (3.6b)

m∑︂
j=1

xi,j = 1 ∀i ∈ {1, . . . , n} (3.6c)

Where the matrix X = (xij), xij ∈ {0,1} is the placement matrix. An entry xij = 1
means that a partial population i is mapped on a target node j. Two constraints
affecting this ILP formulation: i) Each target node can host at most k partial
populations (Equation 3.6b). ii) Each partial population can be associated to only
one target node (Equation 3.6c).

The ILP problem was modelled using PuLP Python library and solved with COIN-
OR branch and cut (CBC) solver.
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Scotch

The Scotch mapping procedure makes use of the programs available in the homonym
software suite (scotch). The Dual Recursive Bipartitioning (DRB) is the pri-
mary procedure used by this tool [69]. The DRB can use a plethora of other
bi-partitioning methods according to a strategy defined by the user or deducted by
graph properties. The main available methods are: Gibbs-Poole-Stockmeyer [34],
Fiduccia-Mattheyses [27], Greedy Graph Growing [45] and Diffusion [68].

The mapping workflow with scotch plans to pre-partition the target graph through
the amk_grf program. The amk_grf program take in input a graph (grf format)
and create a target file (tgt format) which contains a decomposition-defined target
architecture of same topology as the input graph.

Once a decomposition of the target graph has been obtained, the graph of the partial
populations is placed on the target graph using the gmap program. The program
gmap takes in input the partial population graph in grf format and the target graph
in tgt format and performs the DRB procedure minimising the communication cost
function1. The gmap output file is a mapping file (map format) that contains the
association between the Source node and the Target node.

I had developed a Python module able to exporting a NetworkX graph to a file
according to the grf format used by scotch and capable of automating the pro-
cedures described above.

Simulated Annealing

The Simulated Annealing is a well know procedure used to find a good solution to an
optimisation problem [49]. Given the problem in (Equation 3.2a), it is convenient
to express the overall synaptic stretching in a matrix form and define a cost function
to minimise. Given the partial population graph Gpp we build its Adjacency matrix
A = (aij) as described in (Equation 3.7).

aij =

⎧⎨⎩wij if ∃(vi, vj) ∈ Epp

0 otherwise
∀i, j ∈ {1, . . . , n} (3.7)

Given the target graph GT we build its distance matrix D = (dij) where each entry
dij is the lenght of the mimimum path between two target nodes cpui and cpuj.
The distance matrix can be build using the Floyd–Warshall algorithms or repeating
Dijkstra’s algorithms if |ET | ≪ |VT |2.

1The scotch cost function is similar to our Synaptic Stretching
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Assuming to have as many partial populations as target nodes and a placement
rule Π : {v1, . . . , vn} → {cpu1, . . . , cpun} we construct the permutation vector
π : (Π(v1), . . . , Π(vn)) and the permutation matrix Pπ = (pij) in row form (Equa-
tion 3.8).

pij =

⎧⎨⎩1 if i = πj

0 otherwise
∀i, j ∈ {1, . . . , n} (3.8)

The permutation matrix is applied to D to permutate its rows and columns. We
obtain the matrix Dπ = PπDPπ. The overall synaptic stretching can be expressed
in a matrix form and used as the cost function for the simulated annealing algorithm
(Equation 3.9).

f : eT (A ⊙ Dπ)e =
∑︂
i,j

aij ∗ d
(π)
ij (3.9)

Where ⊙ is an element-wise multiplication and e is a column vector whose all
elements are equal to one. In the case of a fine-grain GT , before perform the
synaptic stretching evaluation, the matrix A ⊙ Dπ should be collapsed in order
to aggregate the processors belonging to the same chip. I used the Simulated
Annealing implementation provided in the SciPy ecosystem using the temperature
to decide how many elements of the permutation vector π are to be swapped.

3.2.3 Results
In this section, I present the exploration experiments using the methods described
in subsection 3.2.1.

I used the Cortical Microcircuit (cm) as benchmark network [70]. This network
represents the connectivity of neurons inside a slice of the cerebral cortex with an
area of 1 mm2. The cm has been chosen because it is a rapresentative biological
model with a relativly high global connectivity (5%) and natural clusters defined
by the four cerebral cortex layers {L23, L4, L5, L6}. The cm is described in terms
of Populations and Projections with two populations for each layer, for a total of 8
Populations and 64 Projections.

The network is composed of Leaky Integrate-and-Fire (lif) and Spike Source (src)
neuron models. The lif neurons are models that mimic the biological neurons
behaviour. The src neurons are simple programmable applications for outputting
signals when desired. In this network, the src neurons are used to simulate the
background activity of cortical neurons not in the model. Each src neuron is
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Figure 3.10: The graph represents the improvement of a mapping technique com-
pared to the median of the results obtained with a random placement using a
constraint of 1000 neurons per chip. The x-axis shows the CM scale factor. The
areas represent the first and third quartile of the results obtained on 100 samples.

connected to only one lif neuron, so they can be excluded by the GN provided that
processors are reserved for their execution.

The cm model has 7.72e+4 lif neurons and 2.99e+8 synapses. A network cmp is
a down-scaled cm to a percentage p:

• cm5% has 3.86e+3 neurons and 7.47e+5 synapses.

• cm10% has 7.72e+3 neurons and 2.99e+6 synapses.

• cm50% has 3.86e+4 neurons and 7.47e+7 synapses.

For each processor in charge of simulating a lif partial population, we must reserve
two further processors. A processor is reserved for the simulation of src neurons
and a further processor is reserved to host a special application necessary to manage
synapses with delays greater than 10 ms, as described in [94]. Taking into account a
set of 16 processors belonging to the same chip, we can place five partial populations
per chip for a total of a thousand neurons per chip.

For simplifying the problem we perform a sequential slicing of each population in
order to obtain partial populations with at most 1 000 neurons. In this way, we can
use a coarse-grain target graph where the nodes are the spinnaker chips (each chip
with 5 processors and 200 lif neurons per processor).

The experiment environment is composed of four different mapping procedures:
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Naïve, Spectral, Scotch and Simulated Annealing. I had generated 5 cm networks
for 10 different scale factors, from 5% to 50%, for a total of 50 networks. For each
network, I applied all mapping procedures 20 times. I evaluated the performance
of each mapping procedure for each scale factor, using the fitness function (Equa-
tion 3.9). As a result, I obtained a distribution of 100 different placement results
concerning overall synaptic stretching.

The performance of mapping procedures are compared to the performance of ran-
dom placement. The median value of the results obtained with the Random proce-
dure is used to compute the percentage improvement of the results obtained with
other techniques.

In Figure 3.10 is depicted a chart that summarize all the experiments. On the
x-axis, there are the network scale factors, on the y-axis the percentage placement
improvements versus random. The data series are represented by polylines of dif-
ferent colours representing the medians of the results set. Each polyline is drawn
within an area whose extremes delimit the first and third quartile of the results set.

In Figure 3.11 and in Figure 3.12 are depicted the mapping results of a cm20% into
a target graph of 19 chip using the four placement techniques. Each hex repre-
sents a SpiNNaker chip connected with six neighbours. The colour of the hex area
points out the belonging of the neurons, mapped on the chip, to one of the eight
populations of the cm. The number of synapses shared between two partial popu-
lations is highlighted with the colour intensity of the edge that connects them. The
different concentration of the connections with more synapses can be appreciated
qualitatively from the Figure 3.11a to Figure 3.12b and quantitatively from the
Figure 3.11c to Figure 3.12d. In Figure 3.11a can be seen how the Näive method
does not consider the connectivity but place each partial population sequentially
following the polar ordering of the chip. Indeed there are many connections with a
large number of synapses directed towards distant chips.

This not happens in Figure 3.12b where the Simulated Annealing can localise in
a defined area all partial populations with a high number of shared synapses. In
Figure 3.11c and Figure 3.12d the same information can be appreciated quanti-
tatively. The chart has a bar for each partial population. Each bar represents
the overall outgoing synapses of a partial population and shows the percentage of
synapses at different levels of elongation. The white line depicts the number of
synapses belonging to each partial population. The partial populations are sorted
in descending order according to the total number of synapses.

We can see how better methods improve the percentage of synapses at a distance
of one chip (Green) and decrease the percentage of synapses at a distance of four
chips (Red).

While the results of the coarse-grain model were obtained by imposing a maximum
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(d) Spectral Placement

Figure 3.11: The figures in the first row represent the placement of the partial
population graph build from a CM20% with 1000 neurons per chip on 19 chip (5
processors per chip). The figures in the second-row represent for each partial popu-
lation the number of synapses (white line) and the percentage of synapse stretching.

of 1000 neurons per chip belonging to the same population, the results obtained
with the fine-grain model were evaluated using three different values that limit
the neurons per processor: 100, 150, 200. The results obtained using 200 neurons
per processor are shown in Figure 3.13a. In the Table 3.3, the results are shown
in terms of processors involved. Where possible, a maximum of 5 processors per
chip was used, because the network CM, in addition to the lif neurons considered
there, makes use of other applications including a manager for synapses for high
delays and a manager of external stimuli [ src]. For each processor that simulates
lif neurons, two other processors are required for a total of 15 processors per chip.
In any case, in this exploration some configurations required more processors than
theoretically available, so I ignored this constraint where necessary. Each chip,
therefore, hosts from 500 to 1000 neurons belonging to different populations.

As the Figure 3.13 shows, the results show a profile similar to the one obtained
with the coarse-grain model. However, it is noted, mainly for problems with many
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(c) Scotch Placement
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(d) Sim. Annealing

Figure 3.12: The figures in the first row represent the placement of the partial
population graph build from a CM20% with 1000 neurons per chip on 19 chip (5
processors per chip). The figures in the second-row represent for each partial popu-
lation the number of synapses (white line) and the percentage of synapse stretching.

processors are involved, that the use of the methodology based on SCOTCH obtains
results slightly inferior to Simulated Annealing. Considering the high efficiency of
the solution offered by the SCOTCH suite and the simple A + AT symmetrisation
necessary to use the tool, it is possible to renounce to the 2% of improvement but
obtain a fast and acceptable solution.

3.2.4 Implementation
I implemented the GrapH Optimiser Spinnaker Tool (GHOST), a Python library
capable of interposing between PyNN and sPyNNaker to intercept the neuron graph
structure and provide an optimised SNN configuration to sPyNNaker to reduce
R2R packet traffic. This software layer expose a PyNN front-end and implements
an SNN mapping method based on Spectral graph analysis.

As described in section 3.2.1 SNNs can be represented through three graph layers,
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(c) 100 neurons per node

Figure 3.13: The three graphs represent the improvement of a mapping technique
compared to the median of the results obtained with a random placement using
three different constraints for the number of neurons in a processor and fine-grain
target graph. The x-axis shows the CM scale factor. The areas represent the first
and third quartile of the results.

each of them useful for the execution of specific operations: i) Population Graph
GP is the representation where each vertex is a PyNN Population and each edge is
a Projection with a connector for the synapses generation; ii) Neuron Graph GN is
a SNN representation where each vertex is a neuron and each edge is a synapse; iii)
Part-population Graph Gpp generated from the Neuron Graph through a clustering
procedure. Each edge is a set of synapses and each vertex is a part-population with
a number of neurons that satisfies the neuron per core constraint.

The main processing flow, shown in Figure 3.14, takes as input the Population
Graph removes the SRCPops that will be partitioned and placed at the end of
procedure, and expands GP in order to get the Neuron Graph.

During the Partitioning phase,GN is analysed using spectral clustering techniques.
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Table 3.3: The size of the fine-grain target graph in terms of number of cores
and number of chips. We have always tried to keep five processors per chip using
different constraints for the number of neurons per chip. Configurations marked
with (*) can not be mapped on five processors per chip.

CM
Neurons per Node

200 150 100
Core Chips Core/Chips Core Chips Core/Chips Core Chips Core/Chips

5% 24 5 4.8 28 6 4.7 42 9 4.7
10% 42 9 4.7 54 11 4.9 80 16 5.0
15% 62 13 4.8 80 16 5.0 120 24 5.0
20% 80 16 5.0 107 22 4.9 157 32 4.9
25% 100 20 5.0 132 27 4.9 196 40 4.9
30% 120 24 5.0 157 32 4.9 236 48 4.9
35% 140 28 5.0 184 37 5.0 274 46 (*)6.0
40% 157 32 4.9 209 42 5.0 312 45 (*)6.9
45% 178 36 4.9 236 48 4.9 351 44 (*)8.0
50% 196 40 4.9 261 44 (*)5.9 390 44 (*)8.9

The generated clusters, of predefined neuron size, are then used to create the Part-
population Graph Gpp. The spectral analysis applied to the Neuron Graph allows
to label each neuron with a n-dimensional coordinates, in this way neurons can
be managed like points where the distance between two of them represent their
connectivity. Applying the clustering algorithm is then possible to isolate sets of
neuron highly connected and to map them together. Thus, the partitioning problem
can be solved iteratively through the Sub-Clustering phases, where neurons from
the same population and cluster are grouped in sub-clusters matching the neurons
per core constraint.

Vertexes of Part-population Graph Gpp are generated using the centroids of sub-
clusters. Thus, each vertex of this graph represent a sub-cluster. Moreover, in
order to prevent the generation of small part-populations, that lead to unoptimised
use of cores, a Fusion phase is executed where sub-clusters are analysed and in
some cases manipulated. If neurons belonging to the same population are split
in more than one clusters and one of them has less than 20% of neurons that a
core can simulate, these neurons are moved into the nearest cluster. In Figure 3.15
a simple example is shown, where a neuron belonging to the green population is
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Figure 3.14: Flowchart of SNN Spectral Analysis based Partitioning and Placement
algorithm. From SNN Population Graph to the chip placement of neurons.

clustered with neurons of the blue population. The fusion procedure recognise the
green neuron and reassign it to one of the green sub-clusters, avoiding the creation
of a supplementary vertex into the Part-population Graph.
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Figure 3.15: Fusion step. This procedure allows to merge uncompleted clusters in
order to optimize the resources use.

For the Placement phase the part-populations graph is elaborated using the Sam-
mon Mapping multidimensional scaling algorithm. This scaling procedure is applied
in order to adapt the graph multidimensionality in a bi-dimensional space. This
representation can be used for a direct placement process. During the Sammon
Mapping part-populations that fall in an area are mapped in the free cores of the
chip. If the number of part-populations in a single chip/square exceed the number
of available cores a Legalization procedure is applied. In the example reported in
Figure 3.14 the constraint is one part-population for each chip, whereas in real cases
up to sixteen part-populations can be placed. At last step, the SRCPops isolated in
the early phase are directly placed on the reserved cores. The spike source neuron
models (SRC) are used in SNNs to start or maintain special regimes of activity. For
example, in the Cortical Microcircuit , the SRC neurons are used to simulate the
background activity of adjacent cortical areas. SRC neuron is usually connected to
a single target neuron and configured to simulate an high level of activity generating
an intense traffic of packets. For this motivations placing SRCPops on the same
chips that host the target neurons is a good practice to reduce the R2R traffic.
Space can be reserved in each chip for this type of population accordingly to their
particular connectivity. At last step, the configuration files are generated and sent
to the SpiNNaker board.

Three Partitioning and Placement variants are adopted for this purpose. i) The
No-Fusion make use of the GHOST procedure described in section 3.2.2 with the
exception of the fusion step that is not implemented. ii) The Fusion uses the full
procedure shown in Figure 3.14 to transform the Population graph into an optimised
SpiNNaker configuration. iii) The Random is used as a reference to validate the
improvement obtained by the other two variants. It makes a random division of
Neuron graph considering only the number-of-neurons per part-population that
must be kept homogeneous. Whereas, it apply a radial placement of the IF part-
populations keeping in the same chip the associated SRCPops and DelayExtension.

The Cortical Microcircuit (CM) has been used to demonstrate the effectiveness of
mapping method implemented in GHOST and to compare the achieved results with
those obtained by the use of the mapping method implemented in PACMAN. In
order to be compliant with the experiment previously proposed the scaling factor
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Figure 3.16: Distribution of R2R/C2R ratio computed on a two configurations
N05-K05 and N05-K20. Twenty simulations have been performed for the three
SNN-P&P techniques.

N05-K20 has been adopted. Moreover, in order to observe the system response
when synapses number decrease from 3 M (20%) to 750 k (5%) I used a second
scaling factor equal to N05-K05.

Six rounds of simulations were executed to extract the ratio R2R/C2R and the
overall R2R packets circulating in the network. In each round, 20 simulation were
performed using one of the three mapping procedure variants (Fusion, No-Fusion or
Random) to set-up the SpiNNaker board with one of the two scaled CM. R2R/C2R
ratio represents the traffic circulating in the inter-chip network versus the traffic
generated into the chips. This ratio is used to compare the performances of the
three investigated variants. Lower values of this rate correspond to the capac-
ity of network to keep local the communications, reducing the number of packet
circulating on the inter-chip links.

As can be seen in Table 3.4, the N05-K05 SNN placed with the SNN-PP Random
variant generate an average of 292 k R2R packets. Instead, the network scaled at
N05-K20 generate an average of 323 k R2R packets. In Figure 3.16 it is shown
as CM configurations generated using the SNN-PP Random variant produce small
fluctuations on the R2R/C2R ratio, with all the values concentrated near 9.10E-2
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Table 3.4: Cortical microcircuit R2R traffic detected for two configurations N05-
K05 and N05-K20 when three Partitioning and Placement variants of proposed
technique are applied: Random, No-Fusion and Fusion. R2R packets percentage is
computed comparing Spectral and Fusion variant with the Random configuration.

CM config. Mapping Packets R2R [103]
Worst Average Best

N05-K05
Random 302 292 283
No-Fusion 378 +25% 318 +9% 231 -18%
Fusion 265 -12% 237 -19% 228 -19%

N05-K20
Random 331 323 309
No-Fusion 411 +24% 264 -18% 245 -21%
Fusion 289 -13% 252 -22% 238 -23%

for the N05-K05 case and 2.55E-2 for the N05-K20.

The executions of N05-K05 configured with No-Fusion variant produced a larger
range of R2R/C2R ratio (Figure 3.16.a). Indeed, if compared with the Random
variant, only part of the experiments come out with more balanced configurations.
This is due to the generation of small part-populations (less than 10 neurons) that
lead to the use of supplementary cores, thus increasing the R2R traffic.

To prevent this unwanted behaviour, in the SNN-PP has been added the Fusion step
that is able to solve this problem. Experiments performed using the Fusion variant
demonstrate that the R2R/C2R rate is always lower than the rate produced by the
Random variant. Considering the N05-K20 we note that even the R2R/C2R rate
of No-Fusion variant is always better than the rate of Random. This is principally
due to the higher number of connections that produce more distant points for
the clustering algorithm that can better balance the clusters and make rare the
generation of small clusters.

The average of R2R packets produced by N05-K20 placed on SpiNNaker using the
SNN-PP No-Fusion is reduced of 60 k packets with respect to those placed with the
Random variant (Table 3.4). This is not true for N05-K05 where the influence of
small part-population affects the average. Indeed, an increase of 26 k R2R packets
is detected when the No-fusion variant is used. CM configurations generated with
Fusion variant give always better balanced traffic and less R2R packets than the
Random and No-fusion variants. The Fusion worst case with 265 k and 289 k
packets is better than Random best case of 20 k R2R packets (-6% of R2R packet).
In average the Fusion variant decreases the R2R packets of 55 k in N05-K05 and
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Figure 3.17: The placing of CM network: each hexagon represent a SpiNNaker
chip. The color represent the CM population inside the chip, in gray the chip that
runs the SRCPops.

70 k in CM N05-K20 (20% of R2R packet less than Random variant).

First and third quartiles of Fusion box plots in Figure 3.16 confirm that the spec-
tral analysis is a suitable technique that applied to the mapping problem within
SpiNNaker can produce good results in reducing the inter-chip traffic. Effect is
enforced if associated with a fusion system capable to avoid the generation of little
Part-populations.

At last analysis step, I propose the comparison between CM Partitioned and Placed
using PACMAN and the configuration produced by our mapping algorithm imple-
mented in GHOST. As it is possible to note in Figure 3.17 the 24 M of R2R packets
generated by CM placed with PACMAN are reduced to 250 k if CM is configured
with GHOST allowing a 96x reduction of R2R traffic.

