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Abstract

We present an overview of the state of the art and future trends in high performance parallel
and distributed computing, and discuss techniques for using such computers in the simulation
of complex problems in computational science. The use of high performance parallel computers
can help improve our understanding of complex systems, and the converse is also true — we
can apply techniques used for the study of complex systems to improve our understanding of
parallel computing. We consider parallel computing as the mapping of one complex system —
typically a model of the world — into another complex system — the parallel computer. We
study static, dynamic, spatial and temporal properties of both the complex systems and the
map between them. The result is a better understanding of which computer architectures are
good for which problems, and of software structure, automatic partitioning of data, and the
performance of parallel machines.



1 Introduction

The power of high performance computing is being used in an increasingly wide variety of applica-
tions in the physical sciences, and in particular in the study of complex systems. The performance of
supercomputers has increased by roughly a factor of two every 18 months since electronic computers
were first developed. A number of supercomputer manufacturers are aiming to deliver Teraflop (1012

floating point operations per second) performance well before the end of the decade.
Hardware trends imply that all computers, from PCs to supercomputers, will use some kind of

parallel architecture by the end of the century. Until recently parallel computers were only marketed
by small start-up companies (apart from Intel Supercomputer Systems Division), however recently
Cray, Hewlett-Packard and Convex, IBM, and Digital have all begun marketing commercial parallel
computers. Software for these systems is a major challenge, and could prevent or delay this hardware
trend toward parallelism. Reliable and efficient systems software, high level standardized parallel
languages and compilers, parallel algorithms, and applications software all need to be available for
the promise of parallel computing to be fully realized.

A characteristic feature of the research on parallel computing at the Caltech Concurrent Com-
putation Program (C3P), and more recently the Northeast Parallel Architectures Center (NPAC)
at Syracuse University, is that many of the people who have worked in these groups (including
ourselves) have a background in physics, so much of this research has made use of ideas from both
physics and computer science. The goal of this work has been to make parallel computers more
effective and easier to use for a wider variety of applications [12, 30, 14, 1, 32].

Parallel computers are complex entities used to simulate complex problems. While the physical
sciences have developed several qualitative and quantitative methods to understand complex systems,
other fields, in particular computer science, have not. Thus, it is not surprising that physics concepts,
especially those related to complex systems, are helpful in developing a theory of computation and
indeed may become more important as the computers and the problems they simulate get larger
and more complicated. Here we present a review of these concepts. Several references contain more
detailed discussions [34, 33, 25, 26, 27, 30, 28, 17, 21, 22, 24, 32].

In Section 2 we give an overview of the state of the art and future trends in parallel comput-
ing, concentrating on the use of parallel computers for simulation, particularly of complex systems.
We describe recent progress in defining a standardized, portable, high level parallel language called
High Performance Fortran, an extension of Fortran 90 designed for efficient implementation of data
parallel applications on parallel, vector and sequential high performance computers. An outline of
the language is presented, and we discuss its ability to handle different applications in computa-
tional science, particularly the difficulties of implementing irregular problems. We also discuss other
problems such as software integration and the use of concepts such as visualization, virtual reality
and metacomputing to enhance the usability of high performance computers. Further discussions of
issues concerning parallel computing can be found in [30, 15, 20, 47, 23, 32].

We have found that when trying to understanding the use of parallel computers it is often very
helpful to view the application, the software and the computer as complex systems. We have used
these concepts to develop a theory of computation for parallel computers. In Section 3 we lay
the foundations for this theory by presenting the view of computation as a set of maps from one
of these complex systems to another, and introducing the concepts of space and time for these
complex systems. Section 4 describes spatial properties — size, topology, dimension, and a physical
analogy for data partitioning of slowly-varying problems leading to concepts of temperature and
phase transitions.

In Section 5, we discuss temporal properties — a string model for very adaptive problems and a
duality between the temporal structure of problems and the memory hierarchy of computers. Just
as in physics, locality is a critical issue in high performance computing. We need to ensure that the
data needed for a computation is readily available for the arithmetic unit. Delays increase as the
data is placed in memory which is further away from the processor. Locality underlies the design
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and use by compilers of caches in “ordinary” sequential computers and the nature of the networks
used to link the individual computer nodes in a parallel system. Matching the problem locality to
the computer locality is a key to good performance.

In Section 6, we briefly discuss the concept of problem architecture and its relation to the better
understood computer architecture, in order to understand which problems are suitable for which
computers. We also apply these ideas to compilers, which are viewed as mapping one space-time
system into another.

Finally, in Section 7, we discuss the idea of physical computation, or adapting techniques from
the physical sciences to create useful computational algorithms for such general problems as opti-
mization. Such techniques are also applied to problems in parallel computing, such as balancing the
computational load between processors.

2 Parallel Computers and Simulation

2.1 Parallel Computing

Carver Mead of Caltech in an intriguing public lecture once surveyed the impact of a number of
new technologies, and introduced the idea of “headroom” — how much better a new technology
needs to be for it to replace an older, more entrenched technology. Once the new technology has
enough headroom, there will be a fairly rapid crossover from the old technology, in a kind of phase
transition. For parallel computing the headroom needs to be large, perhaps a factor of 10 to 100,
to outweigh the substantial new software investment required. The headroom will be larger for
commercial applications where programs are generally much larger, and have a longer lifetime, than
programs for academic research. Machines such as the nCUBE and Thinking Machines CM-2 were
comparable in price/performance to conventional supercomputers, which was enough to show that
“parallel computing works” [30, 32], but not enough to take over from conventional machines. It will
be interesting to see whether the new batch of parallel computers, such as the CM-5, Intel Paragon,
IBM SP-2, Maspar (DECmpp) MP-2, Cray T3D, etc., have enough headroom.

Parallel computers have two different models for accessing data:

• Shared Memory — processors access a common memory space,

• Distributed Memory — data is distributed over processors and accessed via message passing
between processors,

and two different models for accessing instructions:

• SIMD (Single Instruction Multiple Data) — processors perform the same instruction syn-
chronously on different data,

• MIMD (Multiple Instruction Multiple Data) — processors may perform different instructions
on different data.

Different problems will generally run most efficiently on different computer architectures, so a range
of different architectures will be available for the some time to come, including vector supercomput-
ers, SIMD and MIMD parallel computers, and networks of RISC workstations. The user would prefer
not to have to deal with the details of the different hardware, software, languages and programming
models for the different classes of machines. So the aim of supercomputer centers is transparent
distributed computing, sometimes called “metacomputing” — to provide simple, transparent access
to a group of machines of different architectures, connected by a high speed network to each other
and the outside world, and to data storage and visualization facilities. Users should be presented
with a single system image, so they do not need to deal with different systems software, languages,
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software tools and libraries on each different machine. They should also be able to run an application
across different machines on the network.

Parallel computing implies not only different computer architectures, but different languages, new
software, new libraries, and will open up computation to new fields and new applications. It also
offers a different way of viewing problems. Virtually all complex real-world problems are inherently
parallel, in that many different elements of the problem domain interact with one another at any
given time. In a sequential language, the structure of the problem must be artificially broken up to
fit within the confines of the sequential computer, for which only one computation can occur at a
time. Using parallel computers and parallel languages allows the programmer to better preserve the
problem structure in the software, and perhaps also in the algorithm.

Over the last 10 years we have learned that parallel computing works — the majority of com-
putationally intensive applications perform well on parallel computers, by taking advantage of the
simple idea of “data parallelism”, which means obtaining concurrency by applying the particular
algorithm to different sections of the data set concurrently [38, 39, 30]. Data parallel applications
are scalable to larger numbers of processors for larger amounts of data.

Another type of parallelism is “functional parallelism”, where different processors (or even differ-
ent computers) perform different functions, or different parts of the algorithm. Here the speed-ups
obtained are usually more modest and this method is often not scalable, however it is important,
particularly in multidisciplinary applications.

Surveys of problems in computational science [1, 8, 23] have shown that the vast majority (over
90%) of applications can be run effectively on MIMD parallel computers, and approximately 50% on
SIMD machines (probably less for commercial, rather than academic, problems). Currently there are
many different parallel architectures, but only one — a distributed memory MIMD multicomputer —
is a general, high performance architecture that is known to scale from one to very many processors.

2.2 Parallel Languages

Using a parallel machine requires rewriting code written in standard sequential languages. We would
like this rewrite to be as simple as possible, without sacrificing too much in performance. Parallelizing
large codes involves substantial effort, and in many cases rewriting code more than once would be
impractical. A good parallel language therefore needs to be portable and maintainable, that is,
the code should run effectively on all current and future machines (at least those we can anticipate
today). This means the language should be scalable, so that it can work effectively on machines
using one or millions of processors. Portability also means that programs can be run in parallel over
different machines across a network (distributed computing).

There are some completely new languages specifically designed to deal with parallelism, for
example occam, however none are so compelling that they warrant adoption in precedence to adapting
existing languages such as Fortran, C, C++, Ada, Lisp, Prolog, etc. This is because users have
experience with existing languages, good sequential compilers exist and can be incorporated into
parallel compilers, and migrating existing code to parallel machines is much easier. In any case, to
be generally usable, especially for scientific computing, any new language would need to implement
the standard features and libraries of C and Fortran [19, 21].

