8 research outputs found

    Energy Efficient Design for Deep Sub-micron CMOS VLSIs

    Get PDF
    Over the past decade, low power, energy efficient VLSI design has been the focal point of active research and development. The rapid technology scaling, the growing integration capacity, and the mounting active and leakage power dissipation are contributing to the growing complexity of modern VLSI design. Careful power planning on all design levels is required. This dissertation tackles the low-power, low-energy challenges in deep sub-micron technologies on the architecture and circuit levels. Voltage scaling is one of the most efficient ways for reducing power and energy. For ultra-low voltage operation, a new circuit technique which allows bulk CMOS circuits to work in the sub-0. 5V supply territory is presented. The threshold voltage of the slow PMOS transistor is controlled dynamically to get a lower threshold voltage during the active mode. Due to the reduced threshold voltage, switching speed becomes faster while active leakage current is increased. A technique to dynamically manage active leakage current is presented. Energy reduction resulting from using the proposed structure is demonstrated through simulations of different circuits with different levels of complexity. As technology scales, the mounting leakage current and degraded noise immunity impact performance especially that of high performance dynamic circuits. Dual threshold technology shows a good potential for leakage reduction while meeting performance goals. A model for optimally selecting threshold voltages and transistor sizes in wide fan-in dynamic circuits is presented. On the circuit level, a novel circuit level technique which handles the trade-off between noise immunity and energy dissipation for wide fan-in dynamic circuits is presented. Energy efficiency of the proposed wide fan-in dynamic circuit is further enhanced through efficient low voltage operation. Another direct consequence of technology scaling is the growing impact of interconnect parasitics and process variations on performance. Traditionally, worst case process, parasitics, and environmental conditions are considered. Designing for worst case guarantees a fail-safe operation but requires a large delay and voltage margins. This large margin can be recovered if the design can adapt to the actual silicon conditions. Dynamic voltage scaling is considered a key enabler in reducing such margin. An on-chip process identifier to recover the margin required due to process variations is described. The proposed architecture adjusts supply voltage using a hybrid between the one-time voltage setting and the continuous monitoring modes of operation. The interconnect impact on delay is minimized through a novel adaptive voltage scaling architecture. The proposed system recovers the large delay and voltage margins required by conventional systems by closely tracking the actual critical path at anytime. By tracking the actual critical path, the proposed system is robust and more energy efficient compared to both the conventional open-loop and closed-loop systems

    Nano-Watt Modular Integrated Circuits for Wireless Neural Interface.

    Full text link
    In this work, a nano-watt modular neural interface circuit is proposed for ECoG neuroprosthetics. The main purposes of this work are threefold: (1) optimizing the power-performance of the neural interface circuits based on ECoG signal characteristics, (2) equipping a stimulation capability, and (3) providing a modular system solution to expand functionality. To achieve these aims, the proposed system introduces the following contributions/innovations: (1) power-noise optimization based on the ECoG signal driven analysis, (2) extreme low-power analog front-ends, (3) Manchester clock-edge modulation clock data recovery, (4) power-efficient data compression, (5) integrated stimulator with fully programmable waveform, (6) wireless signal transmission through skin, and (7) modular expandable design. Towards these challenges and contributions, three different ECoG neural interface systems, ENI-1, ENI-16, and ENI-32, have been designed, fabricated, and tested. The first ENI system(ENI-1) is a one-channel analog front-end and fabricated in a 0.25”m CMOS process with chopper stabilized pseudo open-loop preamplifier and area-efficient SAR ADC. The measured channel power, noise and area are 1.68”W at 2.5V power-supply, 1.69”Vrms (NEF=2.43), and 0.0694mm^2, respectively. The fabricated IC is packaged with customized miniaturized package. In-vivo human EEG is successfully measured with the fabricated ENI-1-IC. To demonstrate a system expandability and wireless link, ENI-16 IC is fabricated in 0.25”m CMOS process and has sixteen channels with a push-pull preamplifier, asynchronous SAR ADC, and intra-skin communication(ISCOM) which is a new way of transmitting the signal through skin. The measured channel power, noise and area are 780nW, 4.26”Vrms (NEF=5.2), and 2.88mm^2, respectively. With the fabricated ENI-16-IC, in-vivo epidural ECoG from monkey is successfully measured. As a closed-loop system, ENI-32 focuses on optimizing the power performance based on a bio-signal property and integrating stimulator. ENI-32 is fabricated in 0.18”m CMOS process and has thirty-two recording channels and four stimulation channels with a cyclic preamplifier, data compression, asymmetric wireless transceiver (Tx/Rx). The measured channel power, noise and area are 140nW (680nW including ISCOM), 3.26”Vrms (NEF=1.6), and 5.76mm^2, respectively. The ENI-32 achieves an order of magnitude power reduction while maintaining the system performance. The proposed nano-watt ENI-32 can be the first practical wireless closed-loop solution with a practically miniaturized implantable device.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/98064/1/schang_1.pd