3.2.5 Final Remarks
In this chapter, I described a mapping problem that involves a complex directed
graph to be placed in a mesh of processors. I have modelled the mapping prob-
lem of an snn into the SpiNNaker processors-mesh splitting the problem into 3
phases: population graph expansion, neuron graph clustering, and partial popula-
tions graph mapping. Focusing on the mapping phase, I have identified and tested
4 methodologies to solve the problem. The Naïve method (a simple heuristics)
tries to maintain the location of the populations by placing them according to the
order of creation without taking into account the real connectivity of the network.
The Spectral method uses the graph eigendecomposition to obtain a planar repre-
sentation of the snn graph and performs the node association with the chip mesh
through an ILP formulation. The Scotch method uses the Dual Recursive Bipar-
titioning heuristic for fast mapping of a source graph into a target graph. The

61



Programming tools and middleware for manycore neuromorphic platforms

Simulated Annealing method uses the well-known SA procedure to minimise a cost
function, the synaptic elongation.

I have redefined the cost function of the placement problem (the synaptic elonga-
tion) bringing it into matrix form as a function of a permutation vector. I have
chosen the cortical microcircuit at different scale factors as our benchmark net-
work, preferring it for its high connectivity and the presence of clusters. After
performing several tests on the chosen benchmark network, the results highlight
the superiority of the Simulated Annealing method that works natively on direct
graphs. Using a fine-grain model, the gap between the SA and SCOTCH based
method has narrowed, especially when dealing with large graphs. In these cases,
the SCOTCH-based method has the advantage of providing an acceptable solution
in a shorter time.

This modelling system for snn placement problems can be adapted to other archi-
tectures such as Intel Loihi and SpiNNaker 2 for investigating new mapping tech-
niques to be adopted for improving the usability of these emerging architectures.

The Spectral method was implemented in GHOST, a Python module compliant
with the sPyNNaker tool-chain. A Cortical Microcircuit was simulated again with
two scale factors in order to demonstrate the effectiveness of the developed mapping
approach with respect to random neuron placement. Finally comparisons were
made between configurations produced by PACMAN and GHOST. From these
simulations was evident that GHOST is capable to reduce the number of used
cores, results in lower R2R traffic, 96X when GHOST is adopted.

3.3 Communication Middleware and Message Pass-
ing Interface

In this chapter I describe the PoliTO SpiNNaker Software Stack (P3S). It is com-
posed of three principal software layers developed during the second and the third
year of my PhD with the aim of implement a message passing interface for SpiN-
Naker.

The first P3S module is the Multicast Communication Middleware (MCM) for
the operating system (SARK) of the SpiNNaker system. The middleware aims to
overcome the hardware limitation of the architecture when it is required a point
to point communication between processors. All point-to-point communications
must, therefore, be processed by the Monitor Processor. The middleware is ca-
pable of diverting unicast, broadcast and synchronisation communications on the
multicast network of SpiNNaker. Considering that for obtaining unicast, broad-
cast and synchronisation communication are necessary about 1600 rules, but the
routers have only 1024 available routing rules entries, I have defined a routing key
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compression system capable of reducing to about 50 the rules necessary to ob-
tain communications on the entire SpiNNaker PCB. MCM exploits the low-level
test-and-set ARM capability to implement variable-polling in lock-sync primitives.
This feature not only reduced the time required for synchronise all of 864 processors
(time reduction between 30% and 40% based on the number of processors and chips
involved) but also impacted the performance of the high-level software layers when
lock-sync primitives are required. Results from experiments in host-to-board uni-
cast communication demonstrated three times better performance than the built-in
communication system.

The second P3S module is the Application Command Framework (ACF) an ab-
straction layer capable of managing Remote Procedure Calls (RPC). The ACF uses
the Application Command Protocol (ACP) for managing the Host to Board and
Board to Board communication. Moreover, the ACF manages the Memory Enti-
ties (MEs), a managed memory area, exposing functions to perform “Create, Read,
Update and Delete” (CRUD) operations on them. ACF provides an application-
level synchronisation and the concept of allowing the API to be flexible enough to
avoid waste of memory space when used to implement buffers in communication
protocols.

The third P3S module is the MPI implementation. Exploiting the Virtual Memory
Entities, the application level synchronisation and the improved Host to Board
interface in the ACP, I drastically enhanced the MPI implementation performance
allowing to i) create a simulation context covering the whole board (all of 864
SpiNNaker processors) ii) drastically reducing memory impact on processors DTCM
and iii) drastically reducing the time required for configuring the MPI runtime on
the board side.

3.3.1 Multicast Communication Middleware
The data transmission within the architecture is currently performed using the
Spinnaker Data Protocol (SDP) on top of UDP in external devices communications
and point to point network (PP) in internal communications between SpiNNaker
Chips. The use of the PP network limits the system as it requires the Monitor
Processors to fragment the data to be sent and to recompose them once the target
chip is reached, 3.18. Furthermore, this type of communication is sequential and
does not exploit the full capabilities of the system network parallelism. Point to
Point protocol is slow for in-board communications since it needs the intermediation
of the Monitor Processors in addition to chips involved in the communication. As
explained in 2.1.5 when sending a SDP packet, the core saves the packet inside the
SysRAM, the MP of the chip reads the content of SysRAM, splits the content in
32bit fragments and forwards them to the Monitor Core of the destination chip.
The latter copies the message received into the system memory and informs the
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Figure 3.18: MCM Scenario

recipient Application Processor that the packet has been received.

The multicast SpiNNaker Network allows to implement a direct communication
between processors. With efficient use of the header of the MC packets, it is pos-
sible to create a Broadcast, Unicast and Multicast communication system and also
synchronisation protocols. Each routing key can either contain fields for indicat-
ing the coordinates of the destination core in case of a unicast communication or
the sender information in case of a broadcast one. My idea has been to develop a
Middleware able to exploit the multicast protocol features to speed-up the system
communications.

In this section the features of Multicast Communication Middleware (MCM) will
be presented. It will also describe the routing key compression rules needed to
make the middleware feasible.
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Figure 3.19: MCM operating flow after receiving a Multicast packet

MCM primitives

MCM implements several features, including an ADT to manage hash tables and
all APIs to manage communications via SpiNNaker multicast network. MCM al-
lows sending frames of up to 272 Bytes, and each MC packet transmits fragments
of four or six bytes depending on the type of communication. It also allows to
manage unicast synchronization through two Sync and Ack packets and broadcast
synchronization (a.k.a. Global Barrier or Barrier) through a system of multi-level
synchronization packets to do not overload the network.

MCM exposes the main functions in a public header mcm.h:

• mcm_send(...) This is the main function of the MCM library. It accepts
three byte-streams and their size. In this way, it is possible to manage the
header, body and tail of a message independently. It allows choosing the
communication channel: Broadcast or Unicast. When using Unicast channel,
an additional field is required to indicate the destination of the message.

• mcm_callback_register(mcm_callback_t c) With this function we can reg-
ister a callback to be used when receiving a byte stream via MCM.

• mcm_barrier() This function starts a broadcast synchronization procedure.
It allows to create a barrier over the whole execution context.
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• mcm_syn(mcm_core_t *destination) This function sends a unicast synchro-
nization packet via MCM.

• mcm_wfs(spin2_core_t *source) This function waits for the reception of a
unicast synchronization message via MCM.

MCM also has a set of private functions not visible outside the library that are
used internally to manage the reception of multicast packets as in Figure 3.19:

• _send(...) Primitive communication function to send a fragment, takes as
arguments the stream of bytes that make up the fragment and its size, a flag
to indicate if the fragment is the last of the stream, a flag to indicate if the
fragment must be sent with extended_payload (6 Byte instead of 4 Byte),
the coordinates of the destination pivot_core. It is called by the function
mcm_send(...).

• _recv(uint32_t key, uint32_t payload) Primitive function to receive a
multicast packet, it is the entrypoint of all functions _recv_*(...) described
below. It is called with maximum priority (PRIO -1) from the SARK/Spin1
scheduler when a multicast packet is received.

• _recv_broadcast(...) manages the reception of a data packet (fragment)
on the broadcast channel, the source of the packet is used to identify the
reconstruction buffer. In case the last fragment flag is active, schedule a
USER event to call the _pass(...) function.

• _recv_unicast(...) manages the reception of a data packet (fragment) on
the unicast channel, the source of the packet is used to identify the recon-
struction buffer. In case the last fragment flag is active, schedule a USER
event to call the _pass(...) function.

• _recv_syn(...) manages the reception of a Syncronization packet. Sets a
sync flag relative to the source of the packet.

• _recv_ack(...) handles the reception of an Acknowlegment packet. Sets
the ack flag (only one exists).

• _recv_barrier(...) handles the reception of a Barrier packet. Increases
multi-level synchronization counters.

• _pass(...) calls the function registered with mcm_callback_register(...)
and at the end of the execution releases the reconstruction buffer. It is called
with high priority (PRIO 0) from the SARK/Spin1 scheduler when receiving
a USER event.

The MCM (Figure 3.19) workflow starts when a Multicast packet is received from
the Router containing a data fragment or synchronization signal. The Router
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buffer not found
last fragment

Figure 3.20: The MCM receive fragment workflow

on receiving a packet triggers a hardware interrupt on the core intercepted by
SARK/Spin1, which reacts by performing the procedure associated with the inter-
rupt. In the case of MCM, we register a maximum priority callback (PRIO -1) that
allows the atomic execution of the operations necessary to process the content of
the MC packet as fast as possible.

If the package contains a data fragment depending on the source channel (Unicast
or Broadcast), the package will be processed by two different functions. Both share
the same workflow as shown in Figure 3.20. MCM has four reconstruction buffers
per channel, each buffer has a size of 272 bytes, for a total of 2 176 Bytes in DTCM
(reconstruction buffers can, if desired, be allocated in SDRAM but this would com-
promise the reception performance of a fragment). MCM can, therefore, virtually
handle four communications at the same time. When the first data fragment is re-
ceived, a reconstruction buffer is associated with the packet source. The following
fragments of data will then be inserted into the correct reconstruction buffer until
the last fragment is received. At this point, the execution of the _pass() function
is scheduled, which will call the function in charge of managing the received data
and finally free the reconstruction buffer.

Syncronization

MCM provides synchronization capabilities both between processor pairs (unicast
synchronization) and across the whole execution context (broadcast synchronization
or barrier).

In the first case we use the functions mcm_syn(mcm_core_t *destination) to start
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Figure 3.21: The Unicast synchronisation workflow in a SpiNN-5 Board.

synchronization and mcm_wfs(spin2_core_t *source) to wait for synchroniza-
tion. Both functions are blocking, and involve interaction between processors as
described in Figure 3.21. The modality is therefore asymmetric, with one processor
in the active role (A) and one in the passive role (B).

Each processor contains an array of sync_lock[8][8][16] flags of the weight of
1 KiB used to store the received synchronization signals, and a single ack_lock flag
to store the reception of an acknowlegment signal.

In case the A processor starts the active synchronization before the B processor
the latter will set sync_lock[Ax][Ay][Ap] <- false and A will start a busy-loop
polling on ack_lock != true. When the B processor is ready to passively synchro-
nize on A it will start a busy-loop polling on sync_lock[Ax][Ay][Ap] != true.
At the end it will send an ACK message to the A processor.

This asymmetric synchronization mechanism makes it possible to implement higher
level communication protocols that include, for example, operations to prepare on-
the-fly reception buffers (such as ACF virtual memory entities).

The implementation of broadcast synchronization, on the other hand, requires All-
to-All communication from all processors to signal to the entire execution context
that it has reached the barrier before continuing with the execution of the code. In
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Figure 3.22: The Broadcast Syncronization Regions in a SpiNN-5 Board.

order to make this functionality feasible, I have reduced the problem to a multi-level
synchronization. I have identified three levels of synchronization, the first identifies
all the processors belonging to a chip, the second identifies all the chips that share a
particular position within the board, and the third level identifies the entire board.

All processors with vID equal to one are level one synchronizers. Depending on the
chip position, they can also act as level two or level three synchronizers. The level
1 synchronization island includes the processors in use inside a SpiNNaker chip and
is called Chip-XY.

As shown in Figure 3.22 level 2 synchronizers have X = Y coordinates and are
therefore arranged along the diagonal. The level two synchronization island is called
Ring-K and includes all level 1 synchronizers belonging to chips with max(X, Y ) =
K coordinates. Their synchronizer is the chip with coordinate X = Y = K.
This arrangement avoids overloading routers as shown in section 3.1 and minimizes
packets circulating on the network. The packets will flow inside the ring without
creating complex propagation flows in the board.

The level 3 synchronizer is one and belongs to the X=0 Y=0 chip. The level 3
synchronizer island therefore includes all level 2 synchronizers and is called Board.

The synchronization of the Chip-XY islands takes place via a semaphore in shared
memory within the individual chips. The level 1 synchronizer performs a busy-
loop polling on the semaphore until it reaches the desired number of synchronized
processors.
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Figure 3.23: The Broadcast Syncronization workflow in a SpiNN-5 Board.

The synchronisation of the Ring-K islands takes place through the exchange of
Barrier-Sync2 messages issued by the level one synchronisers and received by the
level 2 synchroniser which performs a busy-loop polling on a counter from which it
will exit once the desired number of synchronised chips belonging to the ring has
been reached.

The board synchronization takes place through the exchange of Barrier-Sync3 mes-
sages issued by the level two synchronizers and received by the level 3 synchronizer
that performs a busy-loop polling on a counter from which it will exit once the
desired number of synchronized rings belonging to the board has been reached.
Finally, it will send a BARRIER-END broadcast package that will end the syn-
chronization.

In this way I have exploited the parallelism of the board and I synchronized the
entire architecture in just four steps.

The call to the mcm_barrier() function will then be specialised according to the
role of the processor in the following functions:

• _barrier() Executed by non-synchronizing cores, it manages the execution of
a multilevel synchronisation (barrier). It emits a signal on the synchronization
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semaphore shared at chip level and waits for a BARRIER-END packet.

• _barrier_syn1() Executed by a level 1 synchronizer (Chip Level), it man-
ages the execution of a multilevel synchronisation (barrier). It waits for
N signals on the shared synchronization semaphore at chip level, emits a
BARRIER-SYNC2 packet to the level 2 synchronizer and waits for a BARRIER-
END packet.

• _barrier_syn2() Executed by a level 2 synchronizer (Ring Level), it manages
the execution of a multilevel synchronisation (barrier). It waits for N signals
on the shared synchronization semaphore at chip level, M packets BARRIER-
SYNC2 and emits a BARRIER-SYNC3 packet to the level 3 synchronizer and
waits for a BARRIER-END packet.

• _barrier_sync3() Executed by a level 3 synchronizer (Board Level), it man-
ages the execution of a multilevel synchronisation (barrier). It waits for N
signals on the synchronization semaphore shared at chip level, K packets
BARRIER-SYNC3 and emits a BARRIER-END packet in broadcast.

Packet Headers

Multicast packets have 32bit routing key and 32bit payload. The 32bit routing key
are used by routers to forward packets but not all bits of the routing key need to
be used.

The router, upon receiving a multicast packet, looks for a match between the
routing key of the packet and an entry of the routing table. The entries of the
routing table are composed of triples: routing key, routing mask, routing rule. The
goal is to identify the correct routing rule to forward the packet. The packet routing
key is simultaneously compared with all rows of the routing table. The comparison
is done first by masking the packet routing key with the routing mask and then
comparing the result with the routing key from the routing table. If the two keys
are equal then the routing rule will be active. Finally the first active routing rule
of the routing table will be used.

This procedure provides a high degree of flexibility in handling the routing key
fields, allowing the possibility to specify fields that do not contribute to the packet
routing but are used by the protocol for other purposes.

In the case of unicast package the routing key is divided as follows:

• Bit 30-31, MCM Type field, set to 0 to identify a unicast package

• Bit 27-29, DST-X field, Indicates the X coordinate of the receiving chip, valid
value range 0-7
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Figure 3.24: MCM Header for Unicast, Broadcast and Multicast communication
packets

• Bit 24-26, DST-Y field, Indicates the Y coordinate of the receiving chip, valid
value range 0-7

• Bit 20-23, DST-P field, Indicates the vID of the receiving processor, valid
value range 0-15 with implicit offset of one.

• Bit 19, LF filed, Last Fragment flag

• Bit 16-18, CNT field if LF is false, fragment counter with a window of 7
fragments. PAD field if LF is true, indicates padding bytes in the Payload
field, range of valid values 0-3

• Bit 15, ACK field, Indicates whether the package is an Acknowlegment pack-
age

• Bit 14, SYN field, Indicates whether the package is a Synchronisation package

• Bit 11-13, SRC-X field, Indicates the X coordinate of the source chip, valid
value range 0-7

• Bit 8-10, SRC-Y field, Indicates the Y coordinate of the source chip, valid
value range 0-7

• Bit 4-7, SRC-P range, Indicates the vID of the source processor, valid value
range 0-15 with implied offset of one.

The following four bytes contain the payload of the package.
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In the case of a broadcast package, the routing key is divided as follows:

• Bit 30-31, MCM Type field, set to 1 to identify a broadcast package

• Bit 27-29, SRC-X field, Indicates the X coordinate of the source chip, valid
value range 0-7

• Bit 24-26, SRC-Y field, Indicates the Y coordinate of the source chip, valid
value range 0-7

• Bit 20-23, SRC-P field, Indicates the vID of the source processor, valid value
range 0-15 with an implicit offset of one.

• Bit 19, LF Field, Last Fragment flag

• Bit 16-18, CNT field if LF is false, fragment counter with a window of 7
fragments. PAD field if LF is true, indicates padding bytes in the Payload
field, range of valid values 0-5

• Bit 0-15, 2 Payload Bytes

The following four bytes contain the payload of the package. Since we do not need
to specify the package destination and synchronization flags, I use two bytes of the
header to insert 2 additional payload bytes, bringing the total payload to 6 bytes.

In the case of Broadcast Multilevel SYN (Barrier) package the routing key is divided
as follows:

• Bit 0, Level 1 barrier, packets that will flow to the Chip Synchroniser. Not
used, shared memory semaphores are used.

• Bit 1, Level 2 barrier, packets that will flow into the Ring Synchroniser

• Bit 2, Level 3 barrier, packets that will flow to the Board Synchroniser

• Bit 15, Barrier Ack, broadcast from chip x=0 y=0

The routing rules for this type of packets are dependent on the location of the
router to be configured and have a 0xFFFFFFFF mask.

For unicast and broadcast packet types the only bits used by routers are the ten
bits highlighted in green in Figure 3.24. The routing masks can then be set to
0xFFF00000. In total, 211 2048 routing rules are required to handle unicast and
broadcast packets, plus rules for barrier synchronization. The routing tables contain
only 1024 lines, so we need to implement a system to compress the use of the rules.
A first attempt could be to use 0xFF000000 masks considering only the X and Y
fields for all the rules that do not refer to the position of the router to configure and
0xFFF00000 masks for the rules that refer to the position of the router to configure.
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Figure 3.25: Pivot Chip and regions for the SpiNNaker chips

Figure 3.26: Broadcast and Unicast routing rules

This would only use 27+32 rules for a total of 160 rules plus the rules for barrier
synchronization but it is possible to further reduce the use of the routing table.

Routing Rules

I designed an algorithm to generate compressed rules that make possible the efficient
usage of routing tables.

The transmission on the board can be either seen as a packet coming from a source
having multiple destinations in multicast communications or as a packet directed
to a specific target in unicast communications. I define the concept of Pivot Chip
as the source chip in broadcast communications and the target chip in unicast
communications.
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Table 3.5: Routing rules to apply in Unicast e Broadcast MCM communication
channels. The first column define the chip region relative to Pivot Chip and the
condition based on chip coordinates

Region Condition
External Chip Ports in Routing Rule
Broadcast Unicast

0 1 2 3 4 5 0 1 2 3 4 5
P X = XP Y = YP X X X X X X
1 X < XP Y = YP X X X X
2 X > XP Y = YP X X X X
3 X = XP Y > YP X X X
4 X = XP Y < YP X X X
5 X < XP Y > YP X X
6 X < XP Y < YP X X
7 X > XP Y > YP X X
8 X > XP Y < YP X X

The routing rules are built upon the assumption that a SpiNNaker board is divided
into eight regions relative to a specific Pivot Chip that is the centre of the packet
propagation. These regions are shown in Figure 3.25.

Each six external-links of a SpiNNaker chip has a port-number and a label. The
port number grows anti-clockwise from 0 to 5. A routing rule can activate one or
more external link ports.