The purpose of software, and in particular computer languages, is to map a problem onto a
machine, as described in Section 3.1. A drawback of current software and languages is that they
are often designed around the machine architecture, rather than the problem architecture. This
can make it very difficult to port the code from one machine to another, and in particular from a
sequential computer to a parallel computer. It is possible for compilers to extract parallelism from a
dependency analysis of sequential code (such as Fortran 77), however this is not usually very effective.
In many cases the parallelism inherent in the problem will be obscured by the use of a sequential
language or even a sequential algorithm. A particular application can be parallelized efficiently if,
and only if, the details of the problem architecture are known. Users know the structure of their
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problems much better than compilers do, and can create their algorithms and programs accordingly.
If the data structures are explicit, as in Fortran 90, then the parallelism becomes much clearer.

Each class of problem architectures requires different general constructs from the software, and a
study of problem architectures is helpful in formulating the requirements for parallel languages and
software (this is described in more detail in Section 6). Currently there are two language paradigms
for distributed memory parallel computers: message passing and data parallel languages. Both of
these have been implemented as extensions to Fortran and C. Here we will concentrate on Fortran.

2.2.1 Message Passing Fortran

Message passing is a natural model of programming distributed memory MIMD computers, and
is currently used in the vast majority of successful applications using MIMD machines. The basic
idea is that each node (processor plus local memory) has a program that controls, and performs
calculations on, its own data (the “owner-computes” rule). Non-local data may need to be obtained
from other nodes, which is done by communication of messages.

In its simplest form, there is one program per node of the computer. The programs can be
different, although they are usually the same. However they will generally follow different threads of
control, for example different branches of an IF statement. Communication can be asynchronous, but
in most cases the algorithms are loosely synchronous [30], meaning that they are usually controlled
by a time or iteration parameter and there is synchronization after every iteration, even though the
communications during the iteration process may not be synchronous.

If parallelism is obtained from standard domain decomposition, then the parallel program for
each node can look very similar to the sequential program, except that it computes only on local
data, and has a call to a message passing routine to obtain non-local data. Schematically, a program
might look something like the following:

CALL COMMUNICATE (required non-local data)
DO i running over local data

CALL CALCULATE (with i’s data)
END DO

Note that it is more efficient to pass all the non-local data required in the loop as a single block
before processing the local data, rather than pass each element of non-local data as it is needed
within the loop. The advantages of this style of programming are:

• It is portable to both distributed and shared memory machines.

• It should scale to future machines, although to achieve good efficiencies schemes to overlap
communication with itself and with calculation may be required.

• Languages are available now and are portable to many different MIMD machines. Current
message passing language extensions include Express, PICL, PVM, and Linda.

• There will soon be an industry standard Message Passing Interface [48].

• All problems can be expressed using this method.

The disadvantages are:

• The user has complete control over transfer of data, which helps in creating efficient programs,
but explicitly inserting all the communication calls is difficult, tedious, and error prone.

• Optimizations are not portable.

• It is only applicable to MIMD machines.
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2.2.2 Data Parallel Fortran

The goal of the Fortran 90 standard is to “modernize Fortran, so that it may continue its long
history as a scientific and engineering programming language”. Although Fortran 90 is a sequential
language, some of its major new features are the array operations to facilitate vector and data
parallel programming.

Data parallel languages have distributed data just as for the message passing languages, however
the data is explicitly written as a globally addressed array. As in the Fortran 90 array syntax, the
expression

DIMENSION A(100,100), B(100,100), C(100,100)
A = B + C

is equivalent to

DO i = 1, 100
DO j = 1, 100

A(i, j) = B(i, j) + C(i, j)
END DO
END DO

The first expression clearly allows easier exploitation of parallelism, especially as a DO loop of For-
tran 77 can often be “accidentally” obscured, so a compiler can no longer see the equivalence to
Fortran 90 array notation. Migration of data is also much simpler in a data parallel language. If
the data required to do a calculation is on another processor, it will be automatically passed be-
tween nodes, without requiring explicit message passing calls set up by the user. For example, a
program fragment might look something like the following, using either an array syntax with shifting
operations to move data (as in Fortran 90)

A = B + SHIFT (C, in i direction)

or explicit parallel loops in a FORALL statement using standard array indices to indicate where the
data is to be found (FORALL is not in the Fortran 90 standard, but is present in many dialects of
data parallel Fortran)

FORALL i, j
A(i, j) = B(i, j) + C(i-1, j)

The advantages of this style of programming are:

• Relatively easy to use, since message passing is implicit rather than explicit, and parallelism
can be based on simple Fortran 90 array extensions.

• Scalable and portable to both MIMD and SIMD machines.

• Should be able to handle all synchronous and loosely synchronous problems, including ones
that only run well on MIMD.

• Data parallel languages such as CM Fortran and MasPar Fortran are available now that are
based on Fortran 90 array syntax.

• An industry standard, High Performance Fortran (HPF), has been adopted, which is an ex-
tension of Fortran 90 that builds on existing data parallel languages [37, 42].

The disadvantages are:

• Need to wait for good HPF compilers.

• Not all problems can be expressed in this way.
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2.2.3 High Performance Fortran

A major hindrance to the development of parallel computing has been the lack of portable, industry
standard parallel languages. Currently, almost all parallel computer vendors provide their own
proprietary parallel languages which are not portable even to machines of the same architecture, let
alone between SIMD and MIMD, distributed or shared memory, parallel or vector architectures. This
problem is now being addressed by the High Performance Fortran Forum (HPFF), a group of over
40 organizations including universities, national laboratories, computer and software vendors, and
major industrial supercomputer users. HPFF was created to discuss and define a set of extensions to
Fortran called High Performance Fortran. The goal was to address the problems of writing portable
code that would run efficiently on any high performance computer, including parallel computers
of any architecture (SIMD or MIMD, shared or distributed memory), vector computers, and RISC
workstations. Here “efficiently” means “comparable to a program hand-coded by an expert in the
native language of a particular machine”.

The HPF standard was finalized in May 1993. HPF is designed to support data parallel pro-
gramming. It is an extension of Fortran 90, which provides for array calculations and is therefore
a natural starting point for a data parallel language. HPF attempts to deviate minimally from the
Fortran 90 standard, while providing extensions that will enable compilers to provide good perfor-
mance on a variety of parallel and vector architectures. While HPF was motivated by data parallel
languages for SIMD machines, it was developed to enable such languages to be portable to any
computer architecture, including MIMD, vector and sequential machines [19, 6, 4].

HPF has a number of new language features, including:

• New directives that suggest implementation and data distribution strategies to the compiler.
They are structured so that a standard Fortran compiler will see them as comments and thus
ignore them.

• New language syntax extending Fortran 90 to better express parallelism.

• Standard interfaces to a library of efficient parallel implementations of useful routines, such as
sorting and matrix calculations.

• Access to extrinsic procedures which can be defined outside the language, for example by using
Fortran with message passing, in order to handle certain operations that cannot be expressed
very well (or at all) in HPF.

The strategy behind HPF is that the user writes in an SPMD (Single Program Multiple Data)
data parallel style, with conceptually a single thread of control and globally accessible data. The
program is annotated with assertions (compiler directives) giving information about desired data
locality and distribution. The compiler then generates code implementing data and work distribu-
tion.

In the HPF model, the allocation of data to processors is done using a two-level mapping of data
objects to processor memories, referred to as abstract processors. This is shown in Figure 1. First
the data objects (typically array elements) are aligned relative to one another, using an abstract
indexing space called a template. A template is then distributed onto a rectilinear arrangement of
abstract processors. The final mapping of abstract processors to the same or a smaller number of
physical processors is not specified by HPF, and is implementation dependent.

2.2.4 HPF Compilers and Fortran 90D

HPF is defined to be portable between computers of different architectures. As its name suggests,
a major goal of High Performance Fortran is to have efficient compilers for all these machines.
Vectorizing compilers work by analyzing data dependencies within loops, and identifying independent
data sets that can be processed simultaneously. However, obtaining parallelism solely through
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Figure 1: Mapping data onto processors in High Performance Fortran

dependency analysis has not proven to be effective in general, so for all commands in HPF the
dependencies are directly implied, enabling the compiler to generate more efficient code.

Compilers will implement HPF differently on different computer architectures, for example:

SIMD computers — parallel code with communication optimized by compiler placement of data.

MIMD computers — a multi-threaded message passing code with local data and optimized send/receive
communications.

vector computers — vectorized code optimized for the vector units.

RISC computers — pipelined superscalar code with compiler generated cache management.

A subset of HPF has been defined to enable early availability of compilers. The first imple-
mentation of HPF is the Fortran 90D compiler being produced by NPAC [4]. The alpha version of
the compiler was demonstrated at Supercomputing 92, and the beta release is now available. The
compiler currently runs on MIMD parallel computers: the nCUBE/2, Intel iPSC/860, and a network
of Sun workstations. The next target architecture is heterogeneous networks, and in the future the
compiler will be optimized for specific architectures and released as a commercial product by the
Portland Group. An example of the performance of the current Fortran 90D compiler compared to
a hand-coded message passing program is shown in Figure 2 for a Gaussian elimination problem.
The HPF code for the main routine is shown in Figure 3.

Fortran 90D will continue to be developed as a superset of HPF, in order to research new
functionality that may be added to the HPF standard in the future. For example, language facilities
for handling parallel I/O are being investigated [3], which is a major area of concern that was not
addressed by the initial HPF standard.

