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Abstract

In this thesis, I present two examples of fast-and-highly-parallel analog computation
inspired by architectures in biology. The first example, an RF cochlea, maps the par-
tial differential equations that describe fluid-membrane-hair-cell wave propagation in
the biological cochlea to an equivalent inductor-capacitor-transistor integrated cir-
cuit. It allows ultra-broadband spectrum analysis of RF signals to be performed in
a rapid low-power fashion, thus enabling applications for universal or software ra-
dio. The second example exploits detailed similarities between the equations that
describe chemical-reaction dynamics and the equations that describe subthreshold
current flow in transistors to create fast-and-highly-parallel integrated-circuit models
of protein-protein and gene-protein networks inside a cell. Due to a natural mapping
between the Poisson statistics of molecular flows in a chemical reaction and Poisson
statistics of electronic current flow in a transistor, stochastic effects are automatically
incorporated into the circuit architecture, allowing highly computationally intensive
stochastic simulations of large-scale biochemical reaction networks to be performed
rapidly.

I show that the exponentially tapered transmission-line architecture of the mam-
malian cochlea performs constant-fractional-bandwidth spectrum analysis with O(N)
expenditure of both analysis time and hardware, where N is the number of analyzed
frequency bins. This is the best known performance of any spectrum-analysis archi-
tecture, including the constant-resolution Fast Fourier Transform (FFT), which scales
as O(N logN), or a constant-fractional-bandwidth filterbank, which scales as O (N2).
The RF cochlea uses this bio-inspired architecture to perform real-time, on-chip spec-
trum analysis at radio frequencies. I demonstrate two cochlea chips, implemented in
standard 0.13µm CMOS technology, that decompose the RF spectrum from 600MHz
to 8GHz into 50 log-spaced channels, consume < 300mW of power, and possess 70dB
of dynamic range. The real-time spectrum analysis capabilities of my chips make
them uniquely suitable for ultra-broadband universal or software radio receivers of
the future.

I show that the protein-protein and gene-protein chips that I have built are par-
ticularly suitable for simulation, parameter discovery and sensitivity analysis of in-
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teraction networks in cell biology, such as signaling, metabolic, and gene regulation
pathways. Importantly, the chips carry out massively parallel computations, resulting
in simulation times that are independent of model complexity, i.e., O(1). They also
automatically model stochastic effects, which are of importance in many biological
systems, but are numerically stiff and simulate slowly on digital computers. Cur-
rently, non-fundamental data-acquisition limitations show that my proof-of-concept
chips simulate small-scale biochemical reaction networks at least 100 times faster
than modern desktop machines. It should be possible to get 103× to 106× simulation
speedups of genome-scale and organ-scale intracellular and extracellular biochemical
reaction networks with improved versions of my chips. Such chips could be important
both as analysis tools in systems biology and design tools in synthetic biology.

Thesis Supervisor: Rahul Sarpeshkar
Title: Associate Professor
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bnlta esn
jŇbnanÝ daS

Hajar bqr zer Aaim pQ HaĎiTetiq pŘiQbŇr peQ
isKHl smu— eQek inSŇeQr Ańzkaer maly sager
Aenk Gueriq Aaim; ibièsar AeSaekr zŐsr jget
esxaen iqlam Aaim; Aaera dŐr Ańzkaer ibdŕv nger;
Aaim źaÚ �aN Ek, cairidek jŇbenr smu— sefn,
Aamaer dudÎ SaiÚ ideyiql naeTaerr bnlta esn.

cul tar kebkar Ańzkar ibidSar inSa,
mux tar ‰abïŇr karukaŕJ; AitdŐr smue—r ’pr

Hal eveĆ eJ-naibk Haraeyeq idSa
sbuj Gaesr edS Jxn es ecaex edex daruicin-ØŇepr ivtr

etmin edexiq taer Ańzkaer; beleq es, ’Etidn ekaQay iqeln?’
paixr nŇeĹr meta ecax tuel naeTaerr bnlta esn.

smï idenr eSeP iSiSerr Seŋdr mtn
sńzYa Aaes; Danar ere—r gńz mueq efel icl;
pŘiQbŇr sb rĆ inev egel paÎuilip ker Aaeyajn
txn geřpr ter ejanaikr reĆ iCliml;

sb paix Ger Aaes - sb ndŇ; furay E-jŇbenr sb elnedn;
Qaek Suzu Ańzkar, muexamuix bisbar bnlta esn.
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Chapter 1

Introduction

The White Rabbit put on his spectacles. “Where shall I begin, please your

Majesty?” he asked.

“Begin at the beginning,” the King said gravely, “and go on till you come

to the end: then stop.”

– Lewis Carroll, Alice in Wonderland

1.1 A Very Brief Summary

This thesis shows that dynamical systems implemented as analog electronic circuits

can perform useful computational tasks at high speed and low power consumption.

Specifically, we discuss two examples. The first is the RF cochlea, which uses pass-

sive resistors, inductors and capacitors to implement a partial differential equation

describing wave propagation in the mammalian cochlea, or inner ear, but at RF in-

stead of audio frequencies. We show that the RF cochlea can perform fast, parallel,

low-power, broadband spectral analysis.

Our second example consists of integrated circuit models of cellular biochemical

networks. We show that the equations of chemical kinetics can be elegantly em-

ulated by translinear analog circuits. We also demonstrate a chip that uses such

circuits to simulate the stochastic dynamics of large chemical reaction networks, such

as metabolic networks, at high speed. In addition, we demonstrate a chip that uses
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analog circuits to model the processes of gene activation, transcription and transla-

tion.

Finally, we try to put our work in context by discussing the nature and meaning

of computation, paying particular attention to the pernicious and unavoidable effects

of noise. Throughout the text, clickable hyperlinks are shown in blue (for external

links) or red (for internal links).

1.2 “Circuits Model the World”

1.2.1 Models and Modeling

A model is a simplified and idealized representation of a physical system, or part of it.

Good models do not attempt to capture every feature of the system being modeled,

but are nonetheless complicated enough to capture most of the emphessential features.

It is up to the modeler to decude which system properties are essential and must be

included in the model. As such, effective modeling is somewhat of an art, and there

are no formalized procedures for determining, a priori, whether a certain model will

be useful and/or influential. However, usually one prefers models that fit available

experimental data and also make predictions that can be verified by performing more

experiments. An exception to this rule is provided by the “toy model” tradition

in physics. Toy models are extremely simplified, to the point where they are not

expected to match experimental results. They can nonetheless often provide valuable

insights into certain aspects of the physical system.

Dynamical systems can be modeled using many different formalisms, or types of

abstraction. The choice of formalism depends to a large extent on the background

and tastes of the modeler. However, some choices are obviously preferable to others

for a given system. Bond graphs, for example, model systems in terms of power

flow between components, and are commonly used for studying large heterogenous

systems extending across multiple physical domains (electrical, mechanical, fluid,

and so on). Electrical engineers usually prefer the language of electrical circuits,
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Figure 1-1: Gabriel Kron (1901-1968).

and tend to convert mechanical and acoustic systems into electrical form. Circuits

provide a convenient, high level language for describing and analyzing a wide range of

dynamical systems. The utility of such abstract representations, and of abstraction

in general, is not in doubt. However, the assumptions made while generating an

abstract representation of a physical system should always be clearly specified.

1.2.2 History

The idea of using analog circuits to model physical systems has a long and interesting

history. The field, which nowadays has sadly fallen out of fashion, was surely at its

peak in the years immediately following World War II. Gabriel Kron (see Figure 1-

1), for example, wrote a series of papers in the 1940’s discussing circuit models of

electromagnetism [146], Schrödinger’s equation [148], elastic structures [147], fluid

flow [149], vibration spectra of molecules [151], other ordinary and partial differential

equations [150] and even nuclear reactors1.

Figure 1-2 shows Kron’s circuit model of Maxwell’s equations in three dimensions.

The analogy results in the following identifications:

1Kron’s biography makes for interesting reading. Most of his career was spent as an engineer at
General Electric. His many books and papers were all written at night in his spare time.
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Figure 1-2: Gabriel Kron’s circuit model of Maxwell’s equations of electromagnetism.
Figure redrawn by this author on the basis of Figure 1 in [146].

1. Currents in the inductors represent the magnetic field H.

2. Currents in the capacitors represent displacement currents δD/δt.

3. Currents in the resistors represent conduction currents J.

4. Voltages across the inductors represent “magnetic displacement currents” δB/δt.

5. Voltages across the capacitors represent the electric field E.

6. If “magnetic conduction currents” Jm had existed, they would be represented

as resistances placed in series with the inductors.

7. Charges on capacitors represent the charge density ρ.

Note that circuit models of Maxwell’s equations that take the form of simple LC

(series L, shunt C) or CL (series C, shunt L) transmission lines cannot be correct.
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Figure 1-3: An analog electronic computer, the Heathkit H1 from 1956. Image source:
http://www.technikum29.de/.

In the first case, the vacuum would be a short at DC, and in the second, at very high

frequencies. Neither occurs, and hence a different circuit topology must be needed.

Finally, electrical analogs of acoustical and mechanical systems are still widely used in

academia and industry, especially when such systems have to interface with electronics

(sensors and actuators).

1.2.3 Simulation

Dynamical models, however formalized, must be simulated. Today almost all simu-

lation is performed using an electronic digital computer and various software tools.

Prior to the 1950’s, however, analog “AC network analyzers” were the dominant sim-

ulation technology. These machines were reconfigurable electronic analog computers

originally developed for modeling electrical power networks [293], and reached great

levels of sophistication. An example is shown in Figure 1-3. Even earlier analog

computers had been completely mechanical, for example Vannevar Bush’s famous

differential analyzer [28].

Analog computers differ from digital ones in two main ways: signal representation

and parallelization. Analog computers use physical variables that take on continuous
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values, such as voltages, currents or velocities, to store information. This represen-

tation is compact but susceptible to corruption by noise. On the other hand, digital

computers store information as two-valued, or binary numbers, This representation

is verbose, but extremely robust to noise. It has been argued that the most energy-

efficient computation is performed by hybrid systems, like the brain, that do not

represent information in either of these extreme forms, but in some intermediate

fashion [254].

Flynn’s taxonomy, proposed in 1966, classifies digital computer architectures into

four types. The scheme assumes that data and programs, i.e., instructions for manip-

ulating the data, are stored in “pools”, and groups computers into classes based on

whether their processors access these pools in a sequential (one memory location at

a time) or parallel way. Most desktop machines use the Von Neumann architecture,

where data and program memory are physically shared and memory transfers occur

on a single bus. Since there is no parallelization, this architecture falls into the SISD

(Single Instruction, Single Data) category. The Harvard architecture is similar to the

Von Neumann architecture. The only difference is that data and program memories

use separate buses to access the processor. Graphics Processing Units (GPUs) are

examples of Single Instruction, Multiple Data (SIMD) machines, while most modern

supercomputers are Multiple Instruction, Multiple Data (MIMD) machines.

Analog computers are complex dynamical systems that accept parallel inputs

and produce parallel outputs. In this sense they are multiple data machines. The

richness of their dynamics, obtained by coupling together many state variables, allows

them to perform massively parallel computations. As a result, they can also be

considered multiple instruction machines. They are particularly suitable for finding

approximate solutions to systems of differential equations. More accurate solutions

can be found iteratively by a digital computer that uses this approximate solution as

the starting point [43]. This hybrid strategy reduces overall solution time by utilizing

the respective strengths of analog and digital computers. Performance gains are often

significant, particularly for strongly nonlinear problems.

In practice, however, the performance of both analog and digital computers is
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often limited by input/output bandwidth, not processing speed. Analog computers

have traditionally had other problems. For instance, it is difficult to develop general-

purpose error detection and correction schemes for analog dynamical systems. Several

error-reduction schemes well-known to analog circuit designers, such as chopper stabi-

lization, were in fact first developed for the operational amplifiers used within analog

computers. This issue has limited the precision of analog computers.

In addition, analog computers are programmed by changing the parameters and/or

connectivity of the dynamical system, while digital computers are programmed by

changing the strings of bits that encode their programs. In general, the former process

is a much harder to implement. As a result, analog computers today are only used

for historical reasons, or in applications where digital alternatives are unavailable.

Examples include special-purpose, high-speed signal processors, such as the front-

ends of radio receivers.

Hybrid computers combine the characteristics of both analog and digital com-

putaters. The synthesis can be implemented in many ways. For instance, iterative

differential analyzers were popular in the 1960’s and 70’s [141,142]. These machines

consisted of a traditional analog computer whose inputs, parameters, and initial con-

ditions could be controlled at high speed by a digital computer, such as a micropro-

cessor. They were especially popular for Monte Carlo simulation, optimization and

parameter estimation of random processes. More sophisticated interactions between

the analog and digital parts of a hybrid computer can also be imagined. For example,

a digital subsystem can accurately simulate the slow dynamics of a complex system,

while an analog subsystem handles the fast dynamics. These system partitioning

issues are fundamental to high-performance hybrid computing, which is the focus of

this thesis.
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1.3 The Notion of Computation

1.3.1 The Physics of Computation

What is computation? The word comes from the Latin computare, meaning “to

count”, or “to cut”. A working definition of computation is the processing, i.e., trans-

formation of information. Similarly, communication may be defined as the transfer

of information from a source to a receiver. Information is a physical quantity, and

the thermodynamic and information-theoretic definitions of entropy are deeply con-

nected. In particular, all computations must obey the laws of thermodynamics [154].

The amount of information (in bits) stored by a physical system is closely related to

its entropy. A system with entropy S(E), where E is the mean energy of the system,

has an information content I given by

I =
S(E)

kB ln(2)
(1.1)

In the absence of noise, computation and communication can be performed at

finite speed and zero error with zero energy dissipation [75,153]. Errors will occur in

the presence of noise, but we can still compute at finite speed without dissipating en-

ergy. Only the erasure or removal of information via irreversible operations requires

energy (this is known as Landauer’s principle). Each lost bit results in kBT ln(2)

of dissipation, i.e., generation of heat, where T is the temperature of the system.

Landauer’s principle provides a simple explanation for the impossibility of creating

Maxwell’s demon. Such a demon could violate the second law of thermodynamics by

sorting gas molecules based, say, on their velocities. However, each measurement of

a molecule’s velocity adds information to the demon, who must retain it in memory.

Eventually the demon runs out of memory capacity and has to delete old measure-

ments. Each deletion increases the entropy of the whole system (gas and demon) by

an kB ln(2), exactly the amount by which the entropy of the gas decreased when each

molecule was sorted. Therefore the second law is not violated.

An important consequence of Landauer’s principle is that physically reversible,
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isentropic (dissipation-free) computation is possible by using only logically reversible

operations [15]. In general, reversible operations are those that do not contract phase

space, i.e., reduce the number of degrees of freedom of the system. Thus they must

have the same number of inputs and output bits. For example, the one-input one-

output Boolean NOT function is reversible, but two-input one-output functions like

NAND and NOR are not. Certain three-input three-output logic gates, such as the

Toffoli and Fredkin gates, have been shown to be both reversible and universal2.

The input phase space of a reversible computer, unlike an irreversible computer,

is not compressed into the single desired output as the computation proceeds. Thus,

unwanted information accumulates at every step of the computation. Such unwanted

information is usually known as garbage. It cannot simply be deleted at the end of the

computation, since deletion of information dissipates energy. As a result, handling

garbage is a major challenge in implementing any reversible computer. In 1973,

Bennett proposed an ingenious solution to the garbage problem [14]. In his model,

computation proceeds in two reversible steps. The forward step generates the desired

output, plus many unwanted outputs. The desired output is copied (in a lossless way)

for later use, and then the computer is run backwards. Since the system is logically

reversible, the reverse step “cleans up” all the unwanted outputs generated by the

forward step, finally recreating the input. In a seminal paper published in 1982 [75],

Fredkin and Toffoli described ways in which the scheme described by Bennett could

be implemented using reversible logic gates.

Any practical computer needs additional error correcting mechanisms in order to

correct errors and operate reliably in the presence of noise. The most fundamental

source of noise is random thermal motion, or heat. Correcting errors involves deleting

incorrect bits, and hence requires energy to be dissipated. As a result, the temperature

of any computer (reversible or not) must be kept as low as possible to minimize

dissipation. In other words, the computer must be weakly coupled to the surrounding

environment. However, it is difficult to provide inputs to, and read outputs from,

2A universal gate, such as the NAND, is functionally complete. In other words, circuits consisting
only of the gate in question can realize any Boolean function
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weakly-coupled systems. This contradiction places an important constraint on the

design of energy-efficient computers.

Several physical realizations of reversible computers have been proposed, and they

fall into three main classes: ballistic, Brownian or adiabatic [15], and quantum. Bal-

listic computers such as Fredkin and Toffoli’s billiard-ball models [75], use the tra-

jectories of an isolated, conservative dynamical system to compute. Unfortunately,

such systems are usually non-integrable and exhibit sensitive dependence on initial

conditions. As a result, the trajectories rapidly become chaotic. Therefore such com-

puters are difficult to implement without continuous error correction, which dissipates

energy. Brownian computers operate at the other extreme: they assume a computer

that is close to thermal equilibrium with its surroundings. Molecular machines in

biology, such as RNA polymerase, operate in this fashion. A Brownian computer es-

sentially executes a random walk in the computational space, i.e., each computational

step is equally likely to proceed forward or backward. In order to drive the overall

computation forward, a small constant force is superposed on top of the random

walk. This force produces a constant drift velocity, and therefore results in energy

dissipation. However, the dissipation can be made asymptotically zero (the so-called

adiabatic limit) by reducing the drift velocity and computing slowly.

Quantum computers exploit the physical phenomena of quantum superposition

(coherence) and entanglement for performing computation. The resultant computa-

tional paradigm exhibits several novel features that are qualitatively different from

the classical paradigms that we have described so far. In fact, quantum computers are

generalizations of classical computers. Several algorithms that run only on quantum

computers, and offer significant speedups over the best-known classical equivalents,

have been discovered recently. Shor’s integer factorization algorithm is a famous

example. All quantum operations are unitary matrices, i.e., they are equivalent to

rotations of the state space and preserve the Euclidean, or L2 norm. Thus, all quan-

tum computers are reversible and free of dissipation. However, in practice they are

very susceptible to loss of quantum coherence due to coupling with their surround-

ing environment. The resultant errors can be corrected, but require the deletion of
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incorrect quantum states. This process dissipates energy, just as in the classical case.

Available energy fundamentally limits computational speed, because the energy-

time inequality of quantum mechanics states that the time ∆t it takes for a system to

evolve from one state to another that is orthogonal (distinguishable) to it is inversely

proportional to the mean energy E of the system, i.e.

E ≥ π~
2∆t

(1.2)

Since evolution between distinguishable states is the basic definition of a compu-

tational operation, the rate at which such operations can be performed is inversely

proportional to E [167]. Note that ideally no energy is dissipated during the com-

putation and the average energy of the closed system remains fixed at E. Another

fundamental physical constraint on computation is provided by entropy, which limits

memory capacity, i.e. the amount of information that can be stored by a computer

and the rate at which it can be processed.

1.3.2 The Theory of Computation

The Church-Turing thesis states that any function that is effectively calculable is

computable. By “effectively calculable” we mean that it can be calculated using a

mechanical procedure, i.e. an algorithm, working on an input of finite length and

terminating in a finite number of steps. By “computable” we mean that it can be

calculated by any one of a number of computational processes that are known to

be equivalent to one another, such as Turing machines, λ-calculus, µ-recursive func-

tions, unrestricted grammars, recursively enumerated languages, common program-

ming languages, counter machines, register machines, cellular automata (CAs) and

so on. Intuitively, every function that we would normally regard as being computable

can be computed by some Turing machine with an infinitely long tape, i.e., memory.

Turing, in his original paper in 1936 [290], went on to show that it was possible to

create an universal Turing machine that could emulate any other Turing machine,

i.e., compute the same function as that machine. Such a machine is known as an
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universal computer.

Note that the Church-Turing thesis is not a theorem, since the notion of “effec-

tively calculable” is not formally defined. However, all attempts to find physically

realizable computational processes that compute a larger class of functions than that

computable by Turing machines have failed3. In fact, an ever-growing list of processes

have been shown to compute exactly the same class of functions as Turing machines,

and are therefore referred to as being Turing-equivalent. As a result, the thesis is now

usually considered to be an axiom, i.e., assumed to be true unless stated otherwise.

It is also interesting to note that when Turing uses the terms “computer”, “com-

putable” and “computation”, he is not referring to machines but human calculators.

According to Turing, an effective procedure can also be defined as one that can be car-

ried out by a unaided human following fixed rules. For example, he writes that [291]:

A man provided with paper, pencil, and rubber, and subject to strict

discipline, is in effect a universal machine.

We should clarify what we mean by a computational process. Such processes

manipulate information: they accept inputs and transform them into outputs by ap-

plying sets of rules that are called programs. The set of allowable programs defines

the process. Equivalently, the process computes a function of its input. Proving a

mathematical theorem is also equivalent to performing a computation. The input is

the initial statement, the output the final statement and the program is the set of

transformations that produces the output from the input. In order for the proof to

be valid, each program statement (transformation) must be allowable by the mathe-

matical axiom system.

It can be easily shown, via a version of Cantor’s famous diagonal argument, that

a necessary but not sufficient condition for any computational process to be universal

is that, for certain inputs, the computation does not terminate, i.e., halt. Universal

computation therefore requires a set of axioms, i.e., allowable rules, that is rich enough

3Such hypothetical processes are known as hypercomputers. For example, so called real computers
that operate on infinite-precision real numbers would be hypercomputers.

58



to allow programs to be written that never terminate. Equivalently, the function being

computed must be undefined for certain inputs.

The halting problem asks whether there exists any procedure that can predict

whether any arbitrary program-input pair, when run on an universal computer (as-

sumed to possess unlimited memory and time), results in a computation that halts.

No such procedure is known today. Unsolvability of the halting problem is equivalent

to a form of Gödel’s theorem [38], and is also known as irreducibility. The principle

of computational irreducibility [317] extends the notion of irreducibility to assert that

the best possible procedure to find out whether a program-input pair will halt is to

actually carry out the computation by running the program.

A given universal computer can emulate any other universal computer since they

both compute exactly the same class of functions. However, in general encoding and

decoding functions are required to encode a given problem as the input to an universal

computer, and to decode its outputs. Such functions must always halt (and hence

cannot be universal themselves), but are otherwise arbitrary. In fact, we say that a

function f emulates a function g if and only if computable encoding and decoding

functions d and e exist such that

d[f [e[x]]] = g[x] (1.3)

whenever g[x] halts, x being the input4. In practice certain types of universal com-

puter are preferable for solving a given problem because of their desirable encoding

and decoding properties for that problem. For example, many mathematical axiom

systems are computationally universal, just like common programming languages, but

in most cases it is difficult to find an encoding or translation function that allows the

former to act as the latter [317]. Similarly, certain problems, such as lattice gas sim-

ulations, are well suited for CAs because they can easily exploit the parallel nature

of CA computation. However, it would be interesting to investigate the intuitively

reasonable idea that, in general, encoding and decoding functions tend to become

4I am indebted to Matthew Szudzik for this definition.
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simpler as the internal complexity of the universal computer increases.

Explorations of the so-called computational universe reveal that universal compu-

tation is quite common. Universality has been found in many simple formal systems,

such as cellular automata, cyclic tag systems, multi-way systems [317] and systems

of ordinary differential equations [23]. Several theories and models of physics are

known to be computationally universal, such as conformal field theories and quan-

tum electrodynamics [167]. Many axiom systems of mathematics are universal, such

as the Robinson and Peano axioms of arithmetic and set theory. Wolfram’s principle

of computational equivalence [317] conjectures that most systems that are not be-

having in an “obviously simple” way are performing computations at an equivalent

level of sophistication, i.e. are universal in the Turing machine sense and can emulate

each other. On the other hand, it is also important to note that being universal is

neither necessary nor sufficient for performing useful computations. Many useful but

non-universal computational systems exist, such as finite state machines, and many

universal systems are not useful.

1.3.3 Analog and Unconventional Computation

We shall need the notion of Lipschitz continuity to discuss computation in continuous

and hybrid dynamical systems. Lipschitz continuity is a smoothness condition for

functions that is stronger than the regular definition of continuity. Intuitively, a

function that is Lipschitz continuous is limited in how fast it can change. Formally,

a function f(x) defined on a subset D of the real numbers is Lipschitz continuous if

there exists a constant K ≥ 0 such that ∀ (x1, x2) ∈ D, we have

|f (x1)− f (x2)| ≤ K |x1 − x2| (1.4)

It has been shown that smooth, continuous-time dynamical systems can be used

to implement logical operations and simulate arbitrary finite state machines [25]5.

Even more interestingly, systems of smooth ordinary differential equations (ODEs)

5Finite state machines (FSMs) are also known as finite automata. They accept languages gener-
ated by regular grammars and are not computationally universal.
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in 2N + 1 variables can simulate arbitrary Turing machines in N dimensions [23].

Therefore there are systems of ODE’s in three variables that are computationally

universal. It has also been shown that the equations that describe chemical kinetics

in a homogenous material are computationally universal [181].

The computational capabilities of several well-known types of hybrid system have

also been studied [23]. Such systems combine continuous-time dynamics (usually

ODE’s) with discrete-time dynamics (usually FSMs). All the systems studied can

simulate arbitrary Turing machines in N dimensions using smooth ODE’s in 2N

variables and a precise clock, generated by the discrete dynamics, as input. The

hybrid systems therefore require ODE’s in one less variable than purely continuous-

time systems in order to simulate the same Turing machines (2N versus 2N + 1).

Intuitively, this difference arises because one of the variables in the purely continuous-

time system plays the role of an imprecise clock, while in the hybrid systems the

discrete-time dynamics can generate precise clocks. One consequence of the imprecise

nature of the clocks generated by Lipschitz-continuous systems is that they cannot

solve certain problems that can be solved by hybrid systems, such as the famous

asynchronous arbiter problem.

Particle-like behavior has been found in many cellular automata (CA), partic-

ularly parity-rule filter automata (PRFA). Particle machines, or general models of

computation using collisions of particles, are generalizations of phenomena observed

in PRFAs, and have been shown to be universal. The collisions must transfer state

information between the colliding particles, i.e., they cannot be elastic (also known

as oblivious). Particle machines can also be realized using non-oblivious collisions

between soliton solutions generated by certain nonlinear partial differential equations

(PDEs). Such systems are known as soliton machines [130, 131]6. Soliton machines

with periodic backgrounds are known to be universal. Soliton machines with qui-

escent backgrounds have been shown to have at least the computational power of

Turing machines with finite tape lengths.

6The mathematics of CA-based and PDE-based solitons appears to be completely different, yet,
intriguingly, they share many properties.
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Some PDE’s and ODE’s, such as the wave equation in three dimensions (but not

the Laplace and heat equations), can transform computable initial conditions into

continuous but non-computable solutions [227]. However, certain derivatives must

be non-continuous in order for such transformations to occur, i.e., the solutions in

question are “weak” or “generalized” solutions that contain shocks, cusps or other

non-smooth behavior. Such solutions do not satisfy Lipschitz conditions. Intuitively,

this result does not appear too surprising. Partial differential equations perform oper-

ations on arbitrary real numbers and, in an ideal world with infinite precision, would

appear to be good candidates for implementing real computers, i.e., hypercomputers.

The computational performance of PDE’s in the presence of finite numerical precision

has, as far as I know, yet to be analyzed.

The field of “unconventional” computing appears to be undergoing somewhat

of a renaissance. The field even has its own journal, the International Journal of

Unconventional Computing. For example, it has been shown that a simple slime mold

can find the optimal (lowest cost) path through a maze [211]. Universal computation

has been demonstrated using both plasmodia and reaction-diffusion systems such as

the Belousov-Zhabotinsky (BZ) reaction [2]. In both cases the occurrence of localized

traveling structures is necessary for universal computation to occur in homogenous

media. Just like in particle computing models, such structures both communicate

information (by traveling) and process it (by colliding with each other). Such particle-

like structures only emerge on the so called “edge of chaos”, i.e. close to the point

where the system undergoes a phase transition between complete order and complete

randomness [129]7. Intuitively, particle-like excitations occur near phase transitions

because of the presence of long-range correlations (that decay as power laws) in the

medium. In this regime, the medium has long memory in both space and time, which

is desirable for universal computation to occur.

Another interesting approach to unconventional computation that has recently

been reported is known as evolution in materio [108]. In this method an evolutionary

7The phrase “edge of chaos” was originally coined by Christopher Langton, perhaps best known
for founding the field of Artificial Life, to describe the behavior observed in many CAs at a specific
value of his λ parameter.
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search algorithm is used to program a bulk material, such as a liquid crystal, array of

quantum dots or crystal lattice to perform a specified computation. Eventually the

material programs itself by learning how to modify its own local (nearest-neighbor)

interactions. The technique is conceptually similar to previous work where the rules

of a CA or CA-like system rule were evolved in order to perform a particular computa-

tional function [45]. Finally, it has been shown that logical and arithmetic operations

can also be performed by chaotic dynamical systems [209].

1.3.4 Computational Efficiency

Computational efficiency is an oft-neglected but very practical factor when considering

which universal computer to use for a given problem. For example, the fact that

Conway’s Game of Life is universal does not mean that it is suitable for solving

typical computational problems. The computational complexity and efficiency of

analog computation has been studied in [297]. The authors formulate a “strong

Church thesis”, namely that any analog computer can be simulated efficiently, i.e.,

in polynomial time, by a digital computer. They find that the strong Church thesis

is true for a subset of analog computers, namely “well-behaved” ordinary differential

equations that obey a uniform Lipschitz condition, i.e., the solution and its derivatives

are Lipschitz continuous. The extension of this type of complexity analysis to hybrid

systems would be a logical next step, but I have been unable to find published work

that specifically analyzes this problem.

A common metric used to quantify the efficiency of a computation, particularly

in digital systems, is the product of energy consumed, E and the delay td, i.e., the

time taken for the computation to complete. This metric, known as ET1, can also

be written in the form E/R, where R = 1/td is the throughput (computation rate).

When written in this form it becomes clear that the important quantity is the energy

consumed per operation while maintaining a given throughput. In general, slow-and-

parallel computational architectures are more efficient than fast-and-serial ones: the

throughput of each parallel path decreases linearly with the degree of parallelization,

while the energy per operation drops at a faster rate, often quadratically [39].
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It has been argued that E × t2d, known as ET2, is a better efficiency metric

for comparing various algorithms [192] because simply scaling the supply voltage can

improve the ET1 metric. However, the ET2 metric was derived under the assumption

that transistors behaved as square-law devices. In general, a metric consisting of E

times some monotonically increasing function of td will prove to be “optimal”. Here

optimality means that the metric changes only with the computational algorithm and

not with external (non-algorithmic) variables like supply voltage. Finally, there are

fundamental reasons for believing that asynchronous architectures are more energy-

efficient than synchronous ones; as a result, systems-on-chip of the future are expected

to be mainly asynchronous [193].

Digital systems restore every signal value to one of two attractor states, i.e., 0 or 1.

In other words, they ensure robustness by performing error correction, which requires

energy, after every computation. Analog systems, on the other hand, do not implicitly

perform error correction. The lack of implicit error correction makes robust analog

systems harder to design. Feedback loops for learning errors and removing them

must be explicitly added by the designer whenever necessary. In addition, the energy

efficiency of the two strategies scale differently with computational precision, i.e., the

signal to noise ratio or effective number of bits [254].

Digital systems are less energy-efficient at low precision, since many of their ubiq-

uitous local error corrections can be removed without affecting the accuracy of the

computation. On the other hand, the overhead associated with explicit analog error

correction is a strongly increasing function of precision, which makes analog systems

less energy-efficient at high precision. Thus, the optimal computational strategy de-

pends on the required level of precision. The crossover point between the two strate-

gies depends on the technology, i.e., physical characteristics of the medium used for

performing the computations.

Intuitively, it seems clear that a hybrid strategy that combines aspects of both

analog and digital systems might be able to obtain a better trade-off between en-

ergy efficiency and precision. For inspiration, one can turn to biology. For example,

computations performed by networks of neurons are both precise and energy-efficient.
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A variety of hybrid schemes, many of them biologically inspired, have indeed been

suggested over the years. However, it has proven difficult to develop schemes that

provide a good trade-off between efficiency and precision across a wide range of com-

putational tasks and technologies. In fact, it appears that, in general, efficiency and

precision are highly inter-dependent joint functions of strategy, task and technology.

The optimum strategy is therefore strongly dependent on both task and technology.