In Figure 3.26, I show how a packet must be routed following the Broadcast rule
or the Unicast rule. In order to build the routing rules the first step is to obtain
the region to which the chip X, Y , that we want configure, belongs compared to
the pivot chip XP , YP . Now, depending on the region the chip belongs to, we can
assign the rule to apply as shown in Table 3.5 and in Figure 3.26.

We get 80 addressing rules (26+16, 16 are used to manage processor rules in case of
region P) for each communication channel. Leveraging the behavior of the router,
which accepts multiple matches within the ruouting table using the first entry that
matches, and the binary overlay in the six bits that compose the coordinate of the
pivot chip, we can reduce the rules by a factor of 3x obtaining only 24 (8+16).

To achieve this we proceed with the following algorithm.
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• Grouping: we group all routing keys associated with a region into a Region
Key Group. For each key we consider the 6 bits of the Pivot-X and Pivot-Y
fields

• Consensus Regions: We identify the positions where the bits of all words in
the Region Key Group have the same value.

• Fusion: we generate a fusion key, a 6 trit word (trinary digit, 0, 1, X). Each
word will assume values 0 and 1 for all positions belonging to the consensus
regions, depending on the value of the consensus regions, otherwise it will
assume value X.

• Analysis: For each fusion-key an entry-prototype is created, a triple of integer
values (X-number,X-position,K,M) which contains, in order:

– X-number the number of trit to X

– X-position the position of the first trit to X

– K a 6bit word in which each trit of the fusion-key is reported by replacing
the trit X with bit 0

– M a 6bit word in which is associated for each trit different from X a bit
to 1, and for each trit to X a bit to 0.

• Sorting: the triple is sorted by values (X-number,X-position,K)

• Routing Key: The K field of the triple is used as the routing key and the M
field as the routing mask.

To summarize, the routing key are first grouped according to the routing rule,
Region Key Group, and summarized in a single fusion-key. A fusion-key contains
the binary entry of the Region Key Group consensus regions and a X trit in the
discordant positions. The fusion-key are then sorted according to the number of
X trit, the position of the first X trit, and finally by the fusion-key routing itself
(considering as a binary word with the X trit sobstituted with a bit 0).

We then obtain an ordered list of eight pairs (routing key, routing mask) that
allow to route all possible packets coming from or directed to a pivot chip. It is
guaranteed that even in case of multiple matches the correct routing rule will be
chosen because the rules are sorted by generality and the first rule that matches is
always the correct one.

Spinlock and Atomic Swap

The MCM library needs a system to manage portions of code that require to test
particular conditions on global variables before continuing with the subsequent
code execution. Usually, this is required while waiting for a lock-flag to be released
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Figure 3.27: Impact of atomic swap with respect to critical sections during an MCM
Barrier synchronization. Considering for example the configuration of 5 rings and
16 processors we get a 37% improvement in the time needed for synchronization,
from 32 µs to 20 µs.

or for a counter variable to reach a specific desired value during synchronization
primitives.

These variables, like lock-flag and event-counters, are modified by high priority
interrupts. The lock-flag function, on the other hand, is executed at a lower priority
and must perform a test operation on the variable and, in some cases, a reset
operation to return it to its original value.

This functionality can be implemented in two ways. A first solution can be the
scheduling of an event, to be triggered when the lock is released, and then by
switching to sleep-mode. A second solution is the implementation of busy-loop
polling on the lock variable (spinlock). In the first case, we introduce the overhead
of the Spin1 scheduler and, in some situations, the simultaneous sleep-mode output
of many processors causes current peaks on the architecture. Considering also the
average waiting time for synchronization messages of less than 100 µs, I opted for
the implementation of a spinlock.

In this case, we need to manage the polling on the lock variable in atomic mode.
The current SARK library allows creating critical sections by disabling interrupts.
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1 static inline uint8_t mcm_swap_uint8 ( uint8_t set , uint8_t *test) {
2 uint8_t check ;
3 __asm__ __volatile__ ("swpb %[ check ], %[ set], [%[ test ]]"
4 : [ check ] "=&r" ( check ) // & force to use different registers
5 : [set] "r" (set),
6 [test] "r" (test) );
7 return check ;
8 }

Figure 3.28: Atomic swap implemented in MCM

Within the critical section, it is, therefore, possible to test the lock flag in an atomic
mode without a higher priority interrupt changing its value. The ARM processor
that composes the SpiNNaker chips, however, allows performing an atomic swap
operation between DTCM elements. I have therefore implemented Critical Section
and Atomic Swap spinlock models to measure their performance during SpiNNaker
chip synchronization.

The implementation of the spinlock using the instruction swpb, adequately inte-
grated with the library through inline assembly, allows a considerable reduction of
the time needed to run a barrier on the whole board, as we can see in Figure 3.27. In
particular, for a high number of processors involved, a speedup of 37% is obtained.

3.3.2 The Application Command Framework
In this section, I describe the Application Command Framework (ACF).

The Application Command Framework works at the application level and extends
the state-of-the-art software for this platform increasing its flexibility and efficiency
of reconfiguration. In particular, it allows the transmission and interpretation of
high-level op-codes defined by the users and embedded in the distributed appli-
cations (i.e. Remote Procedure Calls - RPCs). Indeed, cores can thus execute
commands transmitted by external devices. The protocol supports both host-to-
platform and core-to-core communication. Through this mechanism, the protocol
also implements the possibility to manage the cores memory (i.e. triggering read-
/write operations) by abstracting physical memory addresses using virtual IDs de-
fined as Memory Entities. As a result, cores can communicate, trigger operations
and synchronise their execution.

More generally ACF enables the embedding of alternative computational flows in
the applications running on the board allowing the host to control their behaviour
at runtime through RPCs and manage their memory using Memory Entities. Ex-
ploiting these features, ACF also provides core-to-core communication and synchro-
nisation support.

I implemented ACF as an application library that can be used by the applications.
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Figure 3.29: ACF workflow in receiving messages.

To support the communication between processors in distributed applications, I
defined the Application Command Protocol (ACP). The header of an ACP packet
consists of 4 Bytes containing the Packet ID and the Command ID. The following
bytes are used for the header of the command (from 4 to 12 Bytes) depending on
which command ID is in the packet. Likewise, the format of the Command Payload
depends on the type of command, it has a maximum limit of 264 Bytes length.

An ACP message can be transmitted over the board using two communication
channels. The ACP over SDP uses the SDP protocol implemented in the native
SpiNNaker software stack. The Monitor Processor of the sender chip breaks the
SDP packet into PP packets and sends them to the Monitor Processor of the re-
ceiving chip. The ACP over MCM uses the multicast (MC) channel and the MCM
library. The sender Application Processor breaks each ACP packet into a set of MC
packets, each one is a 32 bits fragment, and transmits them using the Multicast
Communication Middleware.

ACP workflow

The Application Command Framework is implemented in two libraries, Spynnaker-
ACF and ACF. The SpynnakerACF is implemented as a Python package and is
organised as a collection of classes and utility methods used in the host computer to
create, send and receive commands to SpiNNaker chips through the Ethernet con-
nection. The library provides a framework to define the functions to be implemented
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when a SpiNNaker core receives a command. The framework is customisable, as
users with particular needs can extend the default set of commands for supporting
new functions that will help the design of flexible applications.

The ACF library is built on top of SARK, the event-driven programming model
provided by the Spin1 library and MCM. This module provides three main func-
tionalities: i) At network level, it implements three channel of communications:
Channel Core, Channel Broadcast, Channel Host. ACF use the unicast com-
munications provided by MCM for the Channel Core and the broadcast commu-
nications provided by MCM for the Channel Broadcast (ACP over MCM ). The
Channel Host instead use ACP over SDP. ii) It provides a customizable framework
for supporting command management (Remote Procedure Call). iii) It implements
an abstraction level of the memory blocks through the definition of Memory Enti-
ties.

In Figure 3.29 I show the workflow designed to manage the reception of an ACP
packet. The Monitor Processor mediates the ACP over SDP implementation using
point to point connections. Whereas the ACP over MCM implementation is directly
managed by the Application Processors.

The main functions provided by the library to manage RPC and CRUD operations
on Memory Entities are:

• acf_cmd_create(...) To register a function locally on a Command ID. It
accepts as parameters a 16-bit integer to represent the Command ID and a
function pointer.

• acf_cmd_delete(...) To remove a function from a Command ID. It accepts
as a parameter a 16-bit integer to represent the Command ID.

• acf_cmd_run(...) To execute the function associated with a Command ID.
It accepts as parameters a 16 bit integer to represent the Command ID, a byte
buffer and its size containing the payload to pass as argument to the function,
the communication channel, the destination (only for Channel Core) and a
synchronization flag to make the execution blocking.

• acf_me_create(...) To create a memory entity locally. Accept as arguments
a Variable ID, the size of the memory entity, and two function pointers for
write and read callbacks.

• acf_me_read(...) To read the contents of a memory entity, locally. It ac-
cepts as parameters a Variable ID, the byte buffer to write the content of
the memory entity, the length in bytes you want to read, the communication
channel on which to synchronize, the remote source (only for Channel Core)
and a synchronization flag to make the execution blocking.

80



3.3 – Communication Middleware and Message Passing Interface

• acf_me_update(...) To update the content of a memory entity, locally.

• acf_me_update_remote(...) To update the content of a memory entity re-
motely. Accepts as parameters a Variable ID, the byte buffer you want to
write in the memory entity, the length in bytes you want to write, the com-
munication channel, the destination (only for Channel Core) and a synchro-
nization flag to make the execution blocking.

• acf_me_delete(...) To remove a memory entity locally.

The library has a private header containing all the communication primitives used
internally to manage ACP, and memory entities. The main functions are:

• _exec() interprets and executes an ACP packet received over the network.

• _me_create() manages the creation of a memory entity

• _me_delete() removes a memory entity

• _me_read() reads the content from the buffer of a non-virtual memory entity.

• _me_update() writes to the buffer of a memory entity, if virtual requires the
previous use of _me_set_buffer()

• _me_get() gets the handler of a memory entity

• _me_is_lock() controlla se la memory entity ha un read-after-write lock

• _me_is_virtual() check if the memory entity is virtual

• _me_set_lock() set a read-after-write lock

• _me_set_buffer() set a buffer for a virtual memory entity.

Command Management

The command management ACF functionality (RPC) can be recreated in the SCP
by modifying the SARK kernel in order to support new commands2. However,
extending the available commands requires extensive kernel modifications, with
additional efforts devoted to maintaining the kernel light, stable, and safe.

Instead, ACF only requires to create a new callback in the commands list, allowing
the user to easily define custom commands. More specifically, the user registers the
function implementing the command interpreter as a callback function on the ACF
library. This function is associated with an identifier, Command ID, and stored in
a hash-table. This solution provides much better flexibility than a static vector.

2Currently each Application Processor can execute four SCP commands: Get Kernel Version,
Memory Read, Memory Write and Application Run.
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Figure 3.30: ACF - Memory entity read and remote update

When the ACP packet (Figure 3.29) is processed, the following steps are involved:

1. The ACP header is read, and the Command ID is extracted.

2. The ACF library searches the hash table for the callback function coupled
with the Command ID.

3. If the callback does not exist the command is ignored, otherwise the function
pointer is extracted.

4. The selected callback reads the command header section and executes the
command.

5. If required, the selected callback reads the command payload section.

6. If the command requires a reply, an ACP packet is created and appended to
the outcome packet queue.

Memory entities

The Application Command Framework provides an abstraction of regions of mem-
ory called . A memory entity is an ADT that represents a memory area of maximum
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Table 3.6: This table shows the operations on memory entities that can be used
through ACP communication channels. The table shows the functions for both
on-board ACF runtime and on-host ACF runtime. (1) Supports read-after-write syn-
chronization and virtual memory entities with remote writes on all ACP channels (2) Not yet
implemented, requires Host side Memory Entites support. (3) Work in Progress (4) Gather oper-
ation, under study

Runtime Channels ME Operations
Create Read Update Delete

Board

Local create read1 update delete

Core -3 -3 update_remote -3

Broadcast -3 -4 update_remote -3

Host Requires a specific Host ACF Runtime support

Host Core - RemoteME::read RemoteME::update -
Broadcast Requires a specific Board ACF Runtime support

256 Byte on which it is possible to perform CRUD (Create, Read, Update, Delete)
operations. The Update operation can also be performed on Memory Entities be-
longing to other Application Processors.

Currently, ACP implements the following functionalities on Memory Entities:

As shown in Figure 3.30, the read function of a memory entity allows to set the
synchronization on a network channel before reading the data. In this case, there
is a synchronization between the core that wants to perform a remote update op-
eration and the core that waits for the data on the memory entity. This mode, also
called binding memory entity, allows creating synchronized communication buffers
between cores. It is the responsibility of the user to create applications that do not
enter a deadlock.

Synchronizations are implemented differently depending on the type of communica-
tion channel. In the case of ACP_CHANNEL_CORE MCM, Unicast synchronization is
used. In the case of ACP_CHANNEL_BROADCAST MCM Barrier synchronization is used.
In the case of ACP_CHANNEL_HOST, an ACF implemented synchronization similar to
MCM Unicast synchronization but usable to external devices via ACPoverSDP is
used.

Once the synchronization phase is completed, the reading procedure of the memory
entity enters the Read after Write lock phase. The processor waits for the remote
processor to finish sending data and write it correctly inside the ME buffer.

This double synchronization, Remote Channel Sync and Read After Write Lock,
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supports the Virtual Memory Entity feature. Some applications do not require data
to remain on the ME, so allocating a buffer to the ME would be a waste of memory
and time. It would be necessary to copy twice the buffer during the reading phase,
the first time copying the ACP packet coming from outside on the ME buffer and
the second time copying the buffer of the ME in the buffer provided during the
reading phase.

A virtual Memory Entity is not provided with a physical buffer but requires to
associate a buffer every time an attempt is made to read it. In this case, before the
sender starts sending the Memory Entity Update command, the receiver must be
ready and associate a buffer for storing the data.

In this case, the sender sends an MCM Sync Message, an ACP Syn Message or
starts an MCM Sync Message before beginning the transmission according to the
chosen communication channel. Only at the end of synchronization will send the
memory entity update command.

This feature is useful to create synchronized communication points between pro-
cessors and will be used by the MPI implementation to implement communication
buffers between MPI nodes.

3.3.3 Message Passing Interface
To implement a high-level message passing interface we need some low-level func-
tionalities:

i) An interface for handling the SpiNNaker native multicast communication. ii) A
synchronisation system between all computing nodes. iii) A high-level interface to
read/write data between nodes.

In order to implement the MPI library for SpiNNaker PCB (SpinMPI) these re-
quirements are satified by two auxiliary libraries, MCM and ACF. As explained in
subsection 3.3.1 MCM is an extension of Spin1, the standard application library for
Spinnaker. It provides an interface to use the multicast message system in a broad-
cast way and implements a synchronisation system. Whereas, ACF implements
Remote procedure calls, exploiting the Application Command Protocol (ACP) to
send and to receive commands between SpiNNaker nodes and from/to External
Devices. ACF provides some facilities and built-in commands for sharing memory
objects (referred as Memory Entities).

The SpinMPI is built over these two layers, in particular, I implemented the re-
ceiving buffer as an ACF Virtual Memory Entity. Both ACF and SpinMPI have
an on-host runtime written in Python (ACF-Runtime and MPI-Runtime).

The goal of this section is to describe the implementation of the MPI programming
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model that exploits the SpiNNaker event-driven programming model and the on-
board interconnection structure using the MCM and ACF libraries.

The MPI reference implementation, OpenMPI, provides two components: i) mpicc
is a wrapper of a C compiler that provides the environment variables to include
the library files and to link the object files. ii) mpirun is the OpenMPI runtime
environment that launch and manages the execution of the application over multiple
nodes.

Differently, a SpinMPI application is compiled with spinnaker_tools, the compiler
toolchain provided with the SpiNNaker board. The launcher is the Python package
MPI-Runtime that loads the compiled application on a set of processors called
MPI-Context. Moreover, it initializes the application with the context info such as
MPI Rank and MPI Communicator via the ACP.

The MPI-Context is identified by the number of rings involved and by the number
of processors used for each chip: Context : (RingIDMAX, VIDMAX). Each Ring contains
a variable number of chips. For example, Ring 0 contains the chip (0,0), Ring 1 the
chips (0,1)-(1,1)-(1,0), Ring 2 the chips (0,2)-(1,2)-(2,2)-(2,1)-(2,0), and so on, as
shown in Figure 3.22. Each processor is identified by a vID3. For example, for
parallelizing a program on 32 processors we can choose a context of C(1,8), C(3,2)
or C(5,1), each of them describes a set of 32 processors. When the context is
defined, the application is loaded on SpiNNaker.

An MPI application starts with the MPI_Init(. . .) function, whereas on SpiNNaker
we need to call the MPI_Spinn(. . .) that initialize the libraries to implement the
event driven programming and insert in the scheduler queue the function that
contain the MPI application (mpi_main). In this way we detach the MPI application
from the standard entry point for SpiNNaker application, c_main() and include it
in a standalone function. A code template is reported in Figure 3.31.

The MPI_Spinn(. . .) is performed in three steps: i) In the callback registration step,
the MCM and ACF4 libraries register several callbacks to manage the incoming
packets, the SDP packets coming from the Monitor Processors and the MC packets
from the router. In this way, only ACPoverSDP (SDP on port 7) and ACPoverMCM
packets are dispatched to the ACF. ii) The second step is to initialise the support
for multicast connections. MCM register the routing rules for each possible source
and ACF register an internal callback that will be used for execute the ACPoverMCM
messages. iii) In the last step, the handler that contains the MPI application code

3Each processor has a physical ID (location on the die) and a virtual ID assigned when the
machine is powered up.

4MCM callbacks are registered directly on the Spin1 events, while the ACF callbacks are
registered on MCM
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1 # include "mpi.h"
2
3 ...
4
5 void c_main () {
6 MPI_Spinn ( mpi_main );
7 }
8
9 void mpi_main (uint arg1 , uint arg2) {

10 MPI_Init (NULL , NULL);
11
12 ...
13
14 MPI_Finalize ();
15 }

Figure 3.31: SpinMPI code fragment to run the MPI runtime on-board

is scheduled on a low priority event queue before to leave the control to the event
scheduler.

Inside the mpi_main, the MPI library is initialised through the MPI_Init(. . .)
function. The initialization procedure is divided into three phases: i) Initialize
ACF Memory Entities that are recorded and will be used to receive from the
MPI-Runtime informations like the processor Rank and the coordinates (x, y, vID)
of all processors involved in the MPI-Context. ii) Receive the context information
from the runtime and configuration variables for the MCM synchronisation fea-
ture. iii) Finally, each processor waits for a signal from the MPI-Runtime. Once the
MPI-Runtime has verified that all the processors have been properly configured, it
sends the signal and the MPI_Init(. . .) function ends.

MPI offers two types of communications: Point to Point (1to1) and collective
(1to*, *to1, *to*). The 1to1 communications have three properties:

• Blocking/Non-Blocking, a blocking function is released only when the data
buffer to be sent can be modified, otherwise non-blocking functions are re-
leased immediately and the submission is postponed or delegated to a com-
peting thread.

• Synchronous/Asynchronous, synchronous functions (send only) require a re-
ceiving acknowledgement from the receiver before considering the communi-
cation successful.

• Buffered/Unbuffered, the message before being sent and/or received is copied
into a system buffer

The MPI specification defines MPI_Send and MPI_Recv as blocking functions and
MPI_Isend and MPI_Irecv as non-blocking functions. These functions can be also
Synchronous or Buffered. at the discretion of interface implementer. The user can
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Figure 3.32: Impact of virtual memory entities with respect to 64 Byte memory
entities in MPI implementation.

force the use of synchronous functions via MPI_Ssend and MPI_Issend.

On SpiNNaker, the implementation of MPI_Send is blocking, synchronous, and
unbuffered, while MPI_Recv is blocking, and unbuffered.

MPI unicast communication functions use MCM for sending the write command
and modifying the content of Virtual Memory Entity used as communication
buffer in the target processor. Specifically, the MPI_Recv buffer is an ACP Virtual
Memory Entity with a maximum content of 256 Bytes. For sending more than
256 Byte it is necessary to fragment the data and sends fragments individually.

The use of virtual Memory Entites guarantees the possibility to use all 768 available
processors in a Spin5. Considering for example the maximum feasible configura-
tion, the virtual memory entities allows the whole board usage with an impact of
the whole software stack in DTCM of 18 KiB. Instead allocating 64 Byte for each
communication buffer allow a maximum feasible configuration of 432 core, with an
impact of the whole software stack in DTCM of 63 KiB, saturating all the memory
available for the application Figure 3.32.