2.3 Systems Integration and Visualization

Recent advances in parallel programming languages such as High Performance Fortran are expected
to improve the usability of parallel processing for the simulation of complex problems, especially
in industry. However, complex “real world” computationally intensive applications in areas such as
fluid dynamics, product design, or concurrent engineering require even more powerful and versatile
tools. Such applications typically contain several modules with varying degrees of inter-modular
interaction. Some modules such as digital signal processors, 3D renderers or partial differential
equation (PDE) solvers map naturally onto the HPF programming model, while some others are
inherently sequential. Also, a realistic application contains typically several data parallel modules,
some of them interacting in the data parallel mode as well, for example different layers of a multigrid
PDE algorithm, or subsequent filters in the machine vision systems. Finally, the process of integrat-
ing individual components into the full application is a complex task itself, and so is the process of

7



1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18

Speedup

Processors

Gaussian Elimination

Compiler generated 3

3
3

3

3

3

Hand written +

+
+

+

+

+

Figure 2: Performance of the Fortran 90D compiler versus hand-written message passing code on
the Intel iPSC/860 for Gaussian elimination.

PROGRAM gaussian

PARAMETER (N = 100)

PARAMETER (NN = 100)

INTEGER index(N), iTmp(1)

INTEGER indexRow, i, j, k

REAL a(N,NN), row(NN), fac(N)

REAL maxNum

!HPF$ PROCESSORS p(4)

!HPF$ TEMPLATE templ(100)

!HPF$ DISTRIBUTE templ (BLOCK) ONTO p

!HPF$ ALIGN a(*,i) WITH templ(i)

!HPF$ ALIGN row(i) WITH templ(i)

index = -1

DO k = 1, N

iTmp = MAXLOC(a(:,k), MASK = index .EQ. -1)

indexRow = iTmp(1)

maxNum = a(indexRow,k)

index(indexRow) = k

fac = a(:,k) / maxNum

row = a(indexRow,:)

FORALL (i=1:N, j=k:NN, index(i) .EQ. -1)

& a(i,j) = a(i,j) - fac(i) * row(j)

END DO

END

Figure 3: Gaussian elimination programmed in High Performance Fortran
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module synchronization, interactive debugging and fine-tuning the parameters of a prototype. New
generation High Performance Distributed Computing (HPDC) software integration tools, required
to handle this type of computational complexity, are currently being constructed. We summarize
here recent activities in this area at NPAC.

Currently a popular approach is based on dataflow visualization systems such as AVS (Advanced
Visualization System). This model supports a network of computational modules, implemented as
individual UNIX processes, and interacting via the RPC (Remote Procedure Call) protocol under
control of the AVS kernel. Individual modules can be placed on different machines and hence the
model provides support for heterogeneous distributed computing. Some of these modules can also be
installed on parallel platforms, thereby extending the paradigm to the HPDC level. Visual editing
tools for such a network are also offered by the system which facilitiate application prototyping,
integration, monitoring and fine-tuning. Finally, several default visualization modules come with
the system and allow for sophisticated data visualization and rendering tasks.

AVS is only adequate for relatively static scientific visualization tasks. There is no support for
system wide synchronization nor for real-time interactive services required for advanced simulation
tasks such as virtual reality (VR). Also, while parallel (e.g. HPF) modules can be included in the
AVS network, there is no support for parallel I/O or parallel dataflow between individual HPF tasks.
All communication must be mediated by the corresponding host programs, which causes substantial
bottlenecks.

We are currently developing a set of tools that will allow us to extend AVS functionality in
these areas and to provide support for virtual reality simulations as well as for televirtuality services
providing remote VR user interfaces. The underlying software model is provided by the MOVIE
(Multitasking Object-oriented Visual Interactive Environment) model [35, 36]. A MOVIE system
is a network of MOVIE servers — interpreters of a high-level object-oriented programming lan-
guage, MovieScript. MovieScript extends PostScript in areas such as graphical user interface (GUI)
prototyping, Fortran 90 style array syntax and operating support for real-time multi-threading.

A specific design of a MOVIE network can be adapted to a particular computational domain.
In particular, all dynamic features of the AVS model in the heterogenous distributed mode can be
reproduced in terms of MOVIE tasks or threads, but the model also offers support for multitasking
data parallel processing and interactive real-time programming. In the early development stage is the
next level tool, which will allow for concurrent execution of and parallel dataflow between several
HPF modules. An AVS-like visual network editor will also be provided to facilitate application
editing tasks. Finally, we also plan to provide support for World Wide Web (WWW) services in
terms of CGI (Common Gateway Interface) scripts. Such scripts, passed from the Web browser to
the Web server to the MOVIE host server will allow for interactive control of simulations running on
remote high performance computers. This architecture will also enable the development of prototype
televirtuality (TVR) services. Current hypermedia browsers such as Mosaic are not adequate to
support two-way interactivity but there are ongoing VR-oriented activities in the WWW community,
and several new consumer level VR products will soon offer remote support as well.

3 Complex Systems and a Theory of Parallel Computing

3.1 Mapping Problems onto Computers

For this article, we shall consider a complex system as a large collection of, in general, disparate
members. Those members have, in general, a dynamic connection between them. A dynamic
complex system evolves by a probabilistic or deterministic set of rules that relate the complex
system at a later “time” to its state at an earlier “time”. Complex systems studied in chemistry
and physics, such as a protein or the universe, obey rules that we believe we understand more or
less accurately. The military play war games, which is the complex system formed by a military
engagement. This and more general complex systems found in society, obey less clear rules.

9



One particular important class of complex systems is that of the complex computer. In the
case of a hypercube such as the nCUBE, or other multicomputers such as the Intel Paragon or
Thinking Machines CM-5, the basic entity in the complex system is a conventional computer and
the connection between members is a communication channel implemented either directly in VLSI,
on a PC board, or as a set of wires or optical fibers. In another well-known complex computer, the
brain, the basic entity is a neuron and an extremely rich interconnection is provided by axons and
dendrites.

In many situations, one is concerned with mapping one complex system into another. Solving a
problem consists of using one complex system, the complex processor, to “solve” another complex
system, the complex problem. In building a house, the complex processor is a team of masons,
electricians, and plumbers, and the complex problem is the house itself. In this article, we are mainly
interested in the special case where the complex processor is a complex computer and modeling or
simulating a particular complex problem involves mapping it onto the complex computer.

Simulation or modeling begins with a map

Nature (or system to be modelled)
map
−→

theory
Idealization or Model (1)

This map would often be followed by a computer simulation, which consists of mapping the model
onto the computer. This whole process can be broken up into several maps, as shown in Figure 4.
We illustrate the procedure using the example of a computational fluid dynamics study of airflow
around an airplane, where the complex systems used are:

S0 is nature — the actual flow of air around the airplane.
S1 is a (finite) collection of molecules interacting with long-range Van der Waals and other forces.

This interaction defines a complete interconnect between all members of the complex system S1.
S2 is the infinite degree of freedom continuum with the fundamental entities as infinitesimal

volumes of air connected locally by the partial differential operator of the Navier Stokes equation.
S3 = Snum could depend on the particular numerical formulation used. Multigrid, conjugate

gradient, direct matrix inversion and alternating gradient would have very different structures in
the direct numerical solution of the Navier Stokes equations. The more radical cellular automata
approach would be quite different again.

S4 = SHLSoft would depend on the final computer being used and division between high and low
level in software. The label HLSoft denotes “High Level Software”.

S5 = Scomp would be SHLSoft embroidered by the details of the hardware communication (circuit
or packet switching, wormhole or other routing). Further, we would often need to look at this
complex system in greater resolution and expose the details of the processor node architecture.

Nature, the model, the numerical formulation, the software, and the computer are all complex
systems, and they can be quite different. We are interested in the structure of all these complex
systems and the maps between them. Note that each of the successive maps in Figure 4 results in a
loss of information. As reviewed in Section 6, we can discuss key problems in the design of software
systems in terms of minimizing information loss.

Typically, one is interested in constructing the maps in Figure 4 to satisfy certain goals, such as
minimizing the execution time of the computer simulation (the main focus of the high performance
computing community), minimizing the time required to write the computer program (the main focus
of the computer science and software engineering community), and obtaining the best agreement of
the model with the effects seen in nature (the main focus of the scientific community). We therefore
get a class of optimization problems associated with the different complex systems and the mappings
between them. Parallel computing can therefore be looked at as “just” an optimization problem,
even if we can’t agree on exactly what to optimize — there are obvious tradeoffs between fidelity of
the model and the amount of computation required to solve it, the speed of the program and the
ease of implementation (for example using assembler versus a high level language), and so on.
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Figure 4: Computation and simulation as a series of maps

One approach to solving these optimization problems is the use of methods developed from
the study of complex physical systems, such as simulated annealing, genetic algorithms, or neural
networks. These are used to minimize a cost function that expresses the goals described above.
Typically, in studying performance, the cost function would be the execution time of the problem on
a computer. For software engineering, the cost function would also reflect user productivity. These
physical optimization methods were originally developed as ways of minimizing the energy of a
physical system. In the rest of this section, and in sections 4 and 5, we will show that computational
problems can be looked at using a space-time analogy to a physical system, so that the cost function
for optimizing the map from complex problem to complex computer does in fact resemble the energy
function of a physical system. This motivates the use of these physical optimization techniques for
solving these problems, an approach we refer to as physical computation, which is discussed in
Section 7.