    Reconfigurable Gate Driver Toward High-Power Efficiency and High-Power Density Converters

    Get PDF
    Les systĂšmes de gestion de l'Ă©nergie exigent des convertisseurs de puissance pour fournir une conversion de puissance adaptĂ©e Ă  diverses utilisations. Il existe diffĂ©rents types de convertisseurs de puissance, tel que les amplificateurs de puissance de classe D, les demi-ponts, les ponts complets, les amplificateurs de puissance de classe E, les convertisseurs buck et derniĂšrement les convertisseurs boost. Prenons par exemple les dispositifs implantables, lorsque l'Ă©nergie est prĂ©levĂ©e de la source principale, des convertisseurs de puissance buck ou boost sont nĂ©cessaires pour traiter l'Ă©nergie de l'entrĂ©e et fournir une Ă©nergie propre et adaptĂ©e aux diffĂ©rentes parties du systĂšme. D'autre part, dans les stations de charge des voitures Ă©lectriques, les nouveaux tĂ©lĂ©phones portables, les stimulateurs neuronaux, etc., l'Ă©nergie sans fil a Ă©tĂ© utilisĂ©e pour assurer une alimentation Ă  distance, et des amplificateurs de puissance de classe E sont dĂ©veloppĂ©s pour accomplir cette tĂąche. Les amplificateurs de puissance de classe D sont un excellent choix pour les casques d'Ă©coute ou les haut-parleurs en raison de leur grande efficacitĂ©. Dans le cas des interfaces de capteurs, les demi-ponts et les ponts complets sont les interfaces appropriĂ©es entre les systĂšmes Ă  faible et Ă  forte puissance. Dans les applications automobiles, l'interface du capteur reçoit le signal du cĂŽtĂ© puissance rĂ©duite et le transmet Ă  un rĂ©seau du cĂŽtĂ© puissance Ă©levĂ©e. En outre, l'interface du capteur doit recevoir un signal du cĂŽtĂ© haute puissance et le convertir vers la cĂŽtĂ© basse puissance. Tous les systĂšmes mentionnĂ©s ci-dessus nĂ©cessitent l'inclusion d'un pilote de porte spĂ©cifique dans les circuits, selon les applications. Les commandes de porte comprennent gĂ©nĂ©ralement un dĂ©calage du niveau de commande niveau supĂ©rieur, le levier de changement de niveau infĂ©rieur, une chaĂźne de tampon, un circuit de verrouillage sous tension, un circuit de temps mort, des portes logiques, un inverseur de Schmitt et un mĂ©canisme de dĂ©marrage. Ces circuits sont nĂ©cessaires pour assurer le bon fonctionnement des systĂšmes de conversion de puissance. Un circuit d'attaque de porte reconfigurable prendrait en charge une vaste gamme de convertisseurs de puissance ayant une tension d'entrĂ©e V[indice IN] et un courant de sortie I[indice Load] variables. L'objectif de ce projet est d'Ă©tudier intensivement les causes de diffĂ©rentes pertes dans les convertisseurs de puissance et de proposer ensuite de nouveaux circuits et mĂ©thodologies dans les diffĂ©rents circuits des conducteurs de porte pour atteindre une conversion de puissance avec une haute efficacitĂ© et densitĂ© de puissance. Nous proposons dans cette thĂšse de nouveaux circuits de gestion des temps mort, un Shapeshifter de niveau plus Ă©levĂ© et un Shapeshifter de niveau infĂ©rieur avec de nouvelles topologies qui ont Ă©tĂ© pleinement caractĂ©risĂ©es expĂ©rimentalement. De plus, l'Ă©quation mathĂ©matique du temps mort optimal pour les faces haute et basse d'un convertisseur buck est dĂ©rivĂ©e et expĂ©rimentalement prouvĂ©e. Les circuits intĂ©grĂ©s personnalisĂ©s et les mĂ©thodologies proposĂ©es sont validĂ©s avec diffĂ©rents convertisseurs de puissance, tels que les convertisseurs semi-pont et en boucle ouverte, en utilisant des composants standard pour dĂ©montrer leur supĂ©rioritĂ© sur les solutions traditionnelles. Les principales contributions de cette recherche ont Ă©tĂ© prĂ©sentĂ©es Ă  sept confĂ©rences prestigieuses, trois articles Ă©valuĂ©s par des pairs, qui ont Ă©tĂ© publiĂ©s ou prĂ©sentĂ©s, et une divulgation d'invention. Une contribution importante de ce travail recherche est la proposition d'un nouveau gĂ©nĂ©rateur actif CMOS intĂ©grĂ© dĂ©diĂ© de signaux sans chevauchement. Ce gĂ©nĂ©rateur a Ă©tĂ© fabriquĂ© Ă  l'aide de la technologie AMS de 0.35”m et consomme 16.8mW Ă  partir d'une tension d'alimentation de 3.3V pour commander de maniĂšre appropriĂ©e les cĂŽtĂ©s bas et haut d'un demi-pont afin d'Ă©liminer la propagation. La puce fabriquĂ©e est validĂ©e de façon expĂ©rimentale avec un demi-pont, qui a Ă©tĂ© mis en Ɠuvre avec des composants disponibles sur le marchĂ© et qui contrĂŽle une charge R-L. Les rĂ©sultats des mesures montrent une rĂ©duction de 40% de la perte totale d'un demi-pont de 45V d'entrĂ©e Ă  1MHz par rapport au fonctionnement du demi-pont sans notre circuit intĂ©grĂ© dĂ©diĂ©. Le circuit principal du circuit d'attaque de grille cĂŽtĂ© haut est le dĂ©caleur de niveau, qui fournit un signal de grande amplitude pour le commutateur de puissance cĂŽtĂ© haut. Une nouvelle structure de