The collective communications differ depending on the type of operation and the
multiplicity of sender and receiver nodes. In particular, there are three types of
operations: synchronism (described in section 3.3.1), data reduction (to be imple-
mented), and data movement (described in the following).

The collective communication functions implemented are as follows:

• MPI_Bcast Implements the broadcasting of a message. The entire message is
sent simultaneously to all nodes of the communicator. It is equivalent to N
MPI_Recv.

• MPI_Scatter Implements the broadcasting of N messages. Each message
is addressed to a different destination. If no aggregated data propagation

87



Programming tools and middleware for manycore neuromorphic platforms

mechanism that take advantage of the architecture parallelism is available,
this function is equivalent to N MPI_Send.

• MPI_Gather Implements the reception of N messages. Each message is sent by
a different processor. If no aggregated data propagation mechanism to exploit
the parallelism of the architecture is available, the function is equivalent to
N MPI_Recv.

• MPI_Allgather Implements an All to All communication, all processors send
a message to all other processors. It is equivalent to N MPI_Gather or N
MPI_Bcast.

• MPI_Barrier Implements a barrier on which all nodes in the context must
synchronize.

The SpinMPI library provide an efficient implementation of MPI_Bcast and MPI_-
Allgather that are functions for replicating data on the nodes. This type of functions
are implemented using acp_update_remote(...) on Broadcast ACP Channel ex-
ploiting the MCM broadcast communication protocol.

The MPI_Allgather is implemented as a simple linear cycle where each processor,
in turns, perform an MPI_Bcast. This is possible only if all involved processors are
synchronised. The MCM library provide automatically syncronization capabilities.

The same MCM syncronization capabilities are also used to implement the MPI_-
Barrier() function.

3.3.4 ACF - Case Studies
In order to demonstrate the advantages of ACF, I exploited the library to enhance
existing applications in the development environment for SpiNNaker (Figure 3.33).
Within such applications, I assessed the added value provided by ACP in terms of
additional features compared to the existing SCP support.

The first application taken into consideration is the program used to configure the
cores before a simulation. I have introduced ACF in the configurator in order
to overcome some limitations imposed by the current SCP-based system. The
configurator consists of an interpreter of commands executed on each processor of
the architecture, that needs a set of op-codes preloaded in memory. In the current
system, the entire op-code sequence is introduced into memory using SCP.

With ACF, a configurator is now capable of receiving op-codes at runtime, with a
two-fold advantage: i) a reduced use of memory (it is not necessary to store an entire
list of op-codes but only a portion) and ii) the parallelisation of the procedure (while
sending op-codes to processor B, processor A starts to process its set of op-codes).
This application has also been used to profile the performance of the framework.
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The second application taken into account is the neuronal model used in SNN
simulations. More specifically, I introduced ACF in the implementation of the
neuronal model, in order to allow the reconfiguration of some operating parameters
of the synapses during the simulation. This was exploited within two different
applications: an SNN classifier, and an SNN simulation where I tune the synapse
delay parameter.

The classifier SNN is made of two phases, learning and testing. The current SCP-
based pipeline requires running a complete simulation in both phases, due to the
necessity of using two different neural models, one for the learning and the other
for the testing. The introduction of ACF avoids this overhead, allowing a re-
configuration of the neuron’s behaviour that makes it usable in both phases.

The SNN simulation consists of a linear sequence of neurons that stimulate each
other. Within this application, I evaluated the possibility of either tuning SNN
parameters or introducing complex behaviours to the simulation in real-time. More
specifically, I introduced ACF in the neural model to allow the modification of the
delay of the synapses during the simulation.

ACF for Interactive Data Loading

The benchmark application described in this section is a program used to configure
SNN simulations. Our modified configurator runs on the host computer and sends
commands to the SpiNNaker Board.

When a simulation runs, one of the very first steps involving the nodes of the board
is the data specification (DS) phase. DS is one of the most critical phases concerning
the time of execution as well as resources management. This phase aims to fill the
memory of Application Processors (APs) with the configuration data needed for
running a simulation.

Each NMI is equipped with its data specification generator (DS-G). The DS-G
produces a sequence of commands (op-codes) that together make up the data spec-
ification program (DS-P). The DS-P is executed by a virtual machine called data
specification executor (DS-E) which, processing each op-code, configures the mem-
ory of the application processor. The DS-E can be performed on the host computer
(DS-E on-host) or directly on SpiNNaker Board (DS-E on-board).

The DS-E on-host version produces a memory image for each AP. All data are sent
to the SpiNNaker Board and written in the memory of each involved core. As the
full memory image is transmitted in a serial way core-by-core, this implementation
does not fully exploit the intrinsic high-parallelism and low-power consumption of
the SpiNNaker system. The computational effort of DS-G and DS-E phases remains
on the host side.
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Figure 3.33: Two application improved by the usage of ACF. On the left, we used
ACF for implementing a parallel transmission system of op-codes that configure
the many processors of the board. On the right, we used ACP for triggering two
different synaptic behaviours of a neuron model during an SNN simulation.

A DS-E on-board version is also available and can be executed by SpiNNaker ap-
plication processors and deployed into each core involved in the simulation. To use
this version, the host must first transfer DS-P to the cores. Then, the on-board
DS-E will generate the data structures directly on the SpiNNaker memory.

While this implementation avoids the need to transfer core application memory
images from the host, still it requires to upload the full DS-P to the core memories.
With ACF, we can overcome this limitation, and we obtain two advantages: i) The
DS-P can be executed on-the-fly through RPCs sent by the host (Interactive DS-
E On-board), without requiring its complete transfer, thus saving memory; ii) It
allows to exploit platform parallelism, as configuration commands are spread to the
cores that can generate their data structures in parallel (Interleaved Transmission).

The interactive DS-E on-board makes use of the ACP for the transmission of the
data specification program. I use this application to evaluate the performance and
the reliability of the ACP over SDP implementation counting the number of packets
lost as a function of the Packet Delivery Delay Time (tpdd), that is the time elapsed
between the transmission of two packets. This delay between packets avoids over-
loading the monitor processors involved in the transmission, thus improving the
reliability of host-to-board data transmission.
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I used as testcase the configuration of a biologically inspired SNN designed by
Potjans et al. [70] and implementing the four layers constituting the human brain
Cortical Microcircuit (CM). I scaled-down the number of neurons and synapses to
10% of the original network (CM10) to satisfy time and resources constraints for
fitting the SNN simulation in a single SpiNN-5. The SpiNNaker software maps the
CM10 SNN on 240 cores distributed among 15 chips of a single SpiNNaker Board.

The Figure 3.34 reports the per-processor distribution of memory requirements of
this application when SCP is used to load the whole data specification programs.
As it can be easily gathered from the plot, the distribution of DS-P size is very
heterogeneous, and a significant amount of the overall data transmission have very
large memory requirements (>1 MB). On the other hand, using ACP for the same
application, I obtained data transmission always happening in chunks of small fixed
size (1 kB). Hence, ACP reduces the memory footprint by 90% at least. This has
a positive impact on the memory access time, as it allows to leverage the fast
DTCM memory (64 kB upper-bound). On top of that using the ACP the overall
CM10 configuration time is reduced from 213 to 190 seconds. As described in [4]
a CM100 could require even ten hours of configuration times against few minutes
of simulation runtime, hence, using ACP has a significant impact on the overall
simulation efficiency.

The ACP packets encapsulate the DS op-codes inside an ACP over SDP packet
and are transmitted using two techniques: Serial and Interleaved. In the Serial
transmission I consecutively send all packets directed to a processor before changing
the destination. Whereas, in the Interleaved transmission I change the destination
for each packet so that I never send two consecutive packets to the same chip. I
run both Serial and Interleaved transmission 20 times, one per each tpdd value, in
a 50 µs to 500 µs range using a 50 µs step.

During these runs, I counted how many APs completed the configuration and how
many packets were lost. The loss of a packet is confirmed by the processor when
the application receives a packet with an unexpected sequence number. On the
Monitor Processor side, I counted the occurrences of . An SWE is the error triggered
when the Root Processor saturates its message queue. If this event occurs during
reception by a local AP, the local AP must handle the exception. If the event
occurs while receiving a packet from a remote entity, the packet is lost. When too
many SWEs occur, the Root Processor enters in the status and it stops, making
the SpiNNaker Board unreachable by the host computer. During our evaluation
of the results, I considered the (RTE) a critical failure for the test. Conversely, I
considered successful those tests terminated with SWE counter equal to zero.

The test environment consists of a host computer, equipped with an Intel Core
i5-4670 @ 3.40GHz, 4 GB DDR3-RAM and running GNU/Linux Debian 8 (Jessie)
distribution, a Gigabit Ethernet Switch and a SpiNN-5.
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Figure 3.34: DS-P Memory Footprint. Per-processor memory usage of Data Spec-
ification Program leveraging SCP.

SERIAL INTERLEAVED
tpdd [µs] Configuration Packets Root Processor APs

Missed / Total Class of 9s SWE RTE FINISH WAIT
50 * * * 100% * *

100 20 661 / 9 561 640 2 39 186 0% 63.9% 36.1%
150 1 570 / 9 561 640 3 28 273 0% 91.2% 8.8%
200 122 / 7 171 230 4 91 25% 96.7% 3.3%
250 71 / 9 083 558 5 96 5% 98.8% 1.2%
300 22 / 9 561 640 5 0 0% 99.5% 0.5%
350 13 / 9 561 640 5 0 0% 99.7% 0.3%
400 15 / 9 561 640 5 0 0% 99.6% 0.4%
450 9 / 9 561 640 6 0 0% 99.7% 0.3%
500 17 / 9 561 640 5 0 0% 99.6% 0.4%

tpdd [µs] Configuration Packets Root Processor APs
Missed / Total Class of 9s SWE RTE FINISH WAIT

50 136 089 / 956 164 0 131 070 90% 43.0% 57.0%
100 6 447 / 9 561 640 3 6 100 0% 57.1% 42.9%
150 314 / 9 561 640 4 179 0% 93.4% 6.6%
200 121 / 9 083 558 4 29 5% 97.3% 2.7%
250 19 / 9 561 640 5 1 0% 99.6% 0.4%
300 12 / 9 561 640 5 0 0% 99.7% 0.3%
350 26 / 9 561 640 5 0 0% 99.4% 0.6%
400 26 / 9 561 640 5 0 0% 99.4% 0.6%
450 9 / 9 561 640 6 0 0% 99.8% 0.2%
500 11 / 9 561 640 5 0 0% 99.8% 0.2%

Table 3.7: Test results At variation of tpdd these tables describe: i) The number of
ACP packets lost and the relative class of 9s (number of 9s in 1 − missed/total).
ii) The status of Root Monitor Processors in terms of Software error and Runtime
exceptions. iii) The status of Application processors in term of percentage of them
that receive all own packets.

In the first set of tests, I implemented a serial transmission for stressing the Applica-
tion Processors and the destination Monitor Processor detecting the minimum tpdd

that guarantees a reliable transmission without any loss of packets. ACP over SDP
packets are transmitted sequentially from the Root Node to the Application Pro-
cessor until the configuration packets are consumed.

Table 3.7.serial summarises the results of these stress tests. The table refers to
all 20 simulations for each tpdd chosen. I detected critical failure conditions (RTE >
0) when tpdd is in the range of 50-250 µs. In the case of tpdd time equal to 50 µs, it
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was not possible to obtain any data because all the twenty simulations failed. This
critical failure is due to a chain of events starting with the saturation of the shared
message box between MP and AP that creates a deadlock condition overloading
the MP in charge of dispatching the ACP packets. Considering tpdd values above
250 µs the system can configure the 99.999% of the APs (reliability class of 9s equal
to 5). From the results, I obtained a tpdd of 300 µs to avoiding the saturation of
buffers in Application Processors.

I designed this benchmark to find the minimum threshold of tpdd time that guaran-
tees the correct transmission of all configuration packets from the Root Processor.

In this scenario I avoided the overloading of the target MP, stressing only the
Root Processor. The host computer forwards configuration packets so that two
consecutive packets are never sent to the same chip. For example, if I want to
configure the AP-1 of the Chip-0-0, the AP-2 of the Chip-0-1 and the AP-3 of the
Chip-1-0 respectively, the procedure works as follows:

1. ACP over SDP Packet-1-1 is sent to the MP of the Chip-0-0 and forwarded to
the AP-1.

2. After a waiting time equal to tpdd, the Packet-2-1 is sent from the Root Pro-
cessor to the MP of the Chip-0-1 and forwarded to the AP-2.

3. The Packet-3-1 reaches the MP of the Chip-1-0 and is forwarded to the AP-3.

4. The Packet-1-2 is sent to the MP of the Chip-0-0 for the AP-1.

This mechanism of interleaved transmission continues until the configuration is
complete. In the final phase of the transmission, if the cores to be configured lie
in a single chip the packet delivering delay is increased using a safety threshold of
1 ms, in order to avoid saturation of the target MP involved in the configuration
of the last cores. Using this technique, I prevent the burst transmission of packets
to the same SpiNNaker Chip, giving to the MP and to the APs a sufficient amount
of time to reconstruct and process ACP packets.

The use of interleaved sending of configuration packets made it possible to analyse
the limits of the Root Processor previously masked by the errors generated by the
MPs of the target chips.

In Table 3.7.interleaved I reported the results of this test. I identified the critical
failure condition (for all the 20 repetitions) that occurred when I imposed a delay
time tpdd of 50 µs and a single critical event for tpdd equal to 200 µs. In the
tpdd range of 100 µs to 250 µs I detected several SWEs that indicate the lower
bound imposed by the limits of the hardware component involved in the delivering
process of packets inside the SpiNNaker Board. I identify the cause of this issue
to a limitation of the Root Processor used to fragment the SDP packets into PP
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Figure 3.35: Software Errors and percentage of missed packets for serial and inter-
leaved transmission. The plot on the left shows SWE at increasing values of tpdd

( µs). The lone points are values inserted to take RTE into account (the y-axis is in
logarithmic scale, all values are incremented by 1 to avoid zeros). The plot on the
right shows the number of missed packets at increasing values of tpdd ( µs). The lone
points are values inserted to take RTE into account (the y-axis is in logarithmic
scale and represents a percentage).

packets. The system can configure the 99.999% of APs with a reliability class of 9s
equal to 5 using values of tpdd higher than 200 µs.

The plots in Figure 3.35 show the occurrence of SWE when the tpdd is increasing.
We note a higher number of SWE when ACP over SDP packets are transmitted with
the Serial method, thus validating our hypothesis that the interleaved transmission
is a valid solution to the issues related to HW and time limits of target chips having
to reconstruct and interpret incoming ACP packets. In the interleaved transmission
the Root Node is responsible for the generation of SWEs.

I consider as successful transmissions those without errors. A transmission of this
type can be detected for tpdd ≥ 250 µs for interleaved and tpdd ≥ 300 µs for
serial loading. I highlighted, in the chart of Figure 3.35, the presence of RTE using
outliers points. This condition happens at 200 µs for the Interleaved transmission
and at 250 µs for the Serial transmission.

The missing packets counted at the target have a trend similar to SWE (see Fig-
ure 3.35). The number of missing packets reduce to a value near to 1.0E-06 for
tpdd ≥ 250 µs in the Interleaved transmission and for tpdd ≥ 300 µs in the Se-
rial transmission. Even in this situation, we can observe the same crash events
represented as single points in the figure.

In summary, we identify an ideal delay time of 300 µs for the Serial transmission
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Figure 3.36: This plot depicts trend of communication bandwidth when tpdd ( µs)
is increasing. The different operating zones are represented with different colours.
Red points represent values of four different boundaries. A is the last recommended
value with the interleaved sender: 13 Mbit/s. C is the last recommended value
with the serial sender: 7.5 Mbit/s. D is a secure value that works for all senders:
6.5 Mbit/s. In B we get an unusual amount of RTE.

and of 250 µs for the Interleaved transmission.

In Figure 3.36 we can identify four tpdd operating zones: i) Green area: no problems
encountered, all packets are correctly transmitted; ii) Yellow area: only Interleaved
transmission can terminate without error; iii) Red area: detected some issues,
acceptable only when using Interleaved loading; iv) Below 150 µs (grey area) the
system is unstable. The bandwidth profile shows the throughput for each operating
zone: For yellow and green operating zones we reach values between 6 and 8 Mbit
per second. Whereas, the red operating zone allows a bandwidth between 8 and
13 Mbit per second.

In order to load the DS-P opcodes and exploit the multicast network with MCM
(ACP over MCM) I have identified two possible approaches. Both involve the
use of a functionality to be developed in the application in order to transform
ACP over SDP communications into ACP over MCM operations.

The first approach involves the use of the ACP_CHANNEL_BROADCAST communication
channel and an on-host op-code compression system through a sequence alignment
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algorithm (Multiple Sequence Alignment, MSA). The idea is to identify for each
DS-P groups of opcodes in common, in order to generate a single opcode stream to
broadcast on the architecture. The consensus zones between the sequences define
the match groups. Finally, a single sequence is created to which each opcode
is associated with a number that identifies the match group. When a processor
receives an opcode, it checks if it belongs to the specified match group. If so, it
will accept the opcode, otherwise it will ignore it. To convert the ACP over SDP
channel to ACP over MCM I have set the sequence sending from the host computer
to the SpiNNaker processor x=0 y=0 p=1, which will forward it immediately via
a Memory Entity Update command on the Broadcast channel when it receives the
ACP packet.

The second approach does not involve channel compression via Multiple Sequence
Allignment but takes advantage of the parallelism of the sixteen Application Pro-
cessors of the Root Chip (Chip x=0 y=0). All sixteen processors (which we will
call Configurators) are programmed to receive an ACP over SDP and redirect it to
the ACP_CHANNEL_CORE communication channel (unicast MCM channel) through a
Memory Entity Update. Each processor can forward the packet to a subset of other
processors, so there is no chance to create hotspots on the Router network. The
host computer will forward the packets in Interleaved mode, these will reach the
Configurators that will forward them in parallel on the multicast network.

The benchmarks for the two phases of the first version of the new Data Upload
protocol (the MSA and the Broadcast sending phase) are shown in Figure 3.37.

The two images show the results of multiple executions of the Cortical Microcircuit
network using different scaling factors. The distributions of neurons per core tested
are 50, 100 and 150 respectively. Different scalings for the network have been tested
(from 5% up to 45%). All the simulations performed fit inside a SpiNN-5 board.

In the two pictures are presented both the situation where the MC Data Upload
protocol is used and the one where the normal ACP over SDP data flow has been
chosen.

The plot in Figure 3.37a presents the total number of words of the stream to be sent
to the SpiNNaker system both with and without the MSA compression step. The
y-axis is in logarithmic scale. It is possible to notice that the number of generated
words differs of more than one order of magnitude between the two cases for all the
three scaling.

By increasing the simulated percentage (x-axis), it is possible to see that the gap
between these two approaches grows. This is visible especially for the case with 150
neurons per core (dark blue and purple lines in the charts). In this case, indeed,
the number of packets generated without the MSA for a simulation at 10% is 13
times greater than the one generated if MSA is used. By scaling this network up to
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Figure 3.37: Figure 3.37a Comparison between the number of words before and
after the MSA compression Figure 3.37b Comparison between sending times using
the ACP over SDP protocol and the ACP over MCM

the 45%(maximum percentage fitting inside a SpiNN-5), the stream without MSA
becomes 30 times greater than the one after the Alignment operation. Similar
values are generated for the other values of neurons per core (from 20 to 23 times
is the gain with 50 neurons and from 17 to 30 times with 100).

With reference to Figure 3.37a, it is possible to say that the MSA step brought, as
foreseen, good results in this type of data compression.

The results of the data upload phase are shown in Figure 3.37b. Both the axes
are in linear scale. In this case, the y-axis represents the sending times measured
in seconds. The color scheme is identical to the one used in Figure 3.37a and the
simulations performed are the same.

The Point-to-Point sending times grow exponentially with the percentage of the
Cortical Microcircuit simulated. The same behaviour can be noticed for all the
three different distributions of neurons per core. This is due to the fact that,
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Figure 3.38: Figure 3.38a Comparison between sending times using the
ACP over SDP and ACP over MCM-Unicast protocols. Figure 3.38b Comparison
between sending times using the ACP over MCM-Broadcast and ACP over MCM-
Unicast protocols.

increasing the scaling, the simulated network grows and, for this reason, the stream
generated for each core becomes bigger.

