49 research outputs found

    A review on automatic mammographic density and parenchymal segmentation

    Get PDF
    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models

    A novel and fully automated mammographic texture analysis for risk prediction : results from two case-control studies

    Get PDF
    BACKGROUND: The percentage of mammographic dense tissue (PD) is an important risk factor for breast cancer, and there is some evidence that texture features may further improve predictive ability. However, relatively little work has assessed or validated textural feature algorithms using raw full field digital mammograms (FFDM). METHOD: A case-control study nested within a screening cohort (age 46-73 years) from Manchester UK was used to develop a texture feature risk score (264 cases diagnosed at the same time as mammogram of the contralateral breast, 787 controls) using the least absolute shrinkage and selection operator (LASSO) method for 112 features, and validated in a second case-control study from the same cohort but with cases diagnosed after the index mammogram (317 cases, 931 controls). Predictive ability was assessed using deviance and matched concordance index (mC). The ability to improve risk estimation beyond percent volumetric density (Volpara) was evaluated using conditional logistic regression. RESULTS: The strongest features identified in the training set were "sum average" based on the grey-level co-occurrence matrix at low image resolutions (original resolution 10.628 pixels per mm; downsized by factors of 16, 32 and 64), which had a better deviance and mC than volumetric PD. In the validation study, the risk score combining the three sum average features achieved a better deviance than volumetric PD (Deltachi2 = 10.55 or 6.95 if logarithm PD) and a similar mC to volumetric PD (0.58 and 0.57, respectively). The risk score added independent information to volumetric PD (Deltachi2 = 14.38, p = 0.0008). CONCLUSION: Textural features based on digital mammograms improve risk assessment beyond volumetric percentage density. The features and risk score developed need further investigation in other settings

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    Comparison between two packages for pectoral muscle removal on mammographic images

    Get PDF
    Background: Pectoral muscle removal is a fundamental preliminary step in computer-aided diagnosis systems for full-field digital mammography (FFDM). Currently, two open-source publicly available packages (LIBRA and OpenBreast) provide algorithms for pectoral muscle removal within Matlab environment. Purpose: To compare performance of the two packages on a single database of FFDM images. Methods: Only mediolateral oblique (MLO) FFDM was considered because of large presence of pectoral muscle on this type of projection. For obtaining ground truth, pectoral muscle has been manually segmented by two radiologists in consensus. Both LIBRA’s and OpenBreast’s removal performance with respect to ground truth were compared using Dice similarity coefficient and Cohen-kappa reliability coefficient; Wilcoxon signed-rank test has been used for assessing differences in performances; Kruskal–Wallis test has been used to verify possible dependence of the performance from the breast density or image laterality. Results: FFDMs from 168 consecutive women at our institution have been included in the study. Both LIBRA’s Dice-index and Cohen-kappa were significantly higher than OpenBreast (Wilcoxon signed-rank test P < 0.05). No dependence on breast density or laterality has been found (Kruskal–Wallis test P > 0.05). Conclusion: Libra has a better performance than OpenBreast in pectoral muscle delineation so that, although our study has not a direct clinical application, these results are useful in the choice of packages for the development of complex systems for computer-aided breast evaluation

    RADON‐WAVELET BASED NOVEL IMAGE DESCRIPTOR FOR MAMMOGRAM MASS CLASSIFICATION

    Get PDF
    Mammography based breast cancer screening is very popular because of its lower costing and readily availability. For automated classification of mammogram images as benign or malignant machine learning techniques are involved. In this paper, a novel image descriptor which is based on the idea of Radon and Wavelet transform is proposed. This method is quite efficient as it performs well without any clinical information. Performance of the method is evaluated using six different classifiers namely: Bayesian network (BN), Linear discriminant analysis (LDA), Logistic, Support vector machine (SVM), Multilayer perceptron (MLP) and Random Forest (RF) to choose the best performer. Considering the present experimental framework, we found, in terms of area under the ROC curve (AUC), the proposed image descriptor outperforms, upto some extent, previous reported experiments using histogram based hand‐crafted methods, namely Histogram of Oriented Gradient (HOG) and Histogram of Gradient Divergence (HGD) and also Convolution Neural Network (CNN). Our experimental results show the highest AUC value of 0.986, when using only the carniocaudal (CC) view compared to when using only the mediolateral oblique (MLO) (0.738) or combining both views (0.838). These results thus proves the effectiveness of CC view over MLO for better mammogram mass classification
    corecore