dĂ©calage de niveau avec un dĂ©lai de propagation minimal doit ĂȘtre prĂ©sentĂ©e. Nous proposons une nouvelle topologie de dĂ©calage de niveau pour le cĂŽtĂ© haut des drivers de porte afin de produire des convertisseurs de puissance efficaces. Le SL prĂ©sente des dĂ©lais de propagation mesurĂ©s de 7.6ns. Les rĂ©sultats mesurĂ©s montrent le fonctionnement du circuit prĂ©sentĂ© sur la plage de frĂ©quence de 1MHz Ă  130MHz. Le circuit fabriquĂ© consomme 31.5pW de puissance statique et 3.4pJ d'Ă©nergie par transition Ă  1kHz, V[indice DDL] = 0.8V , V[indice DDH] = 3.0V, et une charge capacitive C[indice L] = 0.1pF. La consommation Ă©nergĂ©tique totale mesurĂ©e par rapport Ă  la charge capacitive de 0.1 Ă  100nF est indiquĂ©e. Un autre nouveau dĂ©calage vers le bas est proposĂ© pour ĂȘtre utilisĂ© sur le cĂŽtĂ© bas des pilotes de portes. Ce circuit est Ă©galement nĂ©cessaire dans la partie Rₓ du rĂ©seau de bus de donnĂ©es pour recevoir le signal haute tension du rĂ©seau et dĂ©livrer un signal de faible amplitude Ă  la partie basse tension. L'une des principales contributions de ces travaux est la proposition d'un modĂšle de rĂ©fĂ©rence pour l'abaissement de niveau Ă  puissance unique reconfigurable. Le circuit proposĂ© pilote avec succĂšs une gamme de charges capacitives allant de 10fF Ă  350pF. Le circuit prĂ©sentĂ© consomme des puissances statiques et dynamiques de 62.37pW et 108.9”W, respectivement, Ă  partir d'une alimentation de 3.3V lorsqu'il fonctionne Ă  1MHz et pilote une charge capacitive de 10pF. Les rĂ©sultats de la simulation post-layout montrent que les dĂ©lais de propagation de chute et de montĂ©e dans les trois configurations sont respectivement de l'ordre de 0.54 Ă  26.5ns et de 11.2 Ă  117.2ns. La puce occupe une surface de 80”m × 100”m. En effet, les temps morts des cĂŽtĂ©s hauts et bas varient en raison de la diffĂ©rence de fonctionnement des commutateurs de puissance cĂŽtĂ© haut et cĂŽtĂ© bas, qui sont respectivement en commutation dure et douce. Par consĂ©quent, un gĂ©nĂ©rateur de temps mort reconfigurable asymĂ©trique doit ĂȘtre ajoutĂ© aux pilotes de portes traditionnelles pour obtenir une conversion efficace. Notamment, le temps mort asymĂ©trique optimal pour les cĂŽtĂ©s hauts et bas des convertisseurs de puissance Ă  base de Gan doit ĂȘtre fourni par un circuit de commande de grille reconfigurable pour obtenir une conception efficace. Le temps mort optimal pour les convertisseurs de puissance dĂ©pend de la topologie. Une autre contribution importante de ce travail est la dĂ©rivation d'une Ă©quation prĂ©cise du temps mort optimal pour un convertisseur buck. Le gĂ©nĂ©rateur de temps mort asymĂ©trique reconfigurable fabriquĂ© sur mesure est connectĂ© Ă  un convertisseur buck pour valider le fonctionnement du circuit proposĂ© et l'Ă©quation dĂ©rivĂ©e. De plus le rendement d'un convertisseur buck typique avec T[indice DLH] minimum et T[indice DHL] optimal (basĂ© sur l'Ă©quation dĂ©rivĂ©e) Ă  I[indice Load] = 25mA est amĂ©liorĂ© de 12% par rapport Ă  un convertisseur avec un temps mort fixe de T[indice DLH] = T[indice DHL] = 12ns.Power management systems require power converters to provide appropriate power conversion for various purposes. Class D power amplifiers, half and full bridges, class E power amplifiers, buck converters, and boost converters are different types of power converters. Power efficiency and density are two prominent specifications for designing a power converter. For example, in implantable devices, when power is harvested from the main source, buck or boost power converters are required to receive the power from the input and deliver clean power to different parts of the system. In charge stations of electric cars, new cell phones, neural stimulators, and so on, power is transmitted wirelessly, and Class E power amplifiers are developed to accomplish this task. In headphone or speaker driver applications, Class D power amplifiers are an excellent choice due to their great efficiency. In sensor interfaces, half and full bridges are the appropriate interfaces between the low- and high-power sides of systems. In automotive applications, the sensor interface receives the signal from the low-power side and transmits it to a network on the high-power side. In addition, the sensor interface must receive a signal from the high-power side and convert it down to the low-power side. All the above-summarized systems require a particular gate driver to be included in the circuits depending on the applications. The gate drivers generally consist of the level-up shifter, the level-down shifter, a buffer chain, an under-voltage lock-out circuit, a deadtime circuit, logic gates, the Schmitt trigger, and a bootstrap mechanism. These circuits are necessary to achieve