On the other hand, by using the Multicast protocol for sending compressed data,
only a linear increase in sending times is obtained. The most significant gain can
be seen for the simulation at 45% using 150 neurons per core, in which, the time
required for sending all the stream in Point-to-Point is 61 seconds while, using the
Multicast approach, all the board is filled in only 12 seconds.

However, there is a drawback in this Data Upload protocol: the alignment times
are not negligible and they negatively impact the performances of this approach
highly increasing the total transmission time.

The obtained results are nevertheless significant because they show that improve-
ments are possible if the MSA tool is correctly addressed for example, to launch
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the same simulation several times on the board, or as we will see later allow you to
modify some parameters of the simulation at runtime..

In order to prove the efficiency of the new data configuration protocol, the same
tests executed for the previus approach have been run for the Unicast version as
well. The results are shown in Figure 3.38.

Figure 3.38a represents a comparison between the configuration phase performed
using the ACP over MCM protocol and the standard ACP over SDP version, while
Figure 3.38b shows its performances with respect to the transmission of the aligned
commands in broadcast.

In the first case, the gain is evident. It is worth noticing that, besides having
lower values, the curve indicating the upload times of the ACP over MCM-Unicast
has a linear behaviour instead of the exponential one that can be seen for the
ACP over SDP approach. These improvements are due to the fact that the trans-
mission is now implemented on the Multicast network, although the packets have a
single destination. This allows not to use the Monitor processors as intermediaries
and to communicate directly with the destinations.

Another feature that increases the speed of the data transfer is the use of the whole
Ethernet chip as configurator. This approach grants that the load is distributed
over a whole chip instead on a single core, giving the chance to send packets to
other configurators while one is receiving and manipulating.

During the performed tests, as can be seen in Figure 3.38a, this new protocol
allowed to send data up to 3 times faster than the standard ACP over SDP version.
Again, by increasing the scaling of the network, the gain grows as well. To prove
this point, with a 5% Cortical Microcircuit the sending time is 2.5 times lower than
the standard PP, while when using a 45% scaling factor it becomes 3 times lower.
This can be generalised for all the three distributions of neurons simulated as shown
by the graph.

This new protocol is moreover able to reach performances really close to the Mul-
ticast one, as shown in Figure 3.38b.

The case in which the Cortical Microcircuit simulated had 50 neurons per core is
slightly different from the other two. This is because the length of the streams of
data are quite small and the groups sending phase has a higher impact on the total
time of the transmission.

By increasing the number of neurons per core and the scaling it can be noticed that
both the MCM-Broadcast and the MCM-Unicast transmission times grow linearly
(and in the worst case scenario the MCM-Unicast is only 4 seconds slower).

The reasons why the new protocol is so close to the Multicast version in terms of
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performances are that it does not need the group definition phase which is compu-
tationally expensive and, besides, packets are sent by interleaving the cores on the
Ethernet chip.

The assigning phase between configurators and Application processors in MCM-
Unicast is performed through a single ACP packet, while for sending the groups in
the MC approach, it is necessary to fragment the information in several datagrams
and to repeat this operation for all the cores, instead of setting only the Ethernet
chip.

Furthermore, the MCM-Broadcast version needs to send SDP packets containing
the stream to the Monitor processor of the Ethernet chip that will forward the ACP
datagrams to the destination groups. In order not to lose packets, it is necessary
to insert a Throttling time between two SDPs in such a way this Monitor core has
the time to receive and forward the data. A similar delay is present for MCM-
Unicast approach as well, but it is lower because, while a configurator is receiving
and forwarding, the host software is sending packets to another one.

What makes this results so interesting is that the total time to upload the board
for the MCM-Broadcast version is given by the sum of the Alignment time and
the data upload phase, while for the MCM-Unicast version no additional steps are
required, resulting in a final time lower than the Multicast version.

ACP for SNN Applications Reconfiguration

In this section, I describe a test designed to highlight the capability of the ACP when
used for reconfiguring the application parameters at runtime during the simulation.
For this test, I selected two different networks, where the neuron model was modified
to support the features defined in the ACP.

The first network is a bio-inspired SNN for multivariate classification designed by
Schmuker et al. [82]. This SNN is inspired by the chemical sense of insects evolved
to encode and classify odorants in the natural environment. Schmuker et al. [82],
based on these insights, developed a computational method to encode, process, and
classify handwritten numbers.

The second network is an SNN composed of a chain of neurons that stimulate each
other (Synfire Chain) [2]. The speed of propagation of neuronal stimuli (spikes)
depends on the synaptic delay of the individual synapses that connect them.

The SNN-Classifier has three functional layers. In the first layer, the original stim-
ulus space is sampled by Virtual Receptors (VRs) which respond proportionally
to the data input proximity, thus encoding the stimulus using cone-shaped radial
basis functions with large overlapping receptive fields. The centroids of the basis
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Figure 3.39: Two different workflows to perform training and testing phases with
the SNN classifier. Without the ACP the network uses the workflow to the top,
the training and testing phases are two different simulations. With the ACP usage,
the network uses the workflow to the bottom, the training and testing phases are
in the same simulations.

functions (the VR points) were placed using the neural gas algorithm [56], a self-
organising process to map the feature space described by a picture data set. In the
second layer, the lateral inhibition decorrelated the signals from the VRs. Signals
from Virtual Receptors (in the form of firing rates) reach the Receptor Neurons
(RNs) modelled as Integrate and Fire (IF) neurons.

Each population of RNs excites a population of Projection Neurons (PNs), which
in turn send their spikes to one population of Local Inhibitory neurons (LINs).
Each LIN population sends inhibitory projections to all other PN populations in
the second layer, exerting lateral inhibition, reducing the correlation between VR
channels and scattering the representation of the multi-dimensional pattern. Sig-
nal decorrelation during the second layer significantly increases the classification
accuracy. Finally, in the third layer, olfactory scent perception is modelled by a
machine learning classifier able to classify the input data linearly.

The synapses with plasticity model are situated between the second and the third
layer and are connected with a set of neurons that have the functionality of trainers
since their signal selectively stimulates the synapses associated with the class to
learn at a given instant.

The execution of the SNN classifier is divided into two execution phases: the train-
ing phase and the testing phase. During the training phase, the network is built
with plastic synapses, and the trainer neurons are configured to emit a spike so
that the submitted sample (the samples are presented for 200 ms) is coupled with
the desired class. With this implementation, in the absence of the trainer neurons
spikes, the plastic synapses deviate from the learned weights, causing the incorrect
behaviour of the network. Hence, it is not possible to perform the test phase in the
same simulation of the training.

Another network configuration is required to solve this issue. At the end of the
Training phase, all the learned weights are downloaded from the board and used to
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rebuild the classifier using static synapses neuron. By re-running this new network,
it is possible to evaluate the classification performance of the network.

I show the workflow on the top of Figure 3.39, where all the operations to simulate
an SNN classifier, require about 72 s. This time is the overall period required to
perform two generation phases (20 s each), two board configuration phases (10 s
each), two simulation phases (1 s each), a download phase for recovering trained
synapses weights (5s), and a download phase for collecting classification results
(5s).

I implemented the ACP inside the neuron application to improve the overall sim-
ulation time. The application uses an ad-hoc command to change the synaptic
plasticity behaviour. On the host side, an application (the Sender) making use of
the SpynnakerACF library, is in charge of sending all processors the command for
disabling the learning capabilities of plastic synapses. The Sender is executed when
the simulation is ready to be run on the board.

In this way, it is possible to perform both Training and Testing phases with a single
simulation and the usage of the ACP Sender application configured to inhibit the
plastic synapses after 2 s from the start of the simulation. By doing so, both the
phases of the classifier are performed in just about 38 s (2.2 s of simulation). I
added 200 ms between learning and testing phases to give time to the ACP Sender
to propagate packets to all the cores. This workflow is depicted in Figure 3.39.

ACP Sender transmits with a Packet Delivery Delay time, tpdd, set to 200 µs, al-
lowing a safe transmission of the switching packet to all 864 cores of a SpiNNaker
Board in about 170 ms. During the tests, I stressed the system running 12 in-
stances of classification network at the same time. As a result, I correctly sent all
the ACPoverSDP packets to all 864 cores involved in the simulation. The router
overload resulted in some missed MC packets, representing the spikes during the
simulation, but this did not impact on the performance of the network and the
classification results.

The significant advantage provided by the ACP embedded in the classifier SNN
is the possibility to run both training and test phases without reconfiguring the
board.

The second application based on SNN is the Synfire Chain. The network is com-
posed of a long sequence of neurons linked together by a single synapse. Currently,
the simulation once configured and started does not allow to modify any parameter.
Unless making usage of synapse models whose weights vary autonomously, the only
way to modify the parameters of the neuronal model such as weight and synaptic
delay is to know the position in RAM of the data regions related to each neuron
and through SCP commands directly modify the content of the memory.

102



3.3 – Communication Middleware and Message Passing Interface

Figure 3.40: ACP reconfiguration of neuronal parameters. Above: the test config-
uration and the benchmark network used. Below: the graph of the spikes emitted
by the neurons (blue), mean network activity (red). The series of spikes changes
slope after receiving the synaptic delays reconfiguration commands at 10 ms, 1 ms
and 7 ms.

I used the memory entities provided by the ACP framework to manage a set of
parameters as modifiers of the actual model parameters, without modifying the
whole configuration plan of the neural application. By doing so, I were able to
modify the delay of the synapses in real-time, during the simulation of the synfire
chain. Figure 3.40 depicts a scheme of SNN, the ACP components involved and the
timeline of an SNN simulation. The user can dynamically change the corresponding
parameters (e.g. synapse delay) using the ACF runtime library to send commands
to the SpiNNaker cores to modify the memory content exploiting Memory Entities
support.

Figure 3.40 shows the trend of the network spike series (blue lines) and the average
synaptic activity of the whole network (red line). Circles are used to highlight
the points at which the commands are triggered to modify the memory entities,
which affects the synaptic delay between the neurons. The slope of the spike series
increases with a minimum delay (1 ms) and decreases when the synaptic delay is
set to a higher level (10 and 7 ms).

This case study demonstrates that ACP framework, by allowing runtime reconfig-
urations, can be used for effective host-controlled SNN parameters exploration.
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3.3.5 MPI - Case Studies
To test the implementation of MPI on SpiNNaker, developed using the functional-
ity provided by ACF and MCM, I used two different applications that use MPI to
parallelize some of their functions. The first is a simple implementation of a Ver-
let integration (in particular Velocity Verlet) to solve the dynamics of an N-Body
problem. The second is the distribution of genetic queries to implement a simple
genetic aligner distributed on SpiNNaker processors. Using these two benchmarks
I evaluated the scalability and performance of the library. In addition, I demon-
strated that SpiNNaker can be easily used using a parallel programming model
outside the neuromorphic context.

N-Body Simulation

The NBody simulation consists of N particles each with a position in a D-dimensional
space x⃗ p ∈ RD and with a mass mp. Integration of motion equations with Velocity
Verlet is discretized by step equal to τ = ∆t and consists of three equations to
be solved for each particle p: i) Equation 3.10: position update, ii) Equation 3.11:
calculation of forces due to gravitational interaction iii) Equation 3.12: velocity
update.
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t τ 2 (3.10)

a⃗ p
t+1 = 1

mp

F⃗
p

t+1 = 1
mp

∑︂
i

F⃗
i,p

t+1

= 1
mp

∑︂
i

−G
mimp

|x⃗ p
t+1 − x⃗ i

t+1|3
(x⃗ p

t+1 − x⃗ i
t+1)

(3.11)

v⃗ p
t+1 = v⃗ p

t + 1
2(a⃗ p

t + a⃗ p
t+1)τ (3.12)

The NBody simulation was parallelized with MPI by distributing the particles,
equally, on each computation node. Each node will have to update only the posi-
tions and speed of its particles, bringing complexity from O(N2) to O(N

P
N) where

P is the number of processors.

To compute the force exerted on a particle p each node must know the position of
each particle of the system. At each iteration a particle position update step is then
performed by the function MPI_Allgather(· · · ). All calculations were executed in
fixed points.

I implemented MPI_Allgather(· · · ) with a broadcast transfer mediated by MC
packets. The asymptotic complexity of communication goes from O(P 2) to O(P )
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Figure 3.41: Speedup on blue axes and efficiency on orange axes measured for two
simulation sizes, 1 k and 2 k particles.

as data replication is done in parallel by architecture routers. We evaluate the
performances of the implementation in terms of speed-up χn and efficiency ηn as
the number of used computational nodes increases.

χn = ∆T1

∆Tn

(3.13)

ηn = χn

n
(3.14)

I performed two series of simulations, with 1 k and 2 k particles, in order of analysing
the impact on the efficiency when the number of particles to be calculated for
each node is increasing. Moreover, I increased the number of processors for each
simulation series from 1 to 240, in order of evaluating the scalability of the MPI
implementation.

As shown in Figure 3.41 the results show good scalability performances, comparable
with state-of-the-art implementations on parallel computing platforms [18]. The
speed-up is directly proportional to the number of cores until 100 nodes, and reach
194 x when 240 nodes are used to simulate 2k particles (156 x for 1 k particles).

The efficiency stays above 90% with 64 processors for the 1 k simulation and up to
128 processors for the 2 k simulation. With 240 processors, I obtained an efficiency
of 65% for the simulation with 1 k particles and more than 80% for the simulation
with 2 k particles. With this results we can speculate and hypothesize that is
convenient to distribute the problem on additional processors.
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Figure 3.42: Intuition of the Boyer-Moore search procedure.

Results show that the considered neuromorphic architecture with the proposed
MPI library is a promising solution for accelerating communication intensive ap-
plications.

The DNA Pattern Matching Algorithm

One of the most recurrent and widely studied problems in computer science is
pattern matching. This problem has several real-world applications such as fast
sub-string searching for network intrusion detection, mail spam filters, protein motif
search and DNA/RNA sequence alignments [86]. Given a text string T of length
n and a pattern string P of length m ≤ n, the pattern matching problem can be
stated as retrieving all positions i where pattern P occurs in text T , such that
0 ≤ i ≤ n − m.

A straightforward solution for the pattern matching problem consists of looking
for the pattern sequence in the text position by position until every occurrence is
found. Unfortunately, such approach leads to a O(m · n) asymptotic complexity,
which is not acceptable for large sets of data.

Given the practical relevance of this problem, many approaches were proposed
in the literature for improving the naïve way. One of these is the Boyer-Moore
algorithm [16, 39], which trades space usage for time efficiency, defining rules for
pruning the search space avoiding the exploration of all text positions.

Figure 3.42 provides an intuition for this approach; given the text in the picture,
the first attempt looks for pattern “GTA” in position 0 , which is not correct.

The naïve approach would perform the next search from position 1 , but this is not
ideal since the first instance of the letter “G” in the pattern occurs at position 3 in
the text, meaning that searching any position in the middle is useless. Implementing
this optimisation requires pre-processing of the pattern to be matched; a shift table
is computed, storing the number of text positions that can be safely skipped for
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each symbol in the target alphabet. Whenever a mismatch is found, given the
next symbol to be searched, the shift table is accessed and the next position to be
considered is computed.

I used a refined version of the Boyer-Moore algorithm, also known as Fast string
matching method for Encoded DNA sequences (FED) [48], which takes advantage
of the low-cardinality of the DNA alphabet. In the FED version, each of the four
symbols composing the DNA alphabet is assigned a unique 2-bit code, packing
four elements into a single byte, padding last bits with zeros in the case of se-
quences where the length is not a multiple of 4. Additionally, a bit-mask is used to
distinguish valid bits from padding in the last encoded byte.

The procedure consists of two successive steps:

• Pre-processing, where texts and patterns are encoded and a shift table is
computed for every pattern to be matched.

• Matching, where the actual search procedure is performed, is implemented as
a byte-by-byte comparison between the text and pattern encoded sequences.
If every byte of the pattern is sequentially found in the text, then the current
position is registered as a match. Otherwise, the shift table is accessed to
compute how many positions the pattern is allowed to skip before performing
the next check.

Figure 3.43 summarizes the string matching procedure flow. As long as the cus-
tomised Boyer-Moore procedure can perform a matching operation on encoded
sequences, the encoding step can be considered not part of the algorithm as it
can be done offline by storing the encoded sequences in custom binary files which
constitute the actual source of data for the pattern matching engine.

Pattern matching over DNA sequences can be considered an embarrassingly parallel
application, because the average use case consists in matching millions of patterns
against multiple text sequences, independently [101].

The inputs for the benchmark application are two binary files, storing the encoded
texts and patterns to be analyzed. From an algorithmic point of view, running
FED on already encoded sequences is equivalent to loading plain sequences and
encoding them online. For the sake of benchmarking the communication effort in
the target platforms, I decided to encode sequences off-line. Moreover, I split text
sequences into a set of chunks with a given fixed size. This step is required because
in bioinformatics applications, generally, the text represents one or more genomes
and its size is not suitable to be sent in a single shot as it is.

Our parallel implementation of the search algorithm identifies two main roles among
the MPI processes—the MPI control process, which is the role adopted by the MPI
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Figure 3.43: Flowchart of the string matching algorithm.

process with rank 0, and the MPI worker, which is the role adopted by all remaining
MPI processes.

The algorithm works in two distinct steps, outlined in Figure 3.44: configuration A
and match B . During configuration step A , the MPI control process accesses the
file system, loads the FED encoded patterns and distributes them among the MPI
workers so that each working process handles approximately the same workload.
Pattern distribution is implemented as a set of point-to-point communications,
using MPI_Send/MPI_Recv primitives. Once an MPI worker receives its patterns
it computes the shift table for them, completing the pre-processing phase shown in
Figure 3.44. This strategy allows both to reduce the amount of data sent over the
communication network, as the patterns are already encoded and to distribute the
pre-processing efforts equally among all available working nodes, as long as any
MPI worker finalizes the pre-processing step on its patterns only.

During the matching step B , the MPI control process loads the encoded chunks
of text and broadcasts them one at a time to all the MPI workers, which are in
charge of performing the actual pattern matching procedure by calling the search
primitives. As shown in Figure 3.44, once a match is found, it is saved into a
buffer local to the MPI instance that discovered it. Once every chunk has been
analysed, all the MPI instances synchronize to produce two report files containing
information about the matches found and the run-time needed for accomplishing
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Figure 3.44: Flowchart of the implementation of MPI-FED on a general purpose
architecture and on SpiNNaker. The step A performs the configuration, the step B
execute the matching, whereas during the step P our implementation implement a
preliminary phase for transferring the data to the SpiNNaker board.

their tasks.

The implementation of FED with MPI for SpiNNaker retains the configuration
A and match B phases from the previous section, as depicted in Figure 3.44.

However, an additional preliminary phase P is required in order to transfer the
problem data to the board. The configuration step A will then be performed by
one of the SpiNNaker cores, taking up the role of MPI control process.

Using the SpinMPI Python library, the host launches the MPI Runtime and creates
an MPI Context declaring the number of chips and cores that will be used by the
application on the Spin5 board. The MPI Runtime is also in charge of loading and
starting the application binary on the board.

In the preliminary phase P , the communication between the computer host and
the on-board application is performed through the use of ACP memory entities
(MEs). First, the binary files containing the genome and the search patterns are
read by the MPI Runtime. In this phase, the host will write into a ME belonging to
processor (0, 0, 1) (the MPI control process) two integers indicating the number of
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chunks (nchunks) and patterns (npatterns) which will be loaded into SpiNNaker.
The MPI control process allocates in SDRAM the memory necessary to contain all
chunks and patterns. After allocation is performed, the addresses of these memory
blocks are read by the MPI Runtime, again using ACP. The MPI Runtime can
proceed to fill the MPI control process memory with the genome and the search
patterns previously read.

An MPI Barrier forces all MPI workers to wait until the MPI control process has
received all data from the MPI Runtime. Once the problem data has been trans-
ferred (phase P ), phase A can begin. The MPI control process distributes the
patterns among all worker cores through MPI_Send/MPI_Recv primitives and the
MPI workers store the pattern data in their DTCM and compute the shift tables.