In this chapter we will concentrate on the mappings in Figure 4 that take us from the model
of the world (the complex problem) to the simulation of that model on a parallel computer (the
complex computer). Mapping a complex problem onto a complex computer involves decomposition.
We can consider the simulation of the complex problem as an algorithm applied to a data domain.
We divide the data domain into pieces that we call grains and place one grain in each node of the
concurrent computer.

If we consider a typical matrix algorithm such as multiplication

aij =
∑
k

bik ckj (2)

we have a data domain formed by the matrix elements, which we generally call members. The algo-
rithm (2) defines a graph connecting these members and these connected members form a complex
system. The standard decomposition involves submatrices stored in each node. Edges of the graph
connect members in different submatrices (i.e., members of the complex system stored in separate
nodes of the complex computer). To be precise, in the map
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Complex Problem −→ Complex Computer
Members map into memory locations

Internal connections map into arithmetic operations
Internode or “cut” connections map into communication followed by

arithmetic operations

In Section 4, we will be considering topological properties of complex systems which correspond
to the map

Complex Problem −→ Topological Structure
Members map into points in a space geometric

Connections map into (nearest neighbor) structure

In the optimal decomposition studies in Section 4 and Section 5, we will be considering dynamic
properties of complex systems for which it will be useful to consider the map

Complex Problem −→ Discrete Physical System
Members map into particles or strings

Connections map into force between particles or strings

We see that different classes of complex systems realize their members and interconnections
in different ways. We find it very useful to map general systems into classes having a particular
choice for members and interconnects. To be precise, complex systems have interconnects that can
be geometrical, generated by forces, electrical connection (e.g., wire), structural connection (e.g.,
road), biological channels or symbolic relationships defined by the laws of arithmetic. We map all
these interconnects into electrical communication in the multicomputer implementation. On the
other hand, in the simulated annealing approach to load balancing, we map all these interconnects
to forces.

3.2 The Space-Time Picture of Computation

The above discussion was essentially static and although this is an important case, the full picture
requires consideration of dynamics. We now “define” space and time for a general complex system.

We associate with any complex system a data domain or “space”. If the system corresponds to
a real or simulated physical system, then this data domain is a typically three-dimensional space.
In such a simulation, the system consists of a set of discrete objects labelled by an index i and is
described as a function of the positions xi(t) of the objects at each time t.

For example, seismic exploration for oil fields involves measuring echoes of sound waves that
are reflected off various underground strata. Using these measurements to reconstruct the strata
formation involves solving the wave equation, a standard second order differential equation that de-
scribes the propagation of the sound waves. The equation is discretized in space (a three-dimensional
grid representing some part of the earth’s crust) and time (the time-step) to give a finite difference
equation that can be solved on a computer. Only local data (nearest-neighbor points in the grid) is
required to solve the difference equations at each time-step.

Other complex systems have more abstract data domains:

1. In a computer chess program, the data domain or “space” is the pruned tree-like structure of
possible moves.

2. In matrix problems, the data domain is either a regular two-dimensional grid for full matrices
or an irregular subset of this for sparse matrices.
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3. In a complex computer (defined in Section 3.1), “space” is the set of nodes of the parallel
computer, or at a finer resolution, the set of memory locations.

The data domain will have certain dependencies contingent on the model, for example a de-
pendence on nearest-neighbor grid points for problems with local interactions, or a dependence on
all other data points for N-body simulations where forces are long-ranged. The data domain can
thus be viewed as a set of interconnected nodes (the data elements) connected by edges (the data
dependencies), which form what we call the computational graph. This is defined by a time slice of
the full complex system.

Note that we can examine the data domain of the complex computer hardware in terms of a
computational graph, just as we can for the computer software or algorithms. The computational
graph of a multicomputer is formed by the individual computer nodes with the edges of the graph
determined by the interconnection topology (or architecture) of the multicomputer.

In a physical simulation, the complex system evolves with time and is specified by the nature
of the computational graph at each time-step. If we are considering a statistical physics or Monte
Carlo approach, then we no longer have a natural time associated with the simulation. Rather, the
complex system is evolved iteratively or by Monte Carlo sweeps. We will find it useful to view this
evolution or iteration label similarly to time in a simple time-stepped simulation. We thus consider
a general complex system defined by a data domain, which is a structure given by its computational
graph. This structure is extended in “time” to give the “space-time” cylinders. For our previous
examples:

1. Chess: time labels depth in tree

2. Matrix Algebra: time labels iteration count in iterative algorithms or “eliminated row” in a
traditional full matrix algorithm such as Gaussian elimination.

3. Complex computer: the time dependence is just the evolution given by either the cycle time
of the nodes or the executed instructions. SIMD machines give an essentially static or syn-
chronous time dependence, whereas MIMD machines can be very dynamic.

We expand the discussion of temporal properties in Section 5. We will also discuss in Section 6
an interesting class of problems and a corresponding way of using MIMD machines, called loosely
synchronous. These are microscopically dynamic or temporally irregular but become synchronous
when averaged over macroscopic time intervals.

Domain decomposition for data parallel computing is just the mapping of the spatial domain
(data) of the complex problem onto the spatial domain (nodes) of the complex computer. This
differs from the computational model for a sequential computer, where all aspects of the problem
are mapped to the time domain of the computer. In contrast, another type of data processor, a
seismograph, maps the time dependence of an earthquake onto the spatial extent of a recording
chart. The general problem of computation is to map the space-time domain of the problem onto
the space-time domain of the computer in an effective way.

4 Spatial Properties of Complex Problems and Complex Com-
puters

4.1 System Size and Geometry

The size N of the complex system is an obviously important property. Note that we think of a
complex system as a set of members with their spatial structure evolving with time. Sometimes the
time domain has a definite “size”, but often one can evolve the system indefinitely in time. However,
most complex systems have a natural spatial size with the spatial domain consisting of N members.
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In the matrix example, Gaussian elimination has n2 spatial members (matrix elements) evolving
for a fixed number n of “time” steps. As usual, the value of the spatial size N will depend on the
granularity or detail with which one looks at the complex system. One could consider a parallel
computer at the level of transistors with very large value of N , but usually we look at the processor
node as the fundamental entity and define the spatial size of a parallel computer viewed as a complex
system, by the number Nproc of processing nodes.

Consider mapping a finite difference simulation with Nnum grid points, such as solving the wave
equation for a seismic exploration simulation as described in Section 3.2, onto a parallel machine
with Nproc processors. An important parameter is the grain size n of the resultant decomposition.
We can introduce the problem grain size nnum = Nnum/Nproc, and the computer grain size nmem as
the memory contained in each node of the parallel computer. Clearly we must have nnum < nmem

if we measure memory size in units of seismic grid points. More interestingly, we will later relate
the performance of the parallel implementation of the seismic simulation to nnum and other problem
and computer characteristics. We find that in many cases, the parallel performance only depends
on Nnum and Nproc in the combination Nnum/Nproc and so grain size is a critical parameter in
determining the effectiveness of parallel computers for a particular application.

Another set of parameters describe the topology or structure of the spatial domain associated
with the complex system. The simplest parameter of this type is the geometric dimension dgeom

of the space. Our early parallel computing used the binary hypercube of dimension d, which has
dcomp = d as its geometric dimension. This was an effective architecture because it was richer
than the topologies of most problems. For many physical grid-based simulations such as seismic
exploration, the geometric dimension of the problem dnum is just the dimension of the physical space
being simulated (3 for this example). The performance of the simulation also depends on whether
the software system preserves the spatial structure of the problem, in which case dHLSoft = dnum.

4.2 Performance Model for a Multicomputer

The performance of a multicomputer is usually defined in terms of parallel speedup S and efficiency
ε. Speedup is just how much faster a multicomputer executes the parallel program on N nodes
compared to the sequential program on one node. Efficiency measures what fraction of the maximum
speedup N is actually achieved, so that

S = εN (3)

Efficiency will usually be less than 1 since there are overheads involved in parallel computing, such
as the cost of communicating data between processors. Let us try to quantify these costs by defining
the following parameters for a multicomputer:

• tcalc — the typical time required to perform a generic calculation. For scientific problems, this
can be taken as a floating point operation.

• tcomm — the typical time taken to communicate a single word between two nodes connected
in the hardware topology.

The definitions of tcomm and tcalc are imprecise above. In particular, tcalc depends on the nature
of node and can take on very different values depending on the details of the implementation;
floating point operations are much faster from registers than from slower parts of the memory
hierarchy. On systems built from processors like the Intel i860 chip, these effects can be large —
tcalc could be .0125µ sec from registers (80 Megaflops) and a factor of ten larger when the variables
a, b are fetched from dynamic RAM. Communication speed tcomm depends on internode message
size (a software characteristic) and the latency (startup time) and bandwidth of the computer
communication subsystem. It will also generally be slower for communications between nodes that
are not directly connected in the multicomputer topology, so that messages have to be routed between
intermediary nodes. This effect will depend on the problem being solved — it can be negligible for
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grid-based problems with only local data dependencies (such as the seismic simulation), or a factor
of 2 or more for problems with a lot of non-local communication (such as a parallel Fast Fourier
Transform).

The overhead fC due to communication can be expressed as

fC =
total time for communication

total time for calculation
(4)

It is easy to see that if the parallel overhead is due solely to communication, then

S =
N

1 + fC
(5)

Let us examine the communication overhead for a simple grid-based problem, such as our seismic
simulation example. We use standard domain decomposition to map the problem domain (a dnum =3
grid of points) onto the computer (a hypercube, for example) so that every processor has a cubic
section of the grid. The grain size nnum will be Ldnum , where L is the length of a side of the grain
(the cube of grid points on each processor).