Efficient computations minimize the consumption of resources, such as energy,

time and hardware. Such operations must be well-matched to the degrees of freedom

of the system performing the computation. In other words, the encoding and decoding

functions for mapping computations defined in (1.3) should be as simple as possible.

Digital circuits use only one of the many degrees of freedom provided by a transistor,

namely the ability to turn it on or off like a switch. Because analog circuits are not

restricted in this way, they form a superset of digital circuits.

Relaxing the digital constraint allows some algorithms to be implemented in a

significantly more efficient way. Translinear circuits, for example, use the exponential

I-V curve of bipolar junction transistors (BJTs) and subthreshold field-effect transis-

tors (FETs) to perform efficient, high-dynamic-range signal processing [91]. Recently,

a principled way has been found for representing message-passing algorithms using

continuous-time analog circuits [298,299]. Message-passing algorithms, such as belief

propagation (BP), compute marginal probability distributions of functions in factor

graphs or other graphical models. They are widely used for solving complex statis-

tical inference problems in a range of fields. This novel framework for performing

statistical signal processing promises to be more efficient, i.e., higher speed and lower

power, than conventional digital circuit techniques.

Another way to increase computational efficiency is by specializing the computer

architecture so that it is optimized for running a restricted set of algorithms. In gen-

eral, special-purpose computers will always consume less power than general-purpose

machines performing similar computational tasks. Only in certain cases, however, will

the performance benefits be large enough to justify the inevitable increases in cost

and development time. Historically, special-purpose machines have been numerous,
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particularly in academic settings, but not very successful. Examples include Mar-

golus and Toffoli’s cellular automata machines (CAMs), which were optimized for

lattice-gas simulations of fluid mechanics [190], Hillis’ connection machines (CMs),

optimized for artificial intelligence (AI) applications8, and several machines optimized

for calculating Ising and spin-glass models, lattice quantum chromodynamics (QCD)

and gravitational N -body problems [183].

One reason for the relative failure of special-purpose computers is insufficient flex-

ibility for running new and improved algorithms, but a more important reason is

Moore’s “law”. As long as faster general-purpose computers were continuously be-

coming available there was insufficient motivation for developing the custom hardware

needed for a special-purpose computer. General-purpose microprocessors, however,

do not utilize the full computational power of modern VLSI. The input/output (I/O)

bandwidth available for communication to external memory has not been increasing

as fast as the raw computational power of the processor. Fundamentally, this prop-

erty is an effect of the two-dimensional nature of integrated circuits. I/O bandwidth

scales with the die or package perimeter, while computational power scales with the

number of transistors, which, for a given area, increases as the square of the feature

size. The net result is that the computational speed of modern microprocessors is

limited by I/O bandwidth. Performance can be improved by integrating multiple

processing cores on the same die and allowing them to share data via an on-chip

cache, thus reducing off-chip memory access. In fact, microprocessor designers are

now integrating two, four or more cores and large amounts of level 1 and 2 cache into

their chips. However, it has proven very difficult to write code for general purpose

applications that efficiently utilizes these multiple cores.

Among the most successful special-purpose computers have been the Japanese

GRAPE (GRAvity PipEline) machines [183]. These computers were originally de-

signed for solving many-body problems in astrophysics, but variants of the same

architecture have been developed for protein-folding and other molecular dynamics

8The story of Hillis and his company, Thinking Machines Corporation, serves as a particularly
poignant cautionary tale for would-be special-purpose computer enthusiasts. As one author puts it,
“history is littered with the corpses of specialized machines” [269].

66



(MD) problems. Solving gravitational interactions is computationally intensive be-

cause gravity is a long-range force9. For such computations a special-purpose chip

can provide substantial speedup over a general-purpose microprocessor, because, un-

like in most other applications, the limiting factor is not memory bandwidth but the

number of floating-point operations. The other reason for the relative success of the

GRAPE systems has been their philosophy of dividing the machine into two main

parts: a general-purpose front-end and a custom back-end. The former, made of off-

the-shelf microprocessors, handles everything except the computationally intensive

gravitational force calculations. This approach reduces cost and development time

over a fully-custom solution.

Recent years have seen renewed interest in special-purpose computers. There

are two main reasons. Firstly, the power consumption of today’s general-purpose

supercomputers (about 4nW per floating-point operation per second) has increased

to the point where it has become a limiting factor for cost and reliability. Secondly,

the demise of Moore’s law appears imminent. In fact, several recent supercomputers

have been optimized for performing specific types of scientific simulations at low power

and low cost. Examples include the MDGRAPE machines, optimized for many-

body simulations in materials science, astrophysics and molecular dynamics [283],

and Anton, a dedicated MD machine [269]. In addition, the graphics processing units

(GPUs) found inside most personal computers and GPU/CPU hybrids like IBM’s

Cell processor are arguably special-purpose architectures optimized for data-intensive

applications. Field-programmable gate arrays (FPGA’s) provide another example of

this paradigm. The hardware configuration of an FPGA is defined by a hardware

description language, allowing its architecture to be optimized for running specific

algorithms.

9Cellular automata, because of the purely local nature of their rules, are unsuitable for systems
where long-range interactions such as gravity or electromagnetism are dominant.
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1.3.5 PDE-Based Computation

Partial differential equations (PDE’s) are mathematical objects that arise in many

different areas of science and engineering. They may be viewed as continuous gen-

eralizations of cellular automata in both amplitude and time. Differential equations

consist of purely local rules, defined on smooth manifolds, that determine the rate of

change of a continuous variable with respect to the independent variables that form

the manifold. In ordinary differential equations (ODE’s) there is only one indepen-

dent variable, while in PDE’s there are more than one. In mechanics, ODE’s describe

spatially-localized particles, while PDE’s describe spatially-diffuse fields.

In its most general form a PDE expresses a constraint on the values of a function

u and its derivatives with respect to the independent variables x1, x2 and so on:

F (u, ux1 , ux2 , ...) = 0 (1.5)

where F () is an arbitrary function. For most PDEs that are important in science and

engineering, F can be expanded into a series in u and its derivatives:

N∑
i=1

ciux1x2... = 0 (1.6)

The PDE is linear if the sum on the left can be written as a linear differential

operator, operating on u. Linearity implies that the coefficients ci are either constants

or functions only of the independent variables xj. A subset of nonlinear PDEs consist

of equations where the ci are functions of xj and u, but not of the derivatives of u.

Such equations are referred to as being quasilinear. The order of a PDE is defined as

the order of the highest derivative that occurs within it.

Since superposition does not apply to nonlinear systems, transform-based meth-

ods, which are important tools for linear PDEs, cannot be used for solving nonlinear

PDEs. Many nonlinear PDEs exhibit finite-time blowup, i.e. solutions with un-

bounded norm (singularities) that develop in a finite amount of time from smooth

initial conditions. Such behavior is amplitude-dependent, i.e., the equation is typi-
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cally conditionally stable. As blow-up occurs, gradients increase in both space and

time. Other PDEs, such as the Navier-Stokes equations that describe fluids, exhibit

the phenomenon of turbulence. In turbulence, the velocity field becomes random in

space and time and eddies develop that pump kinetic energy into smaller and smaller

length scales. The eddies eventually become small enough for viscosity to dissipate

away their energy, preserving overall stability.

Symmetries and Conserved Quantities

Noether’s theorem is a fundamental result which states that every differentiable sym-

metry of the action of a physical system corresponds to a specific conservation law.

A symmetry of a physical system is any property of the system that is invariant after

a transformation, and the action is the integral of a Lagrangian function. Important

examples of conservation laws are those of linear momentum, angular momentum

and energy, which correspond to Lagrangian functions that are symmetric to rota-

tions and continuous translations in space and time, respectively. Noether’s theorem

is important for PDE-based computation: systems that conserve energy will not ex-

hibit finite-time blowup, so they are unconditionally stable and can perform useful

computations on a large range of boundary conditions.

For example, consider conservation of electrical charge, which forms the basis of

Kirchoff’s Current Law (KCL). This law arises from a symmetry property, as we

would expect based on Noether’s theorem. In this case, the underlying symmetry

is the fact that differences in potential, rather than absolute potentials, determine

circuit behavior. In other words, we can designate an arbitrary node in a circuit as

“ground”, and reference all other potentials with respect to it.

Fundamentally, symmetry to absolute potentials depends on a property of Maxwell’s

equations known as gauge invariance. We are free to pick any “gauge” Λ in defining

the vector and scalar potentials (denoted by A and φ, respectively) as long as they

leave the physically-observable electric and magnetic fields themselves unchanged.

This condition is automatically satisfied if we always choose new values of A and φ

such that
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A′ = A +∇Λ

φ′ = φ− 1

c

∂Λ

∂t
(1.7)

where c is the speed of light. An important limitation of Noether’s theorem is that

it can only be applied to systems where a variational principle can be defined. Such

systems, also referred to as variational systems, have to be of even order, contain

an equal number of dependent variables and equations and have no dissipation as

written. Appropriate mathematical manipulation can sometimes convert a given sys-

tem of differential equations from non-variational to variational form, and vice-versa.

Since such manipulations can include co-ordinate transformations, Noether’s theorem

becomes coordinate-dependent. This situation is undesirable since conservation laws

are not coordinate-dependent.

Many systems, such as dissipative systems involving diffusion terms, do not satisfy

the criteria needed to apply Noether’s theorem, i.e. cannot be written in variational

form. In such cases direct construction methods [19] can be used to find symmetries

(which often turn out to be non-local) and corresponding conservation laws.

PDE Properties

The general existence-uniqueness theorem for ODE’s (known as the Picard-Lindelöf

or Cauchy-Lipschitz theorem) states that a unique solution y(x) to the initial value

problem dy/dx = f(x, y), y (x0) = y0 exists in a non-zero neighborhood around x0

provided f is bounded, Lipschitz continuous in y, and continuous in t within the

neighbourhood. No theorem of comparable generality exists for PDEs. However,

existence and uniqueness theorems have been proven for particular classes of PDEs

and boundary conditions. For example, PDE’s that are analytic in the unknown

solution and its derivatives have unique solutions when subjected to Cauchy boundary

conditions, i.e., when both the solution at the boundary and its gradient normal to

the boundary are specified.
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Linear second-order PDEs can be classified into hyperbolic, parabolic and elliptic

equations. There are fundamental differences between hyperbolic and elliptic PDEs.

In hyperbolic (or parabolic) equations, boundary and initial condition data propagate

into the computational domain at finite velocities along characteristic curves. Such

systems are also known as evolution equations since they describe processes that

change (evolve) with time. As a general principle, hyperbolic PDEs can be written in

simplified form along their characteristic curves, which may be viewed as the natural

co-ordinates for the equation [168]. Intuitively, elliptic equations may be viewed as

the steady-state problems that remain when all transients in an evolutionary system

have died away. Elliptic equations do not support signal propagation at finite speeds,

and only boundary (not initial) conditions are relevant for solving them. The lack

of a finite signal-propagation velocity means that elliptic equations require global

solutions, which makes them more difficult to solve, in general, than hyperbolic or

parabolic problems where localized solutions can be found. The wave, heat conduction

and Poisson’s equations are the prototypical examples of hyperbolic, parabolic and

elliptic PDEs, respectively.

Perharps surprisingly, it can be shown that many differential equations possess so-

lutions that are themselves not continuously differentiable. Such solutions are known

as weak or generalized solutions. The key is to rewrite the DE in integral form,

perhaps using Green’s functions, so that no derivatives of the solution appear in

the equation. Such integral equations often express conservation laws of a physical

quantity such as electrical charge or mass. Solutions of these equations that are not

continuously differentiable, i.e., are multi-valued at certain points, are called weak

solutions. However, weak solutions have integrals that satisfy the integral equation

everywhere. Many PDEs that model real-world phenomena, such as shock waves

and tidal bores, can only be shown to possess weak solutions. Discontinuities in weak

solutions can be classified into weak discontinuities, where the solution itself is contin-

uous, but one or more of its derivatives are not, and strong discontinuities (shocks),

where the solution is discontinuous. Weak discontinuities of quasilinear equations

propagate along characteristic curves, but the same is not true for shocks.
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PDE Simulations

We have numerically simulated the behavior of many nonlinear hyperbolic and parabolic

PDEs (wave and reaction-diffusion type equations). We limited ourselves to PDE’s

with two independent dimensions (one space and one time) to keep the search space

tractable. In particular, wave equations with additive polynomial nonlinearities, i.e.,

equations of the form

utt = uxx +
N∑
n=0

cnu
n (1.8)

were studied exhaustively. Cauchy boundary conditions were imposed at t = 0 (be-

ginning of the simulation). The boundary function consisted of one or more spatially-

localized Gaussian pulses of various amplitudes. Many, if not most, equations exhibit

finite-time blowup. We found that the behavior of the other, unconditionally stable,

equations typically falls into one of a few well-defined classes. As a result, the vast

space of possible nonlinear PDE’s can often be effectively explored by studying a few

prototypical equations10.

In certain rarecases, requirements for unconditional stability can be found ana-

lytically, For example, it can be shown [317] that the class of wave equations given

by

utt = uxx + f(u) (1.9)

possess time symmetry. Thus, by Noether’s theorem, they conserve the Hamiltonian,

or total energy function, given by

H =

∫ ∞
−∞

([
u2
x + u2

t

]
/2 + V (u)

)
dx (1.10)

where the potential energy V (u) is given by

10Most of this work was carried out at the 2008 New Kind of Science (NKS) Summer School,
organized by Wolfram Research.
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V (u) = −
∫ u

0

f(y)dy (1.11)

We see that if V (u) is bounded from below, i.e., always greater than a finite value

Vmin, ut and ux must be bounded from above. Thus the PDE will be unconditionally

stable. For the subset of equations given by (1.8), it is easy to show that, for uncon-

ditional stability, the highest non-zero coefficient cn must occur for an odd value of n

and be negative.

For computational purposes complex spatio-temporal behavior, such as spatially

or temporally-localized solutions, shocks, collisions and controllable propagation tra-

jectories, are of interest. We have observed that such complex behavior is often

associated with interactions between pulses or wave trains and periodic, spatially

uniform “bacckground” solutions. This behavior reminds us of the ability of periodic

backgrounds to increase the computational power of soliton machines.

Electrical Models

We would like to design PDEs that carry out specific signal processing functions, such

as gain control and producing constant phase shifts. Circuit analogies can be used

as starting points to model these systems, thereby reducing the equation structure

and parameter value search space. In addition, the equations can be physically imple-

mented as electrical circuits. PDE’s in one dimension and one dependent variable can

be implemented using transmission lines with series and shunt elements composed of

inductors, capacitors and resistors. We allow the values of these two-terminal circuit

elements to depend on space and time. In addition, they can also depend on the

amplitude of the voltage across them or the current through them, causing nonlinear

behavior. Systems with M dependent variables can be implemented using M coupled

transmission lines.
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1.3.6 Computations in Biology

Biological systems are incredibly diverse. As a result, it is difficult to develop general

theories about the types of computations they perform. However, here are some

interesting, but isolated facts about biological computation11:

• The universe has sometimes been viewed as being a giant computer [317,327]12.

However, nobody knows what program such an universal computer may be

running (but, see [263]). Similarly, biological systems can be viewed as always

performing computations, but we often don’t know what program is running

and what the inputs and outputs are.

• Much of the complexity of biological computing arises from the need to create

internal representations of certain aspects of the external world. Such represen-

tations are needed for organisms to localize themselves, organize sensory inputs

and anticipate environmental changes. Even creatures as simple as bacteria

create such representations [282].

• Biological computations frequently use successive approximation algorithms

where time is treated as a cost function. In other words, in order to increase the

accuracy of a biological computation we must wait. Approximate results are

available quickly, and the accuracy of the computation increases continuously

with time.

• Biological computing is constrained spatially by transport requirements. For

example, cells transport synthesized proteins via diffusion. This fact provides

a possible explanation for the fact that the sizes of cells across a multitude of

organisms are surprisingly constant [300].

• Biological computing is hybrid. Discrete, stabilized states are used when robust-

ness to noise and memory are required (digital-like), while analog computations

11This section is based in part on conversations with Stephen Wolfram, Toshiyuki Nakagaki and
Benjamin Rapoport

12Such views were first expressed by computer pioneer Konrad Zuse in the late 1960’s, and
are often referred to as “digital physics”. Zuse’s papers on the subject may be downloaded from
http://www.idsia.ch/˜juergen/digitalphysics.html.
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are used for sensing weak signals or in other situations where high sensitivity is

required [4].

• Biological computation occurs with noisy, heterogenous components but is ex-

tremely energy-efficient. The human brain consumes only about 15W of power,

and a molecular machine like RNA polymerase consumes about 20kBT of energy

to synthesize one nucleotide at a raw error rate of < 10−4.

1.3.7 Collective Analog Computation

We may formally define computational efficiency as the number of operations per-

formed per unit of dissipated energy. Fundamentally, efficiency depends on three

factors: speed, a suitable measure of precision (such as the number of bits or signal-

to-noise ratio) and power consumption. The relationships between these quantities

can be summarized by the following equation, which should only be treated as a

dimensional analysis:

Computational efficiency =
Speed× Precision

Power consumption
(1.12)

We should consider the same task, implemented in the same technology, in order to

compare the efficiency of different computational strategies. For a given task, we can

improve efficiency by increasing speed or precision while dissipating the same amount

of power. In order to increase speed we can exploit the physics of the technology, i.e.,

the computational medium. For example, transistors are not simply digital switches,

but contain many additional degrees of freedom which can be exploited by analog

cirucits. In order to improve precision we can use clever circuit design techniques

such as feedback, learning, and collective analog computation.

The phrase ‘collective analog computation’ should be explained in greater detail

since it is part of the title of this thesis. Common electrical variables used to represent

signals include voltages at nodes and currents through wires. Imagine that we want

to perform some computation on such signals with a certain amount of precision.

The question is one of representation. Should we represent input and output signals
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with single physical variables, or distribute them over several variables? The former

corresponds to a purely analog strategy. The precision of single physical variables

in an analog strategy must exceed the required precision of the computation as a

whole. A small number of highly precise analog computations process such inputs

to generate output signals. On the other hand, a purely digital strategy uses many

physical variables, each only one-bit precise, to collectively represent input signals. A

large number of single-bit precise, or digital, computations process such input signals

to generate output signals.

When the required precision is low the most efficient computational strategies

exploit details of device physics, and are thus purely analog in nature. However,

such strategies are inefficient at high levels of precision because explicit error cor-

rection, which is computationally expensive, must be added to maintain precision in

the presence of device noise, non-idealities and mismatch. On the other hand, digital

computations perform implicit error correction at each step of the computation. As a

result their performance is largely independent of detailed device physics. This prop-

erty is often referred to as abstraction. Abstraction makes the efficiency of digital

systems degrade much more slowly with increasing precision than analog systems.

Thus digital strategies scale much better with increasing precision, and are the most

efficient choice when the required precision is high.

Our discussion so far suggests that strategies that lie between the purely ana-

log and digital extremes will be optimal (most efficient) at intermediate levels of

precision. Individual signals are represented in such hybrid strategies by several

moderate-precision analog variables. These signals are processed by a collection of

moderate-precision analog computations. Hence we refer to such strategies as exam-

ples of collective analog computation. The most efficient computers known, like the

brain, do use the collective analog paradigm, which lends support to our theory. Thus

collective analog systems obtain the ‘best of both worlds’ by exploiting the desirable

features of both analog and digital systems. Figure 1-4 is a highly simplified graphical

representation of the analog, collective analog, and digital computational strategies.

The optimal precision of an individual computational unit in a collective analog
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Figure 1-4: Various computational strategies. The strategies are distinguished from
each other by the amount of precision assigned to individual physical variables and
processing units.

system depends on the relative costs of communication and computation. Commu-

nication costs increase as the ‘collective’ nature of the processing increases, i.e., as

we transition from purely analog to digital strategies. In addition, communication

costs depend on the physical properties of the computational medium. In a technol-

ogy where communication costs are low the most efficient strategy is to use a large

number of low-precision computational units. As communication costs increase, max-

imal efficiency is obtained by using a smaller number of higher-precision processors.

Thus the optimal strategy becomes more ‘analog’ as relative communication costs

increase [255].

Biology makes extensive use of collective analog computation. Many imprecise

analog computational units often interact to solve biological problems precisely or

quickly. Good examples include neural networks in the brain and gene-protein net-

works in the cell. The interactions between computational units in such networks can

have variable levels of precision, i.e., be analog or digital in nature. Such interactions

serve different purposes. For example, digital symbols can be used to restore analog

signals to fixed levels, thereby removing noise from them. Action potentials, which

dominate interactions in neural networks, have moderate levels of precision. It has

been estimated that they each carry, on average, between 2 and 3 bits of information.

Many practical computers are heterogenous, and use a variety of signal representa-

tions. The representations are often dictated by the input and output requirements,

i.e., the need to interface with other systems. Common examples include sensing sys-
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tems that digitize and process analog measurements of physical variables. Broadly

speaking, there are two ways in which collective analog computation has been used in

such heterogenous systems. The first technique uses analog pre-processing to extract

features of interest from the input signal prior to digitization [261]. Such systems

increase energy efficiency by digitizing only features in the signal that convey infor-

mation, not the high-bandwidth input signals themselves. Radio receivers are good

examples of such systems. The second technique uses one or more analog and digital

subsystems that interact in real time via feedback. Such systems are generalizations

of finite state machines that have been referred to as hybrid state machines [260].

This thesis focuses on two biological examples that neatly illustrate the two tech-

niques described in the previous paragraph. The mammalian cochlea is an example

of delayed digitization. It uses the properties of a physical medium to perform broad-

band, real-time spectrum analysis of sounds prior to digitization, i.e., conversion to

action potentials on the auditory nerve. Intracellular reaction networks of genes and

proteins are examples of hybrid state machines. They perform low-power stochas-

tic computations, with genes and proteins acting as digital and analog subsystems,

respectively.

1.4 Thesis Overview

We conclude this introductory chapter by briefly summarizing the other chapters and

appendices included in this thesis. The summaries provided are intended to assist

the reader in negotiating this document.

• Chapter 2: This chapter describes the design and implementation of a inte-

grated, active bidirectional RF cochlea that operates between 1GHz and 8GHz

and provides 50 exponentially-spaced output channels. We also theoretically

analyze the effects of spatially discretizing a wave propagation medium for im-

plementation with lumped on-chip components.

• Chapter 3: This chapter describes the design and implementation of a inte-
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grated, active unidirectional RF cochlea that operates between 600MHz and

6GHz and provides 51 exponentially-spaced output channels. We also theoret-

ically analyze trade-offs in the design, particularly with respect to frequency

resolution, dynamic range, power consumption and chip area.

• Chapter 4: This chapter describes theoretical work that explores several analo-

gies between analog to digital converters and frequency estimators. We also

describe algorithms that use the broadband filtering provided by the cochlea as

a basis for rapid, accurate estimation of a spectrum of input frequencies.

• Chapter 5: This chapter takes a fundamental approach towards understanding

the phenomenon of noise in physical systems. We describe classical and quan-

tum theories of noise in electronics and chemistry. We also present experimental

measurements of flicker noise on extremely long timescales in MOS transistors.

• Chapter 6: This chapter describes the design and implementation of pro-

grammable, integrated analog computers for rapid stochastic simulation, pa-

rameter estimation and optimization of large systems of chemical reactions.

Examples include metabolic and cell-signalling pathways, and other interaction

networks in systems biology. We also describe experimental results from a pro-

totype chip that can be programmed to simulate arbitrary networks of chemical

reactions.

• Chapter 7: We describe the design and implementation of integrated hybrid

(analog-digital) computers for rapid stochastic simulation, parameter estimation

and optimization of gene regulation networks. We also describe experimental

results from a prototype chip that models the activation, transcription and

translation of multiple genes.

• Chapter 8: This chapter concludes the thesis. We summarize our findings,

and put forward possible directions for future work.

• Appendix A: This appendix describes the design and implementation of highly-

power-efficient wireless data transmission links for biomedical implants. We use
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the impedance modulation technique to reduce the power consumption of the

implanted unit. We also describe theoretical work on finding fundamental phys-

ical limits on the performance of these links.

• Appendix B: This appendix describes the design and implementation of an

ultra-low-power chip specialized for body sensor networks. The chip supplies

power to sensors such as microphones, measures their outputs, such as heart

sounds, and wirelessly transmits them to a remote location. We also demon-

strate that the chip can be combined with a RF power harvester to create a

wearable, battery-free tag for pervasive health monitoring.

• Appendix C: This appendix describes the classical theory of passive impedance-

matching networks, and also discusses the impedance-matching of antennas.

• Appendix D: This appendix describes the design of two novel circuit architec-

tures. The first system is a low-supply-voltage, adaptive bandwidth, current-

mode phase-locked loop (PLL). The second part of the appendix analyzes the

use of switched-gain feedback controllers to improve the performance of analog

circuits, such as operational amplifiers.

• Appendix E: This appendix describes an interesting number-theoretic problem

that originally arose in the design of high-resolution digital-to-analog converters.

The problem is to determine the number of unique entries present within a

multiplication table.

• Appendix F: This appendix presents simplified derivations of the radiation

resistance of electrically small dipole and loop antennas.
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Chapter 2

The Bidirectional RF Cochlea

O divine art of subtlety and secrecy! Through you we learn to be invisible,

through you inaudible; and hence we can hold the enemy’s fate in our

hands.

– Sun Tzu, The Art of War (Chapter VI, Weak Points and Strong)

2.1 Introduction

Several silicon-based emulations of the biological cochlea using analog circuits have

been reported in the literature. The basic idea has usually been to extract aspects

of cochlear behavior using cascaded unidirectional filter sections implemented using

analog VLSI at audio frequencies [21, 98, 157, 177, 259, 306, 311]. Less frequently,

bidirectional (“traveling wave” or “transmission line”) architectures have also been

developed [117,305]. In addition, implementations of two dimensional cochlear models

have occasionally been reported [219,272,296]. A number of digital implementations

of the cochlea have also been discussed [137,212]. The related field of cochlear implant

processors (“bionic ears”) usually employs parallel banks of bandpass filters to obtain

frequency selectivity [86,261].

All the papers mentioned in the previous paragraph discussed cochlea-like struc-

tures at audio frequencies. As far as we know, the idea of extending the cochlea

concept to higher frequencies (the “RF Cochlea”) was first discussed by us in [324].
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We have also described some circuits that can be used to build an RF cochlea [188].

Cochlea-like models have also been implemented using micro-fabricated hydrome-

chanical structures [314] and discrete passive components at VHF (20-70MHz) [79,80].

The authors in [80] implement a completely passive bidirectional (transmission-line)

model of the biological cochlea. The structure is then used for performing signal

separation based on frequency content (i.e., spectral analysis). Elements of cochlear

operation have inspired techniques for signal-enhancement [237] and synthesizing RF

filters [61]. Micro-strip transmission lines with dispersion have also been used to

perform real-time spectrum analysis by converting frequency to time, i.e., group de-

lay [155,265].

The cochlea performs highly resource-efficient distributed computation by exploit-

ing the properties of a physical medium. Distributed analog physical computation

has been used to build several efficient engineering systems, both at RF [3, 102, 241]

and at lower frequencies [43].

2.2 Cochlear Models

2.2.1 Introducing Cochlear Mechanics

In this section we provide a brief description of the anatomy and operation of the

biological cochlea. For an excellent introduction to cochlear hydrodynamics, see [178].

Further details of cochlear operation may also be found in standard textbooks [85,226]

or Lloyd Watts’ thesis [305]. The cochlea is a sophisticated signal processing system

that converts a single pressure signal into a time-varying pattern of excitation on

over 25,000 sensors - fibers of the eighth cranial nerve. Spatiotemporal response

patterns on these fibers form the basis of an efficient, robust representation of speech

and natural sounds [274, 321]. Active feedback mechanisms are important in normal

cochlear operation and have been the subject of much research [27, 47, 48, 74, 176,

244, 270, 271]. In healthy humans, it has 120dB of input-referred dynamic range and

consumes only about 14µW of power (see Table 2.1).
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Table 2.1: The biological (human) cochlea
Parameter Value
Dynamic range (at input) 120dB
Power consumption ≈ 14µW
Power supply voltage 150mV
Volume ≈ 35mm×1cm×1cm

Detection threshold at eardrum 0.05Åat 3kHz
Frequency range 20Hz - 20kHz
Output fibers ≈ 25, 000
Filter bandwidths ≈ 1/3 octave
Phase locking threshold ≈ 5kHz

Sound waves travel down the ear canal and vibrate the eardrum or tympanic

membrane (see Figure 2-1). Vibrations of the eardrum are coupled into the bones

of the middle ear - the malleus, incus and stapes. The flat “footplate” of the stapes

transmits acoustic vibrations to the oval window of the cochlea. The mammalian

cochlea, as shown in Figure 2-2, is a long fluid-filled tube that is partitioned into three

compartments, the scala vestibuli, scala media and scala tympani, by two membranes:

Reissner’s membrane and the basilar membrane. Reissner’s membrane has no known

mechanical function. The round window is flexible and acts as a pressure reliever for

the incompressible cochlear fluid (see Figure 2-3). In humans, the cochlea is about

35mm long; it is coiled up into three-and-a-half turns. The coiling serves no functional

purpose but saves space inside the crowded inner ear.

The end of the cochlea closest to the oval window is called the base, while the end

furthest away is known as the apex. Vibrations of the oval window cause waves of fluid

pressure and volume velocity1 to travel down the cochlea. The middle ear couples

energy efficiently from the tympanic membrane to the cochlea, but it is not simply

an acoustic impedance transformer between the atmosphere and fluid-filled inner ear.

This is because wave propagation in the cochlea is not via acoustic compression waves

in the cochlear fluid, but via the combined movement of the fluid and the basilar

membrane. Thus the middle ear matches the impedances of air and the part of the

1Volume velocity is defined as the product of velocity and cross-sectional area perpendicular to
the direction of wave propagation.
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basilar membrane closest to the oval window. The organ of Corti sits on top of the

basilar membrane. It contains a single row of inner hair cells and three to five rows

of outer hair cells. To summarize, the basilar membrane, organ of Corti and adjacent

cochlear fluid (endolymph) all participate in the cochlear traveling wave.

Figure 2-1: Anatomy of the human auditory periphery. Figure adapted from [305].

The basilar membrane becomes wider as we go from the base to the apex; as a

result, its stiffness decreases (approximately) exponentially with position. Properties

of the hair cells, tectorial membrane and reticular lamina also scale exponentially with

position; thus the mechanical impedance of the organ of Corti also scales similarly. As

the traveling wave moves from the base to the apex, its wavelength decreases, and it

transitions from a long wave to a short wave. In the long wave region, the wavelength

is much larger than the height h of the cochlear duct; the whole mass of fluid moves

horizontally with the wave. When the wavelength becomes much smaller than h, the
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Figure 2-2: Cross-sectional view through the cochlea. Figure adapted from [305].

wave is said to have entered the short wave region. In this region, only the fluid

close to the basilar membrane moves2. The wave amplitude reaches a maximum at a

location xmax (the best place) that is approximately logarithmic with the frequency

ωin of the incoming wave, i.e. xmax ∝ log (ω(0)/ωin), where ω(0) is the frequency that

peaks (the best frequency) at the base of the cochlea (x = 0). Beyond xmax, the wave

enters a highly damped cutoff region where its amplitude rapidly decreases. Thus

high input frequencies excite a response close to the base of the cochlea, while low

frequencies peak close to the apex. In effect, the cochlea performs a frequency-to-place

conversion.

2This is similar to what happens, except in reverse, to an ocean wave as it approaches a gently
sloping, sandy beach. For ocean waves, the motion transitions from short wave (deep water) to long
wave (shallow water) as it approaches the shore.
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Figure 2-3: Simplified view of the unrolled cochlea. Figure adapted from [305].

There are both active and passive mechanisms involved in the conversion process.

First, there is a passive mechanical resonance between the fluid mass and the stiffness

of the basilar membrane. Because of the exponential scaling of basilar membrane

stiffness, the resonant frequency also scales exponentially from the base to the apex.

This gives some frequency selectivity to the cochlea, as shown by measurements on

dead cochleas from cadavers. However, in-vivo measurements on cochleas that were

still alive show much greater frequency resolution: the peaks in the cochlear transfer

functions (these functions map input frequency to spatial excitation pattern, or vice

versa are much higher and sharper. The precise mechanism by which this active

amplification occurs is still the subject of active research.

Figure 2-4 shows experimental data from a live mammalian cochlea. The fig-

ure contains frequency response magnitudes measured at two different locations x1

and x2 along the basilar membrane. The curves are low-pass in character; they in-

crease slowly to peak at the bast place, and then rapidly cut off. The two responses

are roughly frequency-shifted versions of each other, showing the frequency-to-place

transformation (also known as a tonotopic mapping or specific coding) performed by
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the cochlea. The corresponding phase responses show a negative phase accumulation

of three to five cycles by the time the best place is reached [240].