The phase B begins after all patterns have been distributed. The MPI control
process sends a text chunk to all MPI workers executing a broadcast communica-
tion. The SpiNNaker implementation of the MPI_Bcast function is a blocking call,
as the memory limitations of the platform do not allow for large communication
buffers; hence, the MPI control process will proceed to send the next chunk only af-
ter all workers have processed the current chunk. On the worker side, only one text
buffer is allocated into DTCM, since the text chunks will be processed sequentially
and a chunk can be replaced whenever a new one is obtained. When a MPI worker
executing the FED algorithm finds a match position, it is stored into a linked list
together with the chunk and matching pattern identifiers. Thus the position in the
reference sequence can be retrieved.

After all the text chunks have been processed, the application is finalised, and the
MPI Runtime can download the results directly from the memory of SpiNNaker
cores.

In the following, I analyse the efficiency and scalability of our optimised Boyer-
Moore (FED) implementation on SpiNNaker. I compare it with the scalability
on a traditional multi-core CPU using a server configuration with two Intel Silver
Xeon 4114 processors, each with 10 cores and 20 threads. The FED algorithm is
implemented in C and used to benchmark both Server and SpiNNaker architectures.
The benchmark running on the general purpose Server architecture is written in
C++ and compiled with g++ 7.4.0 and MPICH 3.3 parallel environment. The
benchmark running on SpiNNaker architecture is written in C and compiled with
gcc-arm-none-eabi 5.4.1 and SpinMPI 19w19. By using the SpinMPI library I
ported the FED code written for a Server Architecture to the SpiNNaker hardware
without applying any code transformation.

The text used for the sake of testing is the Escherichia coli genome, which is about
4 million symbols long, leading to an encoded text of about 1 MB size, which is
then split into a set of about 4000 chunks, each 256 Bytes long.

110



3.3 – Communication Middleware and Message Passing Interface

There exist two types of strategies to evaluate the scalability of a problem in a
parallel environment:

• Strong-scaling [6] keeps the size of the problem fixed and evaluates the ap-
plication runtime when multiple processes are used. This strategy is suitable
for CPU-bounded problems.

• Weak-scaling [37] is used to test the scalability of memory-bounded problems,
as it keeps constant the ratio between the problem size and the number of
working processes used.

The SpiNNaker platform provides a fast, core-local data memory (DTCM) of 64 kB.
This memory constraint allows to store at most 100 FED patterns per node, to-
talling 40 kB in size. Given this memory constraint, I decided to use a weak-scaling
benchmarking strategy to scale our benchmark up to the 768 nodes available on
SpiNNaker. The problem size must be calibrated in order to claim a condition of
equivalence and perform a fair comparison between different architectures; in our
case, a condition of equivalence is met whenever the same FED execution time tFED
is observed using a single FED worker. When SpinMPI is requested to match 1000
FED chunks against 100 FED patterns on a single node, a run-time of 26,970 ms
is measured; the same run-time, for the MPICH implementation with 1000 FED
chunks, is obtained when the single FED worker used is in charge of 12,500 FED
patterns. This preliminary assessment is needed to evaluate only the scalability
features of the two architectures, without considering the difference in computing
power of the single working node for the two architectures. The reason for this
comparison is to put the performance of MPI on SpiNNaker in a familiar perspec-
tive, as the CPU-DualSocket server is a widespread general purpose machine that
allows to use MPI.

A general strategy for evaluating the parallel scaling of an MPI application is com-
puting the scaling efficiency, which measures how good the application is at using
every node the parallel environment has. Given an environment with N workers
and a problem that requires tFED,i units of time to be solved with i workers, the
weak-scaling efficiency EN can be measured as in Equation 3.15. The speedup SN

can be easily inferred from the efficiency and computed with Equation 3.16.

EN = tFED,1

tFED,N

(3.15)

SN = EN · N (3.16)

Figure 3.45 and Figure 3.46 report the speedup and efficiency of the FED with
MPI algorithm on the Server and SpiNNaker architectures. The horizontal axis
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Figure 3.45: Comparison of Weak-scaling speedup for MPI-FED on a general pur-
pose architecture and on SpiNNaker.

represents the number of MPI workers used; both systems were tested until satu-
ration, with the Server reaching 40 parallel workers through Intel hyper-threading
and the Spin5 board utilizing all 768 available physical cores. Tests were performed
for genomes of 500, 1000 and 2000 chunks.

In Figure 3.45 we can see how the massively parallel architecture of SpiNNaker
influences the speedup. The high number of physical cores on the machine lets the
speed increase linearly, avoiding the discontinuities that a general-purpose processor
has at critical points when hyperthreading is activated to provide the required
number of workers (note, in the graph, the inflection point at 20 MPI workers for
the PC version, i.e., the point at which the maximum number of physical threads
on the Xeon is reached).

In Figure 3.46 SpiNNaker demonstrates excellent scalability, with efficiency values
close to 95% for up to 200 workers. Additionally, we can see that the performance
markedly improves for longer text sequences; the efficiency for 768 workers process-
ing 2000 chunks is 87.83%. The reason for this happening is that as the size of the
data to be processed increases, the ratio of processing time to communication time
in the overall algorithm increases, since the data are only sent once at the beginning
of processing and then gathered at the end. The bottleneck due to the communi-
cation overhead thus becomes less prevalent, and the efficiency improvement due
to massive parallelism is more evident.

By contrast, the efficiency of the Server dips much faster, dropping below 90% as
soon as the requested MPI workers outnumber the physical cores. It also remains
fairly constant when changing the number of chunks. This appears reasonable as,
for the high-speed CPU used in the test, the computation time is very small, but it
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Figure 3.46: Comparison of Weak-scaling Efficiency for MPI-FED on a general
purpose architecture and on SpiNNaker.

Figure 3.47: Efficiency of the general purpose architecture for different FED buffer
sizes.

suggests that other phases of the computation such as inter-process communication
and thread management have a significant impact on the efficiency of the algorithm.

As a side-experiment, I evaluated the impact of the size of the FED buffer distribut-
ing data among the MPI workers on the measured scaling efficiency. Figure 3.47
shows the scaling efficiency of two experiments—the former distributes the FED
chunks to be analyzed as 1000 256-Byte packets. The latter broadcasts the same
amount of data, formatted as 125 2-kB packets. Figure 3.47 highlights that the
two scaling efficiency tracks are comparable, meaning that the size of packets used
to distribute FED chunks among the MPI workers does not impact the benchmark
results for the general purpose architecture.
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Finally, we can make a comparison of the power efficiency on the two architectures
by using estimated consumption based on the nominal values from the CPU and
SpiNNaker [64] data-sheets. For the Intel Xeon, I consider the peak and idle powers
at the values of Ppeak = 11,030 mW and Pidle = 6320 mW, and I hypothesize that
the number of active physical cores (out of the available 20), f(x), can be expressed
as a function of the active MPI workers x as f(x) = ceil(x+1

2 ).

The appearance of the term x + 1 rather than x is because there is one Controller
process that has the task of distributing the data and patterns to the MPI workers.
Based on this assumption, I assign a power consumption of Ppeak to the active cores
and of Pidle to every other core; thus the estimated power consumption with respect
to the number of MPI workers x is P (x) = Ppeak · f(x) + Pidle · (20 − f(x)).

On the other hand, for SpiNNaker I consider the values of Idle Power per Chip
Cidle = 360 mW, Idle Power per Core Pidle = 20 mW, Peak Power per Core Ppeak =
55.56 mW, and the Off-Chip-Link power, Plink = 6.3 mW. The power estimation
for SpiNNaker depends on the MPI execution context, which can be described
by a pair of values (p, k) where p ∈ [1,16] is the number of active processors per
chip and k ∈ [1,48] is the number of active chips. The power estimation formula
can be expressed as a function of the number of active processors and chips as
P (p, k) = k · (Cidle + (Ppeak − Pidle) · (p + 1) + Plink) + (48 − k) · Cidle Counting p + 1
processors to include the Monitor Processor on each core. Then, the estimated
power given the number of MPI workers x is P (x) = P (p, k)|mink[p · k = x + 1] As
in the CPU case, I count x + 1 processes to include the Controller process.

Given the architectural difference between the SpiNNaker and CPU machines, it
is necessary to outline a fair method to evaluate the efficiency of the algorithm’s
implementation. I define power efficiency as the energy consumed to align a single
pattern to the reference, measured in units of mJ/pattern, as a function of the
parallelisation effort of the given system, expressed as a percentage of the total
resources. The maximum energy efficiency is obtained when all resources are in
use, corresponding to a parallelisation effort of 100%. For SpiNNaker it is easy to
assume that 100% utilisation occurs when all 768 cores are busy (i.e., at 767 MPI
workers), corresponding to an average energy consumption of 37.3 mJ/pattern. For
the CPU utilisation, I can either consider 100% utilisation to be the situation where
all physical cores are active, or the one where all the virtual cores are active (20
physical + 20 virtual, providing 39 MPI workers). In the first case, the estimated
average energy consumption is of 51 mJ/pattern, with an estimated power saving
of 27% in favour of SpiNNaker. In the second case, the energy is 43 mJ/pattern,
with SpiNNaker consuming 13% less.
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3.3.6 Final Remarks
This work focused on the optimisation of the communication protocols for the SpiN-
Naker system. I first analysed the current methodologies to find possible weaknesses
and noticed that the intrinsic concurrency of the system could have been exploited
in order to improve the speed of the communication and that the current Point-
to-Point protocol was inefficient for several tasks. For these reasons, I decided to
develop a new middleware based on the more efficient Multicast protocol in order
to implement a better communication system to be also used for configuring the
system. The idea behind this new approach was also to reduce the complexity of
the internal transmissions, by implementing unicast communications avoiding the
supervision of the monitor processor that for several applications is time-expensive.
I designed the Application Command Framework, and Application Command Pro-
tocol a new method to be adopted at the application level for spreading commands
and manage the memory of the SpiNNaker neuromorphic platform. ACF allows
the users to include in their distributed applications the subset of commands to
carry out only the needed activities, hence saving memory for the code. On top of
that, ACP allows the exchange of commands between application processors with-
out involving the respective monitor processors using the multicast channel, thus
optimising the communication flow. It provides a useful abstraction level of the
memory which users can easily access through a virtual id to all the variables of
the applications running on one application processors (AP) from any other AP of
the system.

I modify two SpiNNaker applications in order to use the ACP inside the application
used during the Configuration of SpiNNaker board, and into a neuron model used
during the SNN Simulation phase. The ACP implementation in the first applica-
tion enables a flexible and optimised set-up of the board during the configuration
phase. Conversely, ACP in the second application allows the user to change some
parameters at run-time during the simulation phase. In the first application, I
demonstrated the advantages introduced by ACP interpreter in the run-time feed-
ing of configuration applications. More specifically, I analysed the behaviour of
the Monitor Processor of the node attached to the Ethernet interface, that is in
charge of managing the communication with the external sources. Handling the
configuration phase at the application level with ACP allows the configuration to
be performed by all kinds of external sources. The use of this new method is
straightforward and can speed-up host-to-boards data transmission during the con-
figuration of SpiNNaker platforms. By exploiting the concurrency of the system
and the ACP over MCM protocol, I have been able to get an improvement of 3
times on the data forwarding inside the board, providing the chance of building
more efficient application through the new software. In the second application, I
demonstrated the run-time flexibility introduced by the ACP interpreter embedded

115



Programming tools and middleware for manycore neuromorphic platforms

in the neuron model application, implementing two different real simulation sce-
narios: i) a two-phases SNN-Classifier designed for discriminating the handwritten
number and ii) a chain of neurons with run-time re-configuration parameters. Our
results show that ACF allows to switch between training and testing phase in half
of the time needed by the former workflow and to change model parameters (e.g.
synapse delay) during the simulation.

This work opens the way to more flexible use of manycore neuromorphic platforms
as brain simulators and as support for new computational brain-inspired paradigms.
Moreover, in this work, I presented an implementation of the MPI paradigm on the
SpiNNaker neuromorphic platform. The MPI standard exposes a programming
model for the development of parallel applications in a distributed memory envi-
ronment without knowledge of the interconnections between the computing units of
the underlying architecture. The implementation of MPI for a specific architecture
is therefore expected to implement the most suitable features in order to exploit
the available resources and to synchronise the computing flow.

In the case of SpiNNaker, the implementation of MPI must deal with a resource
limit both in terms of memory and computing power. However, it can take advan-
tage of the technology offered by on-chip routers, obtaining efficient communication.
SpinMPI is also in charge of managing communication between the MPI Runtime
running on the host computer and the SpiNNaker cores; this is done by using the
ACP protocol and memory entities. This software stack creates a simple working
framework offering a universally known programming model capable of making the
SpiNNaker architecture available for a wide range of applications. The SpiNNaker
implementation of MPI is built on top of multiple abstraction-level, the following
libraries: i) MCM, implements broadcast and unicast connection and synchroni-
sation methods and a hash table ADT. ii) SpinACP, implements memory entities
and network command functionalities. iii) SpinMPI, implements the MPI on SpiN-
Naker.

I benchmarking SpinMPI, showing that the scaling performances are kept linear
when an increasing number of cores is used during the computation. As the second
point, I demonstrated that by using the SpinMPI library, which provides MPI
support for SpiNNaker, I could easily port algorithm implemented for standard
computers on the manycore neuromorphic platform. I implemented an N-Body
simulation to benchmark and evaluate the performance of the board in the execution
of an MPI parallel application. In this simulation, 2 k particles were simulated on
240 processors with a speed-up of 194 x and an efficiency of 80% when compared to
the serial version running on a single CPU. I also presented an implementation of an
MPI-based DNA sequence matching algorithm. Results show that the scalability of
the SpiNNaker board reaches an ideal profile (98% of efficiency) when using more
than 100 processors, a 90% efficiency using 600 processors, reaching 88% efficiency
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when all 767 application processors are used.
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Chapter 4

Programming tools for
heterogeneous platforms

In this chapter, I present DeepLLVM , a classification method for source code where
I introduce the use of LLVM-IR and Deep Learning in code classification. Moreover,
I report results of an extensive parameter exploration of the classification model
that are used in some state-of-art approaches ([22, 9, 12, 3]).

DeepLLVM is divided into two modules:

• The source code preprocessing module that identifies the most significant
syntactic elements and reducing them to a sequential list of integers.

• The language classifier component that can use two alternative Deep Neural
Networks (DNN) models (Conv1D and LSTM) trained using a supervised
learning method.

More specifically, DeepLLVM integrates Long Short-Term Memory (LSTM) cells,
Convolutional layers (Conv1D), and Global Max-Pooling layers (GMP) to extract
knowledge from syntactic language elements (tokens) of a kernel compiled in IR.

I trained the network using a dataset of OpenCL kernels whose execution time has
been profiled on CPU and GPU [22]. I then evaluated the classification accuracy in
mapping each kernel to the best compute unit. I evaluated not only the classification
accuracy but also the overall speedup of kernels execution compared to a static
mapping (all kernels in GPU or CPU).

I finally performed an extensive exploration of the hyper-parameter space composed
of both network and training. The best set was used as a reference for comparison
between the Convolutional Neural Network (CNN) model and the LSTM solution
proposed in [9] and [22] accounting also for the impact of kernel optimisations and
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token filtering strategies.

I tested the kernel-to-device allocation performance demonstrating that our LLVM-
based classifier achieves an accuracy of 85% in selecting the best kernel allocation.
Results confirm that IR based classifiers achieve similar or better performance than
OpenCL based ones, with the advantage of the generality of the IR representation.
Our results show that LLVM-IR keeps the informative content in the token sequence
needed to perform an effective classification making possible the application of our
classifier to any source code for which an LLVM compiler exists.

Moreover, I discover that CNN model outperforms RNN in terms of training time,
classification accuracy and overall speedup.

4.1 Method

Figure 4.1: DeepLLVM flow representation of operations to be performed for the
construction of the code classifier. A) Source code preprocessing steps for inserting
the code into the classifier B) Black-box representation of the classifier

In this Section, I present DeepLLVM , a code analysis methodology based on deep
learning.

I designed DeepLLVM to explore the feasibility to build a classifier able to analyse
source code expressed in LLVM Intermediate Representation, which gives the ad-
vantage of decoupling a programming language from the target architecture. The
applications that may take advantage of such analysis are numerous and range
from the identification of sophisticated compilation strategies to the allocation of
computing resources.

As shown in Figure 4.1, DeepLLVM is composed of two steps: i) source code
preprocessing, which identifies the most significant syntactic elements (tokens) and
reduces them to a sequential list of integers. ii) code classification, which exploits a

120



4.1 – Method

Neural Network based on layer models1 trained using a supervised learning method.

Moreover, since no previous works introduced CNN for source code modelling, I
performed an hyper-parameters exploration for devising a good network architec-
ture and the impact of data preprocessing.

In subsection 4.1.1, I describe the DeepLLVM source code preprocessing phase com-
posed of two steps: Tokenisation and Atomisation. In subsection 4.1.2, I describe
the method used to implement the DeepLLVM code classifier. In subsection 4.1.3,
I describe the Hyper-parameters exploration and in subsection 4.1.4 I introduced
the quality metrics (e.g. the execution speedup) for evaluating the classification
impact.

4.1.1 DeepLLVM : code preprocessing

LLVM-IR Code Fragment
1 %9 = and i64 %8 , 4294967295
2 %10 = getelementptr inbounds <4 x float >, <4 x float >* %1 , i64 %9
3 %12 = fsub <4 x float > <float 1.0e+00 , float 1.0e+00 , float 1.0e+00 , float 1.0e←↩

+00>, %11
4 %13 = fmul <4 x float > %11 , <float 3.0e+01 , float 3.0e+01 , float 3.0e+01 , float ←↩

3.0e+01 >

Tokenization
1 _local = and i64 _local , _integer_constant
2 _local = getelementptr inbounds _float_4 , _float_4 * _local , i64 _local
3 _local = fsub _float_4 _vector_constant , _local
4 _local = fmul _float_4 _local , _vector_constant

Atomization
1 10 11 13 14 10 12 15
2 10 11 16 17 18 12 18 19 10 12 14 10
3 10 11 20 18 21 12 10
4 10 11 22 18 10 12 21

Figure 4.2: Example of code transformations: The code in the top pane is an
LLVM-IR code fragment. The code in the middle pane contains the result of the
transformations applied in the tokenisation phases. The tokens sequence in the
bottom pane is the network input, the result obtained after the atomization phase.

Since machine learning models work with numerical data, I need a procedure to
convert source code into a form suitable to be processed by the input layer of the
considered models.

1Convolution Layer, Recursive Cells, Dense Layer and Max Pooling
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We start from a dataset of source code written using a high-level programming
language. Then we compile all dataset elements using a compiler able to emit
LLVM-IR. The clang compiler, for example, allows compiling the main C-like lan-
guages (C, C++, Objective C). It is also possible to compile OpenCL code for nvptx
(NVidia), amdgcn (AMD) and spir (Standard Portable Intermediate Representa-
tion) architectures.

The LLVM-IR code obtained after the compilation needs to be cleaned and prepro-
cessed before being fed into the neural network (Figure 4.1- A⃝).

The Tokenisation procedure identifies the most significant language syntactic
elements (tokens) within the sequences. All the tokens are catalogued and placed
in a dictionary. Then, the Atomisation procedure transforms code sequences
replacing the characters that compose a token with the integer identifier of the
token in the dictionary.

I implemented the Tokenisation procedure in two steps. The pre-tokenisation phase
acts on each line of a kernel and performs the following operations:

• Remove empty lines and comments.

• Remove all lines outside the function body.

• Replace vector and array data-types with a simplified version.

• Replace vectors, arrays and float constants with a placeholder maintaining
the type and removing the immediate value.

• Insert a space before and after the symbols
(⃝ )⃝ [⃝ ]⃝ {⃝ }⃝ <⃝ >⃝ =⃝ *⃝ :⃝ ,⃝

During this phase, the procedure simplifies complex data types and replaces con-
stants with placeholders, obtaining a significant reduction of the code fragment
length. For example, LLVM can express real constants in different ways: i) stan-
dard decimal notation (e.g. 6.563989), ii) exponential notation (e.g. 1.179029e+45),
iii) hexadecimal notation (e.g. 0xFB160990091690BF). These representations are
replaced with a placeholder (“_float_constant”). After pre-tokenisation, it is pos-
sible to identify as a token every sequence of characters separated by spaces.

The post-tokenisation transformations act directly on the tokens for applying the
following higher level generalisations:

• Remove unnamed meta-data (tokens starting with !⃝) and attribute groups
(tokens starting with #⃝).

• Replace variable and function names with a placeholder.
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• Identification of special labels starting with “phi”, “pre”, “in”, “preheader”
and “loopexit”.

• Identification and transformation of integer constants.