The total amount of computation on each node of the computer will be proportional to tcalc times
the grain size, which is the volume Ldnum of the grain. For this problem, the data dependencies are
all local (nearest-neighbor), so only data at the edge of the grain needs to be communicated. The
total amount of communication is thus proportional to tcomm times the surface area Ldnum−1 of the
grain. So from Equation 4 we have that

fC ∝
1

L

tcomm

tcalc

∝
1

n
1/dnum
num

tcomm

tcalc
(6)

It can be shown [24] that in general the overhead due to internode communication can be written
in the form

fC ∝
Nα

proc

nβnum

tcomm

tcalc
(7)

The term tcomm/tcalc indicates that communication overhead depends on the relative performance
of the internode communication system and node (floating point) processing unit. A real study of
parallel computer performance would require a deeper discussion of the exact values of tcomm and
tcalc. More interesting here is the dependence on the number of processors Nproc and the problem
grain size nnum. As described above, grain size nnum = Nnum/Nproc depends on both the problem
and the computer. The value of β is given by

β =
1

dinfo
(8)

where the information dimension dinfo is a generalization of the geometric dimension for problems
whose structure is not geometrically based. This will be described in the next subsection. It is
independent of the parameters of the computer. α is given by

if dnum < dcomp , α = 0

if dnum > dcomp , α =

(
1

dcomp
−

1

dnum

)
(9)

which quantifies the penalty, in terms of a value of fC that increases with Nproc, for a computer
architecture that is less rich than the problem architecture. An attractive feature of the hypercube
architecture is that dcomp is large and one is essentially always in the regime governed by α = 0 in
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Equation 9. Recently, there has been a trend away from rich topologies like the hypercube towards
the view that the node interconnect should be considered as a routing network or switch to be
implemented in the very best technology. The original MIMD machines from Intel, nCUBE and
Ametek all used hypercube topologies as did the SIMD Connection Machine CM-1 and CM-2. The
nCUBE-2 introduced in 1990 still uses a hypercube topology, but both it and the second generation
Intel iPSC/2 used more sophisticated routing. The latest Intel Touchstone Delta and Paragon use
a two-dimensional mesh with wormhole routing. It is not clear how to incorporate these new node
interconnects into the above picture, and further research is needed here. Presumably, we would
need to add new complex system properties and perhaps generalize the definition of dimension dcomp,
as we will now do for dnum in order for Equation 7 to be valid for problems whose structure is not
geometrically based.

4.3 Information Dimension

Returning to equations 5, 7, 8, and 9 we note that we have not properly defined the correct dimension
dnum or dcomp to use. We have implicitly equated this to the natural geometric dimension but this
is not always correct. This is illustrated by the complex system Snum consisting of a set of particles
in three dimensions interacting with a long-range force such as gravity or electrostatic charge. The
geometric structure is local with dgeom

num = 3 but the complex system structure is quite different; all
particles are connected to all others.

We define the information dimension dinfo for a general complex system to reflect the system
connectivity [30, 32]. This is analogous to the fractal dimension introduced in [44], in that it may not
be equal to the geometric dimension, and need not be an integer. Consider Figure 5 which shows a
general domain D in a complex system. We define the volume VD of this domain by the information
in it. Mathematically, VD is the computational complexity needed to simulate D in isolation. In a
geometric system

VD ∝ L
dgeom

(10)

where L is a geometric length scale. The domain D is not in general isolated and is connected to
the rest of the complex system. Information ID flows into D, and again in a geometric system ID is
a surface effect with

ID ∝ L
dgeom−1 (11)

If we view the complex system as a graph (i.e., the computational graph), VD is related to the
number of edges of the graph with at least one of the nodes in D, and ID is related to the number
of edges cut by the surface of D. Equation 10 and Equation 11 are altered in cases like the long-
range force problem where the complex system connectivity is no longer geometric. We define the
information dimension to preserve the surface versus volume interpretation of Equation 11 compared
to Equation 10. Thus, generally we define

ID ∝ V
1−1/dinfo

D (12)

With this definition of information dimension dinfo, we find that Equations 5, 7, 8, and 9 essen-
tially hold in general. For simple problems, the information dimension will be approximately equal
to the geometric dimension. However the information dimension will in general be larger for systems
with complex structure, which have non-geometric (or “hidden”) dimensions of complexity.

An interesting example of nontrivial information dimension comes from the simulation of elec-
tronic circuits. Rent’s Rule [43, 9] is a phenomenological rule that is used in the packaging of circuits.
It relates the number of output lines (pinouts) to a power (≈ 0.5 → 0.7) of the number of internal
components. This implies a non-integer information dimension dinfo ≈ 3, which is greater than the
geometric dimension dgeom = 2 for an electronic circuit. Rent’s Rule is approximately independent
of the size of the circuit, which is analogous to the self-similarity and scaling properties of systems
with non-trivial fractal dimension.
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Figure 5: The information density and flow in a general complex system of length L

For the long-range force problem, it can be shown that dinfo =1 independent of dgeom [24, 32]. One
might naively expect that the information dimension of such a problem would be infinite, rather than
1, since all objects interact with all other objects. However infinite information dimension applies
to systems such as the telephone network, for which everyone is connected to everyone else, but
different information is communicated to every different person. In contrast, the Voice of America
radio broadcast has an information dimension of 1, since the same information is communicated
to everyone. In the long-range force problem, the same information is broadcast by an object to
every other object (e.g., the mass and position of the object for an N-body gravitational interaction
problem), so the information dimension is 1.

4.4 A Physical Analogy for Domain Decomposition

In the previous three subsections, we described static spatial properties of complex systems that are
relevant for computation. These included size, topology (geometric dimension) and the information
dimension. We will find new ideas when we consider problems that are spatially irregular and
perhaps vary slowly with time. A simple example would be a large scale astrophysical simulation
where the use of a parallel computer requires that the universe be divided into domains that, due
to the gravitational interactions, will change as the simulation evolves.

The performance of a computation executing on a parallel machine is crucially dependent on
load balance. This refers to the amount of CPU idling occurring in the processors of the concurrent
computer: a computation for which all processors are continually busy (and doing useful, non-
overlapping work) is considered perfectly load balanced. This balance is often not easy to achieve,
however.

As described in the previous section, a key to parallel computing is to split the underlying
spatial domain into grains, each of which correspond to a process as far as the operating system is
concerned. We will take a naive software model where there is one process associated with each of
the fundamental members of the simulated system, i.e., with each “particle” in the astrophysical
simulation. This is not practical with current software systems as it gives high context switching
and other overheads. However, it captures the essential issues.

The processes will need to communicate with one another in order for the computation to pro-
ceed. Assume that the processes and their communication requirements are changing with time
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Figure 6: A mapping of an irregular data domain onto processors in a hypercube

— processes can be created or destroyed, communication patterns will move. This is the natural
choice when one is considering timesharing the parallel computer, but can also occur within a single
computation. It is the task of the operating system to manage this set of processes, moving them
around if necessary, so that the parallel computer is used in an efficient manner.

The operating system performs two primary tasks. First, it must monitor the ongoing com-
putation so as to detect bottlenecks, idling processors and so on. Secondly, it must modify the
distribution of processes and also the routing of their associated communication links so as to im-
prove the situation. In general, it is very difficult to find the optimum way of doing this — in fact,
this is an NP-complete problem. Approximate solutions, however, will serve just as well. We will be
happy if we can realize a reasonable fraction (say 80%) of the potential computing power of the par-
allel machine for a wide variety of computations. An example of a non-trivial domain decomposition
of an irregular data domain onto processors configured in a hypercube is given in Figure 6.

One can usefully think of a parallel computation in terms of a physical analogy. Treat the
processes (or the data elements) as “particles” free to move about in the “space” of the parallel
machine. Minimizing the total execution time of the parallel computation formally requires that one
minimize:

max
nodes i

Ci (13)

where Ci is the total computation time for calculation and communication. We choose to replace
this mini-max problem by a least squares minimization [13] of

E =
∑
i

C2
i (14)

Let m label the nodal points and (m,m′) the edges of the computational graph. Then

Ci =
∑
m∈ i

[ ∑
(m,m′)

Comm (m, m′) + Calc (m)

]
(15)

where it takes time Calc (m) to simulate m and time Comm (m′, m) to communicate necessary
information fromm′ to m. If we consider the case where we can neglect the quadratic communication
terms, then
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C2
i ∼

∑
(m,m′)
m∈ i

Comm (m, m′)

+
∑

m,m′∈ i

Calc (m) Calc (m′) (16)

In this physical analogy, the above equation describes a “Hamiltonian” (or “energy function”)
for parallel computation, that the operating system must try to minimize, and if possible find the
“ground state” (the lowest energy state), which corresponds to the most efficient decomposition of
data onto nodes of the parallel computer.

The last term in the Hamiltonian (Equation 16) is zero unless particles m and m′ are at the
same place, i.e., in the same node. In the physical analogy, this is like a short-range “potential”,
where range is measured by distance between nodes in the space of the complex computer. This
provides a short-range, repulsive “force”, causing the particles, and thereby the computation, to
spread throughout the parallel computer in an evenhanded, balanced manner, corresponding to the
requirement of load balancing.