Figure 2-4: Magnitude of the cochlea frequency response, measured from a live squir-
rel monkey. The two curves correspond to the basilar membrane displacement at two
positions x1 and x2, where x1 is 1.5mm closer to the apex than x2. Figure adapted
by [305] from data originally published by Rhode [239,240].

The organ of Corti almost certainly contains the active amplification mechanism

present within the cochlea. The inner hair cells are primarily sensors that are sensitive

to the (approximately) half-wave rectified basilar membrane velocity. The inner hair

cells stimulate spiral ganglion cells synaptically connected to them to fire neural

spikes, which are then conveyed to the auditory cortex in the brain. Interestingly,

individual nerve fibres only have a dynamic range of 25-30dB in firing rates. It seems

that the cochlea increases its effective dynamic range by using 10-20 nerve fibres to

encode the output of a single inner hair cell.

According to most current theories, the outer hair cells, which are sensitive to

basilar membrane displacement, actively amplify the traveling wave in a region to-

wards the basal side of the best place. This raises and sharpens the peaks of the
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cochlear transfer functions. However, the precise mechanism by which this happens

is unclear, though many theories have been proposed [173]. Since we are not inter-

ested in precisely modeling the biological cochlea, but rather in using ideas from it to

build an efficient engineering solution, the controversy need not concern us further.

However, the action of outer hair cells makes the cochlear response nonlinear, which

is is important for us.

The most important nonlinear response exhibited by the cochlea is compressive

gain control. The peaks of the cochlear transfer functions are strongly compressive

with incident sound pressure level (SPL) over the range of normal acoustic stimuli.

This is shown in Figure 2-5, where the measured amplitude dependence of the basilar

membrane response to SPL indicates a strongly compressive nonlinearity. Gain com-

pression, in combination with smart neural encoding, allows the cochlea to compress

120dB of input dynamic range into about 40dB of basilar membrane displacement

and subsequently, into nerve fibers with even smaller individual dynamic range.

2.2.2 Zweig’s Cochlear Model

The great German physician and physicist Hermann von Helmholtz (1821-1894) was

the first to propose a physical model of cochlear action. His work was translated into

English in 1885 as a volume entitled On the Sensations of Tone. Helmoltz’s model

resembled a piano, or filter bank. It assumed that sections of the basilar membrane

(BM) behave as independent bandpass filters with center frequencies that decrease

with position, and ignored the fluids within the cochlear canal.

The Hungarian biophysicist Georg von Békésy (1899-1972) realized the importance

of endolymphatic fluid in coupling together sections of the BM. He established the

principle of a frequency-place transformation by discovering that different positions

along the BM have different characteristic frequencies, and developed the traveling

wave model of the cochlea to explain his observations. This model still dominates the

field. The most comprehensive description of von Békésy’s fundamental work may be

found in a book entitled Experiments in Hearing that was first published in 1960.

Because the model proposed by Zweig in [328] forms the basis of our work on
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Figure 2-5: Magnitude of the cochlea frequency response, measured from a live squir-
rel monkey and showing amplitude nonlinearity (gain compression). Sound pressure
levels (SPL) in dB are marked on the figure. Figure adapted by [305] from data
originally published by Rhode [239,240].

cochlear modeling, we shall now briefly review it. An electrical circuit equivalent

of Zweig’s cochlea model is shown in Figure 2-6. The model, which is based on

von Békésy’s traveling wave paradigm, is a one-dimensional mechanical transmission

line. It is a reasonable approximation of the biological cochlea, which is a complex

three-dimensional structure, if the following assumptions are valid:

1. The radius of curvature of the cochlear spiral is much larger than the wavelength

of traveling waves on the scala media, allowing the spiral to be uncoiled without

affecting cochlear operation.

2. The fluids in the scala vestibuli and tympani are incompressible and inviscid.

3. The scala media consists of an array of beams, acting as oscillators, that are only

coupled together by the adjacent fluid. The characteristic frequency of these

oscillators decreases exponentially with increasing distance from the stapes.
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4. The pressure is uniform at any cross-section that is orthogonal to the main axis

of the cochlea, i.e., pressures depend only on x, the distance from the stapes.

This approximation is valid in the long wave region, i.e., when the wavelength

of the traveling wave is much larger than the height of the cochlear duct3.

The circuit variables in this model are P , the pressure variable across the scala

media and U , the volume velocity of the cochlear fluid. These are mapped into

voltage V and current I, respectively, in the electrical model. Thus the mechanical-

to-electrical domain mapping used is (P,U)→ (V, I).

Y(jω,x)

L(x) L(x+dx)P(x)

U(x) U(x+dx)

Figure 2-6: Zweig’s continuous transmission line cochlea model.

Zweig’s cochlea model consists of complex shunt admittances Y (ω, x) that model

the organ of Corti and the action of outer hair cells. These impedances are coupled

together using series impedances Z(ω, x) that consists of inductors that model the

fluid mass close to the basilar membrane that participates in the traveling wave. The

whole system is exponentially tapered, i.e. the shunt admittance and series impedance

per unit length both increase exponentially with position x. This model is bidirec-

tional since the coupling inductors are symmetric elements and waves can propagate

in both directions along the transmission line. It is a simplified, one dimensional rep-

resentation of the three dimensional cochlear geometry. One can imagine extending

it to two dimensions by replacing the line of series elements (inductors) with a grid of

them. Such cochlear models have been built at audio, and exhibit some phenomena,

3The approximation breaks down once the short wave region is reached. The transition between
long and short waves occurs just basal of the best place.
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such as multiple propagating wave modes, which are found in the real cochlea but

are absent in our one-dimensional model.

It is important to note that both Z(ω, x) and Y (ω, x) have values per unit length;

thus Z(ω, x) has units of Ω/m. Similarly, Y (ω, x), the admittance per unit length,

has units of f/m.

2.2.3 Analysis of Zweig’s Model

Electrically, Zweig’s cochlear model consists of a transmission line with properties

that vary slowly with position. We now derive the equations for wave propagation in

this model. Throughout this analysis, we shall assume that sinusoidal steady state

has been reached, i.e., all impedances can be represented using complex exponentials.

Firstly, we notice that the cochlea scales exponentially with position variable x. Thus

the center frequency (i.e., the frequency at which maximum gain occurs) at any

location is given by

ωc(x) = ωc(0) exp
(
−x
l

)
(2.1)

where x increases from the base to the apex of the cochlea, ωc(0) is the center

frequency at the basal end and l is a characteristic length that defines the scale of the

cochlea’s exponential taper. Experimentally, it is found that the cochlea’s frequency

and spatial response functions look similar. In fact, the transfer functions do not de-

pend on ω and x separately, but on the combined variable ω/ωc(x) = exp(x/l)ω/ωc(0).

This relationship, known as scaling symmetry, is only approximately true in the bio-

logical system. However, we shall always assume its validity, because it allows us to

infer one type of response from the other. For example, the effects of doubling ω are

identical to increasing x by an amount l ln(2). Thus, scaling symmetry reduces the

number of independent variables in the problem from two to one. We take advantage

of it by defining a dimensionless, normalized variable sn, as follows:

sn =
ω

ωc(x)
(2.2)
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Z(jω,x) Z(jω,x+Δx)

Y(jω,x)

V(x)

I(x) Δx
-dI(x)

dx

V(x−Δx) V(x+Δx)

I(x+Δx)

Figure 2-7: A generic spatially-varying one-dimensional transmission line, with series
impedances represented by Z and shunt admittances by Y .

By writing circuit impedances in terms of sn, we can make the equations for

wave propagation dependent only on sn. Using Kirchoff’s current and voltage laws,

the equations for voltage V (corresponding to fluid pressure P ) and current I (cor-

responding to volume velocity U) on the generic spatially-varying transmission line

shown in Figure 2-7 in sinusoidal steady-state are given by

dV

dx
= −Z(ω, x)I

dI

dx
= −Y (ω, x)V (2.3)

where Z(ω, x) and Y (ω, x) are the impedance and admittance per unit length of

the line. Because of scaling symmetry in the cochlea, we have Z(ω exp(−x/l), x) =

Z(ω, 0) and Y (ω exp(−x/l), x) = Y (ω, 0), i.e., the impedances and admittances at

any two positions in the cochlea are identical if we exponentially scale the frequencies

at which they are compared.

Since dsn/dx = sn/l, we can eliminate the separate dependencies on ω and x by

using the chain rule of differentiation to rewrite (2.3) as

dV

dsn
=
dV

dx
× dx

dsn
= −

(
lZ (sn)

sn

)
I

dI

dsn
=
dI

dx
× dx

dsn
= −

(
lY (sn)

sn

)
V (2.4)
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Hereafter, we use the convention that Z and Y refer to impedance and admittance

per unit length in the continuous transmission line, Zd and Yd refer to impedances

and admittances in the spatially-discretized, or lumped transmission line, and Zn and

Yn are normalized, dimensionless forms of Zd and Yd. Each stage contains a series

impedance Zd and a shunt admittance Yd, given by

Zd = (∆x)Z (sn)

Yd = (∆x)Y (sn) (2.5)

The series impedance Zd consists of an inductance that models fluid mass and

increases exponentially with position, resulting in

Zd (sn) = jωL0 exp(x/l)

=
ω

ωc(x)
(ωc(0) exp(−x/l)× L0 exp(x/l))

= snωc(0)L0 (2.6)

where L0 = (∆x)L(0), and L(0) is the inductance per unit length at x = 0. The

normalized, dimensionless forms of Zd and Yd are given by

Zn =
Zd
Z0

Yn = YdZ0 (2.7)

The normalizing impedance Z0 is a constant that, in a real implementation, scales

all dimensionless impedances and provides a degree of freedom in the design. In the

RF cochlea, Z0 is chosen to make on-chip implementation practical, as we discuss

later. From (2.6) and (2.7), Zn is given by
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Zn (sn) = sn

(
ωc(0)L0

Z0

)
= snQline (2.8)

were Qline ≡ ωc(0)L0/Z0 is a dimensionless constant. The normalized shunt admit-

tance Yn models the complex behavior of the organ of Corti. In his original paper,

Zweig used experimental measurements to propose the following form for Yn [328]:

Yn (sn) =
sn

s2
n + δsn + 1 +m (sn)

(2.9)

One may recognize this admittance as a simple series R-L-C section in series with

an unknown impedance m (sn) /sn. This impedance models the active response of

the organ of Corti to the traveling wave, i.e., mostly the effect of outer hair cells.

From experimental data, m (sn) was found to be well approximated by a pure delay

with some gain ρ, i.e. m (sn) ≈ ρ exp (−ψsn), where ψ is the delay in radians. Thus

m (sn) /sn looks like a capacitor with delay, and Yn is given by

Yn (sn) =
sn

s2
n + δsn + 1 + ρ exp (−ψsn)

(2.10)

where δ, ρ and ψ are constants. This admittance function can be interpreted as a

feedback loop containing an RLC resonator and a pure delay. Its frequency response

is shown in Figure 2-8 for the following parameter values (obtained from [328]): δ =

−0.122, ρ = 0.142, ψ = 2π × 1.74.

Since Yn contains a pure delay term, it is not a rational function of s and has an

infinite number of poles. Of these, two nearly coincident pairs of complex poles near

the imaginary axis (i.e., sn = ωn) at ωn = 1) are the most important for determining

the collective response of the cochlear model. The two pairs of complex poles near the

ωn axis ensure that both the admittance Yn and its first derivative w.r.t. frequency

have large values close to ωn = 1. Symbolically,

Yn (sn)|sn=j ≈ ∞,
dYn (sn)

dsn

∣∣∣∣
sn=j

≈ ∞ (2.11)

Physically, (2.11) means that the shunt admittance ωnYn (ωn) is large for a range
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Figure 2-8: Normalized BM admittance Yn proposed by Zweig [328].

of frequencies around ωn = 1. This behavior is the essence of collective amplification:

a number of cochlea stages will contribute to the overall transfer function of the

system. Zweig’s model therefore provides important insight into the mechanism by

which the cochlea obtains frequency selectivity. Unfortunately, the admittance Yn (sn)

is difficult to implement. Since Yn is not a rational function and contains a pure delay,

it cannot be synthesized with a finite number of lumped elements. We therefore used

a rational function to approximate (2.10) [323]. The function we chose is given by

Yn (sn) =
sn

(
s2
n + µ

Q
sn + µ2

)
µ2 (s2

n + 2dsn + 1)2 (2.12)

where µ, Q and d are constants. This admittance is the simplest rational function

that contains all essential features of (2.10):

• As described earlier, two pairs of high-Q complex poles near the ω axis are

needed for collective amplification. Our admittance function therefore includes

four poles, divided into two identical complex pairs with some damping d > 0.

• We see that the phase of Zweig’s admittance function goes from to −90◦ at
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high frequencies. Therefore Yn must contain one more pole than zero, i.e., look

inductive at high frequencies. The three zeros that we need are implemented

using a complex pair and a third one at the origin. The zero at the origin is

needed to replicate another feature of Zweig’s function, which is a phase of +90◦

at low frequencies (capacitive behavior).

• The phase of Zweig’s function shows a positive “bump” between ωn ≈ 0.6 and

ωn ≈ 0.9. This behavior must be due to the pair of complex zeros, and can

be modeled in equation (2.12) by placing them at a somewhat lower frequency

than the poles, i.e., by making µ < 1.

Allowable values of µ, Q and d at all amplitudes are further constrained by the

requirement that zero-crossings in the transient response remain approximately invari-

ant with input amplitude, like in the biological cochlea [270]. An important advantage

of our rational admittance function is that such invariance can be guaranteed if the

single parameter d is varied with signal level as long as d � 1 [323]. As a result, a

purely local gain control strategy can be easily implemented. We used the following

default parameter values in our bidirectional cochlea design: d = 0.1, µ = 0.76 and

Q = 3.8. The resultant form of Yn, which is shown in Figs. 2-9(a) and 2-9(b), is quite

similar to Zweig’s function, which is shown in Fig. 2-8.

2.2.4 The WKB Solution

At frequencies much smaller than the maximum operating frequency ωc(0) the input

impedance of the cochlea is given by the following standard expression for a continuous

transmission line with series impedances Zd and shunt admittances Yd:

Zin ≈
√
Zd/Yd = Z0

√
Zn/Yn (2.13)

When sn � 1, we see from (2.12) that Yn ≈ sn. Therefore, at frequencies that are

much smaller than the local center frequency Yn looks like a capacitor. Substituting

for Yn and Zn in (2.13), we find that the input impedance at frequencies much smaller
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than ωc(0) is given by

Zin =
√
ωc(0)L0Z0 = Z0

√
Qline (2.14)

We usually fix Zin = 50Ω for compatibility with standard RF test equipment. The

sizes of capacitors in the design scale like

C0 =
1

ωc(0)Z0

(2.15)

Equivalently, we have Zin =
√
L0/C0. The exponential decrease of center fre-

quency with position is accomplished by increasing inductor and capacitor values in

Zd and Yd exponentially with stage number i, i.e., making Li and Ci (and all other in-

ductors and capacitors used to implement Yd) scale as exp (i/Nnat), while resistances

remain fixed [230,305].

The system of first-order ODEs shown in (2.4) can be combined into a single

second-order ODE, given by

d2V

ds2
n

= k2
nV +

1

Z

(
Z

sn
− dZ

dsn

)
dV

dsn
= k2

nV (2.16)

where kn = l
√
ZY /sn = Nnat

√
ZnYn/sn is a dimensionless variable. Note that

the second term on the first line of (2.16) is zero because Z/sn = dZ/dsn when Z is

assumed to be a pure inductance, i.e., when Z ∝ sn. The simplified equation on the

second line is only valid for this specific choice of Z. For example, the addition of

series resistance to the inductor (unavoidable in any practical implementation) will

makes it invalid. For the moment, we assume that Z is an ideal inductor.

If kn was constant with sn, as in an uniform transmission line, the solution to (2.16)

would simply be the complex exponential exp (knsn). Now assume that kn is not

constant, but, as in the cochlea, varies slowly with sn, i.e., such that |dkn/dsn| � kn.

In this case, we can solve (2.16) for V (sn) by using the well-known Wentzel-Kramers-
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Brillouin (WKB) approximation.

The WKB approximation4 is a powerful method that can be used to find solutions

to various wave propagation problems. It was first used to find semi-classical solutions

to the Schrödinger equation in quantum mechanics. Geometric optics is another good

example of such a WKB-type solution. The method is generally applicable when the

frequency of the wave is much larger than the “spatial frequency” of variations in

the propagating medium. Equivalently, WKB solution are valid if the wavelength of

the wave is very short compared to the length scale of these variations. Under these

conditions, the medium appears to vary slowly relative to the propagating wave.

Finally, we should also note that the WKB approximation assumes a linear system,

and is therefore only valid for small signal amplitudes.

The WKB technique consists of expanding the solution of the differential equation

into a product of exponential functions, and then solving for and retaining only the

first two terms. The first term in the WKB approximation is a complex exponential

where the phase knsn is replaced by the integral of kn over sn, i.e., by
∫ sn

0
knds

′. It

can be shown that the second term in the approximation is proportional to 1/
√
kn.

Thus, complete WKB-type solutions to (2.16) are given by

V (sn) =
α√
kn (sn)

exp

(
±
∫ sn

0

kn (s′) ds′
)

(2.17)

where α is a constant. Equation (2.17) predicts that the voltage at the input (base)

and/or at low frequencies is V (0) = α/
√
kn(0) = α/

(
N

1/2
natQ

1/4
line

)
. Thus, we may

write

V (sn)

V (0)
=
N

1/2
natQ

1/4
line√

kn (sn)
exp

(
±
∫ sn

0

kn (s′) ds′
)

(2.18)

The transfer function (TF) of the cochlea, which is defined as the current flowing

through the shunt admittance Y , normalized by the input current I(0) [328], can be

written as

4Sometimes also known as the Liouville-Green (LG) solution.
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TF (sn) =
∆x

I(0)

dI

dx
=

∆x

I(0)

dI

dsn
× dsn

dx
=

∆x

l

sn
I(0)

dI

dsn
(2.19)

Substituting dI/dsn from (2.4) in (2.19), and remembering that Nnat = l/(∆x),

we find that

TF (sn) =
sn

Z0Qline

(
kn
Nnat

)2
V (sn)

I(0)
(2.20)

Also, we know that V (0)/I(0) = Zin, the input impedance of the cochlea. Substi-

tuting for Zin from (2.14), we get

TF (sn) =
sn√
Qline

(
kn
Nnat

)2
V (sn)

V (0)
(2.21)

We can substitute V (sn) /V (0) from (2.18) into the expression for the cochlear

TF defined in (2.21), to find that the cochlear TF is proportional to

TF (sn) ∝ snk
3/2
n

[
c1 exp

(
−
∫ sn

0

knds
′
)

+

c2 exp

(
+

∫ sn

0

knds
′
)]

(2.22)

where c1 and c2 are constants determined by I(0), Nnat, Z0 and boundary con-

ditions. The two terms correspond to wave propagation in the +x (forward) and

−x (reflected) directions, respectively. The reflected wave is undesirable, and its

amplitude c2 should be minimized.

The exponential part of the WKB solution is an example of collective amplifi-

cation. Practically, collective amplification increases both the heights and widths of

peaks in the cochlear transfer functions. The TF expressed in (2.22) reaches its peak

values near maxima of kn. In our case, kn = Nnat

√
ZnYn/sn, so kn → ∞ at poles

of Yn, which occur close to sn = . Equation (2.22) then predicts |TF | → ∞. In

reality, the gain is not infinite. Instead, the WKB approximation breaks down: the

assumption that kn varies slowly is invalid close to its poles. Thus the WKB method
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cannot predict the peak value of the cochlear transfer function.

In a real implementation, nonlinear effects also start to appear as the transfer

function amplitude rises, limiting its ultimate increase. The physical analog of this

behavior occurs in the biological cochlea. Close to the best frequency, the wavelength

of the propagating wave decreases as its amplitude builds up: the wave behavior

changes from long wave (where the WKB approximation is valid) to short wave (where

it is not), and then cuts off [305]5.

Figures 2-10 and 2-11 show the WKB-type solutions predicted by (2.18) and

(2.21) for the typical parameter values d = 0.1, µ = 0.76, Q = 3.8, Qline = 0.05,

and two different values of Nnat. We assumed that the reflected wave was absent,

i.e., c2 = 0 in (2.22). Larger values of Nnat cause more stages to participate in

collective amplification. In other words, the effective number of poles in the transfer

function increases. As a result the maximum gain, negative phase accumulation,

high-frequency roll-off slope and group delay of the cochlear transfer function all

increase with Nnat, as shown in Figures 2-10 and 2-11. Group delay, which is defined

as τg = −dφ/dωn, has units of time. Here φ is the phase of the transfer function. In

order to express group delay as cycles of the input frequency, as shown in the figure,

we multiply τg by ωn/(2π).

2.2.5 Transmission Line Design

The center frequency of the last, or apical, cochlear stage is given by ωc,min =

ωc(0) exp (−N/Nnat), where N is the total number of stages. In order to reduce re-

flections from the apex the transmission line must be terminated with an impedance-

matched load. We found that a termination impedance consisting of a resistor Rt

in series with an inductor Lt provides adequate matching over the frequency range

of interest, namely 0 < ω < ωc,min. We use Rt = Zin, which provides a match at

frequencies much smaller than ωc,min. We also make the magnitude Lt’s impedance

at ωc,min equal to Zin. which provides a match at frequencies comparable to ωc,min.

5Another example of the same phenomenon, this time from geometrical optics, is the formation
of caustics. Caustics are found, for example, on the focal planes of lenses.
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Figure 2-10: Magnitude and phase of WKB-type solutions to the bidirectional cochlea
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Thus, Lt is given by:

Lt =
Zin
ωc,min

=
Zin exp (N/Nnat)

ωc(0)
(2.23)

In order for our lumped transmission line to closely approximate the original

continuous line each stage should only change the phase of TF , i.e.
∫ sn

0
knds

′, by

a small amount. If this condition is not met the spatial discretization becomes too

coarse, resulting in unwanted inter-stage reflections that show up as secondary peaks

in the cochlear TF. In order to avoid such reflections we should have

|∆sn × kn| � 1

⇒
∣∣∣∣(dsndx

)
∆x× kn

∣∣∣∣ � 1

⇒ |snkn|
Nnat

� 1 (2.24)

where ∆sn is the change in sn due to a single stage, and we have used the fact that
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dsn/dx = sn/l. Thus, inter-stage reflections increase as |sn| = ω/ωc(x), the ratio of

the input frequency to the best frequency at that location, increases. In other words,

a fixed-frequency input tone will suffer increasing reflections as it propagates, since

ωc(x) decreases exponentially with increasing x.

For a given value of sn, inter-stage reflections can be reduced by reducing |kn|

and increasing Nnat. However, signal gain, i.e., |TF |, increases with |kn|, as may be

seen from equation (2.22). On the other hand increasing Nnat is undesirable because

of increased chip area, power consumption, and output noise. The designer must

compromise between these conflicting performance requirements.

By substituting kn = Nnat

√
ZnYn/sn and using the known values of Zn and Yn,

the no-reflection condition in (2.24) can be rewritten as

√
Qline

∣∣∣∣∣sn
√
s2
n + µsn/Q+ µ2

µ (s2
n + 2dsn + 1)

∣∣∣∣∣� 1 (2.25)

Since the values of µ, Q and d are fixed, we must reduce Qline to reduce inter-stage

reflections. The quantity Qline has a simple physical interpretation: it is the ratio

of the amount of reactive energy stored within each stage, which is given by L0I
2/2,

to the energy transferred per cycle (i.e., in a time 1/ωc(0)) to the other stages. The

latter quantity is given by Z0I
2/ (2ωc(0)), where I is the current along the line. Using

(2.15), we can also rewrite Qline in the suggestive form

Qline =
2ωc(0)

ωcutoff (0)
(2.26)

Here ωcutoff (0) = 2/
√
L0C0 is the cutoff frequency of the lumped transmission

line. Wave propagation on lumped lines is only possible at frequencies less than the

cutoff frequency.

2.2.6 Frequency Scaling

It is well known from classical filter design theory that filter impedances and frequency

responses can be easily scaled by scaling circuit parameters by constant ratios. This
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property is important for the RF cochlea. Specifically, if a filter needs to be operated

with a new load impedance Znew, the following element transformations will leave the

transfer function of the filter unchanged:

Rnew = RoldZr

Lnew = LoldZr

Cnew =
Cold
Zr

(2.27)

where Zr = Znew/Zold is the impedance transformation ratio. Similarly, the fre-

quency response of the filter can be scaled if

Rnew = Rold

Lnew =
Lold
fr

Cnew =
Cold
fr

(2.28)

where fr = fnew/fold is the frequency scaling ratio. We can use these transforma-

tions to scale the normalized cochlear admittance Yn (sn) into real frequency space.

In general, we expect the response of a lumped system to approach that of the con-

tinuous one it is trying to approximate as more and more elements are used, i.e., the

continuous system is quantized to finer and finer levels of precision6. This is indeed

true in the bidirectional cochlea. As Nnat is increased the transfer functions approach

asymptotic values predicted by the continuous transmission line equations. If Nnat is

too low the cochlear transfer functions are not smooth, and their roll-off slopes de-

crease, which reduces frequency selectivity. However, power consumption and layout

area of the RF cochlea increase as Nnat increases. We therefore use the minimum

value of Nnat that still gives adequate performance.

Once the value of Nnat has been decided, the frequency scaling ratio for the n-th

stage in the bidirectional cochlea is given by

6In the cochlea, fineness of quantization is measured by the number of filter stages used over
a fixed ratio of best (peak) frequencies f1/f2. An octave, i.e., f1/f2 = 2, is frequently used for
convenience.
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fr(n) = ωc(0) exp

(
− n

Nnat

)
(2.29)

where n increases from the base to the apex. Each stage is also impedance scaled

by the same ratio Zr. We typically design our filters in impedance-normalized form.

As a result Zold = 1Ω and Zr = Z0, the constant impedance defined earlier.

2.2.7 Transformed Cochlear Models

In this section, we describe transformations of the basic bidirectional cochlear struc-

ture shown in Figure 2-6 that are suitable for integrated circuit implementation at

RF frequencies. The main problem with Zweig’s model from this perspective is that

Yn ∝ 1/sn at high frequencies, i.e., as sn →∞, Yn looks inductive. However, the pres-

ence of substrate capacitances means that integrated circuit impedances inevitably

look capacitive at high frequencies.

We can avoid this problem if we change the convention used to map mechanical and

electrical domain variables to each other. In Zweig’s original model, shown in Figure 2-

6, the mapping is (P,U) → (V, I), where P is pressure across the scala media, U is

volume velocity of the cochlear fluid and V and I are, respectively, voltage and current

in the circuit. However, there is no reason for the alternate mapping (P,U)→ (I, V )

not to work. This mapping transforms impedances to admittances and vice versa, so

we get the transmission line structure shown in Figure 2-12(a), where Z1 is a complex

series impedance, and the shunt admittance is simply a capacitance of value C1(x) =

C1(0) exp (x/l) to ground. As before, the best frequency ωc(x) = ωc(0) exp (−x/l)

decreases exponentially with position x. In order to keep wave number kn and input

impedance Zin unchanged, we need

Zn1 = YnQline

Yn1 = Zn/Qline (2.30)
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Figure 2-12: Transformations of Zweig’s bidirectional cochlea model, obtained by (a)
reversing the mechanical-to-electrical mapping convention and (b) through a low-pass
to high-pass transformation.

where Zn1 and Yn1 are the impedance and frequency-normalized forms of Z1 and C1.

The output variable in this structure is the dual of the shunt current dI/dx, i.e.,

the voltage across the series impedance, i.e., Vout ≡ (∆x) × (dV/dx)/V (0). Thus,

the cochlear transfer function (TF ) for this modified architecture is given by the

normalized voltage drop across each series impedance Zn1. The WKB solution for

cochlear TF s is the same as in the original design (given by Eqns. 2.20 and 2.22),

except that I and I(0) are replaced by V and V (0), where V (0) is the volume velocity

(voltage) at the base of the cochlea.

Since impedances and admittances are interchanged, the series R−L termination

network at the apex becomes a parallel R− C network. We implemented this trans-

formed bidirectional cochlear structure on chip, with the following parameter values:

ωc(0) = 2π × 10 × 109rad/s, C1(0) = 70fF, Nnat = 20, Z0 = 225Ω, Qline = 0.05

and Zin = 50Ω. There are several advantages of this modified architecture for an

integrated implementation:

• As the normalized frequency sn → ∞, Zn1 → 1/sn, i.e. it looks capacitive at

high frequencies. In addition, shunt capacitances C1(x) are present by design

at every node. This models what actually happens in integrated circuits at RF.

This makes implementation easier. For example, parasitic capacitances can be

easily absorbed into the design.

• Outputs from this cochlear architecture (the transfer functions) are differential
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voltages and not shunt currents. Voltages are easier to sense and transmit off-

chip than currents, especially at RF. The differential nature of the TF signal is

also advantageous. Another advantage of this design is that the output, being

the difference in voltage between two nodes, is resistant to unwanted common-

mode signals on the ground node such as substrate noise.

• Gain control circuits that operate on voltage signals are easier to build at RF

than those that use current, because RF currents are hard to sense. Building

compressive nonlinearities into the transformed architecture will thus be simpler

than with the original design.

• The layout area of our transformed architecture will be smaller than the original

structure since it contains fewer inductors. Integrated inductors are expensive

in terms of chip area. Therefore minimizing the number of inductors is desirable

for any RF design.

Another potentially interesting cochlear architecture, which we have not imple-

mented, emerges if we perform a low-pass to high-pass transformation on the circuit

shown in Figure 2-6. Such a transformation occurs if we replace sn by 1/sn everywhere

in the design. The resulting structure, shown in Figure 2-12(b), has shunt admittances

Y2(ω, x) that are coupled together using series capacitances C2(x) = C2(0) exp(−x/l)

that decrease exponentially with position x. This is a high-pass cochlea, i.e., the best

frequency increases exponentially with x, i.e., ωc(x) = ωc(0) exp(x/l). We define the

normalized frequency sn in the same way as before. Y2 can now be normalized into

the dimensionless impedance Yn2 (sn), which is given by

Yn2 (sn) = Yn

(
1

sn

)
=
sn (µ2s2

n + µsn/Q+ 1)

(s2
n + 2dsn + 1)2 (2.31)

where |µ| < 1. We can see that Yn2 (sn) looks similar to the original admittance

Yn (sn), except that the frequency axis sn has been reversed. This behavior is the

essence of the low-pass to high-pass transformation.

The high-pass cochlea reduces the total number of inductors required in the de-
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sign, which is desirable. However, there are other implementation issues that get

worse with this topology. For example, the highest frequencies have to propagate the

longest distance (in contrast to the low-pass cochlea, where they peak close to the

base). Since propagation loss, distributed effects and un-modeled parasitic poles be-

come increasingly significant as the frequency increases, it makes sense to have these

frequencies travel shorter, not longer, distances before they peak (i.e, reach their best

places)7.

Figure 2-13 shows simulated spatial responses obtained from the modified cochlear

structure shown in Figure 2-12(a) for input frequencies varying logarithmically over

two orders of magnitude. Curves that peak towards the base of the cochlea correspond

to high frequency inputs. As the input frequency decreases, the spatial response

patterns shift towards the right (i.e., the apex of the cochlea). For this simulation,

we used Nnat = 16 filter sections per e-fold, and the parameters defining the series

impedance Zn1 were given by Q = 3.8, µ = 0.76 and d = 0.1.

2.3 Signal Analysis

In this section we briefly discuss the general theory of signal representation. The

information contained in a signal can be represented, or indexed, in various ways. In

general, we want to find an indexing that represents information of interest to us in

an easily extracted fashion. Spectrum analysis is a common type of representation,

indexed by frequency content, that is useful in a large variety of applications.

2.3.1 Introduction

The two most basic characteristics of a dynamical variable, or signal, are time and

frequency. The former measures when events that convey information occur, while

the latter measures the rate at which they occur. A complete representation of

any signal is obtained by dividing its time-frequency plane into cells of unit area

7In other words, all physical systems, including biological ones, have frequency responses that
are inherently low-pass in nature.
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Figure 2-13: Simulated spatial response of the bidirectional RF cochlea for input
frequencies varying logarithmically over two orders of magnitude.