the proper functionality of the power converter systems. A reconfigurable gate driver would support a wide range of power converters with variable input voltage V[subscript IN] and output current I[subscript Load]. The goal of this project is to intensively investigate the causes of different losses in power converters and then propose novel circuits and methodologies in the different circuits of gate drivers to achieve power conversion with high-power efficiency and density. We propose novel deadtime circuits, level-up shifter, and level-down shifter with new topologies that were fully characterized experimentally. Furthermore, the mathematical equation for optimum deadtimes for the high and low sides of a buck converter is derived and proven experimentally. The proposed custom integrated circuits and methodologies are validated with different power converters, such as half bridge and open loop buck converters, using off-the-shelf components to demonstrate their superiority over traditional solutions. The main contributions of this research have been presented in seven high prestigious conferences, three peer-reviewed articles, which have been published or submitted, and one invention disclosure. An important contribution of this research work is the proposal of a novel custom integrated CMOS active non-overlapping signal generator, which was fabricated using the 0.35−”m AMS technology and consumes 16.8mW from a 3.3−V supply voltage to appropriately drive the low and high sides of the half bridge to remove the shoot-through. The fabricated chip is validated experimentally with a half bridge, which was implemented with off-the-shelf components and driving a R-L load. Measurement results show a 40% reduction in the total loss of a 45 − V input 1 − MHz half bridge compared with the half bridge operation without our custom integrated circuit. The main circuit of high-side gate driver is the level-up shifter, which provides a signal with a large amplitude for the high-side power switch. A new level shifter structure with minimal propagation delay must be presented. We propose a novel level shifter topology for the high side of gate drivers to produce efficient power converters. The LS shows measured propagation delays of 7.6ns. The measured results demonstrate the operation of the presented circuit over the frequency range of 1MHz to 130MHz. The fabricated circuit consumes 31.5pW of static power and 3.4pJ of energy per transition at 1kHz, V[subscript DDL] = 0.8V , V[subscript DDH] = 3.0V , and capacitive load C[subscript L] = 0.1pF. The measured total power consumption versus the capacitive load from 0.1pF to 100nF is reported. Another new level-down shifter is proposed to be used on the low side of gate drivers. Another new level-down shifter is proposed to be used on the low side of gate drivers. This circuit is also required in the Rₓ part of the data bus network to receive the high-voltage signal from the network and deliver a signal with a low amplitude to the low-voltage part. An essential contribution of this work is the proposal of a single supply reconfigurable level-down shifter. The proposed circuit successfully drives a range of capacitive load from 10fF to 350pF. The presented circuit consumes static and dynamic powers of 62.37pW and 108.9”W, respectively, from a 3.3 − V supply when working at 1MHz and drives a 10pF capacitive load. The post-layout simulation results show that the fall and rise propagation delays in the three configurations are in the range of 0.54 − 26.5ns and 11.2 − 117.2ns, respectively. Its core occupies an area of 80”m × 100”m. Indeed, the deadtimes for the high and low sides vary due to the difference in the operation of the high- and low-side power switches, which are under hard and soft switching, respectively. Therefore, an asymmetric reconfigurable deadtime generator must be added to the traditional gate drivers to achieve efficient conversion. Notably, the optimal asymmetric deadtime for the high and low sides of GaN-based power converters must be provided by a reconfigurable gate driver to achieve efficient design. The optimum deadtime for power converters depends on the topology. Another important contribution of this work is the derivation of an accurate equation of optimum deadtime for a buck converter. The custom fabricated reconfigurable asymmetric deadtime generator is connected to a buck converter to validate the operation of the proposed circuit and the derived equation. The efficiency of a typical buck converter with minimum T[subscript DLH] and optimal T[subscript DHL] (based on the derived equation) at I[subscript Load] = 25mA is improved by 12% compared to a converter with a fixed deadtime of T[subscript DLH] = T[subscript DHL] = 12ns