A conflicting requirement to that of load balancing is shown in the first term of the Hamiltonian
as interparticle communications — the various parts of the overall computation need to communi-
cate with one another at various times. If the particles are far apart (distance being defined as the
number of communication steps separating them) large delays will occur, slowing down the compu-
tation. This represents a long-range, attractive force between those pairs of particles which need to
communicate with one another. This force is proportional to the amount of communication traffic
between the particles, so that heavily communicating parts of the computation will coalesce and
tend to stay near one another in the computer.

Exact minimization of the function in Equation 16 is not necessary — we have already “wasted”
some computational power using convenient high level languages, and we can surely afford to lose
another 10% to load imbalance. The problem of distributing a computation onto a parallel machine
in an efficient manner can therefore be fruitfully attacked using simulated annealing [41] and other
“physical” optimization methods such as neural networks and genetic algorithms [11, 25, 27, 13,
55, 22, 45]. The physical analogy described above makes this plausible, since these methods are
highly appropriate minimization techniques for Equation 14. For example, simulated annealing is a
standard Monte Carlo technique that was originally devised to find the ground states of spin models
of magnetism that have competing interactions, such as spin glasses. In this case, the competing
interactions are the attractive “communication” force and the repulsive “load balance” force. We
have used these methods routinely for load balancing a variety of simulations including finite element
and particle dynamics simulations. Physical optimization methods are described in more detail in
Section 7.

4.5 System Temperature and Dynamic Load Balancing

Equation 16 holds for the case of static load balancing, that is, where the data structures are static,
so that the domain decomposition is done only once, at the beginning of the computation. However
in general, problems and the data structures and computational graphs that describe them will be
changing. In this case the data will have to be redistributed throughout the computation in order
to keep the load balanced. For dynamic load balancing there will be an extra attractive “force” in
Equation 16, corresponding to the penalty for moving data or processes to different nodes.

High Performance Fortran provides a mechanism for the redistribution of data at runtime, which
is particularly important for dynamic and irregular problems. The user can either specify the distri-
bution, or specify the computational graph, in which case the compiler will find a good distribution
using various optimization techniques such as those described above [5, 51].
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Using the physical analogy we introduced in Section 4.4, we can think of the operating system
as a “heat bath” that keeps the computation “cool” and therefore near its “ground state” (optimal
solution). Most scientific simulations change slowly with time and redistribution of processes by
the operating system can be gradual. Thus, we can think of the computation as being in adiabatic
equilibrium at a complex system temperature Tproblem which reflects the ease of finding a reasonable
minimum. Tproblem will be larger for problems that change more rapidly and where the operating
system does not have “time” to find as good an equilibrium [34, 33, 24]. Redistribution of the
data takes time, and for some problems this time may be significant, perhaps even longer than
the simulation time between data redistribution. However there is a simple static data distribution
called scattered decomposition that can work quite well for very irregular and dynamic problems.

Standard static domain decomposition works by splitting the data space into large connected
partitions and mapping the partitions onto nodes in the computer space in a way that preserves
data locality and balances the computational load. However this static decomposition will produce
substantial load imbalance for problems with dynamic data structures that produce “hot spots”, or
data intensive regions, that change position during the simulation, for example in N-body simulations
of galactic collisions, where particles clump together due to gravitational attraction.

Scattered decomposition works by going to the opposite extreme, that is, breaking up the data
into very small partitions and then “scattering” the partitions among the nodes of the computer, so
that each node receives some data from all regions of the problem space [49, 30, 24]. In this case
any data hot spots will also get distributed fairly evenly among the processors. As the partitions are
made smaller, the load balancing will improve. The price paid, of course, is increased communication
overhead. The scattered decomposition will require much more communication traffic than the
standard domain decomposition. Often, however, communication between nodes is relatively cheap
compared to the computation required, and so the scattered decomposition becomes an attractive
possibility. This corresponds to ignoring the first term in Equation 16 (the communications cost) and
trying to minimize only the second term, which we have seen requires spreading data connected in
the computational graph to different nodes, which is exactly what scattered decomposition attempts
to achieve.

One of the outstanding features of the scattered decomposition is its stability, meaning that
as the computation changes with time (e.g., particles move, clumping occurs, etc.), the scattered
decomposition is quite insensitive to these changes and will continue to load balance rather well. So
it is possible to get good load balance without having to use time-consuming optimization techniques
such as simulated annealing to obtain good data distribution. Scattered decomposition has proven
to be very effective for problems such as adaptive mesh finite element simulations, where the grid
is much finer in regions that are changing more rapidly [49, 11]; growing a cluster in spin models of
magnetism [2]; and certain matrix problems [30].

For a dynamic problem, the Hamiltonian of Equation 16 will vary with (computer) time, and
so will its minimum value (the optimal domain decomposition). The operating system will need to
redistribute the data periodically to try to keep the system close to the global minimum value. In
contrast, the static scattered decomposition presumably corresponds to a stable local minimum of
the Hamiltonian that does not change much with time. For highly dynamic problems, the operating
system may not be able to “keep up” perfectly with the computation. In this case the Hamilto-
nian that actually matters is not the instantaneous version in Equation 16, but a time-averaged
Hamiltonian, H:

H (t, tav) =

∫ t+tav

t

H(u) du (17)

where the averaging time, tav is the time scale for the operating system to find a good domain
decomposition. In the earlier terminology, tav is related to the “temperature” Tproblem of the complex
system. Note that tav and the temperature are in fact characteristics of the problem, not the
computer. tav will be smaller for a faster computer, however what is important here is the relative
time scale of the operating system — the time taken to compute a new domain decomposition
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relative to the time to do the computations between redistributing the data. Increasing the speed of
the computer will decrease the time for both these tasks in roughly equal proportion, so the relative
time scale will remain about the same.

An interesting point is that, in terms of H, the better decomposition may actually be the scat-
tered one. Because of the rapid shifting of the optimal decomposition as a function of time, the
minimum of H corresponding to this will be raised upwards, while the scattered minimum will re-
main approximately the same. Two possible scenarios develop — the minima may or may not cross.
Depending upon the parameters of the problem and upon the hardware characteristics of the parallel
machine, a “phase transition” may occur whereby the scattered decomposition actually becomes the
better decomposition for H.

The relative importance of the two terms in Equation 16 is governed by the ratio tcomm/tcalc

introduced in Section 4.2. This plays the role of a “coupling constant” or “interaction strength” J ,
such as occurs in Hamiltonians for spin glasses and other spin models of magnetism. J increases
in size as the communication performance of the hardware decreases. The scattered decomposition
is favored as either the coupling J decreases, which means communications are relatively fast so
the non-locality of the data is not a problem, or as the averaging time tav increases. Large tav

corresponds to rapidly varying problems which the operating system finds hard to equilibrate. In
the earlier terminology, large tav means high “temperature” complex systems.

Thus, as we increase J or decrease problem temperature, we transition from a high temperature
phase, where scattered decomposition is optimal, to a low temperature phase where standard domain
decomposition is optimal. This is of course analogous to a statistical mechanics system having a
phase transition separating a high temperature disordered state and a low temperature ordered state.
Which phase or data decomposition is relevant depends on the properties of both the computer
architecture (J ∼ tcomm/tcalc) and the problem architecture (tav ∼ Tproblem).

5 Temporal Properties of Complex Problems and Complex
Computers

5.1 The String Formalism for Dynamic Problems

In the previous section, we thought of a problem (the complex system Snum or SHLSoft) as a graph
(the computational graph) with vertices labelled by the system member m and edges corresponding
to the linkage between members established by the algorithm. This is a good picture for what we
called “adiabatic” problems that change slowly with time. In this case, it makes sense to think of
slicing the “space-time” cylinder formed by the complex system and just consider the computational
graph — the spatial structure at fixed time. However, this is not appropriate for asynchronous
problems or for loosely synchronous problems that are rapidly varying or dynamic — those with
high temperature Tproblem in the language of Section 4.4. For such problems, the operating system
cannot “keep up” with the variation of the computational graph — the graph changes significantly
over the time period that the operating system takes to partition the computational graph.

In adiabatic problems, our physical analogy was that of members mapped to particles interacting
by forces given by the member interconnect. One might imagine that a reasonable analogy for
dynamic problems would be to add a “kinetic energy” term to give time dependence to the member
positions, however it is not clear how to do this. Rather, we change the analogy so that members
are mapped to “strings” representing their world lines, that is, their path through the space-time of
the complex computer. At computer time t, the complex system member m is located at position
xm(t). x is a position in the complex computer space. At its simplest x is just a node number, but
we can look at a finer resolution and consider x as a position in the global computer memory. This
allows one, in principle at least, to set up a formalism to study the full memory hierarchy of the
system including caches and register use. Each member now corresponds not just to a position xm
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but to a world line {xm(t)}. The execution time Tpar on a parallel machine is a functional of the
world lines

Tpar ≡ Tpar ({x0(t)} . . . . . . {xm(t)} . . .) (18)

The structure of the original dynamic complex system leads to an expression for Equation 18 that
is similar to the simpler Equation 16. There is a repulsive force between world lines corresponding to
load balancing. There is an attractive force corresponding to the dynamic interconnection between
the members m. The details of this depend on the relation between clock time t and the simulation
time tm of each member m.

The most straightforward approach to minimize Tpar would be simulating annealing with the
basic “move” being a change {xm(t)} → {xm(t)}′ which is typically local in both x and t. This gives
a formalism similar to quantum chemistry or lattice gauge theories. One can also use an optimization
method based on neural networks. These points are described in greater detail in Section 7.