∆ω∆t = 1, where ω and t represent frequency and time, respectively [77, 78]. Each

cell contains two degrees of freedom, which we may think of as amplitude and phase.

By “complete”, we mean that the representation contains enough information about

the signal for exact reproduction in the absence of noise. This statement is an example

of the well-known Shannon-Nyquist sampling theorem. According to the theorem, a

signal of bandwidth B and length T in time is completely characterized by 2BT

samples. The area of the signal’s time frequency plane is BT , and we may imagine

that each sample characterizes an area BT/ (2BT ) = 1/2 on the plane. Thus each

cell of area 1 corresponds to two samples, or more generally, two degrees of freedom.

In practice, both quantities can only be obtained with finite precision due to noise.

We have seen that quantizing the time-frequency plane into cells of unit area

results in two degrees of freedom per cell. In other words, the amount of information

in the time-frequency domain is limited to 2BT degrees of freedom for any noiseless
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signal8. Each degree of freedom is a scalar measurement, and the 2BT measurements

define an unique vector within a vector space of dimension 2BT .

Lossless transformations, such as Fourier transforms, can be used to reversibly

map a signal’s 2BT degrees of freedom to another set of numbers. There may be

2BT or more numbers in this set; in the latter case, the transformed representation

is redundant. When the members of the set represent (in some sense) different fre-

quencies present in the signal the transformation is referred to as spectrum analysis

or decomposition. Consider transformations that map the 2BT degrees of freedom

into an equal number of coefficents, and assign two to each of the BT cells on the

time-frequency plane. Signals with the highest possible localization in this plane

have only one non-zero coefficient, thus localizing them to a single cell with unit area.

As a result, the minimum possible uncertainty in the location of any signal on the

plane, as quantified by the area within which it can be localized, is 1. The classical

time-frequency trade-off, or uncertainty principle, that formalizes this result was first

derived by Dennis Gabor in 1946 [77]. It states that

σωσt ≥
1

2
(2.32)

where σω and σt are defined as the second moments (standard deviations) of the

measured probability distributions of the frequency and occurence time of the signal,

respectively. This result is related to the energy-time uncertainty principle of quantum

mechanics via the identity E = ~ω. The minimum value of 1/2 is reached for Gaussian

pulses, which have the same shapes along both time and frequency axes.

The basic problem faced by the familiar Fourier transform while analyzing non-

stationary signals, such as speech, is that time-domain information is embedded in

the phases of the complex sinusoids that comprise the transformed representation.

As a result, it is difficult to interpret and recover such information. In other words,

complex sinusoids have compact support along the frequency axis, but not the time

axis. Transformations that avoid this problem, and generate well-separated time

8In the absence of noise, of course, the signal’s amplitude and phase can be used to convey as
much information as we please.
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and frequency-domain information, can be separated into two broad classes: time-

frequency and time-scale representations. We shall consider only real signals in the

following discussion, but it can easily be extended to include complex signals as well.

2.3.2 Time-Frequency Representations

The commonest time-frequency representation (TFR) is the windowed, or short-time

Fourier transform (STFT), defined as

X(t, ω) =

∫ ∞
−∞

x(τ)γ(τ − t)e−jωτdτ (2.33)

where γ(t) is known as the window function, or kernel. The window function is chosen

to have compact support along the time axis, i.e., to be close to zero except over a

finite length of time. This property allows signals to be localized in time. The Gabor

transform is a special example of the STFT, and uses a Gaussian window. The STFT

generates time-frequency plots known as spectrograms, and is an example of a linear

transformation. Equation (2.33) can be rewritten as

X(t, ω) = e−jωt
∫ ∞
−∞

x(τ)γ(τ − t)e−jω(τ−t)dτ (2.34)

When rewritten in this form it becomes clear that the STFT is equivalent, up to

a phase factor, to convolution of the signal x(t) with the function γ(t)e−jωt. In other

words, X(t, ω) is produced by passing x(t) through a linear, time-invariant (LTI)

filter with impulse response γ(t)e−jωt. We shall denote a Fourier transform pair as

x ↔ X. It is easy to show that γ(t)e−jωt ↔ Γ(Ω + ω) when γ(t) ↔ Γ(Ω), i.e., Γ(Ω)

is the frequency response corresponding to the impulse response γ(t). In other words

modulation of γ(t) by the complex sinusoid e−jωt translates its frequency response

by an amount ω along the frequency axis9. If Γ(Ω) has a bandpass response with

center frequency 0 and bandwidth B0, Γ(Ω+ω) has a center frequency of −ω and the

same bandwidth. Thus the STFT X(t, ω) of a signal x(t) is equivalent to applying

9This property is the underlying principle behind the operation of all mixers and superheterodye
systems.
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bandpass filters with varying center frequency ω and constant bandwidth B0 to the

signal, and collecting together their outputs.

The outputs of a filter bank, i.e., a collection of filters with finite bandwidths,

constitute a time-frequency representation of their common input signal. The STFT

is one way in which such a filter bank may be synthesized. The normal Fourier

transform corresponds to an STFT with no windowing, i.e., with γ(t) = 1. Because

the impulse responses are constant with time, this case corresponds to a filter bank

with infinitesimally narrow bandwidths. Long windows, i.e., impulse responses that

decay slowly with time, result in narrowband analysis filters that have poor timing

resolution, but good frequency resolution. The reverse is also true, as predicted by

the uncertainty principle. In general, the optimal window function for analyzing a

given signal depends on the type of information we want to extract from it. Moreover,

finding this optimal function is not always straighforward.

An alternative time-frequency representation is the Wigner-Ville distribution.

This is an example of a nonlinear (specificially, quadratic) transformation, and is

the simplest example of a class of distributions know as the Cohen class. We begin

by finding the instantaneous autocorrelation function of the signal. This function is

a generalization of the normal autocorrelation function, and is defined as

Rxx(t, τ) = x (t+ τ/2)x (t− τ/2) (2.35)

where x(t) is the signal. We see that Rxx depends both on time t and time lag τ .

We then take the Fourier transform of Rxx, but only along the τ axis. The result

is a time-frequency representation, i.e., a function of both frequency and time. The

Wigner-Ville distribution has finite support in both time and frequency (unlike the

STFT), which is one of its advantages. However, the multiplicative, or nonlinear

nature of the transform results in mixing, i.e., introduces frequency components that

did not exist in the orignal signal. It also has poor noise properties. The instantaneous

autocorrelation function can be windowed before being Fourier transformed, resulting

in other members of the Cohen class that have better mixing and noise properties.

115



An alternate class of time-frequency representations is based on reassignment of

the (t, ω) plane to instantaneous time and frequency, respectively [84]. The new plane

is denoted by (tins, ωins), where

tins(ω, t) = t− ∂φ

∂ω

ωins(ω, t) =
∂φ

∂t
(2.36)

Here φ is the phase of the signal. Reassigning both amplitude and phase informa-

tion to this new plane allows reconstruction of the original signal. This representation

has several advantages. Firstly, it is biologically plausible since it does not require ω

and t to be explicitly estimated, but only the derivatives of φ. In the case of sound

representation, for example, the time derivative can be estimated by measuring the

intervals between action potentials on single phase-locked auditory nerve fibers. Sim-

ilarly, the frequency derivative can be estimated by measuring intervals between adja-

cent tonotopically-mapped fibers. In addition, the resultant representation is sparse,

i.e., most of the (tins, ωins) plane is zero, thus allowing signal compression.

Finally, the reassigned representation localizes simple signals with greater preci-

sion than that imposed by the uncertainty principle, i.e., (2.32). For example, tones

(single frequencies) and clicks (single times) map to horizontal and vertical lines of

zero width in the (tins, ωins) plane, unlike in the STFT, where they map to Gaussian

blurs in the (t, ω) plane. This property reveals features of signals that are hidden

in spectrograms but may be perceptually significant. However, it does not violate

the uncertainty principle, because there is an important distinction between precision

and resolution. Precision refers to the ablity to localize single signals, while resolution

refers to the separation of two or more signals. In its strict, or true sense the un-

certainty principle only applies to resolution, not precision. In fact, the Wigner-Ville

transform also achieves greater precision than predicted by (2.32).

116



2.3.3 Time-Scale Representation

The canonical example of a time-scale representation is wavelet analysis. In wavelet

analysis a time-domain signal is not divided into time segments by a windowing

function, but into “scale segments” with a “probing function” known as a wavelet.

All wavelets are time-scaled and time-translated versions of a single “mother” wavelet

function ψ. The time-scale a and translation b of the mother wavelet function are

varied, and the scaled and translated function is correlated with the signal. The result

measures how similar the signal is to the wavelet at that scale or translation, and is

quantified by wavelet coefficients that are functions of a and b. Mathematically, the

mother wavelet is a function of the scaled and translated time variable (t− b)/a:

Wx(b, a) = |a|−1/2

∫ ∞
−∞

x(t)ψ

(
t− b
a

)
dt (2.37)

We see that signals in a wavelet representation occupy regions in the (a, b) plane,

not the time-frequency plane. Plots of the function Wx(a, b) are known as scalograms.

Let the wavelet represent the impulse response of a bandpass filter. The time-

scale of this response is proportional to a. However, the time and frequency scales of

Fourier transforms are inversely related. It can easily be shown that ψ(t/a)↔ aΨ(aω)

when ψ(t) ↔ Ψ(ω), i.e., ψ(t) and Ψ(ω) are Fourier transform pairs. In other words

the time-scaled impulse response ψ(t/a) corresponds to the frequency-scaled filter

transfer function Ψ(aω), where the frequency-scale is equal to 1/a. Thus both the

center frequency and bandwidth of the filter are proportional to 1/a.

Equation (2.37) may be rewritten as a convolution of the signal x(t) with the

time-reversed and scaled wavelet ψ(−t/a). Thus the wavelet transform (WT), like

the STFT, is equivalent to filtering of the signal x(t) by a bank of linear bandpass

filters. Since the center frequency and bandwidth of the filters are both proportional

to 1/a, they have constant fractional bandwidth, i.e., constant Q. As a result the WT

can also be viewed as spectrum analysis by a constant-Q filter bank. This behavior

is in contrast to that of the STFT, where the analysis filter is translated along the

frequency axis, but not scaled. Thus, the STFT, as explained earlier, can be viewed
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as analysis by a constant-bandwidth filter bank.

The time-frequency uncertainty principle shown in (2.32) is fundamental, and is

applicable to both time-frequency and time-scale representations. The actual value of

σωσt depends on the detailed shapes of the analysis filters used to localize the signal.

It is invariant on the (t, ω) plane when a single prototype filter is translated or scaled

along the frequency axis to perform the analysis, as in the STFT and the WT. In this

case we get σωσt = α/2, where α ≥ 1 is a constant. We can rewrite this equation as

follows:

(σω
ω

)(σt
T

)
=

α

4π
(2.38)

where ω and T are the mean frequency and time period of the sigal, respectively, and

we have used that fact that ωT = 2π by definition. Thus the product of the relative,

or fractional uncertainties in frequency and time is also constant. In wavelet represen-

tations (or constant-Q filter banks) σω/ω is constant and equal to the inverse of the

Q. Thus the relative timing precision T/σt is also constant in this case. In particular,

it is invariant with the mean frequency ω = 2π/T . Thus constant-Q analysis results

in constant precision on all time scales. On the other hand, in constant-bandwidth

analysis σω is constant, resulting in a relative timing precision that is inversely pro-

portional to the mean frequency ω. In other words, at high center frequencies the

constant-bandwidth filters have high Q, resulting in long settling times and poor

timing precision.

2.3.4 Redundant Representations

Redundant representations use more than the 2BT linearly-independent basis vectors

necessary to represent a signal. As a result, they generalize the notion of bases to

expansions over sets of vectors that are linearly dependent. Such sets are mathemat-

ically known as frames. STFT and WT representations, and filter banks in general,

are examples of frame representations. Redundancy in the frame representation aids

reconstruction of the original signal, especially in the presence of noise. Frames
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are particularly useful when higher-order information (features) must be reliably ex-

tracted from a noisy signal with unreliable hardware. This situation is common in

biological sensory systems [246]. Such systems achieve robustness by using many un-

reliable variables, such as the firing rates of a large population of neurons, to reliably

represent a signal. In general, frame representations distribute precision over multi-

ple redundant variables, and are therefore most naturally processed by computational

architectures, such as neural networks, that employ the collective analog paradigm.

The continuous wavelet transform (CWT) shown in (2.37) is highly reduntant

because the scalogram Wx(a, b) is defined for all real values of a and b. The discrete

wavelet transform (DWT) restricts the variations in scale a and translation b, usually

to powers of 2, to obtain a less redundant representation. The fact that reconstruction

is possible from the DWT is a consequence of the Shannon-Nyquist sampling theorem,

as discussed earlier. The relationship between the CWT and the DWT is analogous

to that between the continuous and discrete Fourier transforms (CFT and DFT,

respectively)10.

2.3.5 Cochlear Signal Analysis

The time-frequency representations generated by the cochlea have been estimated

using linear traveling-wave models [125]. Such models are useful, but can only ap-

proximate the nonlinear behavior of the biological cochlea. For example, they do not

account for the presence of phase-locked action potentials in auditory nerve fibers.

However, such models do show that the linear cochlea behaves as a nearly ideal time-

frequency analyzer, with values of α that vary between 1.2 and 1.6 [77,125].

As described earlier, Zweig’s cochlear model assumes perfect scaling symmetry. As

a result, it predicts cochlear transfer functions that are only dependent on the nor-

malized frequency variable sn = jω/ωc(x), where ωc(x) is the local center frequency.

Transfer functions at different locations are produced by changing ωc(x), i.e., the fre-

quency scale. Thus the outputs of the model resemble a constant-Q filter bank, where

10The well-known fast Fourier transform (FFT) refers to one of a class of related, efficient algo-
rithms for calculating the DFT.
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the cochlear transfer functions act as analysis filters and the time-scaling parameter

a = 1/ωc(x). However, the measured transfer functions of the human cochlea only

have constant-Q responses for center frequencies above ≈ 300Hz. The Q decreases for

center frequencies lower than this value, approaching constant-bandwidth behavior

at very low frequencies [206]. Thus scaling symmetry is only approximately satisfied

by the biological cochlea.

The representation of sounds in the cochlea is highly redundant. The cochlear

transfer functions are relatively broadband, with ≈ 1/3 octave bandwidth (Q ≈ 4.3).

As a result, only about 10/(1/3) = 30 transfer functions are mathematically sufficient

to represent frequencies within the 10-octave human heaing range. However, the

human cochlea has approximately 3,500 sensors (inner hair cells) and 35,000 outputs

(nerve fibers). Action potentials on the 10 nerve fibers connected on average to one

hair cell cooperatively encode the amplitude and phase of sounds sensed by that cell.

As a result, it may be argued that these fibers should not be treated as separate

outputs. We can therefore assume that the cochlear representation consists of about

3,500 variables, namely the basilar membrane velocities sensed by each inner hair cell.

The result is a redundancy ratio R of 3, 500/30 ≈ 100.

In general each variable in the cochlear representation is corrupted by noise. In

the simplest case each noise source is assumed to be independent of the others. In

this case the cochlea provides R-fold redundancy, i.e., R independent estimates of

each analysis window in the time-frequency plane. As mentioned earlier, redundancy

increases both robustness to hardware failures, and also the accuracy of signal recon-

struction. More precisely, it can be shown that the magnitude of the signal recon-

struction error is proportional to 1/
√
R [246]. Of course, there is no free lunch, and

such improved performance comes at the cost of increases in hardware complexity

and power consumption.

At low and moderate sound intensities the cochlea is well described by a redun-

dant constant-Q filter bank, as described earlier. The auditory system performs signal

processing on the cochlear outputs to reliably detect higher-level features in sound

signals. For example, peaks and edges in the sound spectrum and interaural time de-
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lays are detected with very high precision. Such properties remind us of the contrast

enhancement and binocular capabilities of the visual system. In fact, there are many

analogies between visual and auditory signal processing, suggesting that common

neural architectures are used in both systems [268]. However, such analogies have

not always been recognized. In fact, several well-known models of auditory signal

processing are based on temporal algorithms with no analogs in visual signal process-

ing. Such algorithms involve the computation of correlation functions and absolute

frequencies, and require the presence of specialized neural machinery, such as delay

lines and oscillators. No unambiguous evidence of such machinery has been found,

casting doubt on such models.

An alternative, and conceptually simpler, approach explicitly acknowledges the

similarities between vision and audition. Fundamentally, the cochlear traveling wave

transforms temporal features in sound signals into spatial features on auditory nerve

fibers. This transformation allows such features to be extracted by spatially-distributed

neural networks that are similar to well-known ones in the visual system. Such net-

works consist of two main functional blocks: lateral inhibition for computing spatial

derivatives, and coincidence detection for computing correlations. Mathematically,

the former function is linear and requires adders and subtractors, while the latter

is nonlinear and requires multipliers. Several common auditory tasks can be easily

implemented using these functions, as listed below [268]:

• Features of a sound spectrum can be extracted by lateral inibition networks in

the cochlear nucleus. Such networks calculate spatial derivatives and enhance

edges and peaks in the spectrum.

• The periodicity, pitch, or missing fundamental in a sound can be perceived using

a matrix of coincidence detectors. The outputs of the matrix are instantaneous

cross-correlation functions, which are large when the inputs are harmonically

related.

• Sounds can be localized azimuthally by cross-correlating the spatial output

profiles of the two cochleas with a matrix of coincidence detectors. This process
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is known as stereausis. Interaural time delays result in instantaneous differences

in the spatial profiles which are detected by the matrix.

• Multiscale spatio-temporal profile analysis can be performed by neurons with

complex spatio-temporal response functions. A variety of such cells are found

in the auditory cortex.

2.4 Spectrum Analysis Algorithms

2.4.1 Swept-Sine Analyzers

Most commercial RF spectrum analyzers are of the swept-sine or superheterodyne

type. The basic structure of superheterodyne analyzers is shown in Figure 2-14, and

their operation is well summarized in [286]. A tunable local oscillator (LO) source is

mixed with the input signal after it has been attenuated and pre-filtered. The LO

frequency is swept over a frequency range equal to the frequency span covered on

the display. The output of the mixer (the IF) thus sweeps over the same frequency

range. This signal is passed through a variable gain IF amplifier and then bandpass

filtered by an IF filter. The bandwidth of the IF filter is variable and is known as

the resolution bandwidth (RBW) of the analyzer. The output of the RBW filter is

passed through a logarithmic compressor to reduce its dynamic range. Its envelope

is now detected, low pass filtered by a video filter and sent to the CRT display. The

bandwidth of the video filter is known as the video bandwidth (VBW) and is usually

(but not always) greater than the RBW.

In principle, the IF frequency could either be lower or higher than the highest

frequency expected at the input. In practice, a high-side IF is almost always used,

i.e. the IF frequency is always higher than the input frequency (see Figure 2-15).

If a low-side IF is used instead, the IF frequency will be equal to some allowable

input frequency. This signal will pass through the mixer independent of LO tuning

and produce a DC output. The result is a hole in the frequency response where the

output amplitude is not a function of the LO frequency. In addition, the allowable

122



Figure 2-14: Block diagram of a classic superheterodyne spectrum analyzer (figure
adapted from [286]).

input frequency range has to be limited by the input pre-selection filter. This is just

an image reject filter; it removes unwanted high frequency components that would

otherwise be down-converted into IF by the mixer.

We see that this spectrum analyzer architecture is similar in many ways to a

superheterodyne radio receiver. The main difference is that a tunable LO is used;

radio receivers usually have a fixed LO frequency. We should also note that most

high frequency spectrum analyzers, just like radio receivers, use two or more stages of

mixing and frequency down-conversion. The final IF frequency is usually a few MHz.

We are interested in determining the sweep time of a swept-tuned spectrum analyzer.

The way in which such analyzers trade-off frequency resolution and sweep time has

long been known [316]. The time spent by a spectral component (output from the

mixer) in the passband of the IF filter is given by

Time spent in passband = ST
RBW

B
(2.39)

where ST is the sweep time, RBW is the resolution bandwidth of the analyzer

and B, also called span, is the frequency range of the sweep. Also, the rise, or settling

time of a filter is inversely proportional to its bandwidth, so
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Figure 2-15: The LO must be tuned to fIF + fsig to produce a signal on the display
(figure adapted from [286]).

Rise time =
k

RBW
(2.40)

where k is a constant (in the 2-3 range for typical Gaussian analog IF filters)11.

In order for a spectral component to be displayed accurately, it must be present in

the filter passband for a time greater than the filter rise time. Thus we may equate

the two times in (2.39) and (2.40) to get the minimum possible sweep time

ST =
kB

(RBW )2 (2.41)

The swept-since analyzer resolves the spectrum (of bandwidth B) into frequency

“bins” of bandwidth RBW . Thus there are N = B/(RBW ) such bins. Equation

(2.41) can thus be rewritten as

11The product of the settling time and the bandwidth of an analog filter is constant. Fundamen-
tally time and bandwidth trade-off with each other. Since quantum mechanics says that energy is
proportional to frequency, the trade-off is ultimately a consequence of the time-energy uncertainty
principle ∆E∆t ≥ ~.
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ST =
kN2

B
(2.42)

We see that the sweep time scales as N2. However, commercial spectrum analyzers

today have greatly improved sweep times over that suggested by (2.42). The main

reasons are the use of digital IF filters and the FFT. Digital RBW filters typically

allow sweep speed increases by factors of 2-4. More dramatic speed increases occur

when an FFT is performed to directly obtain the spectrum of the IF signal, as shown

in Figure 2-16. This approach is only feasible over narrow frequency spans (10MHz

maximum is typical), but allows very narrow RBW’s without long sweep times. For

example, an FFT over a frequency span of 1KHz with a RBW of 10Hz effectively

analyzes the signal using 100 10Hz filters in parallel. If there was no overhead involved

in the digital processing, this would decrease sweep time by a factor of 100 over a

purely analog solution.

Figure 2-16: Typical all-digital IF architecture used in modern spectrum analyzers
(figure adapted from [286]).

The displayed noise floor of a conventional superheterodyne spectrum analyzer

depends on the RBW of the IF stage - as the RBW decreases, the noise floor decreases.

The displayed average noise level (DANL) is given by
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Noise F loor = NF × γkT (RBW ) (2.43)

where NF is the noise figure of the superheterodyne receiver in the spectrum

analyzer and γ > 1 is the ratio of the equivalent noise bandwidth of the IF filter

to the 3dB resolution bandwidth (RBW). A well designed modern commercial RF

spectrum analyzer may have NF ≈ 20dB. Typical values of γ for analog Gaussian

filters range from 1.05 to 1.13. The dynamic range of a spectrum analyzer is limited

by three factors: the broadband noise floor (sensitivity) of the system, the phase noise

of the local oscillator (LO) and the distortion and gain compression performance of

the input mixer.

2.4.2 Other Spectrum Analysis Algorithms

Figure 2-17 graphically illustrates three other types of spectrum analyzers, including

the cochlea. To first order, the cochlea can be modeled as a transmission line where

shunt admittances Y model sections of the BM, while the series impedances Z are

inductors modeling fluid coupling. The values of Y and Z per unit length increase

exponentially with position x [324, 328], i.e., ∝ exp(x/l), where l is a constant that

characterizes the length scale on which cochlear properties vary from the basal (x = 0)

to the apical end [328]. The transfer function TF (x, ω) of the cochlea is defined as the

normalized current that flows through Y (x) in response to a input tone with frequency

ω [328]. It models the velocity of the BM. At a given position, the magnitude of

the TF slowly increases with frequency, reaches its maximum value at a frequency

ωc(x) = ωc(0) exp(−x/l), known as the center frequency, and then rapidly decreases.

In order to model the continuous cochlear transmission line with a finite number of

components we spatially discretize it by lumping sections of line ∆x long into individ-

ual stages. We assume ∆x is constant; as a result the stages have exponentially-spaced

center frequencies. The number of stages per e-fold in center frequency is given by

Nnat =
l

∆x
(2.44)
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Figure 2-17: Comparison of the spectral analysis algorithms of (a) the FFT, (b) a
parallel bank of independent filters and (c) the cochlea. Blocks represent two-input
multiply-and-add units in the FFT, elementary filters in the filter bank and cochlear
stages in the cochlea. The ’triangular’ sliding windows in the cochlea illustrate that
cochlear transfer functions are created by contributions from approximately Nnat

filters basal to that output. Therefore only one new stage needs to be added to create
each new output.
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The exponentially-tapered structure of the cochlea ensures that the TF at any

position is produced by a “sliding window” of the approximately Nnat stages basal

of that position. Thus any cochlear TF is well approximated as a cascade of Nnat

identical stages [259]. Each TF is sharply peaked around its center frequency ωc, and

thus selects a frequency “bin” centered about ωc.

Consider the response of the cochlea to an input tone at ∆ω + ωc at a location

where the center frequency is ωc. We assume that |∆ω| � ωc, and that each cochlear

stage is a linear, second-order, all-pole filter with transfer function Hs and quality

factor Q. The magnitude of the cochlear transfer function is then given by

|TF (∆ωn)| ≈ |Hs (∆ωn)|Nnat

=
TF (0)[

1 + (2Q∆ωn)2]Nnat/2 (2.45)

where ∆ωn = ∆ω/ωc. Equation (2.45) can be used to define the effective quality

factor Qeff ≡ 1/ (2∆ωres) of the cochlear transfer function, where ∆ωres is the 3dB

bandwidth, i.e., the value of ∆ωn at which |TF (∆ωn)| = TF (0)/
√

2. We find that

Qeff is given by

Qeff =
Q√

21/Nnat − 1
(2.46)

When Nnat � 1 (as is usually the case), the equation above may be simplified to

Qeff ≈ Q

√
Nnat

ln(2)
(2.47)

Thus, in this case we get Qeff ∝
√
Nnat. To summarize: According to this

highly simplified analysis, the cochlea synthesizes a bank of bandpass filters with

exponentially-spaced center frequencies. There are Nnat filters per e-fold in center

frequency, and each filter has a quality factor of Qeff .

At values of ∆ωn that are significantly larger than 1, we find that |TF (∆ωn)| ∝

1/ (∆ωn)2Nnat . In other words, the frequency response rolls off asymptotically with a
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slope equal to that of a filter of order 2Nnat. The frequency resolution of the cochlea

is ultimately set by the sharpness of these high-frequency roll-off slopes, which, for

a given signal-to-noise ratio (SNR), sets the minimum frequency ratio that can be

discriminated by adjacent cochlear stages.

The analysis time τi of a spectrum analyzer is defined as the time taken to resolve

the i-th frequency bin. In the cochlea, the analysis time is equal to the sum of

the settling times of stages basal of i, which is approximately equal to QNnat/ωc(i).

Therefore the analysis time for the whole spectrum is on the order of QNnat cycles

of the lowest analyzed frequency. In addition, the total number of stages is given

by N = Nnat (ln(β) + 1), where β is the ratio of maximum and minimum analyzed

frequencies, and the ‘1’ accounts for the fact that the very first cochlear output needs

an extra Nnat stages basal to it. Thus, for a given value of β, we get N ∝ Nnat,

which implies that τi ∝ N . In order to make the shape of TF independent of i we

implement cochlear stages as frequency-scaled versions of a common prototype [177].

As a result, the hardware and power requirements of the cochlea also scale as the

total number of filters, i.e. N .

A parallel bank of constant-Q, independent filters can also be used to decompose a

signal into exponentially-spaced frequency bins. In order to get frequency resolution

similar to the cochlea each independent filter must have order 2Nnat. Such filters

can be formed by cascading Nnat second-order filter stages, as shown in Figure 2-17.

There are N such filters, which, unlike in the cochlea, are not shared between outputs.

Thus the hardware cost, as measured by the total number of second-order filter stages,

scales like N×Nnat ∝ N2 if β is fixed. However, the time taken for spectrum analysis

in the filter bank is given by the sum of the settling times of the Nnat sections in each

filter, which scales like N . One advantage of such independent filter banks over the

cochlea is flexibility. In a filter bank any given filter only participates in creating a

single transfer function. Thus any transfer function can be easily modified without

affecting the others. The traveling-wave structure of the cochlea results in filters being

reused, which dramatically improves hardware efficiency. However, this increase is

achieved at the cost of reduced flexibility. A single cochlear filter affects many transfer
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Table 2.2: Spectral analysis algorithms: Performance summary
Algorithm Analysis time Hardware cost
Swept-sine O (N2) O(1)

FFT O (N logN) O(N logN)
Filter bank O(N) O (N2)

Cochlea O(N) O(N)

functions, making individual transfer functions harder to tune.

The output bins of both the cochlea and parallel filter banks are available and

updated in parallel, which allows them to continuously monitor the whole spectrum.

This behavior is in contrast to most commercial RF spectrum analyzers, which are of

the swept-sine or super-heterodyne type. In this type of analyzer a single frequency

bin is sampled and updated at a given time, causing aliasing of non-stationary spec-

tra. The sampling rate scales as 1/N2, i.e., the time to analyze the whole spectrum

scales as N2 [316]. However, the hardware requirements for this type of analyzer are

independent of N , i.e., O(1).

The Fast Fourier Transform (FFT) uses constant-bandwidth frequency bins, unlike

the cochlea and constant-Q parallel filter banks. It takes O(N ln(N)) time (measured

by the number of multiply-and-add operations) and uses O(N ln(N)) hardware (mea-

sured by the number of multipliers and adders) to perform spectrum analysis. Thus,

it appears that the cochlear spectral analysis algorithm delivers the most efficient

trade-off between analysis time and hardware cost, as summarized in Table 2.2. It

exploits the scale-invariant nature of an exponential to achieve O(N) scaling in both

quantities.

2.4.3 Why an RF Cochlea?

The “RF cochlea” is an integrated circuit that uses ideas from the biological cochlea

to perform fast, parallel, low-power spectrum analysis at RF frequencies. We imple-

mented the RF cochlea on silicon using a standard CMOS process. It has several

appealing properties:

Algorithm: The cochlear algorithm uses a traveling-wave to synthesize a set
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of exponentially-spaced transfer functions with extremely high roll-off slopes, thus

performing real-time spectral analysis over a wide range of frequencies with scale-

independent resolution. Alternative algorithms use banks of parallel, independent

filters to obtain the same resolution. Transfer functions for the filters within such

auditory filter banks are usually derived from physiological data using the technique

of reverse correlation [51]. In this technique recordings from auditory nerve fibers are

used to find the average input waveforms that trigger action potentials. Such wave-

forms can be viewed as the impulse responses of cochlear transfer functions, which, as

noted previously, are sharply-tuned asymmetric bandpass filters. Analytical approx-

imations of these experimental responses include the well-known Gammatone, Gam-

machirp and One-Zero Gammatone filters (OZGF) [138]. The OZGF, in particular,

seems to strike a good balance between biological realism and ease of implementation

using analog hardware.

Traveling waves have two distinct advantages over such filter banks for performing

spectral analysis: improved temporal resolution and hardware reuse [256, 259]. The

broadband cochlear traveling wave stages settle quickly compared to the high-order,

high-Q filters used within filter banks, resulting in improved temporal resolution. In

addition, by using each stage multiple times to create closely-spaced transfer func-

tions, the cochlea significantly reduces hardware complexity and power consumption.

The analysis time and hardware requirements of the cochlea both scale as N , the

number of output frequency bins, which, as noted previously, is efficient compared to

both independent filter banks and the FFT.

Parallelism: The RF cochlea is similar to a filter bank in that it monitors the

complete spectrum in real time. Unlike the swept-sine spectrum analyzer, it does

not use a spectral scanning technique that monitors a given patch of spectrum only

at discrete intervals of time. This property makes the cochlea uniquely suitable for

capturing brief transient events, which may be important for surveillance applications.

Noise: The RF cochlea is likely to have significantly less noise, and thus higher

dynamic range, than silicon cochleas that have been implemented at audio frequen-

cies. This is because integrated passive inductors can be used for the RF cochlea. In
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contrast, audio frequency cochleas built in silicon must use active elements to synthe-

size inductors. Such active inductors consume power, suffer from limited linear range

and develop high levels of noise. The performance of active inductors is analyzed in

an appendix to this chapter.

