2,553 research outputs found

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    A survey of parallel algorithms for fractal image compression

    Get PDF
    This paper presents a short survey of the key research work that has been undertaken in the application of parallel algorithms for Fractal image compression. The interest in fractal image compression techniques stems from their ability to achieve high compression ratios whilst maintaining a very high quality in the reconstructed image. The main drawback of this compression method is the very high computational cost that is associated with the encoding phase. Consequently, there has been significant interest in exploiting parallel computing architectures in order to speed up this phase, whilst still maintaining the advantageous features of the approach. This paper presents a brief introduction to fractal image compression, including the iterated function system theory upon which it is based, and then reviews the different techniques that have been, and can be, applied in order to parallelize the compression algorithm

    A study of the communication cost of the FFT on torus multicomputers

    Get PDF
    The computation of a one-dimensional FFT on a c-dimensional torus multicomputer is analyzed. Different approaches are proposed which differ in the way they use the interconnection network. The first approach is based on the multidimensional index mapping technique for the FFT computation. The second approach starts from a hypercube algorithm and then embeds the hypercube onto the torus. The third approach reduces the communication cost of the hypercube algorithm by pipelining the communication operations. A novel methodology to pipeline the communication operations on a torus is proposed. Analytical models are presented to compare the different approaches. This comparison study shows that the best approach depends on the number of dimensions of the torus and the communication start-up and transfer times. The analytical models allow us to select the most efficient approach for the available machine.Peer ReviewedPostprint (published version

    CASCH: a tool for computer-aided scheduling

    Get PDF
    A software tool called Computer-Aided Scheduling (CASCH) for parallel processing on distributed-memory multiprocessors in a complete parallel programming environment is presented. A compiler automatically converts sequential applications into parallel codes to perform program parallelization. The parallel code that executes on a target machine is optimized by CASCH through proper scheduling and mapping.published_or_final_versio

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers

    Cluster Computing in the Classroom: Topics, Guidelines, and Experiences

    Get PDF
    With the progress of research on cluster computing, more and more universities have begun to offer various courses covering cluster computing. A wide variety of content can be taught in these courses. Because of this, a difficulty that arises is the selection of appropriate course material. The selection is complicated by the fact that some content in cluster computing is also covered by other courses such as operating systems, networking, or computer architecture. In addition, the background of students enrolled in cluster computing courses varies. These aspects of cluster computing make the development of good course material difficult. Combining our experiences in teaching cluster computing in several universities in the USA and Australia and conducting tutorials at many international conferences all over the world, we present prospective topics in cluster computing along with a wide variety of information sources (books, software, and materials on the web) from which instructors can choose. The course material described includes system architecture, parallel programming, algorithms, and applications. Instructors are advised to choose selected units in each of the topical areas and develop their own syllabus to meet course objectives. For example, a full course can be taught on system architecture for core computer science students. Or, a course on parallel programming could contain a brief coverage of system architecture and then devote the majority of time to programming methods. Other combinations are also possible. We share our experiences in teaching cluster computing and the topics we have chosen depending on course objectives
    • …
    corecore