• Identification and transformation of global and local unnamed identifiers (e.g.
%5 → _local, @16 → _global)

The Atomisation step replaces all the tokens with a unique integer identifier using
the same approach proposed in [95]. At the end of this phase, each kernel source
code is transformed into a sequence of integers, and it is ready to be used as input for
the neural network. Figure 4.2 provides an example of the pre-processing pipeline
I use.

The performance of text-based deep-learning systems (e.g. in the sentiment anal-
ysis) heavily depends on the dictionary chosen to transform the input into a nu-
merical sequence [54]. Long sequences require many training samples and complex
models capable of storing and correlating information for more extended periods.
A common practice in the Natural Language Processing (NLP) field consists in re-
moving less-informative tokens [47] for decreasing the mean length of the sequences
to be analysed and reducing the burden of correlating distant tokens.

I used a weight function, the term frequency - inverse document frequency (Tf-
Idf ), to identify the less-informative tokens. The Tf-Idf can be obtained as in
Equation 4.1

tfidf(t, d, D) = tf(t, d) ∗

idf⏟ ⏞⏞ ⏟
ln

(︄
1

df(t, D)

)︄
(4.1)

Given a dataset D : (d1, d2, . . . , dn) (corpus of documents), a document d : (t1, t2, . . . , tn)
(sequence of tokens) and a token t, the Tf-Idf is the product between the term-
frequency (tf) and inverse-document-frequency (idf). The idf is the natural loga-
rithm of the inverse of document-frequency (df).

tf(t, d) = |{t′ : t′ = t, ∀t′ ∈ d}|
|d|

df(t, D) = |{d′ : t ∈ d′, ∀d′ ∈ D}|
|D|

(4.2)

The term-frequency is the ratio between the occurrences of term t in a sequence of
tokens d and the length, in terms of tokens count, of d. The document-frequency
is the ratio between the number of sequences of tokens where the token appears
and the total number of sequences. The idf reduces the term-frequency value for
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very common tokens, and should be increases the term-frequency for specific tokens
contained in few sequences.

We can use this weight to build a token-blacklist to delete the tokens with a low
informative contribute from all documents. The token-blacklist can be used glob-
ally, or we can use the Tf-Idf score to create fine-grain filters removing from each
sequence only the tokens with a poor local score.

4.1.2 DeepLLVM : classifier

Figure 4.3: Informal representation of the classifier structure. The figure represents
the layers of the classifier as rectangles identified by a label describing the operation
performed. The arrows indicate the movement of data (tensors) whose dimensions
are made explicit by symbolic values described in the legend. E) CNN-based lan-
guage model F) RNN-based language model C) Early classification for specific
language model training D) Overall classification network, takes into account the
source code and context data flow.
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Figure 4.4: Schematic representation of Hyper-parameters exploration. Within
the hyper-parameters space some points are chosen to be explored by means of a
grid-search. For each hyper-parameter an exploration range is identified (Hyper-
parameter Exploration Range). Each point is explored r times. Each exploration
includes a k-fold cross-validation and training of k classifiers. The confusion matri-
ces of the classifiers in cross-validation are added together, then the ACC and MCC
are calculated. To evaluate the hyper-parameters space, each exploration point is
seen as the distribution of MCC and ACC values of its repetitions.

The code classifier used in this work can be seen as a black-box with two input and
two output, Figure 4.1- B⃝. The input is a tuple containing the preprocessed source
code fragment (src_input), and auxiliary data that define the context of usage of
the source code (aux_input). The auxiliary inputs are necessary because learning
the relationships between them and the code allows contextualising the code.

Internally, the classifier is a neural network divided into two components: language
model and features classifier. The language-model is in charge of reducing the
token sequence into a point in RM1. The features classifier analyses the output of
the language model.

The two outputs are the features-classifier output and the language-model output.
Both outputs can be independently used to match the desired output, and each one
is associated with a loss-weight. The loss weight is a scalar coefficient that defines
the output loss contribute over the global-loss score.

The network structure proposed in this work is depicted in Figure 4.3. I propose two
different language-model networks: the first one is based on a RNN (Figure 4.3- F⃝)
and the second one on a CNN (Figure 4.3- E⃝).

The network input (“src_input”) is a tensor composed of batch-size sequences,
each one composed of sequence-length elements. We will refer to the input ele-
ments with the term token-indexes since each component represents the position
of a token inside the token dictionary. Since the following layers need to work
on comparable data, and the token indexes do not have this property because we
cannot define a distance metric between two indices, the sequence of token-indexes
must be projected into a metric space.
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The Embedding layer is the first layer of the network that receives sequences of
token-indexes and projects each element into an embedding space RE1. The output
of the Embedding Layer is, therefore, a list of sequences each one composed of
vectors belonging to the embedding space. The weights of the Embedding Layer
determine how the token-indexes are projected in the embedding space. At the
beginning of the training, the projection in the embedding space starts in a random
condition.

The language model receives the output of the Embedding Layer (a vector in RI1,E1)
and summarises the whole sequence in a single point in the features space (RM1).
Features can now be passed to the second part of the network (Figure 4.3- D⃝) that
will perform the classification.

Our implementation of the CNN model consists of a one-dimensional convolution
layer, followed by a global max-pooling layer. The global max pooling acts for each
channel of convolution layer output and selects the maximum value. The result is
a point in the feature space. This structure is inspired by the one adopted in [105]
for sentence sentiment classification.

In our implementation or RNN model, I used two LSTM layers. The first layer
elaborates the input sequence and produces another sequence in output. The sec-
ond layer elaborates the output of the first layer maintaining only the last output
element, considering it a point in the feature space. This structure is inspired by
the one adopted in [9], which shows good performance.

4.1.3 Hyper-parameters exploration
All works based on machine-learning require an exploration strategy in the hyper-
parameters space. If the model parameters (the network weights) are obtained
trough steepest-descent and error back-propagation, the hyper-parameters must be
explored heuristically to define a reference configuration. The reference configura-
tion is necessary for comparison with other classifier models and to evaluate other
choices in the problem context (e.g. compilation strategies and token filtering).
The goal of the Hyper-parameters exploration is to define a different set of hyper-
parameters and explore with a multi-stage grid-search the classifier performance.

I divided the hyper-parameters into three categories:

• Network hyper-parameters

• Training hyper-parameters

• Dataset hyper-parameters

The network hyper-parameters are specific to the network model that we consider.
They are divided into CNN and RNN hyper-parameters. These two sets have in
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common the parameters that define the sequence input length (I1) the output size
of the embedding-layer (E1) and the output size of the last dense-layer (D1).

The CNN hyper-parameters are the kernel shape (K1), and the number of filters
(K2). The RNN hyper-parameters are the cell-size of the first LSTM layer (L1)
and the cell-size of the second LSTM (L2) layer.

The training hyper-parameters are instead specific to the supervised training method.
They are training algorithm (SGD, Adam, ...) [35], training algorithm hyper-
parameters (specific for the training algorithm), batch size (1, 16, 32, 64, ...) and
loss weight (0.0, 0.1, 0.2, ..., 1.0) of the learning model output (lm_output).

The exploration of dataset hyper-parameters can give some insight into the ability
of the language model to extract information from the source code sequence. The
dataset hyper-parameters are: padding strategies (add a null token at the end or
before the sequence), truncating strategies (keep the initial or final tokens), token
filtering policy in order to eliminate tokens with a low information contribute (token
blacklist, Tf-Idf threshold) and compilation optimisations (-O0, -O1, -O2, ...).

I define an exploration priority to decide which hyper-parameter set must be ex-
plored with the two-phase grid search. My strategy is to identify a good set of
network hyper-parameters using a grid search followed by a second grid search on
training hyper-parameters.

The evaluation process is depicted in Figure 4.4. The grid-search explores a subset
of the hyper-parameters space. For each hyper-parameter, we decide a set of values
of interest that define its exploration range. The exploration point is a precise
configuration of hyper-parameters, and it is evaluated multiple time in order to
take into account the intrinsic model variability during the training process and
improve the statistic confidence of the process. The training of an exploration
point repetition is performed in cross-validation. The whole dataset is split in k
subsets, and in turn, we train k classifiers (fold-classifiers) changing the subset used
as test-set. The confusion matrices of each fold-classifier are reduced using a sum
operator. On the resulting matrix, we can compute the Accuracy (ACC) and the
Matthews Correlation Coefficient (MCC2) [44].

C =
(︄

a b
c d

)︄
MCC = ad − cb√︂

(a + b)(a + c)(d + b)(d + c)
(4.3)

Given a confusion matrix C ∈ R2,2 the MCC is a metric that contrary to the Accu-
racy (ACC) considers the whole classifier behaviour and provides more consistent

2MCC varies between -1 and +1, being +1 the best result possible.
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results when dataset labels are not balanced. Equation 4.3 reports the formula
for computing MCC. Variables a and d represents true positives and true negative
while b represents false negatives and c represents false positives.

All exploration points can be compared using the mean and the standard deviation
of their performance distributions. An exploration point is evaluated given the
performance (MCC and ACC) distribution of its repetitions.

4.1.4 Misclassification Impact
The only usage of Accuracy (ACC) or Matthews correlation coefficient (MCC) is
not enough to evaluate the source code classifier. Evaluating the impact of a right
or a wrong decision on other metrics (e.g. energy, power, runtime) is essential
to evaluate the classifier performance. Given a metric, we measure the impact
of wrong decisions made by the classifier using the percentage deviation from the
optimal value obtainable using an oracle.

These metrics can be obtained during the labelling process of the classifier. Con-
cerning the present work, the dataset collected in [22] was labelled with the compute
unit showing the best runtime performance evaluated with the execution of OpenCL
kernels. That is the reason why we also evaluate the speedup our system is able to
grant, along with accuracy and MCC.

The tested devices for this dataset was a CPU, AMD-GPU, and Nvidia-GPU pro-
cessors.

4.2 Results
I applied the methodology depicted in section 4.1 to define a CNN model to be used
for performance evaluation. Moreover, I compared it with the RNN-based network
already known in the literature. I also evaluated the impact of kernel misclassifica-
tion on the speedup compared to a static mapping, that is kernel allocated all on
GPU or CPU.

subsection 4.2.1 describes the main properties of the kernel dataset, as well as the
preprocessing and filtering operations I applied for producing the symbol sequences
fed into the machine learning models. subsection 4.2.3 details the hyper-parameters
optimisation procedure I used for devising an appropriate CNN architecture. sub-
section 4.2.4 provides exhaustive comparisons between CNN and RNN and explores
how token filtering impacts on classification accuracy. Then, it provides details re-
garding the time required for training the two architectures with different input and
batch sizes. subsection 4.2.5 describes classifier performance taking into account
runtime and speedup. Finally, subsection 4.2.6 summarises the findings coming
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from the experiments analysis I performed.

4.2.1 Dataset description

Table 4.1: Labels distribution in the source dataset. For both GPU considered a
slight 60%/40% unbalance in labels assignment can be observed.

Dataset Device CPU GPU
AMD Tahiti 7970 400 (58.8 %) 280 (41.2 %)
NVIDIA GTX 970 293 (43.1 %) 387 (56.9 %)

For training and testing DeepLLVM , I used a composition of OpenCL kernels com-
ing from six source code collections [22].

• AMD and NVidia OpenCL examples and benchmarks

• NPB, the NASA Advanced Supercomputing Parallel Benchmarks

• Parboil, computing applications for studying the performance of computing
architecture and compilers

• PolyBench/GPU

• Rodinia, the University of Virginia Rodinia benchmark suite

• SHOC, Scalable HeterOgeneous Computing benchmark suite.

Each element of the data-set has a label denoting the best performing computation
device between a CPU and a GPU (AMD Tahiti or Nvidia GTX). The authors of the
data-set executed each kernel using different load (byte transfer) and different level
of parallelism (workgroup size), keeping track of the time required for executing
each kernel on the available devices. Each triple is composed of: a kernel, byte
transfer size and workgroup size and it is labelled with the device exposing the best
runtime performance. The full data-set is composed of 680 triples and 256 different
kernels, and it is characterised by a slight unbalance in labels assignment, detailed
in Table 4.1.

OpenCL kernels stored in the source dataset are not suitable to be classified as they
are, because machine learning models detailed in subsection 4.1.2 require a sequence
of numerical symbols as input. First of all, input sources were translated into LLVM
intermediate representation running clang (v7.0.1) on each input kernel using the
-emit-llvm parameter, set the desired OpenCL version using -cl-std=CL2.0 and
import OpenCL headers using the -Xclang -finclude-default-header param-
eters. The compilation of some kernels ended with the presence of errors. I then
proceeded to manually fix the broken OpenCL kernels and use the entire dataset.
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I created a second experiment trunk adding the -O2 flag to the clang compiler
command line for checking whether any middle-end code transformation impact on
classification accuracy. Moreover, I produced a third kind of sequences tokenising
OpenCL kernels as they are for the sake of comparing our pre-processing pipeline
with the one of [22].
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Figure 4.5: Tf-Idf analysis applied on LLVM -O0 dataset. Distribution of the
average Tf-Idf score measured per document (top). Average Tf-Idf score directly
represented in a bar-plot. In the figure are depicted the score threshold used in
Tf-Idf filtering evaluation.
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Figure 4.6: Tf-Idf analysis applied on LLVM -O2 dataset. Distribution of the
average Tf-Idf score measured per document (top). Average Tf-Idf score directly
represented in a bar-plot. In the figure are depicted the score threshold used in
Tf-Idf filtering evaluation.

The construction of the token dictionary can be done in three ways:
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Figure 4.7: Length of code sequences in the three datasets: OpenCL, LLVM and
LLVM with blacklist.

• Using a pure-character dictionary, it considers only the characters with the
advantage of avoiding complex analysis for token construction, but it can be
used mainly for short sequences.

• Using a hybrid dictionary, it allows a reduction of the length of the sequences
by encoding the most common words with a single symbol and processing as
single characters all the letters not recognised as dictionary words.

• Using a pure-token dictionary, it allows a substantial reduction of the length
of the sequences through a transformation of the code where complex syntax
artefacts are encoded with single symbols.

Even by simplifying the LLVM code through the tokenisation phase and using a
pure-token dictionary, the sequences were too long to be correctly analysed by the
network (Figure 4.7).

Usually, machine learning problems which focus on text classification employ token
filtering strategies during pre-processing. Such techniques help cleaning input se-
quences from symbols with poor informative content. For exploring the impact of
token filtering in the domain of source code analysis, we used two distinct methods:

• Blacklist filtering: removing a set of intermediate representation tokens from
each kernel.

• Tf-Idf filtering: each token-kernel pair (t, d) is assigned a score as detailed
in subsection 4.1.1. Whenever the score of (t, d) is lower than the given
threshold, occurrences of token t are removed from document d.
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Figure 4.8: For each combination of datasets (OpenCL, LLVM), sequence lengths
(2048, 1024, 512) and token-blacklist (used or not used): the first two box-plots
show the distribution of the classification accuracy of the ten classifiers in cross-
validation, the last two box-plots show the distribution of the lost-tokens (trunca-
tion) or added-tokens (padding) in the classifier input sequences.

Concerning blacklist filtering, I produced a list of common tokens that I assumed
not to be strongly informative for kernel-device mapping. The Figure 4.7 shows
the length of the kernels in OpenCL that are always shorter than LLVM-IR while
kernels elaborated with the blacklist filtering reach a reasonable size (LLVM-B).

In Tf-Idf filtering, it is crucial to devise a score threshold for removing only re-
dundant tokens. Since such thresholds are dataset dependent, and no previous
literature works provide methods for computing them, I evaluated the distribution
of the average Tf-Idf score per document and sampled four values from it. Fig-
ure 4.5 and Figure 4.6 show how the average Tf-Idf score per document distributes
in the two LLVM datasets. Both distributions share the same shape and highlight
a peak around 0.005 with a small tail up to 0.035 and 0.025. I chose to test four
Tf-Idf scores around the most common average values, specifically 0.001, 0.003,
0.006 and 0.008.

4.2.2 Token Blacklist impact in RNN accuracy
I trained the network using three different datasets and three different sequence
lengths. The first two box plots in Figure 4.8 show the accuracy distributions for
each class (CPU, GPU) of the ten classifiers that were built to perform the cross-
validation. I trained the model also using a dataset in which I replaced the code
sequences with a random sequence (only the contribution of the auxiliary input
remains). I notice the contribution of the code sequences compared to the random
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Table 4.2: LSTM and blacklist filtering results.

Seq.Len. Median Average
DeepTune [22] 1024 80.9% 82.2%

OpenCL
2048 83.1% 83.8%
1024 84.6% 85.1%
512 83.1% 83.4%

LLVM
2048 78.7% 78.7%
1024 80.9% 78.8%
512 80.1% 79.3%

LLVM-B
2048 86.0% 85.1%
1024 86.8% 84.6%
512 85.3% 85.0%

sequences and the difference in accuracy between the CPU and GPU classes due
mainly to the unbalance of the dataset.

In the third and fourth box-plots of Figure 4.8 we can note the distributions of
the number of padding tokens and tokens deleted for each dataset. The LLVM
sequences are too long, and they are strongly disadvantaged by the truncation of
more than 60% of the kernels. The introduction of the token blacklist has drastically
reduced the length of the sequences, and the accuracy of the classifier has returned
to the levels of the OpenCL dataset, with an improvement in the classification of
the CPU class while maintaining, on average, the same levels of accuracy in the
GPU class. The higher variance in GPU class accuracy disappears as the sequence
length increases (llvm-b-2048). This behaviour is an indication that LLVM input
is more difficult to be classified than OpenCL code. The difficulty depends on
the highly rigid structure of an assembly-like language that requires a longer-term
memory of the LSTM layers as the information is distributed over more extended
sequences. The modest unbalance of the dataset contributes to creating difficulties
for the classification of the disadvantaged class.

Table 4.2 shows the average results of each classifier in which we can see the improve-
ment over DeepTune [22], and the growth of performances of the LLVM classifier
when the token-blacklist is applied. The LLVM-B slightly exceeded the performance
of the OpenCL classifier.
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Table 4.3: Range of hyper-parameters values tested during the network and training
grid-searches.

Grid search Hyper-parameter Values

Network

Input size 1024, 2048, 4096
Padding/Truncating strategies pre, post
Embedding size 64, 128
Conv kernel size 5, 7, 9
Conv kernel number 32, 64, 128
Dense layer size 64, 128, 256

Training Batch size 16, 32, 48, 64
Aux output weight loss 0.0, 0.1, ..., 1.0

4.2.3 CNN reference grid-search
To the best of our knowledge, no previous works introduced convolution neural
networks for kernel-device mapping on heterogeneous platforms. The CNN ar-
chitecture I propose for language modelling is inspired by the one adopted in
[105] for sentence sentiment classification. Since it has a relatively high number
of hyper-parameters, and the number of possible network configurations increases
exponentially with the number of parameters considered, I selected a set of hyper-
parameters of interest and split them into two groups, optimised separately using
two successive grid-searches. I are interested in highlighting how useful this kind
of networks may be at extracting features from source code. For selecting the best
configuration among a set grid-search points, I adopted the following procedure:

1. Summarise each set of repetitions related to the same network configuration
with its MCC mean and standard deviation.

2. Sort grid-search configurations by their average MCC.

3. Select the top 3 configurations.

4. Declare the configuration with the smallest standard deviation to be the best.

All experiments performed with Hyper-parameters exploration were made on the
AMD dataset, using sequences in IR obtained trough a compilation without opti-
misation steps (-O0).

Figure 4.9 shows the performance of all network hyper-parameters (top) and train-
ing hyper-parameters (bottom) configurations considered, sorted by mean accuracy.
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Figure 4.9: Classification accuracy improvements of network (top) and training
(bottom) hyper-parameters exploration. The tracks represent classification perfor-
mance quartiles of grid-search configurations explored, sorted by average accuracy.
The mean trend is represented by the white track in the middle of each plot.

Table 4.4: Evolution of the CNN network and training hyper-parameters through
the different grid-search phases. At first, we assumed batch-size equal to 32 and
auxiliary output weight loss equal to 0.2. Then, we performed the network grid-
search for establishing networks hyper-parameters. At last, we investigated batch-
size and auxiliary output weight loss values with the training grid-search.