Biological Inspiration: The RF cochlea is a “biologically inspired” system. In

this context, the phrase refers to systems that adapt interesting ideas from biology

in order to meet challenging engineering goals [254]. We should emphasize that our

goal is not to be bio-mimetic, or model the biological system accurately. As a result,

the RF cochlea does not aim to capture all, or even most, of the complex behavior of

the biological cochlea. Some of the features exhibited by biology that our RF cochlea

does try to replicate are

• Frequency-to-place transformation, i.e. spectral analysis

• Sharp roll-off slope after cutoff

• Extended dynamic range due to active amplification

• Distributed gain control using a compressive nonlinearity to large signal ampli-

tudes

• Broadening of the frequency-response curves as the input amplitude is increased

(Q control)

• Masking of adjacent frequencies due to gain and Q control

• Asymmetric attack and release to transient inputs

Finally, the RF cochlea is also an example of a complex analog signal processing

system that uses a smart algorithm to reduce power consumption and improve dy-

namic range. Building it presents us with an opportunity to explore the design and

control of large integrated mixed-signal systems with many interacting components.
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2.5 On-Chip Implementation

2.5.1 Performance Limits

In this section, we describe a target RF cochlea implementation that seems reasonable

based on what we have discussed so far. The ambient RF power spectrum between

30MHz and 3GHz was measured using a broadband antenna and commercial spectrum

analyzer, and is shown in Figure 2-18. This plot may be treated as representative of

the real-world environment that the RF cochlea will sense12. The figure shows that

FM and TV broadcast signals, which have historically been exempt from radiated

power limits, dwarf the rest of the spectrum.
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Figure 2-18: Typical radiated RF power profile. The data shown was measured with
a broadband antenna and commercial spectrum analyzer, and represents what one
may expect to receive indoors in typical urban areas.

In order to demonstrate the concept of the RF cochlea we would like to build one

that operates over at least one decade (10:1) in frequency. We also need to implement

12Data for this plot was obtained at the author’s lab bench, located within building 38 on the
M.I.T. campus.
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an additional half-octave at the beginning (high-frequency end) to allow the wave to

build up. Thus we need to implement about four octaves of filtering. We want the

working cochlea to end no lower than about 250MHz. In this way we avoid picking

up lower frequency TV signals (VHF channels 2-13, 54-216MHz) and broadcast FM

(88-108MHz). Otherwise weak high-frequency signals of greater interest to us would

be swamped by these strong low-frequency interferers.

On-chip implementation places further constraints on the design. Integrated in-

ductors and transformers are one limiting factor. In a constant-Q structure like the

cochlea the values of these passive components scale as 1/ωc, where ωc is the center

frequency. This type of scaling guarantees that the impedance at the center frequency

is invariant with position. In addition, the layout area of an inductor scales rougly

as the square of its value. Thus, the chip area, which is usually dominated by the

inductors, scales as 1/ω2
c . This sharp increase in chip area with decreasing ωc limits

the lowest operating frequency of the RF cochlea.

Parasitic inductances and capacitances within passive components scale roughly

with the value of the component. Therefore the relative effect of such parasitics

is relatively invariant with ωc. On the other hand, transistors are used to create

negative resistances. The values of these resistances are constant with ωc, and so

transistor sizes (and parasitics) do not scale with ωc. Thus, the relative effect of such

parasitics increases as the passive components become smaller with increasing ωc.

As a result, the highest operating frequency is limited by transistor parasitics, and

should improve with process scaling. However, such improvement cannot continue

indefinitely. Eventually the bandwidth of the package used to mechanically protect

the chip will limit the highest operating frequency.

We selected a 0.13µm CMOS process, because it provided a good compromise

between price, performance and availability. A practical upper limit for ωc in this

process appears to be approximately 10GHz. Therefore we propose a four-octave RF

cochlea design operating between 10GHz and 625MHz.
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2.5.2 Synthesizing the Cochlear Impedance

In this section, we describe how to synthesize circuits that provide the right organ

of Corti impedance functions (i.e., Zn and Zn1) for the bidirectional RF cochlea.

Network synthesis is in general a hard problem. Classical synthesis methods [292]

are typically iterative: circuit complexity is added in stages. However, much of the

difficulties inherent in these analytical techniques (such as Brune and ladder synthesis)

can be avoided by utilizing existing knowledge about the likely final form of the

synthesized circuit. In our case, for example, it is known that two coupled resonators

are a good model for the impedance of the organ of Corti [173].

Our synthesis approach is thus to pick a coupled-resonator topology, such as the

one shown in Figure 2-19, and then find the right component values. The circuit

in Figure 2-19 has two parallel resonant tanks which are coupled together by the

capacitance Cc and mutual inductance M . The input impedance Zin of this partic-

ular topology turns out to be particularly useful for modeling the normalized series

impedance Zn1 in the modified cochlear architecture shown in Figure 2-12(a). For

example, it has the right high frequency behavior: as ω → ∞, Zin looks capacitive.

In general, Zin for this circuit can be written in the normalized form

Zin (sn) =
s4
n + a3s

3
n + a2s

2
n + a1sn + a0

sn (s2
n + b1sn + b0)

(2.48)

where the coefficients an and bn (n = 0, 1, 2...) are functions of the element values

R1, L1, C1, Cc, M , R2, L2 and C2. The obvious way to complete the design is to

first analytically find the input impedance Zin in terms of the element values13. The

functions that relate element values to the coefficients of Zin (sn) are known once

this computation has been completed. Given the desired values of these coefficients

(obtained from the known impedance Zn1), a series of simultaneous equations can

now be written. Unfortunately, they are nonlinear and solving them to get component

values is extremely difficult. If the circuit topology being considered cannot produce

the desired immittance function, no solutions will exist, and either the topology or

13The result is usually a few pages of extremely nasty algebra. However, at least the equations
are linear and, in principle, can always be solved by hand to produce an unique solution.
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the function must be modified).

Zin

M

Cc

C1 L1 L2 C2

R2
R1

Figure 2-19: Coupled resonator circuit used for synthesizing the impedance Zn1.

Numerical optimization using a computer is a better way to solve this synthesis

problem. We have written a program in Mathematica (Wolfram Research, Cham-

paign, IL) that can solve for R1, L1, C1, Cc, M , R2, L2 and C2 given the nodal

equations of the circuit, target coefficients for Zin and certain constraints.

The routine accepts a given network topology as input and finds a set of compo-

nent values (R, L, C, M) that realizes the symbolically-specified, rational driving-

point impedance or transfer function. Since the network is assumed to be linear and

uses a finite number of lumped components, all driving-point impedances, transfer

impedances and transfer functions can be written as ratios of polynomials in s, the

frequency variable:

F (s) =
aZ
bP

(
sZ +

∑Z−1
i=0

ai
aZ
si

sP +
∑P−1

i=0
bi
bP
si

)
(2.49)

where P and Z are the number of poles and zeros, respectively. The optimization

routine minimizes an objective function E that quantifies differences between the

network function F (s) realized by the synthesized network and F0(s), the ideal or

desired function. The function E is given by

E =
Z−1∑
i=0

(
ai,0 − ai
ai,0 + ai

)2

+
P−1∑
i=0

(
bi,0 − bi
bi,0 + bi

)2

(2.50)

Since network synthesis is, in general, a one-to-many problem, the routine finds

one of an infinite set of possible solutions that minimize the value of E. However, the

set of possible solutions can be restricted by imposing additional constraints on the
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component values. For example, we restricted the sizes of the two inductors in the

transformer to be within 20% of each other. This condition allows similarly-sized coils

to be used to realize them, maximizing coupling k = M/
√
L1L2 for a given layout

area. We also typically used the following additional constraints:

• (L1, C1, Cc, L2, C2) > 0

• |M | < kmax
√
L1L2

where 0 < kmax < 1 is the maximum allowable coupling coefficient between the

inductors L1 and L2. It is easy to show that the target impedance function Zn1 is

not positive real, and cannot be realized as the driving-point immittance of a purely

passive network (the properties of impedance functions are described in an appendix

to this chapter). However, allowing negative (i.e., active) resistors removes this re-

striction and allows immittance functions that are not positive real to be synthesized.

As a result, we have not restricted the signs of R1 and R2. It turns out that only R1

actually needs to be negative in order to synthesize Zn1. Figure 2-20 shows simulated

spatial responses of the bidirectional RF cochlea when the synthesized circuit was

used to realize the series impedance Zn1. The normalized circuit parameters that

were used are: L1 = 0.88H, L2 = 0.61H, M = 0.50H, C1 = 0.52F, C2 = 0.60F,

CC = 2.62F, R1 = −1.3Ω and R2 = 1.79Ω. The resultant impedance closely matches

Zn1 with d = 0.1, µ = 0.76 and Q = 3.8.

Static compressive nonlinearities in R1 (the only active element in the design) will

cause |R1| to increase as the signal amplitude increases. Such nonlinearities occur

naturally in most implementations of negative resistors. Figure 2-20 shows how the

cochlea transfer functions change as R1 is varied about its nominal value Rn = −0.375.

We see that the peak gain of the cochlea decreases as |R1| increases. This means that

some of the gain control necessary to extend the dynamic range of the RF cochlea

shall occur automatically. Interestingly, the peak gain also decreases as |R1| decreases

below Rn. This is because one of the pairs of complex poles in Zin moves to the right

half plane as |R1| decreases far below its nominal value, thus destroying the collective
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amplification of the cochlea14.
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Figure 2-20: Simulated spatial responses of the bidirectional RF cochlea using the
synthesized circuit. Different values of R1 were used to simulate the effects of gain
compression.

2.5.3 Negative Resistance Elements

Minimizing the number of active circuit elements in the cochlea is important since

such elements are inherently nonlinear and add noise. In the previous section, we have

described how the cochlear impedance function Zn1 (sn) can be synthesized using the

minimum possible number of actives (a single negative resistor per section). We

must now design a circuit to generate this negative resistance. Fortunately, this is

relatively easy at RF frequencies. Several well-known circuits exist; these shall now

be discussed.

The cross-coupled differential pair (shown in Figure 2-21(a)) is among the simplest.

14The two complex pole pairs in Zn1 play the same role as the complex zero pairs in Zn from
Zweig’s original architecture: they are important for increasing gain through collective amplification.

138



During differential small-signal operation, the source node Vs may be considered an

incremental ground. The input admittance Yin is then given by

Yin(s) = −gm
2

+ s

(
Cgs
2

+ 2Cgd

)
(2.51)

where gm is the small-signal transconductance of each transistor, and Cgs and Cgd

are parasitic gate-source and gate-drain capacitances, respectively. This leads to the

equivalent circuit for Yin shown in Figure 2-21(a).

The next circuit that we consider is the common gate transistor with inductive

source degeneration shown in Figure 2-21(b) (DC biasing details have been omitted).

The input admittance Yin looking into the source is given by

Yin(s) = (gm + sCgs)
1 + s2LgCgd

1 + s2Lg (Cgs + Cgd)
(2.52)

The frequency response of Yin is therefore given by

Yin(ω) = (gm + ωCgs)
1− ω2LgCgd

1− ω2Lg (Cgs + Cgd)
(2.53)

From Eqn. 2.53, the real part of Yin(ω) is negative for 1/
√
Lg (Cgs + Cgd) < ω <

1/
√
LgCgd, and positive otherwise. Therefore this circuit can be used to implement

a negative resistance over a range of frequencies.

It is well known that capacitively loaded source followers frequently suffer from

poor stability. This is because the input impedance of the circuit has a negative real

part for certain frequencies. This effect can be utilized to create negative resistances.

Consider the source follower shown in Figure 2-21(c). The input admittance Yin

looking into the gate is given by

Yin(s) =
sgmCgd + s2 [(Cgd + Cgs)CL + CgdCgs]

gm + sCgs
(2.54)

The frequency response Yin(ω) for the circuit is therefore
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Yin(ω) =

−ω2 (Cgd + Cgs)CL + ω

(
gmCgd + ω2Cgs

(Cgs+Cgd)CL+CgdCgs

gm

)
√
g2
m + ω2C2

gs

(2.55)

Eqn. 2.55 shows that this circuit can also provide negative resistance. The final

circuit that we want to discuss uses coupled inductors to synthesize a negative resistor

[276]. The basic idea is to increase the Q of one inductor by coupling in energy from

a secondary, coupled inductor. Consider the circuit shown in Figure 2-21(d). The

current in the secondary, i2 is designed to be an amplified and phase-shifted version

of the primary current i1, i.e., i2/i1 = A exp(jθ). The input impedance Zin looking

into the primary is given by

Zin = R1 + ωL1 + ωM
i2
i1
≡ Reff + ωLeff (2.56)

where the effective input resistance and inductance Reff and Leff are given by

Reff = R1 − ωMA sin θ and Leff = L1 + MA cos θ. By choosing suitable values of

A and θ (close to π/2, for example), we can make Reff negative over a certain range

of frequencies. The upper end of this range is determined by parasitic capacitances,

which were not included in this analysis. Of the four negative-resistance circuits

we have discussed so far, the cross-coupled differential pair appears to be the most

promising. It is the only circuit where the negative resistance is at least nominally

independent of the operating frequency. This makes the design of a broadband system

like the cochlea easier. The linear range of this circuit is the same as a normal

differential pair, and is given by VL = Ibias/gm. Thus, the negative resistance seen

across the terminals is approximately independent of the differential voltage between

them as long as this voltage is less than VL.
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Figure 2-21: Simple circuits that generate negative resistance, i.e., < [Zin] < 0 for
some frequencies: (a) cross-coupled differential pair, (b) inductively gate-degenerated
transistor, (c) capacitively-loaded source follower and (d) coupled inductors with feed-
back.

2.6 Theoretical Analysis

2.6.1 Transfer Functions

In this section we theoretically analyze the behavior of the bidirectional cochlea. We

wrote a MATLAB program that can evaluate spatial responses in sinusoidal steady

state of discrete (lumped) transmission lines with any number of stages and arbitrary

series and shunt impedances. The only assumption we made was linearity. This pro-

gram can be used to check the accuracy of the WKB solution, and also design the

bidirectional cochlea. For example, we can study the effects of choosing different ad-

mittance functions, i.e., changing the functional form of Yn in Zweig’s original model.

The program uses the generic finite-difference equations for voltage and current on a
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lumped transmission line:

I(n+ 1) = I(n)− V (n)Y (n)

V (n+ 1) = V (n)− I(n+ 1)Z(n)

Vout(n) = V (n+ 1)− V (n) (2.57)

where V (n), I(n) are the line voltage and current at the n-th stage, Vout(n) is the

differential voltage across the n-th stage (the discrete analog of dV/dx), and Z(n)

and Y (n) are the series impedance and shunt admittance within this stage. This set

of equations can be solved iteratively if the initial conditions, i.e., V (0) and I(0), are

known. However, since the system is assumed to be linear, only ratios of voltages

and currents (transfer functions) are important, not their actual values. Therefore, in

practice it is sufficient if the ratio V (0)/I(0) is known, i.e., set by a known impedance.

The impedance at any position n, denoted by Zin(n), can also be found iteratively.

First, we decompose the transmission line into two segments, one extending from

location n to the apex (low-frequency end), and the other from n to the base (input,

or high-frequency end). The input impedances of these segments are given by Zin+(n)

and Zin−(n), respectively, and can be found using the following equations, which are

easily derived:

Zin+(n+ 1) = Z(n) +

(
Y (n) +

1

Zin+(n)

)−1

Zin−(n− 1) =

(
Y (n− 1) +

1

Z(n− 1) + Zin−(n)

)−1

(2.58)

The equations above can be solved when the termination impedances at the base

and apex of the cochlea, i.e., Zin−(1) and Zin+(N), are known, where N is the total

number of stages. The impedance at n is simply Zin(n) = Zin−(n)||Zin+(n). The

input impedance of the entire cochlea, i.e., Zin+(1), which we shall denote simply by

Zin for convenience, is usually set to 50Ω for compatibility with RF test equipment.
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Also, (2.14) predicts that Zin = Z0

√
Qline. Thus, Z0 is fixed once Qline is known.

Figure 2-22 shows the simulated input impedance as a function of frequency for

various values of Qline. We see that it is real and equal to the designed value of 50Ω

at most frequencies. However, frequencies close to ω(0), the center frequency of the

first stage, see a larger impedance. This behavior is expected: it is how voltage gain

is produced in the cochlea. In fact, we see that the maximum value attained by the

real part of Zin for such frequencies increases with Qline, which suggests that the peak

gain of the cochlear transfer functions should increase with Qline.

In addition, frequencies around 0.03 × ω(0), which is the center frequency of the

apical end of the cochlea, see an input impedance that varies rapidly with frequency.

Notice that Zin at such frequencies can have a negative real part, which is always an

indicator of potential instability. This behavior is not limited to our cochlear model,

and in fact is a problem for the biological cochlea as well. It is caused by the fact

that simple apical termination networks cannot provide a good impedance match to

Zin−(N) when it changes rapidly with frequency, i.e., at frequencies with best places

close to the apex.

Figure 2-23 shows simulated cochlear transfer functions at two different locations

(n = Nnat and n = 2Nnat) for different values of Nnat. We see that the peak gains

of the transfer functions are invariant with Nnat, while the center frequencies and

bandwidths decrease slightly. This behavior differs from the WKB solution, according

to which the peak gain should increase with Nnat (see Figure 2-10). This discrepancy

is not surprising, since the WKB approximation breaks down around the peak, as

mentioned previously. More importantly, the high frequency roll-off slope of the

transfer functions is 20NnatdB/decade, i.e., equal to that of a filter of order Nnat. This

behavior agrees with that predicted by the WKB solution. We show later that, for

a given signal-to-noise ratio (SNR), the frequency resolution of the cochlea improves

as the roll-off slope increases, i.e., as Nnat increases. In addition, we see that coarse

spatial discretization (very low values of Nnat) leads to transfer functions that are

not smooth functions of frequency. Both effects limit the minimum allowable value

of Nnat; typical values range from 12 to 24.
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Figure 2-22: Simulated input impedance of the bidirectional cochlea as a function of
frequency at various values of Qline. The following parameters were used to draw this
plot: d = 0.15, µ = 0.76, Q = 3.8 and Nnat = 24.
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Figure 2-24: Peak voltage gain and quality factor of the bidirectional cochlea transfer
functions as a function of position n along the transmission line. The plots are drawn
for various values of Qline. The following parameters were used to draw this plot:
d = 0.15, µ = 0.76, Q = 3.8 and Nnat = 24.

Figure 2-24 shows the peak voltage gain G(n) and 3dB quality factor Q3dB(n) of

the cochlear transfer functions as a function of position n along the transmission line

for various values of Qline. We see that both peak gain and quality factor increase

with n before saturating to constant values for n > 0.3Nnat. In addition, we see that

increasing Qline causes both quantities to increase monotonically for all values of n.

These plots were drawn by changing Qline and Z0 such that the input impedance

Zin = Z0

√
Qline remained constant at 50Ω. The maximum allowable value of Qline is

set by increased inter-stage reflections (see equation (2.25)) and the eventual onset of

instability.

Figure 2-25 shows the results of averaging G(n) and Q3dB(n) along the trans-

mission line for various values of Qline and Nnat. The functions were averaged for

values of n between Nnat/2 and N −Nnat/2 to allow the wave amplitude to build up,

and also eliminate the effects of an imperfect apical termination. The figures show

that average peak gain G(n) and quality factor Q3dB(n) are both strongly increasing
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functions of Qline, and weakly increasing functions of Nnat. In fact, the surfaces in

Figure 2-25 show that G(n) ∝
√
Qline. Roughly speaking, the peak voltage gain G(n)

is set by the ratio of the impedances seen by an input tone at its best place and at

the input of the cochlea. The former is set by the series impedance Z, whose value

scales as Z0Qline, while the latter is equal to Zin. As a result, we get

G(n) = α

(
Z0Qline

Zin

)
=

Z0Qline

Z0

√
Qline

=
√
Qline (2.59)

where α depends on d, µ, Q and Nnat. Till now we have assumed values for the

parameters d, µ and Q that provide a good fit to experimental data from the biological

cochlea [270,323,328]. Roughly speaking, d controls the peak magnitude of Yn, while

µ controls the group delay. As d decreases the poles of Yn become less damped and

its peak value increases. On the other hand, as µ decreases the pair of zeros within Yn

moves further away from the poles, increasing the positive phase “bump” at ωn < 1,

and hence the group delay. The parameter Q has little effect on either peak value or

group delay. In practice its value can be varied over a wide range without significantly

affecting performance.

We see that the values of d and µ are largely determined if we need to fit gain

and group delay of the cochlear transfer functions to experimental data. However,

we are not constrained in this way. Figure 2-25 shows the average peak gain G(n) of

the cochlear transfer functions as a function of d and µ for a fixed value of Q. We

see that the gain is maximized along a well-defined path (a straight line) in the d–µ

plane. A similar plot for Q3dB shows that quality factor is also maximized along the

same line. This behavior persists as Qline and Nnat are varied. We found that Qline

changed the slope of this high-gain line, while Nnat had little effect on it. Thus, the

high-gain line in Figure 2-26 can be expressed by the equation µ+md = c, where the

slope m depends on Qline, while the intercept c ≈ 1.05 does not. Figure 2-27 shows

how m varies as a function of Qline for two different values of Nnat. We see that m

decreases as Qline increases, and is independent of Nnat to within measurement error.

The peak magnitude of Yn, which controls the peak gain of the cochlear transfer
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bidirectional cochlea transfer functions as a function of Qline and Nnat. The following
parameters were used to draw this plot: d = 0.15, µ = 0.76, Q = 3.8 and Nnat = 24.
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functions, decreases when d or µ increase, and vice-versa. Thus, it seems plausible

that keeping a linear combination µ + md of the two parameters constant might

also keep the transfer function gain constant, in general agreement with Figure 2-26.

However, the behavior shown in the figure cannot be completely explained by the

properties of Yn alone, since it also depends on Qline, which is purely a property of

the transmission line.

An important practical issue with the bidirectional cochlea is the presence of low-

frequency losses in the series impedances and shunt admittances, i.e., Zn1 and Yn1,

respectively. Such losses occur because parasitic resistances dominate the value of Zn1

and Yn1 for sn � 1. For example, Zn1 (sn = 0) = Rs1, the parasitic resistance in series

with the inductor L1 (see Figure 2-19). A non-zero value of Rs1 is unavoidable in any

real implementation of L1. Similarly, the admittance of Yn1 at DC is equal to any

parasitic conductance Gp1 = 1/Rp1 in parallel with it. These parasitic components

make the transmission line look like a network of resistors at low frequencies. As a

result, such input frequencies are attenuated before they can reach their best place.

Such losses can be modeled by defining the effective quality factorsQz = QlineZ0/Rs1

and Qy = Rp1/Z0 of Zn1 and Yn1, respectively, and modifying Zn1 and Yn1 as follows:

Zn1 (sn) = Qline
(sn + 1/Qz) (s2

n + µsn/Q+ µ2)

µ2 (s2
n + 2dsn + 1)2

Yn1 (sn) = (sn + 1/Qy) (2.60)

Figure 2-28 shows the spatial transfer function of the bidirectional cochlea to a

single input frequency for various values of Qz. Typical values of Qz and Qy extracted

from electromagnetic simulations (and used for SPICE simulations) were 5 and 30,

respectively. As a result, low-frequency losses in the series impedances, which get

worse as Qz decreases, can significantly reduce the peak gain of the cochlear transfer

functions.
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Figure 2-28: Spatial transfer function of the bidirectional cochlea to a single input
frequency at various values of the low-frequency line loss parameter Qz. Parameters
used to draw this plot were d = 0.1, µ = 0.75, Q = 3.8, Qy = 100, Qline = 0.05 and
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2.6.2 Noise

A simplified circuit of a single cochlear stage, useful for noise calculations, is shown in

Figure 2-29. Here C3 represents the local shunt admittance Y (n) (denoted by C1(x) in

Figure 2-12), while the other components comprise the local series impedance Z(n).

The nodes on voltages n, n − 1 and m are denoted by v(n), v(n − 1) and v(m),

respectively. Nodes n and n − 1 are shared with adjacent stages, while node m is

internal to Z(n). The input impedances of the sections of transmission line basal and

apical to stage n are denoted by Zin−(n− 1) and Zin+(n), respectively. We can find

the values of Zin−(n− 1) and Zin+(n) iteratively, as shown in (2.58).

Only the resistors R1 and R2 generate noise, as shown by the noise current sources,

with PSD in1 and in2, connected across them. However, R1 is an active, negative re-

sistor, and contains additional noise sources, such as transistors that act as current

sources or sinks. The effects of such noisy devices have been lumped into the addi-

tional noise current source in3. This source also models the noise produced by any

resistance in parallel with C3. Since Zin−(n−1), Zin+(n) and the values of the various
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Figure 2-29: Simplified equivalent circuit of a bidirectional cochlea stage used for
noise calculations.

resistors, inductors and capacitors in Figure 2-29 are known, we can analytically find

transfer impedances from the noise sources to the nodes n and n − 1. The transfer

impedance Zj,i is defined the ratio of the voltage produced at node j in a network

when a current is fed into node i. The two nodes may be identical, in which case

the transfer impedance is known as the driving-point impedance. For example, the

driving-point impedance at node n is

Zn,n = Zin+(n)||Zin−(n) (2.61)

By using superposition, we can find the PSD of the total noise voltage produced

at node n. The result is

v2
noise,n = i2n1 |Zn,n−1 − Zn,n|2 + i2n2 |Zn,m − Zn,n|

2 + i2n3 |Zn,n|
2 (2.62)

We can now use the discrete transmission line equations shown in (2.57) to find

transfer functions TFj,n(ω). Each transfer function is defined as the voltage produced

at node j in response to an input source placed at node n, divided by the voltage at

node n. Normal cochlear transfer functions are given by TFj,1(ω), i.e., consist of the
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subset where the input source is placed at the first node (n = 1) of the transmission

line. In the current calculation the voltage at node n is the noise voltage vnoise,n, so

we have

v2
out,j,n = v2

noise,n

[
|TFj,n(ω)|2 − |TFj−1,n(ω)|2

]
(2.63)

where vout,j,n is the output noise of the j-th stage due to noise produced by the n-

th stage. Here the output nose of stage j is defined as the differential noise voltage

between transmission line nodes j and j−1. The PSD of the total noise voltage across

the j-th stage is the superposition of noise from all stages, i.e., for i = 1, 2, ..., N , where

N is the total number of stages. Thus, the PSD of the j-th output of the cochlea is

given by

v2
out,j =

N∑
n=1

v2
out,j,n (2.64)

=
N∑
n=1

v2
noise,n

[
|TFj,n(ω)|2 − |TFj−1,n(ω)|2

]
where vnoise,n is given by (2.62). Finally, the total noise voltage of the n-th stage is

found by integrating the relevant PSD over all frequencies:

v2
total,n =

∫ ∞
0

v2
out,n(f)df (2.65)

We see that vtotal,n can be calculated if the noise current PSDs i2n1, i2n2 and i2n3 are

known. We will ignore flicker noise, because its effects are usually negligible over our

operating frequency range. Therefore the noise current PSDs are white, and each is

equal to 4kTγgm. Here gm is the small-signal transconductance of a noisy transistor,

or the conductance of a resistor. Also, γ is an excess noise factor that accounts for

the presence of multiple noisy devices. Figure 2-30 shows the results of calculating

vtotal,n for a maximum operating frequency of ω(0) = 2π× 10GHz and various values

of d. The total number of cochlear stages was N = 3Nnat.
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Figure 2-30: Output noise voltages of the bidirectional cochlea at various values of
d. Theoretical values are shown in blue, while the result of a SPICE simulation of
the integrated circuit implementation is shown in red. Parameters used to draw the
theoretical curves were µ = 0.76, Q = 3.8, Qy = 30, Qz = 5, Qline = 0.05 and
Nnat = 20.

Noise in the cochlea tends to increase with n because more noisy stages contribute.

However, the bandwidth of the stages decreases with increasing n, which tends to re-

duce noise. These opposing effects, which are present in all cochlear models, compete

with each other. The results are shown in Figure 2-30: The total integrated noise

increases with n, reaches a peak and then decreases for all values of d. The peak gain

of the cochlear transfer functions, denoted by G(n), increases as d decreases and ap-

proaches the high-gain line shown in Figure 2-26. Since the signal and noise transfer

functions of the cochlea are similar, the result is higher levels of output noise with

decreasing values of d. Figure 2-30 also shows the results of a SPICE simulation of

the bidirectional cochlea implemented on-chip, which had d ≈ 0.15, showing that it

agrees with the theoretical calculations.

Figure 2-31 shows the minimum detectable signal, denoted by vmds, of the bidi-

rectional cochlea as a function of position n for various values of d. The minimum

detectable signal is defined as the smallest input amplitude that crosses the output
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Figure 2-31: Minimum detectable signal of the bidirectional cochlea at various values
of d. The same parameter values as in Figure 2-30 were used to draw this plot.

noise floor and can be detected by the cochlea. It is given by vmds(n) = vtotal,n/G(n).

We see that vmds(n) is relatively constant with n for n > 0.5Nnat and n < N−0.5Nnat,

i.e., away from the basal and apical terminations. In addition, we see that vmds is rela-

tively constant with d, indicating that the signal and noise transfer functions roughly

track each other. The average value of vmds is approximately 200µV (-64dBm across

a 50Ω load) with typical values of Qy = 30 and Qz = 5. This number improves to ap-

proximately 150µV (-66dBm) if low-frequency loss is ignored (Qy � 1 and Qz � 1).

2.7 Circuit Design

All circuits were designed in the 8-metal UMC 0.13µm standard CMOS process. A

network that realized Zn1 was synthesized by a numerical optimization routine writ-

ten using Mathematica. The routine, which was described earlier, produces element

values, which must be converted into layout geometries for on-chip implementation.

This process is known as physical design.

Optimized physical design of the magnetic components (inductors and transform-
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ers) was important for realizing the whole system. Unlike resistors and capacitors,

inductors are not standard integrated circuit components, and no models were avail-

able. Normally inductors are designed by hand. Typically, an initial geometry based

on an analytical formula is iteratively refined by using electromagnetic simulations.

While this approach is sufficient for typical RF designs that use a small number of

transformers, it rapidly becomes tedious when this number increases. In addition, the

mapping from transformer values to geometry is one-to-many, so the final geometry

may not be optimal. We decided to automate this process as much as possible.

We used an analytical formula that predicts the inductance value, L, as a function

of geometry [204] and derived the folllowing formula for calculating the DC series

resistance Rs,DC of a N -turn spiral:

Rs,DC =
( ρ
wt

)
NM tan (π/M) davg (2.66)

where ρ is the resistivity of the metal layer, t its thickness, and w the width of each

turn. In addition, each turn is assumed to consist of a regular M -sided polygon, dout

and din are the diameters of the circles that inscribe the outer and inner edges of the

spiral, respectively, and davg = (dout + din) /2. It is worth noting that, as one might

expect, M tan (π/M)→ π as M →∞ and the polygonal coil becomes circular. The

AC resistance can be found by taking the skin effect into account [158]:

Rs(ω) ≈ Rs,DC

(
η

1− e−η

)
(2.67)

where η ≡ t/δ, and δ is the skin depth. We assumed that ωc, the center frequency of

the stage, was much lower than the self-resonant frequency of the coil. Thus we were

able to analytically find the quality factor Qc = ωcL/Rs of the inductor at ωc.

We then wrote a numerical optimization routine using Mathematica to find the

optimal coil geometry. The routine finds the geometry that produces the required

value of L while minimizing layout area and also ensuring that Qc is higher than

Qmin, a constant. Square coils (M = 4) were used because they have the largest

inductance for a given layout area.
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Planar integrated transformers can be wound in two main ways [170]. In Frlan

windings, the two coils are interleaved, i.e., wound within each other on the same

metal layer. In Finlay windings, the two coils are wound on different metal layers and

stacked vertically. We used the Finlay winding technique because of two advantages.

Firstly, it results in higher coupling factors. Secondly, because each coil can be more

tightly wound than with Frlan windings, we get greater inductance for the same

layout area. Finlay windings do result in higher capacitance between the coils, which

lowers the self-resonance frequency, but since this capacitance can be absorbed into

our synthesized networks it is not a real problem. The two coils were therefore laid

out on different metal layers. In certain cases several metal layers electrically shorted

to each other via numerous vias were used to realize each coil. By reducing the series

resistance this technique increases the quality factor of the coil. The centers of the

two coils were offset from each other, and the amount of offset was varied to control

the value of the coupling factor k. This process was repeated for every stage.

A planar electromagnetic simulator (ASITIC, written by Ali Niknejad15) was then

used to create broadband frequency-domain (two-port S-parameter) models for each

transformer. A model-order reduction routine available in Cadence was used to create

lumped equivalent circuit models, suitable for time-domain simulations, from the

frequency-domain models. Once the simulated performance was judged satisfactory

a program written in Matlab was used to automatically generate on-chip layouts (in

CIF format) for each transformer.