    Collective analog bioelectronic computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 677-710).In this thesis, I present two examples of fast-and-highly-parallel analog computation inspired by architectures in biology. The first example, an RF cochlea, maps the partial differential equations that describe fluid-membrane-hair-cell wave propagation in the biological cochlea to an equivalent inductor-capacitor-transistor integrated circuit. It allows ultra-broadband spectrum analysis of RF signals to be performed in a rapid low-power fashion, thus enabling applications for universal or software radio. The second example exploits detailed similarities between the equations that describe chemical-reaction dynamics and the equations that describe subthreshold current flow in transistors to create fast-and-highly-parallel integrated-circuit models of protein-protein and gene-protein networks inside a cell. Due to a natural mapping between the Poisson statistics of molecular flows in a chemical reaction and Poisson statistics of electronic current flow in a transistor, stochastic effects are automatically incorporated into the circuit architecture, allowing highly computationally intensive stochastic simulations of large-scale biochemical reaction networks to be performed rapidly. I show that the exponentially tapered transmission-line architecture of the mammalian cochlea performs constant-fractional-bandwidth spectrum analysis with O(N) expenditure of both analysis time and hardware, where N is the number of analyzed frequency bins. This is the best known performance of any spectrum-analysis architecture, including the constant-resolution Fast Fourier Transform (FFT), which scales as O(N logN), or a constant-fractional-bandwidth filterbank, which scales as O (N2).(cont.) The RF cochlea uses this bio-inspired architecture to perform real-time, on-chip spectrum analysis at radio frequencies. I demonstrate two cochlea chips, implemented in standard 0.13m CMOS technology, that decompose the RF spectrum from 600MHz to 8GHz into 50 log-spaced channels, consume < 300mW of power, and possess 70dB of dynamic range. The real-time spectrum analysis capabilities of my chips make them uniquely suitable for ultra-broadband universal or software radio receivers of the future. I show that the protein-protein and gene-protein chips that I have built are particularly suitable for simulation, parameter discovery and sensitivity analysis of interaction networks in cell biology, such as signaling, metabolic, and gene regulation pathways. Importantly, the chips carry out massively parallel computations, resulting in simulation times that are independent of model complexity, i.e., O(1). They also automatically model stochastic effects, which are of importance in many biological systems, but are numerically stiff and simulate slowly on digital computers. Currently, non-fundamental data-acquisition limitations show that my proof-of-concept chips simulate small-scale biochemical reaction networks at least 100 times faster than modern desktop machines. It should be possible to get 103 to 106 simulation speedups of genome-scale and organ-scale intracellular and extracellular biochemical reaction networks with improved versions of my chips. Such chips could be important both as analysis tools in systems biology and design tools in synthetic biology.by Soumyajit Mandal.Ph.D

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Topical Workshop on Electronics for Particle Physics

    Get PDF

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)
    corecore