We have applied these ideas to message routing in a network [26], and more generally to combining
networks which implement global reduction formulae such as forming a set of sums

yj =
∑
i

Mji xi (19)

where yj , Mji, and xi are all distributed over the nodes of a parallel computer.
A very preliminary examination was given in [31] of the application of these ideas to register

allocation for compilers. We have explored more deeply the application of these methods to multi-
vehicle navigation [27, 16]. In that case {xm(t)} is the path of vehicle m in a two or three dimensional
space with m at position xm at time t.

5.2 Memory Hierarchy

Modern workstations have heirarchical memory, formed by the cache and main memory. Obtaining
good performance from these computers requires minimizing cache misses, so that data is referenced
from cache and not main memory, which can be an order of magnitude slower. This is often referred
to as the need for “data locality”. This makes clear the analogy with distributed memory parallel
computers, where data locality is needed to minimize communication between processors.

There is one essential difference between cache and distributed memory. Both need data locality,
but in the parallel case the basic data is static and fetches additional information as necessary. This
gives the familiar surface-over-volume communications overheads of Equation 7. However, in the
case of a cache, all data must stream through it, not just the data needed to provide additional
information. We can use our space-time picture of computation to view the data streaming through
heirarchical memory as a distribution of data in the temporal direction.

Let us introduce a new time constant, tmem, which is the time it takes to load a word into cache.
This is illustrated in Figure 7. The cache overhead has exactly the same form as the communication
overhead in Equation 7, if we simply replace tcomm by tmem and nnum for ntime, where ntime is the
temporal blocking factor, or the number of iterations in the problem between cache flushes. The
overhead is a surface-over-volume effect just as for a distributed memory machine, but now the
surface is in the temporal direction, and the volume is that of a domain in both space and time.

It is remarkable that tmem, time, and memory hierarchy are completely analogous to tcomm, space,
and distributed memory. In particular, the well-known methods for improving the performance of
caches and registers correspond to blocking (clumping) the problem in its time direction. This is
analogous to blocking the problem in space to improve performance on a distributed memory parallel
machine.

High performance computer architectures exploit data locality with a memory hierarchy imple-
mented either as a multilevel cache and/or with distributed memory on a parallel machine. Good
use of cache requires blocking in time; good use of distributed memory requires blocking in space.
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Figure 7: The fundamental time constants of a heirarchical memory parallel computer

In general, full space-time blocking is required to give a universal implementation of data locality
that will lead to good performance on both distributed and heirarchical memory machines. This
strategy is used in the implementation of the BLAS-3 primitives in LAPACK [7].

The directives in High Performance Fortran essentially specify data locality, so we believe that
an HPF compiler can use the concepts of this section to optimize cache use on heirachical memory
machines. Thus, HPF should provide good performance on all high-performance computers, not
just parallel machines.

6 Problem Architectures and Parallel Software

In a series of papers [1, 19, 21], we have developed a qualitative theory of the architectures of
problems, analogous to the well-known classification of parallel computer architectures into SIMD
and MIMD. This is summarized in Table 1, which introduces five general problem classes. Let us
return to the concept of Figure 4 — namely, computation is map between problem and computer,
and software is an expression of this map. We have explored in depth this concept of problem
architecture and its use for clarifying which problems run well on SIMD machines and which on
MIMD. One can also understand which problem classes parallelize naturally on massively parallel
machines. Here, we just describe the consequences for software, which are summarized in Table 1.

We believe that successful software models will be built around problem and not machine ar-
chitecture. We see that some of the current languages — both old and new — are flawed because
they do not use this principle in their design. The language often reflects artifacts of a particular
machine architecture and this naturally leads to nonportable codes that can only be run on the
machine whose architecture is expressed by the language. On the other hand, if the language ex-
presses properly the problem structure, then a good compiler should be able to map it into a range
of computer architectures.

We can illustrate this with Fortran 77, which we can view as embodying the architecture of
a sequential machine. Thus, software written in Fortran 77 maps the space-time structure of the
original complex system into a purely temporal or control structure. The spatial (data) parallelism
of the problem becomes purely temporal in the software, which implements this as a sequential
loop over the data (a DO loop in Fortran 77). Somewhat perversely, a parallelizing compiler tries to
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Synchronous: Data Parallel
Tightly coupled. Software needs to exploit features of problem structure to get good perfor-
mance. Comparatively easy, as different data elements are essentially identical.
Candidate software paradigms: High Performance Fortran, Parallel Fortran 77D, Fortran 90D,
CMFortran, Crystal, APL, C++.

Loosely Synchronous: Data Parallel
As above but data elements are not identical. Still parallelizes due to macroscopic time syn-
chronization.
Candidate software paradigms: may be extensions of the above, however C or Fortran with
message passing is currently the only guaranteed method.

Asynchronous
Functional (or data) parallelism that is irregular in space and time. Often loosely coupled
and so need not worry about optimal decompositions to minimize communication. Hard to
parallelize, not usually scalable to large numbers of processors.
Candidate software paradigms: PCN, Linda, object-oriented approaches.

Embarrassingly Parallel
Independent execution of disconnected components.
Candidate software paradigms: Many approaches work – PVM, PCN, Linda, Network Express,
ISIS, etc.

Metaproblems
Asynchronous collection of loosely synchronous components where the component program
modules can be parallelized.
Candidate software paradigms: PCN, Linda, ADA, controlling modules written in synchronous
or loosely synchronous fashion.

Table 1: Architectures for Five Problem Classifications
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convert the temporal structure of a DO loop back into spatial structure to allow concurrent execution
on a spatial array of processors. Often parallelizing compilers produce poor results as the original
map of the problem into sequential Fortran 77 has “thrown away” information necessary to reverse
this map and recover unambiguously the spatial structure. The first (and some ongoing) efforts in
parallelizing compilers tried to directly “parallelize the DO loops”. This seems doomed to failure in
general as it does not recognize that in nearly all cases the parallelism comes from spatial and not
control (time) structure. Thus, as described in Section 2.2.4, we are working on the development of
a parallelizing compiler for Fortran D and High Performance Fortran, where the user adds additional
information to tell the compiler about the spatial structure [17, 19, 21, 29, 57, 4]. We are optimistic
that this project will be successful for the synchronous and loosely synchronous problem classes
defined in Table 1.

Most languages do not express and preserve space time structure. Array languages such as APL

and Fortran 90 are examples of data parallel languages that at least partially preserve the space
time structure of the problem in the language. Appropriate class libraries can also be used in
C++ to achieve this goal. We expect that development of languages which better express problem
structure will be essential to get good performance with an attractive user environment on large
scale parallel computers. The results in Section 5.2 show that data locality is critical in sequential
high performance (hierarchical memory) machines as well. Thus, we would expect that the use of
languages that properly preserve problem structure will lead to better performance on all computers.

7 Physical Computation and Optimization

Physical computation can be loosely classified as the use of physical analogies or methods from the
physical sciences in computational studies of general complex systems [22]. One example is the use
of simulated annealing (an idea from physics) for optimization problems such as chip routing and
placement [41]. Another is the use of neural networks (an idea from biology) in learning and pattern
recognition for problems in computer vision and robotics.

Optimization is a particularly important application of physical computation. Simic has intro-
duced the term physical optimization to describe the many different optimization methods of this
kind [53, 18]. It is not surprising that techniques based in the physical sciences are useful for solving
optimization problems, since most laws of physics can be formulated variationally as optimization
problems, many physical systems act so as to minimize energy or free energy, and evolution in nature
is also involved in optimization.

As mentioned in Section 4.4, physical optimization techniques such as simulated annealing, neu-
ral networks and genetic algorithms can be usefully applied to domain decomposition and load
balancing, an important optimization problem in parallel computation. However these methods can
be used to tackle general optimization problems, and indeed have successfully been applied to a
wide variety of problems. Physical optimization methods can be contrasted with other methods
for optimization: heuristics can be considered as an approach motivated by the problem; maximum
entropy or information theory as approaches from electrical engineering; combinatorial optimization
methods from mathematics; and linear programming and rule-based expert systems from computer
science.

There is no universally good approach to optimization. Each method has different tradeoffs
in robustness, accuracy, speed, suitability for parallelization, and problem size dependence. For
instance, neural networks do simple things on large data sets and parallelize easily, whereas expert
systems do complex things on smaller data sets and are difficult to parallelize. Parallel algorithms
for physical optimization methods are not usually trivial, and are not always similar to the sequential
algorithms.

The nature of the problem is very important in terms of which method is most suitable. For
instance, what is the shape of the cost function? Are the local minima deep or shallow, wide
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or narrow, relatively few or numerous? Are the minima correlated or uncorrelated? Does the
problem require the exact global minimum, or is a good approximate minimum sufficient? Physical
optimization methods try to find good approximate solutions, not necessarily the best solution.
They work well for many complex real-world problems, for which approximate solutions are all that
is required, and indeed all that is warranted by the usually imprecise data or models. Also, many
of these problems are NP-complete, so that only approximate solutions are feasible given a limited
computational resource.

Here we briefly describe some physical optimization methods. More detailed reviews can be
found in [18, 32].