Capacitors were either of the vertical-field, parallel-plate type or the interleaved

horizontal/fringing-field type. In this process the latter has higher capacitance density

(2fF/µm2 versus 1fF/µm2), which is desirable for minimizing chip area, but also

somewhat higher parasitic capacitances to the substrate (approximately 2% versus

1%). When linearity was not critical and one terminal was at AC ground capacitors

were implemented using MOSFET gate oxide because of the high capacitance density

(12fF/µm2). Bypass capacitors provide one example.

15ASITIC may be downloaded for free from http://rfic.eecs.berkeley.edu/ niknejad/asitic.html.
However, active program development appears to have stopped.
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For the realistic parameter values mentioned in the previous section (d = 0.1,

µ = 0.76 and Q = 3.8), the series impedance Zn1 is not physically realizable using

only passive elements. In fact, at least two resistances are required to synthesize

Zn1, say R1, must be negative to pump energy into the traveling wave in regions

basal of the peak and increase gain. The second resistance R2 must be positive for

overall stability. Our basic stage design is shown in Figure 2-32. Each Zn1 consists of

two resonators that are coupled both inductively and capacitively, and R1 is an active

negative resistor. Cross-coupled NMOS transistors connected between adjacent nodes

were used to the generate R1.

At positions far before the peak the negative resistor R1 cannot pump energy

into the traveling wave, since Zn1 is dominated by the inductor L2. Any parasitic

series resistance of L2 now absorbs energy from the wave, causing it to attenuate.

An additional active negative resistance, RLL in parallel with the shunt admittance

C3, is used to cancel such attenuation. The line was terminated at the low-frequency

end by a parallel RC circuit. The element values Rt = 40Ω and Ct = 1.8pF were

designed as described in the previous section to provide a impedance-matched, dissi-

pative load, thereby minimizing reflections. The input impedance Zin of the cochlea

(approximately real within the operating frequency range) was designed to be 50Ω

for interfacing with test equipment.

A more detailed circuit diagram of a single bidirectional cochlea stage is shown

in Figure 2-34. A cross-coupled pair of NMOS transistors, M1 and M2, creates the

negative resistance R1. The bias current IB through the pair is set by the control

voltage VB. The value of the negative resistance is controlled by varying VB. The DC

voltage on the line (i.e., the DC value of V1 and V2) is set by VP , which in turn is set

by a low-frequency negative feedback loop, shown in Figure 2-33, that senses the line

voltage and compares it with a reference voltage VREF that is normally set around

Vdd/2.

The impedance produced by the cross-coupled pair between V1 and V2 consists

of a resistance R1 = −2/gm in parallel with a capacitance Cpar = Cgs/2 + 2Cgd,

where gm, the small signal transconductance, is an increasing function of IB, and Cgs
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and Cgd are the gate-source and gate-drain capacitances, respectively. An important

advantage of this topology is that Cpar can be absorbed into C1.

The line loss cancelation network is a single-ended negative resistor RLL that is

created in two stages. The voltage at V2 is first amplified by a common-source ampli-

fier. The output of this amplifier controls a current source, M4, that can sink or source

current from V2. Because of the sign inversion produced by the amplifier, M4 pushes

current into the node when the voltage on it rises (and vice-versa) thereby creating

a negative resistance of value −1/ (g2
m3RB), where gm3 is the transconductance of M3

and M4 (assumed equal). The value of gm3, and thus RLL, is set by the bias voltage

VB2. The value of CB is made large enough for the pole frequency gm3/CB to be much

smaller than the center frequency at the location of interest, allowing the amplifier

to reject the DC value of V1 and only respond to RF (i.e., have a highpass charac-

teristic). Without this loss-cancelation network, low frequencies would be attenuated

by a factor α = 1− Rs2/ (Rs2 + Zin) at every stage, where Rs1 is the parasitic series

resistance of L2 (not drawn). With Zin = 50Ω by design and a typical Rs2 = 5Ω,

signals that peak at the end of the cochlea (after 50 stages) would be attenuated by

a factor of approximately α50 = 10−2 (-40dB) before reaching the apex.

A complete cochlear stage, including readout circuits, is shown in Figure 2-35. The

output voltages Vout(n) are pre-amplified before their envelopes are detected and read

out. Each pre-amplifier is a two stage resistively-loaded, common source, differential

amplifier, with inductive shunt-peaking in the early stages to increase the bandwidth

and a voltage gain of approximately Apreamp = 6.3(16dB). Their main purpose was

to reduce the input-referred dead-zone of the envelope detector (ED), which is shown

in Figure 2-36.

The ED can be modelled as a full-wave rectifier followed by a low-pass filter. It

rectifies the differential RF voltage vRF = (RF+)− (RF−) and filters the result with

a bandwidth BWED. The resistor R1 and capacitor C1 act as a high-pass filter for

the RF input. The values of R1 and C1 are chosen such that 1/ (2πτ1)� fRF , where

τ1 = R1C1 and fRF is the RF frequency. In this case the entire differential RF voltage

appears between the gate and source of each PMOS transistor, which act as diodes.
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Figure 2-34: A more detailed circuit diagram of a single bidirectional cochlea stage.
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We define gm = IL/ (φT/κ) as the transconductance of these transistors, where φT is

the thermal voltage and κ is the subthreshold constant. The impedance at the output

node is given by

ZOUT =
1

gm

[
sτ1 + 1

τ1τ2s2 + (C1/CL + 1) τ2s+ 1

]
≈ 1

gm

[
1

τEDs+ 1

]
(2.68)

where τ2 = CL/gm, τED = (C1/CL + 1) τ2, and the approximation is valid when

τ1 � τED. Thus the output of the ED behaves as a first-order low-pass filter with a

bandwidth that is given by

BWED =
1

2πτED
=

gm
2π (C1 + CL)

=
IL

2π (φT/κ) (C1 + CL)
(2.69)

We used the following values in our design: R1 = 10kΩ, C1 = 250fF, resulting in

1/ (2πτ1) = 64MHz, and CL = 1.2pF. The value of IL can be set by the user. For a

typical value of IL = 2µA, we get BWED = 6.3MHz.

The output voltage is proportional to VRF , the amplitude of the RF input voltage.

To be precise, we get vOUT ≈ (VDC + VRF − VD), where VDC is the value of vOUT for

VRF < VD, and VD is the dead-zone of the rectifier16. Because the rectifier is a passive

MOS diode, VD ≈ φt/κ. Pre-amplification reduces the input-referred dead-zone by

a factor of Apreamp. Thus, the amplitude of the smallest RF voltage that can be

detected is approximately (φT/κ) /Apreamp ≈ 5.5mV.

Finally, because of a shortage of pins, output voltages from the ED present inside

every stage were buffered using source-followers and time-multiplexed onto a single

output bus using a token-passing circuit, or scanner. This circuitry is represented by

the analog multiplexer block shown in Figure 2-35.

16This analysis assumes a “hard” dead-zone, i.e., that vOUT − VDC = 0 for VRF < VD. In reality
vOUT − VDC approaches zero quadratically as VRF decreases below VD, allowing signals somewhat
smaller than VD to be detected. See Appendix A for a more detailed analysis.
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Figure 2-37: Die photograph of the bidirectional RF cochlea chip.

2.8 Measurements

A die photograph of the bidirectional RF cochlea chip is shown in Figure 2-37. The

transmission line was arranged such that it spiralled inward from the input termi-

nal to save space, in a manner reminiscent of the biological cochlea. The chip was

wirebonded to a printed circuit board for testing. Output voltages were digitized

and captured using a digital oscilloscope and custom software written in Labview, a

commercially available software package from National Instruments. Further post-

processing was performed using Matlab. The measurement floor after processing is

limited by quantization noise from the oscilloscope. At a scan rate of 10kHz, we

estimate this floor to be approximately 35µV (rms), setting a displayed average noise

envelope of 100µV (-80dBV). This value is significantly lower than the measured noise

level, which is set by output noise from the circuit.

Fig. 2-38 shows the measured input reflection coefficient, |S11|, of the bidirectional

cochlea chip at various input power levels. The matching bandwidth, defined as the

frequency range over which |S11| < −8dB, was DC to 7.2GHz. Matching at high

frequencies was limited by chip packaging. Packages attenuate high frequency signals

because of bond-wire inductances and bond-pad capacitances, which together form

low-pass filters.
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Figure 2-38: Measured input reflection coefficients of the bidirectional cochlea chip
at various input power levels.

Figure 2-39 shows measured spatial responses of the bidirectional cochlea to loga-

rithmically spaced input frequencies varying between 1GHz and 8GHz, with the input

power level fixed at -10dBm. Figure 2-40 shows how the spatial response at various

frequencies changes if the value of the negative resistance, R1 is changed by varying

the bias voltage VB. As VB is increased the peak gain increases. For very high values

of VB instabilities develop at several locations and propagate in both directions along

the line. The oscillation frequencies were measured using an external spectrum ana-

lyzer at the input terminal for various values of VB. This data is shown in Figure 2-41.

Here the color bar encodes the power level of each output frequency relative to the

spectrum analyzer’s measurement floor, which was approximately -70dBm.

The heights of the spatial response peaks can be increased by decreasing the value

of R1. We can do this by increasing IB, the bias current through the transistors

that create R1. For very high bias currents multiple instabilities develop, resulting

in oscillations that travel in both directions along the line and can be detected at

the input terminal. Figure 2-42 is a histogram that shows that the ratio of adjacent
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Figure 2-39: Spatial responses of the bidirectional RF cochlea to logarithmically
spaced input frequencies varying between 1GHz and 8GHz. The input power level
was fixed at -10dBm.
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Figure 2-40: Spatial responses of the bidirectional RF cochlea at various frequencies
obtained while varying the value of the active element within each stage. The bias
voltage VB that sets this negative resistance R1 was increased from 0.56V to 0.67V
in 10mV steps.
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Figure 2-41: Output spectrum of the bidirectional RF cochlea as a function of VB, the
bias voltage that controls the value of the negative resistance R1 within each stage.
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output frequencies fi+1 and fi is constrained to be exp (n/Nnat), where n is an integer

(n = 1 and 2 are shown). Only peaks present in Figure 2-41 at a level 20dB or more

above the measurement floor of the spectrum analyzer were used to draw this figure.

The simplest explanation for this behavior is that individual stages act as oscillators

with oscillation frequencies close to the local resonant frequency ωc(n), which scales

as exp (−n/Nnat). However, the output frequencies vary between 400MHz and 8GHz,

larger than the available range of ωc(n). In addition, if peaks lower than 20dB are in-

cluded, several additional frequencies are revealed that do not scale as exp (−n/Nnat),

as shown in Figure 2-43, where the threshold has been relaxed to 10dB. We there-

fore suggest an additional mechanism to explain these observations: standing-wave

modes that develop in the “cavity” with partially-reflecting walls that is formed be-

tween a spatial location n and any impedance discontinuity at the input terminal.

This mechanism is similar to a laser, with the transmission line acting as the active

gain medium, and may also cause spontaneous otoacoustic emissions in the biological

cochlea [271]. The displayed average noise level from the spectrum analyzer itself was

only ±1dB (peak-to-peak), so even at the lower threshold setting the frequencies be-

ing detected are being generated by the cochlea and are not the result of instrument

noise.

When operating as an “RF laser” the cochlea can be periodically turned on and

off to produce trains of narrow pulses (modulated wave-packets). These pulses can be

used as signal sources in ultra-wideband or impulse radio applications. In addition,

the instantaneous frequency within each pulse can be varied with time to produce

chirp waveforms that are useful for radar.

Figure 2-44 shows spatial responses of the bidirectional cochlea at -10dB input

level for various values of the line loss cancelation resistance RLL. The value of RLL

can be varied by changing the bias voltage VB2. We see that a significant amount of

line loss can be canceled by increasing VB2, which decreases RLL. However inter-stage

reflections also increase, limiting the amount of cancelation that can be applied.

Figure 2-45 shows how the peak gain of the bidirectional cochlea responses de-

creases with increasing input amplitude. These compression curves were taken by
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Figure 2-42: Ratio of output frequencies produced by the bidirectional RF cochlea
(20dB threshold).
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Figure 2-43: Ratio of output frequencies produced by the bidirectional RF cochlea
(10dB threshold).
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Figure 2-44: Spatial responses of the bidirectional RF cochlea at various frequencies
obtained while varying the value of the series loss cancelation within each stage. The
bias voltage VB2 that sets this negative resistance RLL was increased from 0.40V to
0.58V in 20mV steps.

observing the response at a fixed location, the best position for fmax = 5.3GHz, to

various input frequencies, including fmax. We see that the response at fmax, being

larger, compresses for smaller input power levels than at other frequencies. This

behavior is qualitatively similar to that observed in the biological cochlea.

Figure 2-46 shows a two-tone response: here two input frequencies were simulta-

neously fed into the bidirectional cochlea. One tone was held fixed at 2.4GHz, while

the other was swept logarithmically with time. The cochlear outputs were monitored

as a function of time and plotted in the figure. As expected, the spatial response

due to the second tone moves linearly with time, while that due to the first remains

fixed. Both tones had equal input amplitudes (-10dBm). Improvements in frequency

resolution, especially in the presence of noise, can be obtained by using the phase

information, such as temporal correlations between stages, present within cochlear

transfer functions [321].
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Figure 2-45: Measured compression curves of the bidirectional RF cochlea. The
spatial location was fixed at the point where maximum response was obtained for
fmax = 5.3GHz, and the response to frequencies below fmax was measured at several
power levels.
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Figure 2-46: Measured response of the bidirectional RF cochlea to two simultaneously
applied input frequencies. One input was held fixed at 2.4GHz while the other was
increased logarithmically from 1GHz to 8GHz (left to right in the figure). The power
level of both inputs was held fixed at -10dBm.

170



2.9 Appendix A: Impedance Functions

In this section, we discuss the properties of impedance functions. There are sev-

eral reasons. Firstly, we know that any driving point immittance (impedance or

admittance) that is positive real can be synthesized using only passive, lumped ele-

ments [292]. We therefore want to know whether Yn (sn) and Zn1 (sn), which model

the effects of the organ of Corti, are positive real. If this were true, the whole cochlea

could be implemented passively. A purely passive system would be highly linear and

have low noise (i.e., large dynamic range). We therefore discuss the conditions that

a driving point immittance function must satisfy in order to be realizable using only

passive elements.

Theorem 1 A real, rational function is the driving point immittance of a linear,

passive, lumped, reciprocal and time-invariant network, if and only if it is positive

real [62].

Theorem 1 is a necessary and sufficient condition for the physical realizability of

an immittance function using a finite number of lumped passive elements is that it

be rational and positive real. All positive real functions are not physically realizable.

They also have to be rational, i.e. consist of the ratio of two polynomials. Given a

rational driving point immittance function F (s) = N(s)/D(s), it is positive real if

and only if the following conditions are satisfied:

1. All coefficients of F (s) must be real. This means that all zeros and poles (the

roots of the numerator and denominator polynomials N(s) and D(s), respec-

tively) are either real or occur in complex conjugate pairs.

2. (a) As s → ∞, F (s) must approach one of the three following forms: Ks, K

or K/s, with K > 0. This means that the orders of N(s) and D(s) can

differ by at most 1.

(b) F (s) cannot have any poles in the open right half s-plane (RHP), i.e., the

immittance function must be analytic in the open RHP. In addition, if
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F (s) is positive real, 1/F (s) must also be positive real. Since the zeros of

F (s) are the poles of 1/F (s), it follows that F (s) cannot have any poles

or zeros in the open RHP. Thus F (s) must be minimum phase.

(c) If F (s) has any poles on the imaginary axis, they have to be simple and

have real and positive residues.

3. The real part of the frequency response of F (s) must always be positive, i.e.,

< [F (ω)] ≥ 0, ∀ω ∈ {−∞,∞}.

Among the other useful properties of positive real functions are the following:

1. The sum of two positive real functions is also positive real.

2. If F (s) is positive real, it must be real if s is real.

3. If F1(s) and F2(s) are positive real, so is F1 [F2(s)].

4. If F (s) is positive real, so are 1/F (s) and F (1/s).

Unfortunately, the cochlear admittance function Yn (sn) and its various obvious

transformations, such as 1/Yn (sn) and Yn (1/sn), are not positive real. Thus they

cannot be realized as driving point immittances of purely passive networks. Hence

active circuit elements are needed to implement the cochlea. Specifically, Yn (ωn),

1/Yn (ωn) and Yn (1/ωn) have negative real parts for some values of ωn. Thus, they

fail the third test of positive reality (from the list enumerated above). For example,

< [1/Yn (ωn)] < 0 for ωn < 1 and > 0 for ωn > 1. Physically, this means that energy

is being pumped into the traveling wave by the transmission line when ωn < 1, causing

the wave amplitude to build up. On the other hand, the line takes energy out of the

wave when ωn > 1, causing the wave amplitude to decay.

2.10 Appendix B: Gyrator Noise Analysis

Gyrators are circuits that invert impedances. An example of a completely passive

(albeit narrow-band) gyrator is a quarter-wavelength transmission line. If the load
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at one end of the line is ZL and its characteristic impedance is Z0, the impedance

seen looking in from the other end is given by Zin = Z2
0/Zin. Now consider the

generic active inductor shown in Figure 2-47. This type of circuit is also a gyrator,

since the impedance Zin seen looking into vin is an inverted version of that present

at the intermediate node v1. In this case, the capacitance C is inverted to form

an inductance at the input terminal. In the figure gm1 and gm2 represent small-

signal transconductances (voltage-controlled current sources) and ro1 and ro2 are their

output impedances. In the ideal case, ro1 and ro2 are infinitely large and we get

gm1

gm2

Zin

vin

iin

ro2ro1 C

v1

Figure 2-47: A simple small-signal model of an active inductor created with a gyrator.

Zin =
vin
iin

=
sC

gm1gm2

≡ sLeff (2.70)

Here Leff = C /(gm1gm2) is the effective inductance seen at the input terminal.

Note that the ideal gyrator (unlike the passive transmission line) gyrates over all

frequencies. The synthesized inductor is also ideal, i.e., has an infinite quality factor.

When ro1 and ro2 are finite the situation is more complicated. It is easy to show that

the input impedance is given by

Zin =

(
sC

gm1gm2

+
1

ro1gm1gm2

)
‖ ro2 (2.71)

For simplicity, consider the case when ro2 is so large that it can be ignored. Several

techniques can be used to increase the output impedance of gm2 so that this condition

is met. In this case Zin has the form of an inductance Leff = C/ (gm1gm2) in series

with a resistance Reff = 1/ (ro1gm1gm2). The quality factor of Zin is given by
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Q =
sLeff
Reff

= sCro2 (2.72)

Now consider adding noise currents at the output terminals of both transconduc-

tors, as shown in Figure 2-48. The noise current power spectral density (PSD, in

A2/Hz) due to each transconductor is given by

i2nj = 4kTNjgmj (2.73)

gm1

gm2

Zin

vin

iin

ro2ro1 C

v1

in1 in2

in,totZin

vin

Figure 2-48: The simple gyrator model with noise sources added.

where j = 1 or 2 and Nj (known as the effective number of noise sources) is a constant

that depends on the topology and biasing details of the transconductor. The total

noise current PSD present at the input terminal can be found by superposition. It is

given by

i2n,tot = i2n1

∣∣∣∣ ro1
sCro1 + 1

∣∣∣∣2 g2
m2 + i2n2 (2.74)

The expression above may be simplified to read
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i2n,tot = 4kTgm2

[
N1ro1

(Q2 + 1)Reff

+N2

]
=

4kT

Reff (Q2 + 1)

[
N1ro1 +N2Reff

(
Q2 + 1

)]
(2.75)

Let us now consider the noise current produced by a passive series L-R circuit

with the same values of inductance and resistance (Leff and Reff , respectively) as

the active circuit. The situation is shown in the left-hand circuit in Figure 2-49. The

noise current PSD i2n,Reff developed across the resistor is given by the well-known

formula

i2n,Reff =
4kT

Reff

(2.76)

in,Reff
Reff

Leff

Zeff

in,Zeff

Reff

Leff

Zeff

Figure 2-49: The noise model of a passive inductor Leff with some series resistance
Reff .

In order to convert this current source into one that is in parallel with the entire

impedance Zeff = Reff +sLeff we can Thevenize the current source and then convert

the voltage source back into a Norton equivalent. This process results in the situa-

tion shown in the right-hand circuit in Figure 2-49. The noise current PSD i2n,Zeff

developed across Zefff is given by

i2n,Zeff =
4kTReff

|Reff + sLeff |2
=

4kT

Reff (Q2 + 1)
(2.77)

This result is similar to that of a cascode. As Q, which is the ratio of the

impedances sLeff and Reff , increases most of the noise current produced by the
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resistor continues to circulate inside the local loop formed by i2n,Reff and Reff . Very

little flows through Leff , the higher-impedance path, and eventually makes its way

to the output.

Finally, let us compare the noise current PSD produced by the active circuit (2.75)

and the passive circuit (2.77). The ratio of the two quantities is given by

β ≡
i2n,tot

i2n,Zeff
=
[
N1ro1 +N2Reff

(
Q2 + 1

)]
gm2 (2.78)

This expression for β can be simplified to read

β = N2

[(
N1gm2

N2gm1

)
Av1 +

Q2 + 1

Av1

]
(2.79)

where Av1 = gm1ro1 is the DC voltage gain of the first transconductor. In a narrow-

band application where Q is approximately constant, the expression above can be

viewed as a function of the variable Av1. If we use standard calculus and minimize

it, we get

Av1 =

√√√√ Q2 + 1(
N1gm2

N2gm1

) (2.80)

When Av1 is set to this value, β is minimized and is given by

βmin = 2
√
N1N2α (Q2 + 1) (2.81)

where the parameter α = gm2/gm1. We see that we need extreme gm scaling, i.e.

setting α � 1, to make the noise from the active circuit comparable to that from

the passive circuit, especially when Q is large. Finally, it should be noted that the

reason ro1 and ro2 contribute no noise of their own to this analysis is that they are

small-signal (AC) impedances, and thus noiseless.

We now study how the noise PSD of the active circuit trades off with its power

consumption. The total power consumed by the active inductor is given by
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P = VDD (IB1 + IB2) = VDD (gm1VL1 + gm2VL2) (2.82)

where IB1 and IB2 are the DC bias currents of the two transconductors, and VL1 and

VL2 are their linear ranges. The expression above can be simplified to

P =
VDD

Av1Reff

(
VL1

α
+ VL2

)
(2.83)

If Av1 has been set the value given by (2.80) to ensure the minimum noise PSD

in a narrowband application, the power consumption becomes

P =
VDDVL2

Reff

√
N1/N2

Q2 + 1

(
VL1

VL2

1√
α

+
√
α

)
(2.84)

Assuming that α� 1 to reduce noise,

P ≈ VDDVL1

Reff

√
N1/N2

α (Q2 + 1)
(2.85)

Comparing (2.85) with (2.81), we see that

P =

(
2VDDVL1N1

Reff

)
1

βmin
(2.86)

In other words, there is a direct trade-off between noise and power consumption:

the product of the two is a constant. Therefore we need to burn more power to lower

the noise PSD of the active inductor Leff . Also note that P ∝ VL1, the linear range

of gm1, i.e. we also need to burn more power to increase the linear range of Leff .

High-dynamic-range active inductors are thus quite power-hungry.
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Chapter 3

The Unidirectional RF Cochlea

Differential equations are powerful, for their interpretation is legion, and

they speak with many tongues.

– George Pólya, Mathematical Methods in Science

3.1 Introduction

We described Zweig’s cochlear model in the previous chapter [328]. An important

characteristic of this model is that it is a true bidirectional transmission line: waves

can propagate in both directions. Among others, Hubbard, in [123] proposed another

bidirectional cochlea model that involved two coupled transmission lines. These mod-

els have mostly been designed to reproduce experimental data as closely as possible;

their circuit analogs are usually quite complicated and have not been implemented in

hardware (though they have been simulated).

There is however, an alternative tradition in cochlear modeling. This approach has

generally been pursued by electrical engineers who are more interested in capturing

certain aspects of cochlear behavior than in precisely modeling the biological system.

Most of these workers have implemented unidirectional versions of the cochlea. An

important motivation is the fact that the biological cochlea appears to only support

forward traveling waves, i.e., is effectively unidirectional, except, possibly, for the

production of otoacoustic emissions [271]. This is because the wave amplitude dies
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almost completely before it reaches the apex, where the basilar membrane terminates.

As a result reflected waves are insignificant. In these systems cochlear behavior

is simulated using a cascade of (unidirectional) low pass filters with exponentially

tapered cutoff frequencies [177,259].

For example, the unidirectional cochlea described in [259] used all-pole, second

order resonant filter transfer functions of the normalized form

Hn (sn) =
1

s2
n + sn/Q+ 1

(3.1)

where sn = s/ωc(i), with ωc(i) = ωc(0) exp−i/Nnat , the center frequency of the i-th

filter in the cascade, decreasing exponentially with i (there are Nnat filters per e-fold

of frequency). In my opinion, this silicon cochlea remains the best on-chip implemen-

tation published to date. However, it suffered from limited frequency resolution, low

signal-to-noise ratio (SNR), and excessive phase lag and group delay as the signal

propagated along the cascade of filters. One way to potentially improve performance

is to find a sound physical basis for selecting a particular form for Hn (sn).

3.2 Filter Cascade Design

The transfer functions H (sn) for filters in the unidirectional cochlea can be derived

from a WKB-type solution of the wave equation by making a series of further ap-

proximations [188]. The essence of cochlear operation is collective amplification, as

exemplified by the exponential part of the transfer function shown in (2.22). For sim-

plicity, therefore, we ignore |kn|3/2, the pre-exponential term. The reflected wave is

also neglected, making the structure unidirectional. The exponential term is modeled

by breaking up the integral, which extends from 0 to sn, into small parts extending

from si−1 to si, where i is an integer:

exp

(
−
∫ sn

0

knds
′
)

=
∏
i

exp

(
−
∫ si

si−1

knds
′
)
≡
∏
i

Hi (3.2)

We note that the expression above looks like the transfer function of a cascade of
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unidirectional filters with transfer functions Hi. We assume that each filter models

the action of a piece of transmission line ∆x long. Thus, the i-th filter models the

piece of line between x = (i − 1)∆x and x = i∆x. By using the definition of sn, we

have

si =
jω

ωc(0) exp(−i∆x/l)
= s0 exp(i/Nnat) (3.3)

where s0 = jω/ωc(0). Thus, the values of si increase exponentially, i.e., proportional

to exp(i/Nnat). In other words, we have Nnat filters per e-fold in frequency. Now

define ∆si = si − si−1. If Nnat is large enough, we may assume that kn remains

approximately constant between si and si−1. Therefore the integral that defines Hi

can be simplified to

Hi ≈ exp (−∆si × kn) (3.4)

If Nnat � 1, |∆si × kn| � 1 and each transfer function can be approximated

by using the identity exp(−x) ≈ 1/(1 + x) since |x| << 1. Also, we may write

∆si ≈ (∆x)(dsn/dx) = si/Nnat. Therefore Hi is given by

Hi ≈
1

1 + sikn(si)
Nnat

(3.5)

We see that each transfer function is only a function of si, which scales exponen-

tially along the cascade, and Nnat, which is constant, but can differ from its value in

the bidirectional cochlea. Therefore the transfer functions are simply frequency-scaled

versions of each other and we can represent all of them using the single normalized

frequency variable sn. By substituting in kn = Nnat

√
ZnYn/sn, we get the following

normalized transfer function:

Hn (sn) =
1

1 +
√
ZnYn

(3.6)

Our new unidirectional cochlea model, shown in Figure 3-1, is thus a cascade of

exponentially scaled filters with normalized transfer functions (in either voltage or
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current) given by (3.6), where sn = s/ωc(i) and ωc(i) = ωc(0) exp−i/Nnat . In general,

however,
√
ZnYn is not a rational function, which means that Hn (sn) cannot be

implemented using a finite number of lumped components.

H(si-1) H(si)H(s0)
1

|TF(si-1)|

Figure 3-1: Unidirectional cochlea model, consisting of a exponentially scaled cascade
of filters.

A way out is shown by the observation that the overall magnitude and phase

response shapes of (2.12) are insensitive to the value of Q. In particular, we can use

Q = 0.5 while keeping the responses qualitatively similar. In this case, the two zeros

of Yn (sn) coincide on the real axis. We can then complete a square in the numerator,

i.e., (s2
n + µsn/Q+ µ2) = (s + µ)2 when Q = 0.5. This choice makes ZnYn a perfect

square, and thus the normalized filter transfer function Hn (sn) becomes rational and

is given by

Hn (sn) =
s2
n + 2dsn + 1(

1 +
√
Qline/µ

)
s2
n +

(
2d+

√
Qline

)
sn + 1

(3.7)

where Qline = ωc(0)L0/Z0, as in the previous chapter. We used the following parame-

ter values in our unidirectional cochlea design: d = 0.1, µ = 0.3 and Qline = 0.5 [188].

As µ decreases the peak gain of the unidirectional cochlea increases but the filter poles

become more and more under-damped. Our filter TF is shown in Figures 3-2(a) and

3-2(b). Since it contains a pair of poles and a pair of complex zeros, it differs from

the all-pole TF’s previously used to build audio-frequency silicon cochleas [177,259].

Gain compression for large signals can be modeled by making d an increasing function

of the local signal amplitude, |A|. For example, one can use d = dmin + σ|A|, where

σ is a constant [323].

In addition to reducing group delay, the figure shows that the zeros also result in

an asymmetric frequency response close to the peak of the TF, with a sharper drop-
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Figure 3-2: (a) Normalized TF Hn used in the unidirectional cochlea, (b) pole-zero
plot for Hn.
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off on the high-frequency side that increases the frequency resolution of the cochlear

TFs. Figure 3-3 compares simulated frequency responses of unidirectional cochleas

using all-pole filters [259] (Equation 3.1, with Q = 1.3) and our modified filters (Equa-

tion 3.7, with the parameters above). These parameters were chosen such that the

peak gains of both designs were approximately equal, thereby facilitating comparison.

We see that including complex zeros in the filter transfer function increases cochlear

frequency resolution by increasing the effective quality factor of the cochlear transfer

function.
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Figure 3-3: Unidirectional cochlea frequency response magnitudes at different spatial
locations along the cascade, (a) using the original (all-pole) filter transfer function,
and (b) using the modified filter transfer function.

The filter transfer function actually synthesized and implemented on-chip included

184



an additional high-frequency zero and two additional high-frequency poles. These ad-

ditional poles and zeros were placed at sn ≈ 5. They produce a first-order roll-off

at high frequencies which does not have a significant effect on the cochlear trans-

fer function. However, they do make the circuit realizable with integrated passive

components, which have finite shunt capacitances to ground. In particular, such

components cannot synthesize the ideal filter transfer function shown in Figure 3-2,

because it does not roll-off at high frequencies, i.e., has infnite bandwidth.

Finally, one of the key ideas involved in the design of any cochlea-like cascade

of filters is distributed gain control. The cascaded nature of the system means that

correlated changes in the properties of a large number of stages (such as the parameter

Q in (3.1)) can cause large changes in the behavior of the whole system. By the same

token, the system is extremely robust to uncorrelated parametric fluctuations between

individual stages; the overall transfer function is effectively determined by a “spatial

average” over the properties of about Nnat stages.

3.3 Theoretical Analysis

3.3.1 Transfer Functions

The filter transfer function H (sn) shown in (3.7) has a low-frequency magnitude of

1 and a high-frequency magnitude of 1/
(
1 +
√
Qline/µ

)
< 1. We shall denote its

maximum magnitude by Gstage. The value of Gstage eventually sets the maximum

value (peak) of the cochlear transfer function. The behavior of H (sn) around ωn = 1

can be understood by considering the numerator and denominator separately. The

numerator contributes a pair of complex zeros with high quality factor 1/(2d). These

zeros produce a notch in the frequency response, with |H (sn)| reaching its minimum

value at a frequency ωz ≈ 1. The numerator contributes a pair of complex poles with

quality factor given by

Qp =

√
1 +
√
Qline/µ

2d+
√
Qline

(3.8)
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Typically Qp < 1/(2d), i.e., the poles have lower quality factor than the zeros. In

the absence of the zeros the poles would cause the magnitude of the transfer function

to reach a peak value of Gstage = Qp at a frequency ωp = 1/
√

1 +
√
Qline/µ < 1. The

nearby zeros reduce the actual value of Gstage. The transfer function contains three

parameters: d, µ and Qline. The parameter d controls the quality factor of both the

zero and the pole pair, while µ controls the pole frequency ωp. Decreasing either d or

µ causes Gstage to increase. In the case of µ the increase occurs because ωp decreases,

which moves the peak further away from the notch at ωz. On the other hand Qline

has relatively little effect on Gstage. This is because Qline affects the transfer function

in two ways that tend to cancel themselves out. Increasing Qline decreases ωp, which

tends to increase Gstage, but also increases the damping of the poles, which tends to

reduce it.