Hyper-parameter Init Network Training
Input size - 2048 -
Padding/Truncating strategy - pre -
Embedding size - 128 -
Conv kernel size - 9 -
Conv kernel number - 32 -
Dense layer size - 256 -
Batch size 32 - 64
Aux output weight loss 0.2 - 1.0

The first grid-search aims at optimising hyper-parameters related to the CNN net-
work structure. The search space is the hyper-cube defined by the Cartesian prod-
uct of the network parameters in Table 4.3, while batch-size and auxiliary output
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weight loss were fixed to 32 and 0.2, as specified by Table 4.4. The best configu-
ration so far has a mean MCC of 0.672 and a standard deviation of 0.014. Mean
classification accuracy equals 84.2% with a standard deviation of 0.7% and the best
value of 86.2%.

The second grid-search improves the CNN performance selecting better batch-size
and auxiliary output weight loss values, keeping the network hyper-parameters
fixed. At the end of the two optimisation procedures, mean MCC approaches 0.693,
with a standard deviation of 0.015, while classification accuracy reaches 85.2% with
a standard deviation of 0.7% and the best value of 86.9%.

Figure 4.10: Single hyper-parameter sensitivity analysis in CNN models.

I analysed the outcome of the grid-search procedures for figuring out what hyper-
parameters impact on classification accuracy most. Given an hyper-parameter p
and two values A and B it assumes, we are interested in computing the distribution
of the accuracy improvement granted by moving the value of p from A to B. For
each CNN configuration CA where p equals A, another one is selected, called CB,
characterised by having p equal to B and all the remaining hyper-parameters in
common with CA. Then, the classification accuracy difference is computed between
CA and CB.

Figure 4.10 shows the outcome of such a procedure for all network and training
hyper-parameters. It shows that sequence input-size and the number of neurons in
the fully-connected layer of the classifier (dense-layers) are particularly promising.
In essence, increasing them seems to be beneficial, and moving them from the
minimum tested values to the maximum one always leads to better performance, no
matter the values remaining hyper-parameters assume. In the best cases, accuracy
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improvements are over 1%. Auxiliary output loss weight exposes a similar behaviour
when exceeding 0.6. It is observed that increasing convolution kernel size from 5
to 9 generally leads to better results, while applying padding to the end of the
sequences seem to be detrimental.

4.2.4 CNN-RNN comparison

Table 4.5: Architecture of the two machine learning models tested.

Hyper-parameter RNN CNN
Input size 1024 2048
Padding/Truncating strategy pre pre
Embedding size 128 64
Conv kernel size - 9
Conv kernel number - 32
LSTM layer 1 size 64 -
LSTM layer 2 size 64 -
Dense layer size 32 256
Batch size 32 64
Aux output weight loss 0.2 1.0

Table 4.6: Outcomes of experiments comparing different language modelling net-
works and token filtering strategies on the Nvidia data-set in terms of classification
accuracy and MCC. Also, we reported speedup with respect to a static kernel map-
per, mapping each kernel on GPU.

Dataset Filtering Length
RNN CNN

ACC MCC S.Up ACC MCC S.Up
[%] {-1, +1} [x] [%] {-1, +1} [x]

LLVM
-O0

- 3092 81.16 0.614 1.37 84.47 0.685 1.69

Blacklist 900 82.22 0.636 1.40 85.40 0.704 1.58
1 e-3 651 81.90 0.630 1.33 85.60 0.708 1.61
3 e-3 553 81.16 0.615 1.08 84.79 0.691 1.45
6 e-3 497 81.45 0.620 1.33 83.59 0.666 1.47
8 e-3 465 79.24 0.576 1.03 81.78 0.629 0.97

LLVM
-O2

- 3160 80.73 0.606 1.42 83.77 0.670 1.60

Blacklist 949 82.53 0.643 1.41 84.20 0.681 1.50
1 e-3 719 82.60 0.644 1.38 84.78 0.691 1.57
3 e-3 602 82.39 0.640 1.03 84.63 0.688 1.54
6 e-3 515 81.64 0.624 0.94 83.38 0.661 1.57
8 e-3 495 80.60 0.604 0.77 83.31 0.660 1.51

OpenCL - 2656 81.18 0.615 1.49 83.00 0.656 1.51
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Table 4.7: Outcomes of experiments comparing different language modelling net-
works and token filtering strategies on the AMD data-set in terms of classification
accuracy and MCC. Also, we reported speedup with respect to a static kernel map-
per, mapping each kernel on CPU.

Dataset Filtering Length
RNN CNN

ACC MCC S.Up ACC MCC S.Up
[%] {-1, +1} [x] [%] {-1, +1} [x]

LLVM
-O0

- 3092 79.83 0.581 3.23 85.32 0.695 3.50
Blacklist 900 81.97 0.625 3.23 83.97 0.667 3.50
1 e-3 651 82.08 0.627 3.21 84.79 0.684 3.88
3 e-3 553 81.47 0.615 3.17 84.76 0.683 3.80
6 e-3 497 80.55 0.596 3.38 83.74 0.662 3.48
8 e-3 465 79.55 0.575 2.16 83.76 0.662 2.15

LLVM
-O2

- 3160 79.25 0.568 3.01 84.54 0.679 3.86
Blacklist 949 81.82 0.622 2.97 83.81 0.663 3.59
1 e-3 719 81.50 0.615 3.34 84.78 0.683 3.91
3 e-3 602 82.50 0.637 3.20 84.23 0.672 3.33
6 e-3 515 80.35 0.592 3.08 83.52 0.657 3.24
8 e-3 495 79.56 0.575 2.07 83.96 0.666 3.63

OpenCL - 2656 81.75 0.622 3.69 84.78 0.684 3.26

I tested how good the CNN detailed in subsection 4.2.3 is at classifying kernels,
and I compared it with a network exploiting a RNN-based language modelling.
Table 4.5 details the architecture of the two networks.

Table 4.6 and Table 4.7 report the outcome of experiments performed on both the
AMD and the Nvidia datasets. For each kernel available, I applied the processing
procedures detailed in subsection 4.1.1. Each kernel is tokenised and atomised
using:

• the LLVM-based pipeline described in this work with two different clang op-
timisation flags, for investigating how source code transformation impacts on
classification.

• the OpenCL-based approach proposed in [22].

Regarding LLVM token sequences, I tested two token filtering strategies:

• the blacklist approach proposed in [9].

• four different Tf-Idf thresholds.

I evaluated experiments in terms of classification accuracy, MCC and speedup. Red
bold values highlight what preprocessing methodology gives the best result for each
metric-model pair. Instead, the highlighted values stress the filtering strategies with
which the CNN behaves better for each tokenising methodology.
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The next two subsections discuss the classification performance of tested models
and how CNN language modelling impact training time.

The CNN model always outperforms the RNN one, independently from the device
used for kernel labelling, the preprocessing strategies, the filtering threshold.

Concerning classification metrics, the CNN performs better on LLVM -O0 sequences
in the AMD dataset, where it reaches a mean classification accuracy of 85.32% and
a MCC of 0.695. The CNN grants a boost in classification performance between
+3.00% and +5.50% on unfiltered sequences, providing a solid improvement over
RNN. The same conclusion can be drawn from Nvidia results which are charac-
terised by a slight reduction of the gap between classification accuracy and MCC
offered by the two models. Here, the best mean classification metrics achieved by
the CNN are 84.47% accuracy and 0.685 MCC on LLVM -O0 sequences.

Token filtering improves models classification performance of LLVM sequences in
most cases. Token blacklist, proposed in [9], and Tf-Idf filtering with thresholds
0.001 and 0.003 are the three strategies that often behaves better. RNN perfor-
mances are more influenced by token filtering than the CNN ones. That is especially
true in the AMD dataset, where using a threshold equal to 0.003 on the LLVM -O2
sequences provides a boost of +3.25% in accuracy and +0.069 in MCC. Instead,
the CNN is less sensitive to filtering strategies as the best improvement is +1.13%,
achieved applying Tf-Idf filtering on LLVM -O0 sequences. High Tf-Idf thresholds,
such as 0.008, usually lead to bad performance, causing an accuracy drop of 2.69%
in the worst case. In those situations, the filtering algorithm starts removing tokens
with high informative content not homogeneously, making to learn the appropriate
features for carrying on the classification tasks challenging.

Table 4.8: Amount of time required for training CNN and RNN models for different
batch-size and input-size. Experiments were run on an Nvidia Titan XP GPU with
12GB RAM.

Batch size Input size RNN [s] CNN [s] ∆ [%] S.Up [x]

32 1024 1996 412 -79.4 4.8
2048 3580 492 -86.3 7.3

64 1024 1216 299 -75.4 4.1
2048 1812 414 -77.2 4.4

Training time is one of the most significant issues when dealing with deep machine
learning models. Since input-size and batch-size are the two hyper-parameters
that affect training time most, comparing the two proposed models as they are,
would not have been fair. I computed the average time CNN and RNN require
for being cross-validated using sequences of the same length and an equal number

139



Programming tools for heterogeneous platforms

of samples in mini-batches. Results reported in Table 4.8 show the CNN always
performs consistently better than the RNN, ensuring between 4.1x and 7.3x speedup
in training time.

4.2.5 Misclassification Impact

Table 4.9: Comparisons between the speedup obtained by DeepTune [22] and the
one obtained by the best CNN on IR.

Dataset DeepTune
[22]

DeepLLVM
LLVM -O0 LLVM -O2

AMD 3.43 3.50 3.86
Nvidia 1.42 1.69 1.60

For devising how the proposed machine learning model behaves in a real-world
scenario, evaluating classification accuracy and MCC is not sufficient. Typical
machine learning metrics take care of checking the number of correct predictions
over the total number of samples but do not consider the impact of mapping a
kernel on the wrong device. Missing the best compute unit may not result in a
significant penalty in terms of runtime or speedup.

For checking the impact of misclassified kernels, I measured the speedup granted
by the two machine learning models tested. I computed Speedup using the same
approach proposed in [22]. The time required for running all the OpenCL kernels
on the device predicted by a classifier is divided by the time required for map-
ping all kernels on the device whose label is most common in the labelled dataset.
Experiment results are summarised in Table 4.6 and Table 4.7. The CNN always
outperforms the RNN model on IR sequences analysis. It reaches a mean speedup
of 1.69x and 1.60x on the Nvidia dataset while reaching 3.50x and 3.86x on AMD
labelled data. Moreover, the best average speedup obtained by the CNN outper-
forms results presented in [22] on both dataset as shown in Table 4.9. The RNN
module obtains better results analysing OpenCL kernels from the AMD dataset,
ensuring a speedup of 3.69x. Nonetheless, this speedup is smaller than the 3.91x
ensured by the CNN on LLVM -O2 sequences filtered with a Tf-Idf threshold of
1e-3.

4.2.6 Summary of findings
The results obtained highlight the following main findings:

• using CNN-based language modelling networks, in the context of kernel-device
mapping, is a promising method for extracting features from source code.

140



4.3 – Final Remarks

They provide mean classification accuracy, MCC and speedup higher than
the one provided by the RNN-based network, reaching 85.32% classification
accuracy, 0.695 MCC and 3.86x speedup in the best cases for the considered
dataset;

• CNN behaves comparably to the RNN models without requiring token filter-
ing techniques which seem to be less effective on convolutive networks;

• CNN architecture I proposed requires much lower GPU training time with
respect to the RNN one. Indeed, CNN ensures a 4x - 7x reduction in training
time over RNN. It means that such models are more comfortable to explore
for testing different architectures and hyper-parameters configurations exten-
sively;

• The input sequences size, the number of units in the fully-connected layer
of the classifier and the auxiliary output weight loss are the CNN hyper-
parameters that promise to impact classification metrics most.

• The RNN network reports a more significant variation in performance when
the sequence length is reduced. At the same time, CNN is less affected by
Tf-Idf filtering because of the Global Max Pooling layer acts as a filter itself.

• Finally, I confirmed that using IR is a valuable representation for performing
kernel analysis and using it does imply penalties neither on classification
metrics nor in speedup.

4.3 Final Remarks
In this chapter, I presented a LLVM based code classification method and I ex-
plored the impact of neural network models on feature extraction and classification
problems applied to source code in the intermediate representation.

Using an LLVM compiler, I obtained a general and optimised low-level representa-
tion (IR) of a source code written in a high-level programming language. At the
LLVM-IR level, the code can be manipulated and filtered for condensing complex
syntactic language elements in a restricted set of keywords (tokenisation procedure)
that once translated in sequences of numbers (atomization procedure) are suitable
for being used as input for the deep neural network classifier.

I evaluated the performances of our LLVM-based classifier using a dataset of OpenCL
kernels properly manipulated with our tokenisation - atomization strategy. Fur-
thermore, through a TF-IDF weight analysis, I remove less informative tokens thus
reducing the input dimension and being able to obtain an accuracy of the clas-
sifier with a median value of 86% (5% better compared to 81% achieved by the
state-of-the-art code classifier DeepTune, Table 4.2).
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Given the absence, in literature, of a CNN-based language modelling networks for
kernel-device mapping I explored the hyper-parameters of a CNN model in order to
obtain a reference model. I explored 368 different hyper-parameters configurations,
each cross-validated 20 times, reporting a statistical analysis of the results obtained.

I compared the best configuration of hyper-parameters for the CNN with the RNN-
based network used in [22, 9] for different source code preprocessing and token
filtering strategies, evaluating classification accuracy, MCC and speedup.

Results confirm that features extraction from IR is a valuable strategy for analysing
sources without dealing with complex high-level constructs, and it can be done keep-
ing all the information required for performing classification tasks in the context
kernel-device mapping.
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Chapter 5

Conclusions

During this research work, I worked on new generation manycore architectures for
the development of innovative programming models in neuromorphic and heteroge-
neous architectures. My scientific contributions are framed on these architectures,
in particular deep-learning for compilation chains, software-stack development and
resource optimisation.

My achievements obtained in research on programming tools and middleware for
manycore neuromorphic platforms are divided in two categories: optimisation of
communication resources during SNN simulations and development of a software
stack for the implementation of a parallel programming model based on message
exchange. My achievements obtained in research on programming tools for hetero-
geneous platforms was the implementation of a source code classifier, analysing a
LLVM-IR code with deep neural networks.

Optimisation of communication resources in SNN simulations

I proposed a methodology for profiling densely interconnected neuromorphic multi-
chip manycore platforms for real-time SNN simulations. The methodology has
been used to characterise reliability issues in the SpiNNaker platform, impossible
to investigate using a biological network. I designed a custom SNN configurations
to unveil both local and external network traffic issues. I proven that one of the
causes of unreliability was due to packet conflicts in the internal router tree related
to traffic congestion. This unreliability can be due to simultaneous usage of com-
munication links of a router. Results show that, with a good neuron population
placement, it is possible to improve simulation reliability by decreasing the total
number of packets exchanged. I have modelled the mapping problem of complex
directed graph (snn) into the SpiNNaker processors-mesh. I have identified and
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tested 4 methodologies to solve the problem. The Naïve method (a simple heuris-
tics), the Spectral method (uses the graph eigendecomposition to obtain a planar
representation of the snn graph and performs the node association with the chip
mesh through an ILP formulation), the Scotch method (uses the Dual Recursive
Bipartitioning heuristic), the Simulated Annealing method (well-known SA proce-
dure to minimise a cost function). I have defined the cost function of the placement
problem using the synaptic elongation. I have chosen the cortical microcircuit as
our benchmark network, and after performing several tests I highlight the per-
formance of each method. The Spectral method was implemented in GHOST, a
Python module compliant with the sPyNNaker tool-chain in order to demonstrate
the effectiveness of the developed mapping approach with respect to random neu-
ron placement. Finally comparisons were made between configurations produced
by PACMAN and GHOST. From these simulations was evident that GHOST is
capable to reduce the number of used cores, results in lower R2R traffic, 96X when
GHOST is adopted.

Software stack for the implementation of MPI

The architecture provide an inefficient unicast communication protocol, unsuitable
for the development of a communication library such as MPI. For these reasons, I
developed a communication middleware (MCM) based on the Multicast protocol. I
reduce the complexity of the internal transmissions, by implementing unicast com-
munications avoiding the supervision of the monitor processor. On top of MCM I
designed the Application Command Framework (ACF), and Application Command
Protocol (ACP) a new method to be adopted at the application level for spreading
commands and manage the private memory of the chip processors. It provides a
abstraction level of the memory (Memory Entites). Users can easily access to all
application Memory Entites.

To prove the advantages of our ACF I modify two SpiNNaker application enabling
them to use our library. The first applicatioa is used during the configuration phase
of SpiNNaker board, and the second application is a neuron model used during the
SNN simulation phase. In the first application, I demonstrated the advantages
introduced by ACF in the run-time feeding of configuration applications. The use
of ACF can speed-up host-to-boards data transmission during the configuration of
SpiNNaker platforms. Exploiting the concurrency of the system I have been able
to get an improvement of 3 times on the data forwarding inside the board. In
the second application, I demonstrated the run-time flexibility introduced by the
ACF embedded in the neuron model application, implementing two different real
simulation scenarios: i) a two-phases SNN-Classifier designed for discriminating
the handwritten number and ii) a chain of neurons with run-time re-configuration
parameters. Both the implemented applications were demonstrated to be flexible,
scalable and expandable.
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Lastly, I described an implementation of the MPI paradigm on the SpiNNaker
neuromorphic platform exposing a programming model for the development of par-
allel applications without knowledge of the interconnections between the computing
units of the underlying architecture. In the case of SpiNNaker, the implementa-
tion of MPI take advantage of the technology offered by on-chip routers, obtaining
efficient communication by using the ACF and memory entities. This software
stack creates a simple working framework offering a universally known program-
ming model capable of making the SpiNNaker architecture available for a wide
range of applications. I benchmarking our MPI implementation, showing its lin-
ear scaling performances executing two MPI programs. The first application was
an N-Body simulation where 2 k particles were simulated on 240 processors with
a speed-up of 194 x and an efficiency of 80% when compared to the serial version
running on a single SpiNNaker core. I also presented an MPI implementation of a
DNA sequence matching algorithm. Results show that the scalability of the SpiN-
Naker board reaches an ideal profile, 98% of efficiency, when using more than 100
processors, a 90% efficiency using 600 processors, reaching 88% efficiency when all
767 application processors are used.

Source code classifier with deep learning

The objective of this research is to provide the current compilation chains of a
more complex code analysis mode capable of making complex decisions that would
otherwise be difficult to codify in a set of rules. I have therefore trained deep
learning models capable of automatically learning features from source code. In
particular I wanted to show that it is possible to analyze code in intermediate
representation. I developed a LLVM-IR code classifier using two neural network
models (CNN and LSTM) and make some comparisons between them. The code
sequences before to be passed to the neural network classifier need to be trans-
formed for condensing language elements in a restricted set of keywords (tokens),
filtered for removing less informative tokens, and then transformed in numbers. I
evaluated the performances of our LLVM-based classifier using a dataset of OpenCL
kernels labeled with the best compute units in terms of runtime (CPU or GPU).
Then, I explored the hyper-parameters of a CNN model in order to obtain a ref-
erence model. I explored 368 different hyper-parameters configurations, reporting
a statistical analysis of the results obtained. I compared the best configuration of
hyper-parameters for the CNN with the RNN-based network for different source
code preprocessing and token filtering strategies, evaluating classification accuracy,
MCC and speedup. Results confirm that features extraction from IR is a valuable
strategy for analysing sources without dealing with complex high-level constructs,
and it can be done keeping all the information required for performing classification
tasks in the context kernel-device mapping.
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Nomenclature

Acronyms / Abbreviations

ACF Application Command Framework

ACP Application Command Protocol

APs Application Processors

BNN Biological Neural Networks

CNN Convolutional Neural Networks

CRUD Create, Read, Update, Delete

DNN Deep Neural Network

DS Data Specification

DSE Data Specification Execution

DSG Data Specification Generation

FR Fixed Route

GHOST GrapH Optimiser Spinnaker Tool

GMP Global Max-Pooling

HBP European Human Brain Project

LLVM Low Level Virtual Machine

LSTM Long Short-Term Memory
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Nomenclature

MC Multicast packets

MCM Multicast Communication Middleware

ME Memory Entities

MP Monitor Processor

NMI Neuron Model Implementation

NN Nearest Neighbour

ODE Ordinary Differential Equations

PP Point-to-Point packets

RTE Runtime Error

SARK SpiNNaker Application Runtime Kernel

SCP SpiNNaker Command Protocol

SDP SpiNNaker Datagram Protocol

SNN Spiking Neural Networks

SpiNNaker Spiking Neural Network Architecture

SWE Software Error

TCM Tightly Coupled Memory

vME Virtual Memory Entity
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