7.1 Simulated Annealing

Simulated annealing is a very general optimization method that stochastically simulates the slow
cooling of a physical system to its ground state [41, 50, 54]. The cost function for the problem
is viewed as an energy function, and a parameter T analogous to temperature is introduced. The
algorithm works by using an iterative Monte Carlo technique, that is, by proposing changes to the
state of the system, and either accepting or rejecting a change using the Metropolis criterion — if
the cost (energy) is decreased, the change is accepted; if the energy is increased by δE, it is accepted
with a probability exp(−δE/T ). The process is started at a high temperature where almost all
proposed changes are accepted, and the temperature is gradually reduce to zero, where changes are
only accepted if they decrease the energy. The zero temperature algorithm is just the greedy or
hill-climbing algorithm, which works poorly in most cases since it can get trapped in local minima.
Simulated annealing at non-zero T allows the system to probabilistically increase the energy and
thus escape from local minima.

The rate of cooling is crucial to the performance of the algorithm. It can be shown that if
the temperature is decreased slowly enough (logarithmically), then the global optimum will be
found (with enough trials, since this is a probabilistic method). The basic idea is the same as real
annealing (for example, of steel) — if the temperature changes are small enough, the system can
maintain thermal equilibrium throughout the procedure, so it will finish up in the zero temperature
equilibrium state, i.e. the ground state or global optimum. However a logarithmic cooling schedule
is much too slow for most problems, so usually a faster (exponential) cooling schedule is used. For
many problems this will still keep the system close enough to equilibrium that it will be very near
the ground state energy at zero temperature, and thus find a near-optimal solution. One of the main
problems with simulated annealing is that finding a good cooling schedule is generally a trial-and-
error procedure. Some advances have been made in finding adaptive annealing schedules, where the
temperature is reduced depending on the measured values of the energy for the particular problem.
Theoretically this promises a great improvement in performance, however in practice it is often
difficult to find the optimal cooling schedule given the limited number of measurements available.

Another critical part of the algorithm is the choice of the method for updating the system state.
If large changes are made to the system variables, then the energy change δE will generally be large,
which will result in most of the proposed changes being rejected. If the changes at each iteration are
chosen to be small, so that most of them are accepted, it will take many iterations to reach a very
different, uncorrelated state of the system. A tradeoff is required, since in both these cases, moving
through the search space will be very slow. The method can be greatly improved if a way can be
found to make substantial changes to the system without changing the energy too much.

Simulated annealing is popular because it is simple and it can be easily applied to any optimiza-
tion problem. However it may not be effective unless a good update method and cooling schedule
are used.
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7.2 Deterministic Annealing

This approach is similar to simulated annealing, however instead of using a stochastic (Monte Carlo)
approach, a simple heuristic is used to minimize the free energy F =E−TS at each temperature T ,
where E is the cost function (or energy) and S is analogous to the entropy of a physical system.
Notice that at zero temperature the energy and free energy are equivalent. The free energy is
formally defined as F =−T logZ, where

Z =
∑

statesC

exp [−E(C)/T ] (20)

is known as the partition function in statistical mechanics. This approach is similar to methods used
in quantum chemistry to find the ground state of a complex molecule.

Deterministic annealing has been used very effectively in data clustering problems [52]. For the
simple case of grouping points in space into clusters based on distance, it is possible to construct
an energy function for which the minimum of the free energy can be computed deterministically
by iteratively solving an implicit equation. This particular example has an interesting temperature
dependence. At high temperature the points will all be in a single cluster. As the temperature is
decreased, the points will split into 2 clusters, then 3, and so on, at various critical temperatures.
The temperature is related to the size of the clusters, or the distance scale at which the system
is observed. For a given problem we will need to specify a particular minimum distance scale or
temperature.

7.3 Neural Networks

The use of neural networks for optimization was introduced for the traveling salesman problem in
[40], and although the method is not very effective for this application, the method and basic ideas
are important for a range of problems. The traveling salesman problem (TSP) is the classic NP-
complete discrete optimization problem, for which the salesman has to find a tour that minimizes
the distance traveled in visiting a given set of cities. We introduce neural variables ηip that are

1 if the ith step of the tour passes through city p, and zero otherwise. The cost function can be
written very simply in terms of these neural variables, however an extra penalty term needs to be
added to implement the constraint that only one of the ηip can be non-zero for a given i or p. The

cost function then looks like a statistical physics problem, with “spins” ηip governed by an “energy
function”. This formulation of the TSP can in fact be solved using simulated annealing, however the
neural network approach uses a faster approximate method, similar to a mean-field approximation
in statistical physics. Unfortunately this approximate method does not work well for even a modest
number of cities [56].

This general approach has however been very effective for a number of other problems, including
load balancing a parallel computer [25]. In this case, we can introduce neural variables just as for
the TSP, except that ηip is now 1 if data element i is assigned to processor p. However this will
give the same problems as found for the TSP. Instead, we define the neural variables by the binary
decomposition of the processor number

p =
d−1∑
k=0

2kηik (21)

where there are M data elements and N = 2d processors. The Md = M log2N neural variables
provide a non-redundant specification of the data decomposition, compared to the MN redundant
variables in the TSP-like formulation. This approach was obviously motivated by parallel computers
with a hypercube topology, however it can be used for an arbitrary topology.
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Using non-redundant variables allows us to construct an energy (cost) function for data decom-
position along the lines of Equation 16

E = Ecalc +Ecomm where

Ecalc =
1

N

∑
m,m′

Calc (m) Calc (m′)
d−1∏
k=0

[1 + sk(m) sk(m′)]

Ecomm =
1

4

∑
m,m′

Comm (m, m′)
d−1∑
k=0

[1− sk(m) sk(m′)] (22)

with “spins” sk(m) = 2ηmk −1 taking the values ±1. In this case, the energy function has no constraint
(penalty) terms, and the Hopfield-Tank method works extremely well, being comparable in quality
to simulated annealing results but much faster, since a deterministic mean-field approximation is
used [55]. This indicates that the problems found in using neural networks for optimization lie not
with the method, but with the choice of variables and the necessity of introducing penalty terms.

We have also used neural network optimization successfully for optimizing compilers [31, 28],
and robotic vehicle navigation [27, 16].

7.4 Elastic Net

The elastic net was introduced as a physically based approach that outperformed the neural network
method for TSP [10]. The basic idea behind the elastic net is to “invent” a physical system whose
equilibrium state is the desired optimum. In the case of the TSP, we consider an elastic string with
beads for each city. The beads are attracted to each other with a simple elastic force that will try to
shrink the length of the path to zero, and thus drive the system towards the minimum path. There
is also an attractive force between the beads and the cities that drives the system towards enforcing
the constraint that the tour must pass through each city. The comparative strength of these two
competing forces is a parameter similar to temperature in annealing. We start with the elastic force
being dominant, and then slowly change the forces until finally the bead-city force is dominant so
that we end up with a valid (hopefully near-optimal) tour.

Simic has shown an interesting relation between neural networks and elastic nets for the TSP
[53]. Both correspond to deterministic annealing using similar mean field approximations, but with
different choices of degrees of freedom and thus different constraints.

7.5 Genetic Algorithms

Genetic algorithms are based on evolutionary processes in biology. The basic idea is to encode the
system parameters as “genes” which make up a set of “chromosomes”, each describing a different
state of the system. For example, in load balancing a multicomputer, each gene would specify the
processor number for a specific node in the computational graph. We start with a base population of
chromosomes that undergo changes due to the application of genetic operators such as crossover and
mutation. Crossover is like mating, in that the genes of two individual chromosomes are randomly
combined to form a new individual. Mutation occurs by randomly changing a gene in the chromo-
some. Once a new population is formed by these operations, it is compared with the old population,
with each chromosome being assigned a “fitness” (the cost for the optimization problem). Only the
fittest individuals are retained for the next generation (“survival of the fittest”).

Although genetic algorithms provide an interesting and often very effective optimization method,
obtaining good performance usually requires very careful mapping of the problem variables onto the
genes, a good choice of genetic operators, and a lot of tuning of parameters in the algorithm. This
is analogous to the necessity for choosing good problem-specific update moves and cooling schedules
for simulated annealing. Another problem with genetic algorithms is that there is no natural way
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to decide when a good solution has been reached and the process should be stopped, so it is usually
followed by some postprocessing using a hill-climbing technique or other fast heuristic.

7.6 Simulated Tempering

A variation of simulated annealing, known as simulated tempering, has recently been introduced and
used to study certain types of lattice spin models [46]. Tempering differs from annealing in two ways:
it allows both heating and cooling of the system; and it keeps the system in equilibrium when the
temperature is changed. Both of these changes are beneficial for optimization. The first allows for
“reheating” when the annealing gets stuck in local minima at low temperatures. This is currently
often used as an ad-hoc addition to standard simulated annealing. The second takes care of one of
the main difficulties in using simulated annealing, which is coming up with a cooling schedule that
is not too slow but keeps the system close to equilibrium as the temperature goes to zero. We are
currently working on applying this new method to general optimization problems.

8 Conclusion

We have found that using ideas and techniques from the realms of complex systems and the physical
sciences can provide useful and powerful insights into parallel computing and computer science, and
in particular the efficient use of parallel computers for problems in computational science. However
many of the ideas presented here are well out of the mainstream of research in computer science,
and have attracted little attention. This is perhaps due to the general unfamiliarity of the computer
science community with many of these methods and concepts from the physical sciences.

There are interesting synergies between computer science, computational science, the physical
sciences, and the theory of complex systems. The development of models of computation and general
optimization techniques seem particularly suited to an interdisciplinary approach drawing from all
these areas.
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