The transfer function of the cochlea after the n-th stage is characterized by its

peak gain G(n) and quality factor. We use both traditional definitions of quality

factor: center frequency divided by the 3dB or 10dB bandwidth, resulting in Q3dB(n)

and Q10dB(n), respectively. In addition to the filter parameters d, µ and Qline, we

need Nnat, the number of stages per e-fold, to complete the cochlear design. Since

each cochlear transfer function may be approximated as the product of Nnat identical

filter transfer functions, we expect G(n) for n > Nnat to be constant and given by

G ≈ (Gstage)
Nnat ⇒ GdB = NnatGstage,dB (3.9)

where the “dB” subscripts indicate that G and Gstage are being expressed in dB. Thus,

a plot of G (in dB) versus Nnat should be a straight line with a slope of Gstage,dB.

Since Gstage > 1 the peak gain increases rapidly with Nnat. In fact, this behavior is

independent of the precise shape of the filter transfer function, since it depends only

on exponential scaling of center frequencies. Using (2.47), we also expect Q3dB and

Q10dB to vary roughly as
√
Nnat.

Figure 3-4 shows simulated values of G(n), Q3dB(n) and Q10dB(n) for Nnat = 14,

and typical filter parameters (d = 0.1, µ = 0.2 and Qline = 0.5). The peak filter
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Figure 3-4: Behavior of the unidirectional cochlea transfer functions as a function of
position n along the cascade. Top: peak gain, bottom: 3dB (red) and 10dB (black)
quality factors Parameters used to draw this plot were: Nnat = 14, d = 0.1, µ = 0.2
and Qline = 0.5.

gain Gstage ≈ 1.95 (5.8dB) for these parameter values. We see that G(n) asymptotes

to a fixed value for values of n greater than approximately 2Nnat. We would expect

this asymptotic gain to be approximately 14 × Gstage,dB = 81dB. The actual value

is somewhat lower, being about 60dB. The figure shows that the quality factors also

asymptote with n, but much faster. They essentially reach their final values for

n > Nnat/2. Similar behavior occurs for other filter parameter values.

Figure 3-5 shows how the asymptotic gain and quality factors of the cochlear

transfer functions, i.e., their values at large n, vary as a function of Nnat. As expected,

GdB is very nearly a straight line versus Nnat, while the quality factors increase

approximately as
√
Nnat.

Figure 3-6 shows how the asymptotic gain and quality factors of the cochlear

transfer functions, i.e., their values at large n, vary as a function of d, µ and Qline for

a fixed value of Nnat. As discussed earlier, decreasing d and µ causes Gstage to increase,
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Figure 3-5: Asymptotic behavior of the unidirectional cochlea transfer functions as
a function of Nnat. Top: peak gain, bottom: 3dB (red) and 10dB (black) quality
factors. Parameters used to draw this plot were: d = 0.1, µ = 0.2 and Qline = 0.5.

while Qline has relatively little effect on Gstage. Thus, the cochlear transfer function

gain G should increase sharply as d and µ decrease, while remaining approximately

independent of Qline. Figure 3-6 confirms this expected behavior.

3.3.2 Noise

In this section we analyze the noise performance of the unidirectional cochlea. For

simplicity, each filter is assumed to be strictly unidirectional. The n-th stage filters

the output noise voltage vnoise(n− 1) produced by the previous, (n− 1)-th stage, and

adds some noise of it’s own:

v2
noise(n) = v2

noise(n− 1) |Hn(jω)|2 + v2
n (3.10)

where vn is the noise PSD produced by the n-th stage, and Hn(jω) is its transfer

function. Note that we are now using real, un-normalized frequencies. Because Hn is

an exponentially-frequency scaled version of a common prototype, we have Hn(ω) =

H1

(
ωe−(n−1)/Nnat

)
. We shall assume that all the filtering within each stage is provided
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Zn(s)

Vdd

4γkTgm
vin(n)

M1

vout(n)

Figure 3-7: Simplified cochlear filter circuit, used for noise calculations.

by a passive impedance Zn(s) which contributes a negligible amount of noiee to vn.

A single transistor M1, shown in Figure 3-7 provides buffering and voltage gain. It

converts input voltage into current so that it can be filtered by Zn(s), and is modeled

as an ideal transconductance of value gm. The value of gm is assumed to be the same

for each filter, i.e., all values of n.

We will ignore flicker noise, because its effects are typically negligible over our

operating frequency range. Therefore we can assume that each transistor adds a white

noise current with PSD = 4γkTgm to the output node, where γ, known as the excess

noise factor, has a value of 2/3 for long-channel transistors. The filter circuit actually

implemented on-chip was somewhat different from the circuit shown in Figure 3-7.

However, we shall study this simplified circuit, because its noise properties are very

similar to the actual circuit, while requiring considerably less algebra to analyze.

The voltage PSD contributed by the simplified filter circuit to its output node is

given by

v2
n = 4γkTgm |Zn(jω)|2

=
4γkT

gm
|Hn(jω)|2 (3.11)

where Hn(s) = gmZn(s) is the filter’s transfer function. Combining (3.10) and (3.11),

we get the net PSD at the output of the n-th filter:
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v2
noise(n) =

[
v2
noise(n− 1) +

4γkT

gm

]
|Hn(jω)|2 (3.12)

We can use the fact that vnoise(0) = 0 (i.e., the input is noiseless) and the iteration

formula shown in (3.12) to explicitly write down v2
noise(n):

v2
noise(n) =

4γkT

gm

n∑
i=1

(
n∏

j=n+1−i

|Hj(jω)|2
)
≡ 4γkT

gm
Hnoise,n(jω) (3.13)

where Hnoise,n(jω) is defined as the noise transfer function of the n-th stage. The noise

transfer functions Hnoise,n of the cochlea look very similar to the squared magnitude

of the signal transfer functions, which are simply given by

Hsignal,n =
n∏
i=1

Hi(jω) (3.14)

The total noise voltage can be found by integrating the PSD over all frequencies:

v2
tot(n) =

∫ ∞
0

v2
noise(n)df

=
4γkT

gm

∫ ∞
0

Hnoise,n(f)df

≡ 4γkT

gm
Hnoise,tot (3.15)

where 2πf = ω, as usual. The quantity Hnoise,tot, which is also a function of n,

has dimensions of bandwidth, and is plotted for typical filter parameters and various

values of Nnat in Figure 3-8. Similar curves are obtained for a wide range of filter

parameters. We see that the total noise voltage, which is proportional to
√
Hnoise,tot,

increases with increasing n, reaches a maximum around n = 2Nnat, and then slowly

decreases. This behavior may be explained as a compromise between two competing

tendencies. The noise PSD tends to increase with increasing n because all stages be-

fore it contribute noise. On the other hand the bandwidth decreases as exp(−n/Nnat),

which tends to reduce the total integrated noise.

The minimum detectable signal, vmds(n) is defined as the amplitude of the smallest
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Figure 3-8: Effective noise bandwidth in the unidirectional cochlea as a function of
position n along the cascade for various values of Nnat. Parameters fixed for this plot
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input signal that just exceeds the output noise of the n-th stage. The inverse of

the minimum detectable signal strength is often referred to as the sensitivity of the

system. The value of vmds(n) reaches a minimum when the frequency of this signal is

equal to the center frequency of the n-th stage. In this case, we have vmds(n)G(n) =

vtot(n), i.e.,

vmds(n) =
vtot(n)

G(n)
(3.16)

Since vtot(n) ∝ 1/
√
gm, we can clearly burn power to increase gm, lower the

minimum detectable signal and increase sensitivity. For the purpose of comparing

cochlear designs with different parameter values we wish to eliminate this dependence

on gm. Since gm is assumed to be constant, a simple way is to define a normalized

version of vmds, given by
√
Hnoise,tot/G(n), that is proportional to the actual value but

independent on gm. Figure 3-9 plots this normalized version of vmds as a function of n

for various values of Nnat. The figure shows that changing Nnat leaves the minimum

detectable signal essentially unchanged. This is because Nnat affects the signal and

noise transfer functions in similar ways, leaving their ratio, which sets vmds, fixed.

We also see that vmds varies in a complex way with n, in general decreasing slowly as

n increases. This behavior is explained by the fact that the signal and noise transfer

functions vary in similar, but not identical, ways with n. The former is caused by n

filters acting sequentially on a single signal that is fed into the first filter, while the

latter is caused by the same n filters acting on “noise signals” that are distributed,

i.e., fed into each filter.

3.3.3 SNR and Dynamic Range

The range of signals that can be handled by the unidirectional cochlea is limited at

the low end by noise, and at the high end by the linear range of the filters within it.

There is only one active component in the filter circuit shown in Figure 3-7, namely

the transistor M1. The linear range of M1, given by VL = I/gm, is approximately

equal to that of the filter. Here I is the DC bias current flowing through M1. The
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194



value of VL is independent of I when M1 is in sub-threshold, and given by φT/κ. It

increases ∝
√
I above threshold.

The maximum unidistorted signal amplitude at the output of the n-filter is VL.

As a result, the maximum signal-to-noise ratio (SNR) of the cochlear outputs is given

by

SNRmax(n) =

(
VL

vtot(n)

)2

(3.17)

As long as the cochlea remains completely linear the dynamic range (DR) of

input signals it can handle is equal to SNRmax, i.e., DR = SNRmax. However, the

biological cochlea, and other silicon cochleas published in the literature, use gain

control to increase input-referred dynamic range. Gain control reduces harmonic

distortion at the cost of reduced sensitivity to small signals. In the cochlea, distortion

generates harmonics of the input frequency that propagate, and also interact with each

other to produce additional intermodulation products. The response of the system to

these additional frequencies causes spurious peaks to appear in the cochlear transfer

functions.

In the most common gain control technique, the peak gain G(n) of the cochlear

transfer functions is reduced for large input signals. This is a form of distributed,

or parallel gain control that uses the filtering provided by the cochlea to compress

different frequency components by different amounts. An important advantage of the

filter transfer function shown in (3.7) is that it allows gain control to be implemented

in a very simple way: the single parameter d can be increased with local signal

amplitude |A|, thus decreasing Gstage for large signals. For example, we can increase

d linearly with A, i.e., as d = dmin + σ|A|, where σ is a constant. It can be shown, as

long as d� 1, that this simple, purely local technique mimics biology in keeping the

timing of zero-crossings in the cochlear impulse responses invariant with |A| [323].

An alternative technique is broadband gain control, where the amplitude of the

input to the cochlea is used to equally attenuate all input frequencies. In this strat-

egy, which does not use the cochlea at all, the strongest frequency component will
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dominate the input amplitude, and thus set the overall level of compression. Biology

seems to use a combination of both strategies. The stapedius reflex, which quickly

disconnects the middle ear from the cochlea for loud sounds, is a form of broadband

gain control, while distributed gain control is provided by outer hair cells.

In the presence of gain control, the gain seen by a small-amplitude tone (frequency

component) will be reduced by the simultaneous presence of a large-amplitude tone,

because the latter will dominate the total amplitude (the total amplitude usually

determines the amount of gain compression). Thus, the sensitivity of the system

to the smaller tone will be diminished. This phenomenon is known as tone-to-tone

supression, and, in the auditory system, causes a psycho-acoustic phenomenon known

as masking. The traveling wave structure of the cochlea leads to asymmetric masking :

Low-frequency tones pass through most of the cochlea before peaking, and therefore

suppress the gain of the filters that are tuned to higher frequencies. On the other

hand, high-frequency tones peak early and are then filtered out, and therefore cannot

affect the gain of later filters tuned to lower frequencies.

We can define the dynamic range of the cochlea by supposing that, at the maxi-

mum acceptable level of gain compression the gain of the n-th stage is reduced from

G(n), its value for small signals, to a new value Gcomp(n). The maximum allow-

able input signal amplitude is then increased from VL/G(n) to VL/Gcomp(n), while

the minimum detectable signal is unchanged, and given by vtot(n)/G(n). Thus the

input-referred dynamic range becomes

DR =

(
VL/Gcomp(n)

vtot(n)/G(n)

)2

= SNRmax

(
G(n)

Gcomp(n)

)2

(3.18)

The equation above is only valid for the largest tone in the input spectrum. In

particular, of course, it is valid if there is only one tone present at the input. As

described earlier, the simultaneous presence of other large tones will reduce the dy-

namic range, because they will turn down G(n) from its small-signal value even when

the tone in question is itself small.

What is an acceptable value for Gcomp(n)? In RF systems the limit of linear
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operation is often defined as the 1dB compression point, i.e., the input amplitude when

Gcomp,dB = GdB − 1dB. This is an overly pessimistic limit for the cochlea, which is

fundamentally a nonlinear system. A convenient upper bound for DR, which we define

as DRmax, is obtained by setting Gcomp(n) = 1, i.e., assuming that there is no peaking

whatsoever. This value corresponds to a cochlea where frequency discriminability is

only provided by the high-frequency roll-off slope of the transfer functions. Figure 3-

10 shows simulated values of SNRmax and DRmax as a function of position n for

various values of Nnat and typical values of other parameters. We see that SNRmax

decreases as Nnat decreases, because the noise transfer functions increase while VL

remains fixed. However, DRmax is largely independent of Nnat. This behavior is not

surprising; DRmax may be rewritten as (VL/vmds(n))2, and, as shown by Figure 3-9,

vmds(n) is approximately independent of Nnat. For the typical parameter values used

to draw Figure 3-10, the average value of vmds is approximately 50µV (-76dBm across

a 50Ω load).

Figure 3-10 shows that we have to rely on increasing amounts of gain compression

to get the full dynamic range available from the cochlea as Nnat increases. We expect

similar behavior if the filter parameters d and µ are decreased for a fixed value of Nnat,

because in either case Gstage increases, causing more peak gain in both the signal and

noise transfer functions and reducing SNRmax. Figure 3-11 confirms our expectations.

In this figure we have plotted SNRmax and DRmax versus d and µ for Nnat = 14 and

typical values of other parameters. The gap between the two surfaces, which is the

amount of gain compression required, increases sharply as d and µ decrease.

We designed our unidirectional cochlea to have Nnat = 16, SNRmax ≈ 35dB and

DR ≈ 70dB. The required values of d and µ were obtained from a plot similar to that

shown in Figure 3-11.

3.3.4 Frequency Resolution

SNRmax is important because it limits the maximum frequency resolution of the

cochlea. We can derive frequency resolution as follows. Consider a single input tone

with a amplitude of A1 and a frequency ω1. We can measure A1 by using an envelope
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Figure 3-10: Maximum SNR (in blue) and input-referred dynamic range (DR, in red)
of the unidirectional cochlea as a function of position n along the cascade for various
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Figure 3-11: Lower limits of maximum SNR and DR of the unidirectional cochlea as
a function of d and µ. Parameters fixed for this plot were: Nnat = 14, Qline = 0.5,
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detector (ED). In order to measure ω1 we use another ED at the output of any filter,

say the n-th one. The output of this ED is A1 |TFn (ω1)|. Since we know what A1

is, this measurement tells us the value of |TFn (ω1)|. Since the function TFn(ω) is

known, in a noiseless world, we can simply invert |TFn (ω1)| to find the exact value

of ω1. Simultaneously estimating the frequencies of multiple input tones is a much

harder problem (with no general analytical solutions), and we do not discuss it further

here.

In the real world the output of the filters has noise, which makes the measurement

of |TFn (ω1)| imprecise. The measured value fluctuates with time, with a standard

deviation that is 1/
√

SNR of its mean value. As a result, it is impossible to invert the

function TFn(ω) to determine ω1 precisely, which limits the frequency resolution of

the cochlea. In order to determine this quantity, which we denote by σω, we assume

that |TF (ω)| ∝ 1/ωS, i.e., the transfer function behaves like a filter of order S. We

have
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|TF (ω1)|
|TF (ω1 + σω)|

=
(

1 +
σω
ω

)S
≈ 1 +

Sσω
ω

(3.19)

where we have assumed that σω � ω. Also, based on the definition of σω, we have

|TF (ω1)|
|TF (ω1 + σω)|

=
1

1± 1/
√

SNR
≈ 1∓ 1√

SNR
(3.20)

where we have assumed that SNR� 1. Combining (3.19) and (3.20), the normalized

frequency resolution is given by

|S|σω
ω

=
1√

SNR
⇒ σω

ω
=

1

|S|
√

SNR
(3.21)

Clearly we should maximize SNR and |S| to improve the frequency resolution.

In the cochlea, the maximum value of |S| is proportional to Nnat, and is found in

the roll-offs on the high-frequency sides of the peaks of the transfer functions. The

maximum value of SNR is given by SNRmax and occurs at the peaks of the transfer

functions. Thus the best frequency resolution is obtained by observing the output

of a filter that has a peak frequency just lower than the input frequency ω1. We

see that increasing Nnat affects the frequency resolution in two competing ways: |S|

increases, but SNRmax decreases (see Figure 3-10). The theoretical optimum that

maximizes frequency resolution for tones that have SNR = SNRmax is approximately

Nnat = 1/ ln (Gstage), In practice most tones do not reach SNRmax, so we use much

higher values of Nnat.

Finally, we note that the frequency resolution will be constant with SNR if |S| ∝

1/
√

SNR, i.e., the filter slopes decrease with increasing SNR. This type of adaptation

is a form of automatic Q control. If SNR is high we can use broad, low-Q filters (low

|S|), because they provide enough frequency selectivity but settle quickly, thereby

increasing the speed of spectrum analysis. On the other hand, at low SNR we need

narrow, high-Q filters (high |S|) to get the required frequency selectivity. However,

these filters take longer to settle, reducing the speed of spectrum analysis. The

biological cochlea appears to use a combination of automatic gain and Q control:
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At large input amplitudes the cochlear transfer functions have lower gains but are

also become significantly broader. Similar behavior is obtained by making d in the

cochlear filters an increasing function of the local signal amplitude.

3.3.5 Power and Area Consumption

We have seen that SNRmax can be increased by increasing gm, which costs more

power. Since Hnoise,tot is proportional to bandwidth, another obvious way to reduce

noise and improve SNRmax is to operate at lower frequencies where there is less

bandwidth for the same value of Q. Another design constraint that we must meet

is unity DC gain in the cochlear filters. This constraint arises from the fact that

the underlying transmission line is a DC short. It ensures that filters with center

frequencies much higher than the input frequency simply pass the input, and do not

attenuate or amplify it. The transfer function shown in (3.7) meets this constraint,

since Hn(0) = 1.

The filter circuit shown in (3-7) has a DC gain of gmZ(0) = gmRstage, where Rstage,

which must be purely resistive, is the DC value of Z(s). Thus we must ensure that

gmRstage = 1. The peak gain of the stage is given by

Gstage ≈ gmRstageQc =
ωcLstage
Rstage

= ωcLstagegm (3.22)

where Qc is the quality factor of Z(s) at the center frequency ωc, Lstage is proportional

to the total inductance within the filter and we have used the fact that gmRstage = 1.

We have seen that Gstage determines the peak gain of the cochlear transfer functions

for a given value of Nnat. In order to maintain performance Gstage should be constant

as gm is reduced to save power consumption. Equation (3.22) then predicts that

Lstage ∝ 1/gm, i.e., the sizes of the inductors must increase as gm is decreased. How-

ever, on-chip inductors and transformers account for most of the layout area of the

chip. Thus we have a direct trade-off between layout area and power consumption.

Since Z(s) for each filter is a frequency-scaled version of a common prototype, the

value of Lstage ∝ ωc, i.e., increases as exp (n/Nnat). Thus, the total inductance that
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we must implement on chip is

Ltot =
N∑
n=1

Lstage(n) = Lstage(1)
N∑
n=1

exp ((n− 1)/Nnat) ≈ NnatLstage(N) (3.23)

where there are a total of N filters, and we have assumed that N � Nnat. The total

chip area is proportional to Ltot. Equation (3.23) predicts that this area is inversely

proportional to the lowest analysis frequency, ωc(N) (which determines the value of

Lstage(N)), and proportional to Nnat.

One can imagine varying the properties of the filters along the cascade, i.e., making

d, µ, Qline and gm functions of n. There may be advantages to this approach. For

example, it might be possible to saturate the peak gains of the cochlear transfer

functions at lower values of n. However, we have not explored such schemes further.

Finally, we have been considering voltage-mode implementations of the cochlea. The

analysis is similar for current-mode implementations, with the important caveat that

the linear range of the filters is no longer necessarily a constant. In particular, it

can be varied with the signal envelope by adjusting a DC bias current. This form of

adaptive biasing has been used to build high-dynamic-range silicon cochleas at audio

frequencies [323].

3.4 Circuit Design

3.4.1 Cochlear Stages

A simplified view of our implementation of a single filter is shown on the left of

Figure 3-12. Each filter, like in the bidirectional version, consists of two resonators

that are coupled both inductively and capacitively. The transistor provides active

gain and buffering. This topology is efficient because it uses a single transistor,

which minimizes the power required to maintain thermal-noise-limited performance.

The following impedance and frequency-normalized element values were found by our

network synthesis routine (written in Mathematica) and used as nominal parameters
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for this design: L1 = 0.76H, L2 = 0.60H, M = 0.61H, C1 = 0.81F, C2 = 1.47F,

CC = 0.64F, 1/gm = 0.53Ω, R1 = 0.63Ω, R2 = 0.11Ω.

A more detailed circuit diagram of a single unidirectional cochlea filter is shown on

the right of Figure 3-12. The first important change from the simplified circuit shown

on the left of the figure is that the resistor R1 has been replaced by an active element,

the resistance seen looking into the source of the cascode transistor M1, which is given

by 1/gm1, where gm1 is its small-signal transconductance. To this resistance we must

add R1, the parasitic series resistance of L1, to get the total load RL at the drain

of M2. The high-pass filter formed by C3 and R3 is designed to decouple the DC

operating points of individual stages but act as a short at RF. At “low” frequencies

(lower than the center frequency of the stage, but higher than the cut-in frequency

of C3 and R3), the voltage gain of the filter is given by

TF (sn � 1) = (R1 + 1/gm1)
gm2

gm2R2 + 1
(3.24)

Here gm2 is the transconductance of M2 and R2 is the parasitic series resistance

of L2. In order to prevent low-frequency signals from either attenuating or blowing

up as they propagate down the cascade of filters we need TF (sn � 1) to be as close

to 1 as possible.

Assume for now that M3 carries no bias current. In that case M1 and M2 share the

same bias current. We designed them to have the same geometry, so gm1 ≈ gm2. Also

R1 and R2 are parasitic components that are much smaller than 1/gm1 and 1/gm2,

so we automatically get TF (sn � 1) ≈ (gm1/gm2) × (1 + gm1R1) (1− gm2R2) ≈ 1.

However, this relationship is only approximate. In particular, since the inductor L1

is in series with a large resistance, i.e., 1/gm1, it does not need to have a high quality

factor. Therefore we designed L1 to have higher series resistance than L2 in order to

save layout area, i.e. R1 > R2. Therefore we should get TF (sn � 1) > 1 (by a small

amount).

In order to set the gain exactly equal to 1 we used an on-chip negative feedback

loop, shown in Figure 3-13. An on-chip oscillator running at 22MHz was used to
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Figure 3-12: Circuit diagram of a single unidirectional cochlea filter: simplified version
on the left, a more complete one on the right. The transistor M4 was not actually
implemented on the current chip (see the text for an explanation).

inject a small signal into the cascade. The amplitude of this signal at the end of the

cascade is measured, and the feedback loop adjusting the voltage Vgain− until these

amplitudes are equal to each other. In this way we ensure that the low frequency gain

of the cochlea is exactly 1. The voltage Vgain− sets the current through the transistor

M3. By increasing Vgain−, we can make M1 carry more current than M2, thus making

gm1 > gm2 and lowering the gain of each cochlear stage.

The inductor L1 was drawn on Metal 8, with the connection to the internal termi-

nal on AL RDL (which is an aluminum layer above Metal 8 meant for interfacing with

bonding pads). Inductor L2 was made up of coils on several metal layers that were

shorted together to reduce series resistance: Metal 7 through Metal n (n increased

from 7 to 4 as the inductor size increased). The connection to the internal terminal

was made on metal (n− 1).

Experimentally, however, we found that the gain of the filters was < 1 even
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Figure 3-13: The feedback loop that adjusts the low-frequency gain of the cochlea by
setting the bias voltage Vgain−.

with Vgain− = 0, and the loop as designed could only decrease the gain further by

increasing Vgain− and the current through M3. The most likely reason for the lowered

gain is poorly-modeled parasitic resistances and inductances on the ground node,

which increase the effective value of Rs2. A simple improvement, to be made in

future iterations, is to modify the feedback loop so that it can both add and subtract

current from M2. A simple way to do this is by adding the PMOS transistor M4 (see

Figure 3-12). We can now increase the gain by lowering Vgain+, which increases the

DC current through M4, thus causing gm2 to increase without affecting gm1.

3.4.2 Preamplifiers

Preamplifiers were also used in this design to amplify the output voltage before en-

velope detection. The amplifiers, shown in Figure 3-14, were two-stage resistively

loaded common-source designs. In the first few filters the first amplifier stage was

shunt-peaked by an inductor LL to increase bandwidth, as shown in Figure 3-14. The

two preamplifier stages were identical except for the (possible) presence of LL.

In each amplifier stage the bias current through the transistor M2 (and its transcon-

ductance gm2) was set using the current source M1. This current source was by-
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Figure 3-14: The two-stage preamplifier that was used inside every stage.

passed at RF by the capacitor Chp, thus creating a first-order high-pass characteristic

with a cut-in frequency of fhp = gm2/ (2πChp). We used Chp ∝ exp (n/Nnat), where

1 < n < N is the cochlear stage index, like the capacitances within the cochlea itself.

Thus fhp(n), the cut-in frequency of the n-th stage, is proportional to fc(n), the cen-

ter frequency of that stage. We could set Vbias through a DAC. It was usually set to

a value that resulted in fhp(n) ≈ fc(n)/4. The cochlea and preamplifier outputs have

low-pass and asymmetric bandpass frequency responses, respectively. The preampli-

fier outputs roll off as second-order filters at low frequencies, which decreases masking

effects from strong low-frequency inputs, i.e., signals at frequencies f < fhp(n). They

roll-off as filters of order Nnat at high frequencies f > fc(n). The total voltage

gain of the preamplifiers for frequencies f > fhp was Apreamp = A1A2 = A2
1, where

A1 = A2 = −gm2RL were the in-band gains of the first and second stages, respectively.

The capacitor CN shown in Figure 3-14 was used to neutralize the gate-drain

capacitance Cgd2 of transistor M2 within each cochlear stage. This capacitance is

undesirable since it couples together the input and output nodes of each cochlear stage

(IN and OUT in Figure 3-12) and distorts the transfer function. This is a particular

problem in the high freqency stages, where the magnitude of Cgd2 may be comparable

to C1, C2 and CC . By placing CN , which has one end tied to IN and the other tied
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to an amplified, inverted copy of OUT , Cgd2 is reduced to a capacitance Cgd2−A1CN

between IN and OUT . An additional capacitance (1 + A1)CN between IN and

ground is also produced. Here the voltage gain of the first preamplifier stage is given

by −A1, and we have assumed that the stage has no delay. This condition is satisfied

if the operating frequency is much lower than the pole frequency ≈ 1/RLCL, where

CL is the total load capacitance at the output of the first preamplifier stage. Thus, the

capacitance between input and output nodes is completely cancelled if A1CN = Cgd2.

We can adjust A1 by changing the bias voltage Vbias shown in Figure 3-14.

More generally, we can model the first preamplifier stage as a filter with a voltage

transfer function −A1(s). In this case we can show that CN modifies the original

admittance between IN and OUT , given by sCgd2, into two impedances: Y1, between

IN and ground, and Y12, between IN and OUT , where

Y1 = sCN (1 + A1(s))

Y12 = sCgd2 − sCNA1(s) (3.25)

3.4.3 Envelope Detectors and Signal Scanner

Figure 3-15 shows the envelope detector that we use to detect the RF voltage am-

plitude present at the output of each cochlear stage. Each envelope detector, as in

the bidirectional cochlea chip, consists of a rectifier and low-pass filter, and forms a

simple incoherent receiver. In this implementation, we do not report the actual RF

signal because it would take too much power to send these wideband signals off-chip.

In future implementations, we plan to include more sophisticated receivers at every

cochlear stage.

The rectifier shown in Figure 3-15 is a simple MOS diode-based circuit that pro-

duces pseudo-differential outputs. This strategy reduces DC offset by referring each

rectifier output voltage to that of a well-matched local replica. The replica rectfier,

shown on the left in Figure 3-15 has no input RF signal connected to it. More accu-
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Figure 3-15: The pseudo-differential envelope detector that is used to report the RF
signal amplitude present at every stage.

rately, the RF signal is low-pass filtered by R and Cbig before it reaches the rectifier.

The output voltage of the main rectifier, shown on the right, is normally higher than

the replica by IrectR/κ because of the DC voltage drop on the resistor R. Here κ is

the subthreshold exponential constant. In order to eliminate this systematic source

of DC offset we make the diode in the main rectifier 1.5 times wider than that in the

replica and bias it at 1.5 times the current, so that the two diodes continute to have

the same source-gate voltage drop. However, one-third of the current in the main

rectifier, i.e., Irect/2, is used to bias an additional resistor of value 2R/κ, thereby

creating a voltage drop IrectR/κ which cancels out the offset.

The dead-zone of the rectifier is ≈ φT/κ, resulting in an input-referred dead-zone

of ≈ (φT/κ) /Apreamp. The output of the main rectifier is filtered by a first-order

Gm − C low-pass filter. Both output and reference voltages are then buffered by

source followers. Finally, the outputs of these buffers are time-multiplexed onto a

common two-wire bus by an analog multiplexer, or scanner circuit. The SCAN
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signal, generated by a token-passing circuit (essentially a ring counter) allows the

buffers to drive the bus when it is high, and disconnects them from the bus when

it is low. This multiplexing strategy was useful for the preliminary implementation

described here because of the limited number of I/O pins available.

The current-controlled oscillator (CCO) used to generate the clock for the read-

out scanner is shown in Figure 3-16. The control current Iscan linearly controls the

oscillator frequency fscan, as follows:

fscan =
Iscan

2Cscan (VT+ − VT−)
(3.26)

where VT+ and VT− are the positive and negative-going thresholds, respectively, of

the Schmitt trigger. The bias current Irect of the rectifier and low-pass filter inside

each stage is automatically set to a constant fraction 1 : M2 of Iscan by a current

mirror, as shown in Figure 3-16. Therefore Irect = Iscan/M
2, where M is an integer.

We assume that the overall output bandwidth of each stage is equal to BWlp, the

bandwidth of the low-pass filter shown in Figure 3-15. The output bandwidth is then

given by

BWout = BWlp =
gmp

2πClp
=

Irect
2πClpVL

(3.27)

where gmp, VL and Clp are the small-signal transconductance, linear range and load

capacitance of the filter. In order for (3.27) to be true we must have BWlp < BWrect,

where BWrect = κIrect/ (2πCrectφT ) is the output bandwidth of the rectifier.

The scanner samples each output voltage at a frequency fframe = fscan/N , where

N is the total number of stages. In order to satisfy the Nyquist criterion and avoid

aliasing, we must have BWout ≤ fframe/2. In practice BWout should be made lower

than fframe/2 since we do not have a brick-wall filter at the output (in fact, we only

have a first-order one). Combining (3.26) and (3.27), we get

M2 ≥ N

2π

[
Cscan (VT+ − VT−)

ClpVL

]
(3.28)

The inequality in (3.28) is in a convenient form that only depends on constants
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Figure 3-16: The current-controlled oscillator (CCO) that generates the clock for the
read-out scanner.

like N and dimensionless ratios like Cscan/Clp and (VT+ − VT−) /VL. In particular, it

is independent of fscan. As a result, we can set M to a fixed value. On this chip, we

used M = 12, which gives us BWout ≈ fframe/3.

3.4.4 Automatic Gain Control

The local automatic gain control (AGC) circuit reduces the peaking associated with

each stage when the signal amplitude increases. It can be disabled if necessary. The

AGC works by inserting a resistor in series with the capacitor C1 and increasing its

value with the signal amplitude, thus lowering the quality factor of C1. The variable

resistor is formed by changing the gate voltage of an NMOS that carries no DC

current, has VDS = 0 and thus operates in the linear region. The circuit is shown in

Figure 3-17. The NMOS gate voltage VAGC is given by

VAGC = VDD − IAGCRAGC (OUT −REF ) (3.29)

where the pseudo-differential output voltage produced by the rectifier is given by

vout = (OUT − REF ). If the NMOS acts as a square-law device, its drain-source

resistance is given by
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Figure 3-17: Automatic gain control (AGC) circuit used inside every stage.

RC1 ≈
1

µnCox
W
L

(VAGC − VT )
=

1

µnCox
W
L

(VDD − VT − IAGCRAGC (OUT −REF ))
(3.30)

Therefore the quality factor of C1 is given by

QC1 =
1

YC1RC1

=
µnCox

W
L

YC1

(VDD − VT − IAGCRAGC (OUT −REF )) (3.31)

where YC1 = ωC1 is the admittance of C1, and is approximately constant at the center

frequency for every stage because of the scale-invariant nature of the cochlea. We see

that QC1 may be written in the form a (b− vout), where a and b are constants. In

other words QC1 decreases in a linear way with output signal amplitude. It can be

shown that the peak gain of the stage is approximately equal to

Gstage =
Gstage(0)

1 +
√
Gstage(0)/QC1

(3.32)

where Gstage(0) is the small-signal value of Gstage. Finally, it should be noted that the

explicit AGC described in this section operates in parallel with a “natural” AGC that

arises from the limited linear range VL = Ibias/gm of the transistors M1 and M2 within

the cochlear stage (see Figure 3-12). Here Ibias and gm are the DC bias current of each

transistor and its transconductance, respectively. The effective transconductances gm1
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and gm2 of M1 and M2 decrease for RF signal amplitudes greater than VL, reducing

Gstage to lower values than predicted by (3.32). The value of VL is equal to φT/κ in

subthreshold, and ideally increases ∝
√
Ibias above threshold.

3.4.5 Calibration Loop

The bias voltage Vref sets the value of gm2 and gm1 within each stage, as shown in

Figure 3-12. The peak gain, or quality factor of the stage is approximately equal

to Gstage = gm2gm1 (L1/C1). In addition, the DC gain of the stage is approximately

gm2/gm1 = 1, so we get

Gstage ≈ g2
m2

(
L1

C1

)
(3.33)

Equation (3.33) shows that we can control the sharpness of the cochlear transfer

functions by changing gm2. The values of gm1 and gm2 are controlled by the bias

voltage Vref . This voltage is set by the feedback loop shown in Figure 3-18. Consider

the amplifier formed by M2, which has the same geometry as the transistor M2 within

the filter stages, and RL. The loop measures input and output amplitudes and adjusts

Vref until this amplifier has a gain of 1 at the oscillator frequency (22MHz). This gain

is approximately gm2,effRL, where gm2,eff = gm2/ (gm2R2 + 1) and R2 is designed to

be equal to its average value in the cochlear stages. Therefore the loop sets gm2,eff =

1/RL. By adjusting RL, we can therefore control the cochlear transfer functions (and

also the power consumption). The switch and monostable (one-shot) ensures that the

loop does not get stuck at the wrong operating point by resetting Vref if it exceeds a

reference value Vmax. This precaution is necessary because the relationship between

Vref and gain is not monotonic: for very high values of Vref , the gain drops because

the transistor M2 comes out of saturation.

Figure 3-19 shows the amplifier used inside the gain calibration loop shown in

Figure 3-18. The circuit is an AC-coupled cascoded common-source amplifier, with

the bias voltage Vb,amp setting the bias current and voltage gain. Figure 3-20 shows

the differential delay cell used in the 22MHz ring oscillator also shown in Figure 3-18.
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Figure 3-18: Feedback loop used to set the bias voltage Vref .

Source degeneration is used to increase the linear range of the differential pair and

reduce harmonic distortion in the output waveform. The stage produces two sets of

differntial outputs in response to an input Vn−1 from the previous stage: Vn, which

is fed to the next stage, and OUT = Vn/10, which is fed into the calibration circuit.

In this way we ensure that the amplitude of OUT is smaller than the linear range of

the amplifiers in the calibration circuit; as a result, we ensure that the loop sets the

small-signal transconductance gm2,eff within each cochlear stage.

3.4.6 Low-Noise Amplifier

Figure 3-21 shows the common-gate low-noise amplifier (LNA) used to interface the

unidirectional RF cochlea chip with the outside world. Common gate topologies

are efficient because they use the same transistor for both impedance matching and

voltage gain. The input impedance of the LNA as seen by the signal source is ap-

proximately given by
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Figure 3-20: The differential delay stage that was used within the 22MHz calibration
oscillator.
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Figure 3-21: Common gate low-noise amplifier (LNA) used in the unidirectional RF
cochlea.

Zin = sLpar +
1

sCpar
‖
(

1

sCin
+

1

gs

)
(3.34)

where Lpar is the parasitic series inductance (mostly due to the bond wire), Cpar is

the shunt capacitance to ground at the input node IN (due to the package, bonding

pad, bottom-plate parasitics of Cin and ESD diodes) and 1/gs is the impedance seen

looking into the source of the input transistor. At frequencies much larger than

ωmin = gs/Cin, the impedance of Cin may be neglected compared to gs. Similarly,

for frequencies much smaller than ωmax = 1/
√
LparCpar, the impedance of Lpar is

much smaller than that of Cpar. Between ωmin and ωmax, therefore, the magnitude

of the transfer function from the signal source to the source of the input transistor is

approximately 1, while the input impedance is given by Zin ≈ 1/ (gs + sCpar).

In order to impedance match the real component of Zin to RA, the output resis-

tance of the signal source, we must have gsRA = 1. Most RF test equipment uses

RA = 50Ω. In order to minimize reflections we must make the parasitic capacitance

Cpar as small as possible, but its admittance increases with frequency and ultimately

limits the impedance-matching bandwidth.
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If LL was absent the bandwidth of the LNA would be given by 1/(2πRLCL), where

CL is the load capacitance present at the output node. The inductor LL increases

bandwidth without affecting gain or power consumption by adding a zero to the low-

pass transfer function of the LNA. This technique, known as shunt peaking, has been

used since the days of vacuum tubes [158]. In the passband the effects of both LL

and CL may be neglected and the voltage gain of the LNA is given by

G ≡ vout
vin

=
gsRL

2
=

RL

2RA

(3.35)

where the factor of 2 comes from the resistive voltage division caused by impedance

matching at the input node. Ignoring induced gate noise, it can be shown that the

noise figure of this LNA in the passband is given by

F = 1 +
4

gsRA

(
κγ

(gsRA + 1)2 +
1

gsRL

)
= 1 + κγ +

2

G
(3.36)

where γ is the excess noise figure of the input transistor1, κ is its subthreshold slope

factor and we have assumed that the current source at the bottom has been sized

such that its transconductance and noise are negligible.

3.4.7 Other Circuits

Other circuits present on the chip include:

• Constant-gm current reference (1µA nominal output)

• 5-bit current DACs for programming the following chip parameters

– Calibration oscillator amplitude

– Calibration amplifier voltage gain

– Preamplifier and LNA voltage gains

– Scan frequency fscan, through Iscan

1The drain current noise PSD of a MOSFET is given by 4kTγgm, where gm = κgs is its small
signal transconductance.
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– AGC gain, through IAGC

– Stage impedance (resistor DAC)

– Output buffer bias current

• Global power-on reset

• Output voltage buffers (source followers)

• Local RC lowpass filters on global bias voltage lines to prevent unwanted RF

coupling between stages

• About 1nF of on-chip supply bypass capacitance

• Multiple (30+) VDD and ground pins to reduce supply-line inductance

3.5 Measurements

3.5.1 Test Setup

Our unidirectional RF cochlea chip contained N = 51 stages with Nnat = 16. A

die photograph of it is shown in Figure 3-22. Both bidirectional and unidirectional

cochlea chips was mounted on custom printed circuit boards for testing. An example

is shown in Figure 3-23. The chip was tested by hooking it up to two power supplies

(VDD and VDDA), setting a few configuration bits using jumpers on the test board and

then varying on-chip parameters via the programming interface. The programming

interface consists of a 8-bit wide bus divided into two sections: 3-bit address and 5-

bit value. The 3 address bits allow 7 chip parameters to be programmed (the eighth

setting is not used). A separate “program enable” (PR EN) pin is raised high once

valid data has been placed onto the bus. The on-chip latches that store parameter

values are only transparent when PR EN is high. The interface is controlled from a

computer through a National Instruments data acquisition (DAQ) card and a graph-

ical user interface (GUI) written in LabView (National Instruments). A screen-shot

of the GUI is shown in Figure 3-24.
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Figure 3-22: Die photograph of the unidirectional RF cochlea chip.

The test board

Configuration 
bits

Programming
interface

RF input

Power supplies

Outputs

Figure 3-23: Printed circuit board used for testing the unidirectional RF cochlea.

218



Figure 3-24: The Labview GUI used for programming the unidirectional RF cochlea.

A perennial problem with setting on-chip bits with commercial DAQ cards is

that most of them have TTL-compatible (5V) digital input/output ports. Such high

voltages should not be fed directly into our chips, which may only be running at

1V (even with ESD-protected inputs). An alternative is to buy DAQ cards with

adjustable-voltage digital ports, but these are hard to find and quite expensive. We

used an alternative strategy: the TTL-compatible outputs from our DAQ card were

fed through current-limiting series resistors (we used 47kΩ, but the exact value is

not critical) and then into low-voltage CMOS inverters (74LV04 chips). The power

supply on the inverters was tied to VDDA. The 74LV04 comes with built-in ESD

protection diodes which turn on when the DAQ card puts out 5V, with the series

resistors limiting the current and preventing the diodes from burning out. Thus this

hack converts 0 to 5V digital signals into (inverted) 0 to VDDA signals which are

suitable for programming the cochlea chip.
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Figure 3-25: Spatial responses of the unidirectional cochlea to different input frequen-
cies at the following power levels: -30, -40, -50, -60dBm.

3.5.2 Experimental Results

Figure 3-25 shows spatial responses of the unidirectional cochlea to three input fre-

quencies and four power levels. The frequency-to-space transform is clearly visible,

as is gain compression at high input power levels. Figure 3-26 shows that we can

control the peak gain of the cochlear transfer functions by changing the value of RL,

the load resistor shown in Figure 3-18. The figure shows spatial responses at 2 and

4GHz for different values of RL = 1kΩ/D, where D is the digital code of the 5-bit

DAC that sets RL. In this case D was increased from 11 to 16, decreasing RL from

91Ω to 67Ω. The result is increased voltage gain. However, power consumption also

goes up, because the transconductance of the transistors M1 and M2 inside each filter

must increase to keep the gain gm2RL fixed at 1. In this case power consumption

increased from 200mW to 300mW.

Figure 3-27 shows spatial responses of the unidirectional cochlea at 2GHz as the

gain of the preamplifiers is varied by changing the DAC code that controls the bias

220



5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

25

30

Stage number

V
o

lt
ag

e 
g

ai
n

 (
d

B
)

4 GHz
2 GHz

Figure 3-26: Spatial responses of the unidirectional cochlea to two different input
frequencies for values of the gain-control resistor RL varying from 91Ω (DAC code =
11) to 67Ω (DAC code = 16).

current Ipreamp. The DAC code linearly controls Ipreamp. The bias current of the LNA,

ILNA, is a scaled copy of Ipreamp. Figure 3-28 shows the measured power consumption

of the cochlea for various values of Ipreamp and the calibration resistor RL. Note that

the DAC code linearly controls Ipreamp since here we use a current DAC. However

RL is set using a resistive DAC: RL = 1kΩ/D, where D is the DAC code. Since the

calibration loop guarantees that gm1RL = 1, we get gm1 = D/1kΩ, i.e., the stage

transconductance is a linear function of the DAC code. However, transconductance

is a nonlinear function (in fact, a highly compressive one) of the bias current. This

explains why the current consumption is a highly expansive function of the DAC code

that sets RL.

Figure 3-29 shows measured frame frequency fframe as a function of the DAC

code that sets Iscan. The clock frequency is fscan = Nfframe, where N = 51 is the

number of stages. We note that fframe is quite linear in the DAC code, indicating

that the CCO control characteristic is linear in Iscan. The one exception appears
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Figure 3-27: Spatial responses of the unidirectional cochlea to a 2GHz input tone at
-40dBm for various values of preamplifier gain. The DAC code controlling the bias
current in the preamplifiers was increased from 4 to 14 in this figure.

in the small “kink” in the curve between DAC codes 15 and 16. This “kink” was

probably introduced by the DAC itself. The DAC consists of binary-weighted current

sources that are added up to produce the output current. Between codes 15 (’01111’)

and 16 (’10000’) all these current sources switch state from on to off or vice versa.

Mismatches between them result in a differential nonlinearity (DNL) in the transfer

curve at this point. This behavior is an example of a well-known phenomenon in both

ADCs and DACs, namely the strong correlation of large DNL in the transfer curve

with major code transitions (those that cause large numbers of bit flips).

Figure 3-30 shows a histogram of the measured jitter in the frame period Tframe =

1/fframe when Iscan was set to the lowest possible value (DAC code = 0). The

standard deviation in Tframe was 290.8ns, with the mean value being 86.5µs. If jitter

on the underlying clock edges is uncorrelated from edge to edge, it will accumulate

as the square root of the number of edges between measurements. Assuming that the

measured jitter comes entirely from the clock, the rms clock jitter is then given by
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Figure 3-30: Histogram of jitter of the measured frame period 1/fframe about its
mean value (86.5µs, corresponding to fscan = 11.56kHz). The DAC code controlling
Iscan was set to 0.

290.8ns/
√

51=40.7ns, the mean clock period being 86.5µs/51=1.70µs. This seems to

be an excessively large amount of jitter, perhaps indicating that the measured jitter

is not entirely produced by the clock.

Figure 3-31 shows the measured reflection coefficient at the input terminal of the

cochlea at a power level of -20dBm. The source impedance was 50Ω. The input

impedance can be varied by changing ILNA, the bias current of the LNA. As shown

in the figure, the best match was obtained for bias currents obtained by setting the

DAC in question to values between 13 and 18. The match degrades at low frequencies

because of the high-pass filter formed by Cin and 1/gs (see Figure 3-21). It degrades

at high frequencies because of the low-pass filter formed by package parasitics: Lpar,

the bond-wire inductance and Cpar, the shunt capacitance at the input terminal.

Figure 3-32 again shows measured reflection coefficient at the input terminal, but

now as a function of the input power level, for a few frequencies. We note that the

reflection coefficient begins to increase significantly for power levels greater than -
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Figure 3-31: Measured input reflection coefficient of the RF cochlea chip for various
values of LNA bias current. The input power level was fixed at -20dBm.

10dBm. This behavior occurs because the effective transconductance gm,eff of the

input transistor in the LNA decreases for large-signal inputs, increasing the input

impedance, which is approximately 1/gm,eff . From a practical standpoint, this data

allows us to set the largest acceptable input signal level at approximately -10dBm.

3.5.3 Performance Summary

Spatial responses in the unidirectional cochlea were broadly similar to those obtained

from the bidirectional cochlea, but secondary peaks due to inter-stage reflections were

absent because of the unidirectional nature of the cascade. This property allows a

lower value of Nnat to be used, which reduces noise, power consumption and chip area

at the cost of reduced frequency resolution.

The performance of both cochleas is summarized in Table 3.1. In the table, peak

voltage gain refers to the gain experienced by small signals (no gain compression). In

addition, the quoted dynamic range (DR) is for single input tones, with the maximum

signal being set by gain compression, and the minimum signal by the input-referred
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Figure 3-32: Measured input reflection coefficient of the RF cochlea chip as a function
of the input power level at various frequencies. The DAC code that sets the LNA
bias current was fixed at 12.

noise floor. The presence of other tones will reduce dynamic range, as explained in the

previous chapter. The two cochleas have similar dynamic ranges. The unidirectional

cochlea has significantly higher voltage gain and output noise, but somewhat lower

input-referred noise.

However, the actual DR values of both cochlea chips is lower than the 70dB shown

in Table 3.1. This is because the lower end of the DR is not set by the input-referred

noise floor, but by the dead zone of the envelope detectors (EDs). The ED dead zone

limits the minimum detectable signal at the cochlear outputs to (φT/κ) /Apreamp,

where Apreamp is the voltage gain of the preamplifiers. The minimum acceptable

bandwidth of these preamplifiers is equal to the center frequency of the cochlear

stage in question. This bandwidth requirement limits the maximum value of Apreamp

to approximately 6.3 (16dB) via the usual amplifier gain-bandwidth trade-off2. As a

2We used two-stage preamplifiers to distribute the gain. The result is a more gentle trade-off
between gain and bandwidth. The propagation delay also increases, but this is not an issue since
the EDs discard phase information anyway.
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Table 3.1: RF cochlea: Performance summary
Parameter Bidirectional Unidirectional
Technology 0.13µm CMOS 0.13µm CMOS

Stages per e-fold, Nnat 24 16
Total number of stages, N 50 51

Frequency range, GHz 1.2-8 0.6-6
Maximum output noise, dBVrms -70 -55

Peak voltage gain, dB 10 35
Maximum output SNR, dB 60 35
Input dynamic range, dB 70 70

Input impedance, Ω 50 50
Typical power consumption 170mA, 1.8V 220mA, 1.3V

result, we get a miniumum detectable output amplitude of (φT/κ) /Apreamp ≈ 5.5mV

(-45dBV). The minimum detectable input amplitudes of the bidirectional and unidi-

rectional cochleas are then equal to -55dBV and -80dBV, resulting in DR values of

45dB and 60dB, respectively.

ED dead-zone impacts the DR of the bidirectional cochlea to a greater extent

since its transfer functions have lower peak gain. We can improve DR in several

ways. For example, we can build more sophisticated preamplifiers that allow Apreamp

to be increased without lowering bandwidth. However, in this case we must ensure

that the preamplifier outputs have a linear range > VLApreamp, where VL is the linear

range of the cochlea itself. Gain control will have to be added to the preamplifiers if

this condition is not met. Alternatively, we can replace the EDs with more sensitive

coherent detectors.

Figure 3-33 summarizes the frequency-to-place transform measured for both de-

signs. Deviations from exponential scaling are visible at the low frequency end of

the bidirectional design and are caused by the fact that our simple line-termination

network cannot perfectly approximate the line impedance at all frequencies. A higher

order termination network can be used to reduce this effect. Deviations from expo-

nential scaling in the unidirectional design were mainly caused by gain compression,

which makes it difficult to determine the location of the peak response.
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Figure 3-33: Measured frequency-to-space transform for the unidirectional and bidi-
rectional cochleas, showing the location of the peak response as a function of input
frequency.

3.6 Comparing Cochlear Designs

In this section, we summarize and compare important characteristics of the bidirec-

tional and unidirectional RF cochlea designs.

Realism: The bidirectional RF cochlea more closely models the biological cochlea,

which allows wave propagation in both directions. However, only the forward going

wave is likely to be significant during normal cochlear operation3. As a result, our

unidirectional cochlea design also captures important aspects of cochlear operation.

However, it was derived by ignoring the pre-exponential part of the WKB solution.

This additional approximation tends to result in lower frequency selectivity than the

bidirectional version.

Discretization: The results of spatial discretization are different in the bidirec-

tional and unidirectional cochleas. For example, the performance of the bidirectional

cochlea asymptotes as Nnat, the number of filters per e-fold increases, but that of the

3Wave propagation in the reverse direction (from the apex to the base) is necessary for the
generation of oto-acoustic emissions (OAE’s).
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unidirectional cochlea does not. Fundamentally, cascades of unidirectional filters are

not formally valid ways of approximating partial differential equations. The voltage

gain and group delay τg of the cascade become infinite as Nnat →∞ because a single

stage sees an infinite number of poles from all previous filters in the system.

The roll-off slopes of the cochlear transfer functions increase with Nnat in both

cochleas, resulting in improved frequency resolution. However, the sensitivity, or min-

imum detectable signal, remains roughly constant, and larger value of Nnat also lead

to increased power consumption and layout area. Overall performance is therefore

maximized at an optimum value of Nnat. However, this optimum will be different for

the two cochleas.

Stability: The unidirectional cochlea is unconditionally stable as long as each

filter stage is stable. This is because, ideally, the stages don’t interact with each

other. On the other hand, predicting the stability of the bidirectional cochlea is non-

trivial. It is difficult to impedance-match the low-frequency end (apex) of the cochlea

over all frequencies. Thus, reflections occur if low frequency components that have

best places close to the apex are present along the transmission line. There may also

be inter-stage reflections, which were analyzed in the previous chapter. Reflected

waves with large amplitudes cause secondary peaks in the cochlear transfer functions,

and, in extreme cases, instability.

A formal stability analysis of the bidirectional cochlea was presented in [323]. The

quality of the impedance match provided by the apical termination was found to be

critical for stability, particularly if the cochlear transfer functions have high voltage

gain. In order to improve the impedance match we can use higher-order matching

networks, or make the last few sections of the bidirectional cochlea heavily damped

(dissipative) in order to attenuate the wave both before and after it reflects from the

apical termination4. Since the cochlea is nonlinear, its stability depends on amplitude

level, i.e., it is conditionally stable. However, the nonlinearity is compressive, and

peak gain decreases with amplitude, which improves stability. Thus stability for

4The latter strategy is analogous to the use of perfectly matched layers (PMLs) for attenuating
reflected electromagnetic waves. Such layers are used both for numerical simulations and within
anechoic chambers.
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small signals (the worst case) guarantees stability at all amplitude levels.

Noise: A serious problem with any transmission line or cascade of filters is accu-

mulation of noise contributed by other stages. The bandwidth of the cochlea decreases

exponentally with position. As a result, low-frequency (apical) stages contribute

less noise than high-frequency (basal) stages. In the unidirctional cochlea discussed

in [259], the result was total output noise that increased with position before saturat-

ing to a fixed value. The amount of noise was extremely sensitive to changes in the

filter transfer function. For example, the value of Q in (3.1) strongly affected the peak

gain and asymptotic noise level. Our unidirectional design shows similar behavior.

The total noise increases with distance from the base, reaches a maximum and then

slowly decreases (instead of staying constant). The noise and signal transfer functions

roughly track each other, so the minimum detectable signal is relatively invariant to

changes in filter parameters.

In the bidirectional cochlea, each active element adds noise, as described in the

previous chapter. Intuitively, we expect behavior that is similar to the unidirectional

implementation. This is because the bandwidth of the bidirectional cochlea decreases

exponentially with position, just like in the unidirectional system. Thus later stages

(towards the apex) contribute less noise than earlier stages (towards the base). Indeed,

the total output noise of our bidirectional cochlea also increases with distance from

the base, reaches a maximum and then slowly decreases.

Implementation: The unidirectional cochlea is easier to design, optimize and

implement than the bidirectional version, because the unidirectional filter stages do

not interact with each other. Designing and simulating single lumped filters and

cascading them is easier than designing a distributed structure like the bidirectional

cochlea.

3.7 Appendix: Layout Issues

While testing this chip, we became aware of certain layout problems, which are dis-

cussed in this appendix. First, some relevant facts: We used the UMC L130 0.13µm
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CMOS process (MM/RF). It contains 9 metal layers: Metals 1 through 6 are 0.32µm

thick copper, Metal 7 is 0.8µm thick copper, Metal 8 (“top metal”) is 2µm thick

copper and AL RDL is a special pad-connect aluminium layer on top of the “top

metal”.

To get high quality factors from integrated magnetic components, one usually

prevents dummy metal fill from being applied in the region around the inductor by

using “dummy block” layers, one each for Diffusion, Poly and Metals 1 through 7.

Dummy fill is necessary for chemical-mechanical planarization/polishing (CMP), i.e.

making the surface of the inter-layer dielectric (ILD) flat enough for the next metal

layer to be deposited. In addition, we also want to prevent slots from being cut into

the inductor metallization by using “slot block” layers, one each for Diffusion, Poly

and Metals 1 through 7. Metal (and oxide) slots are used for relieving oxide stress

built-up during the fabrication process over wide metal layers. Cutting slots in the

metal allows the oxide above and below the metal layer in question to contact each

other, increasing the mechanical stability of the chip and preventing phenomena such

as metal lift-off due to differential thermal expansion. Note that in this process slot

rules are only activated if the metallization is > 5µm wide. Finally, since this is

a non-epitaxial process, any regions not covered with N-well are usually doped to

create P-wells. To reduce eddy conduction losses in the substrate at high frequencies,

a “P-well block” layer is placed below each inductor.

We have fabricated three chips (each 3.240mm × 1.525mm in size) in this process

to date:

• Unidirectional cochlea, version 1 (April 2006): There were 46 stages, with one

transformer per stage. Below each transformer were 9 dummy block layers

(Diffusion, Poly and Metals 1 through 7), 9 slot block layers (Diffusion, Poly

and Metals 1 through 7) and 1 P-well block layer. The chip came back with no

dummies or slots near any of the inductors, but was largely non-functional for

completely unrelated reasons.

• Bidirectional cochlea (August 2006): There were 50 stages, with one transformer
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per stage. To simplify layout, the 9 individual slot and dummy block layers

used earlier were replaced with just one layer each, named IND CAD. It was

believed, based on a reading of the design rule manual for the process, that

IND CAD would be expanded by the foundry into the 9 individual layers used

on the earlier chip. This assumption proved to be incorrect: it turned out that

the IND CAD layer was only present for historical reasons and was ignored by

the foundry. The transformers came back with dummy metal fill under all of

them, and metal slots cut into transformer stages 34 through 50. The absence

of slots in the first 33 transformers can be explained by the fact that they all

had metallization that was < 5µm wide. Unfortunately, this problem was not

spotted at the time.

• Unidirectional cochlea, version 2 (August 2007): There were 51 stages, with one

transformer per stage. The two IND CAD layers were again used, with similar

results: all transformers had dummy metal fill below them. Also, stages 39

through 51 (which had metallization that was > 5µm wide) had metal slots cut

into them, while the others did not. The problem was finally noticed during

testing of this chip. A micro-photograph of the “slot/no-slot” boundary in

shown in Figure 3-34.

It appears that dummy metal fill, because it simply consists of small, electrically

floating metal squares, has relatively little effect on the quality factor of inductors

and the magnetic coupling coefficient of transformers. Similarly, metal slots are much

smaller in size than the metallization itself (see Figure 3-34) and do not noticeably

affect the series resistance of the inductor. However, some lowering of quality factors

and coupling coefficients may be expected. As evidence of this fact, we note that,

experimentally, the series line loss of the bidirectional cochlea chip was about 25%

higher than simulated values. Similarly, the peak gain of the unidirectional cochlea

was about 25% lower than simulated. We believe that both unmodeled layout para-

sitics and worse-than-expected transformers are likely culprits.
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METAL SLOT DUMMY METAL FILL

Figure 3-34: Die micro-photograph, taken at 200x magnification, of the second uni-
directional RF cochlea chip. The yellow structures are top-layer metal, the green
background is the substrate. Parts of two inductors are visible, with a power sup-
ply bus separating them. The inductor on the left has oxide-relief slots cut into its
metallization, the one on the right does not.
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Chapter 4

The RF Cochlea: Enhancements

and Applications

You see, wire telegraph is a kind of a very, very long cat. You pull his tail

in New York and his head is meowing in Los Angeles. Do you understand

this? And radio operates exactly the same way: you send signals here,

they receive them there. The only difference is that there is no cat.

– Albert Einstein, when asked to describe radio

In this chapter we describe how to interface the RF cochlea with antennas, how

to enhance its performance, and how to use it as a building block for more complex

signal processors. In particular, we describe architectures for flexible, programmable

frequency estimators and spectrum analyzers that can operate over extremely large

bandwidths and yet provide high spectral resolution. The acquisition time and hard-

ware complexity of our algorithms both scale as O(N), where N denotes the number

of frequency bins acquired. We also describe several applications of our architectures,

including universal and software radios and radar. Parts of this chapter are based on

work performed in collaboration with Serhii Zhak.
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4.1 Antenna Design

We have designed and tested small broadband antennas for capturing radiated RF

from the environment and feeding it into the RF cochlea. Figure 4-1 shows a planar

log-periodic dipole antenna (LPDA) that was fabricated on both metal layers of a

double-sided printed circuit board. Like the cochlea, the geometry of log-periodic

antennas scales exponentially with position. In an LPDA, N half-wavelength dipoles

of length ln (1 < n < N) are separated by distances Rn (1 < n < N − 1) and

placed on a common feed line. High input frequencies excite the short dipoles and

low frequencies, the long ones. The whole structure behaves like a passive cochlea,

with exponentially-tapered resonators (the dipoles) fed by a common transmission

line. In fact, similar-looking “fishbone” structures have been used to build passive

MEMS cochleas [284].

Because of exponential scaling, we have Rn/Rn−1 = Rn/Rn−1 = τ , where τ =

exp (1/Nnat) is a constant, and Nnat is the number of elements per e-fold in length.

The minimum and maximum lengths lmin = l1 and lmax = l1 exp (N/Nnat) set fmax

and fmin, the maximum and minimum frequencies of operation, respectively. Another

important design parameter is the taper angle α, where

tan(α) =
ln

2Rn

(4.1)

The total length of the antenna is given by

Ltot = cot(α)

(
lmax

2
− lmin

2

)
=
lmax cot(α)

2
[1− exp (−N/Nnat)] (4.2)

It can be shown that the input impedance of the antenna is resistive between fmin

and fmax and is approximately given by

Rin ≈

√
Z0Za

Nnat tan(α)
(4.3)

where Z0 and Za are the characteristic impedances of the feed line and the dipole

elements, respectively. This expression is similar to that obtained for the input
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impedance of the bidirectional RF cochlea. The directivity (maximum, or on-axis

gain) of the LPDA increases if the dipoles are spaced further apart and more ele-

ments are used, i.e. α decreases and Nnat increases. Since Ltot ∝ cot(α), we have

to trade-off gain for physical size. We used the design curves given in [10] to decide

which values of Nnat and α to use, given a target directivity of 7.0dBi. Our final

values were Nnat = 6.6 and α = 22.4◦, resulting in ln/Rn = 0.82.

We had to modify the design procedure outlined in [10] in several ways. The

main reason was that we wanted to implement our antenna on a printed circuit board

(i.e., a planar geometry), while the original LPDA designs used coaxial feed lines and

cylindrical dipole elements. We used a coplanar strips (CPS) line to create a balanced

feed line. CPS lines consist of two equal-width conductors separated by a dielectric

medium. The characteristic impedance Z0 decreases as the conductors become wider

or the dielectric thinner. In our case, the conductors are copper, etched on either side

of the board, and the dielectric is 31-mil thick FR-4, which has a relative dielectric

constant of εr ≈ 4.21. Secondly, our radiating dipoles are planar rectangles with a

fixed length-to-width ratio. This aspect ratio controls the characteristic impedance

Za of the dipoles. The two halves of any dipole are attached to the two conductor

of the feed line (which are on the top and bottom surfaces of the board) to maintain

symmetry and balanced operation. Therefore, unlike normal dipole antennas, the

two halves of each dipole are located on different horizontal planes. However, the

thickness of the board is much smaller than other antenna dimensions, so any effects

on performance are small. We designed Z0 and Za to give us an input impedance

Rin = 50Ω.

The main electromagnetic effect of fabricating an antenna on the surface of a

1FR-4, which stands for “Flame-Retardant 4”, is by far the commonest material used for making
printed circuit boards. It is hardly an ideal dielectric, however. Its loss tangent at 1GHz is about
0.01 (although it can be as high as 0.02). A more serious problem is that it is an inhomogeneous,
layered material, consisting of an epoxy resin that has fiberglass mats embedded in it to increase
mechanical strength. The resin has lower dielectric constant than the fiberglass, so the effective
dielectric constant of the material as a whole is a weighted average of the two values. If antennas or
transmission lines are fabricated on an FR-4 surface, however, they will “see” a dielectric constant
that is higher or lower than expected depending on how far away from the surface the nearest
fiberglass layer is. This uncertainty introduces unwanted variability in the performance of the
electromagnetic component.
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dielectric, as opposed to free space, is that it sees an effective dielectric constant

εeff , that is different from 1. As a result, in order to maintain the same electrical

performance all antenna dimensions must be decreased by a factor 1/
√
εeff . The

value of εeff depends on the permittivity and electrical size of the dielectric, as well

as the radiation pattern of the antenna. At the interface between two infinitely thick

dielectric slabs, for example, it is intuitively clear that εeff for an isotropic radiator

will simply be the average of the permittivities of the two media. In our case, the

situation is more complicated. Assume that the antenna is mounted in free space

(effectively, air), so that each radiating element has a 31-mil thick layer of FR-4 right

next to it, and free space everywhere else. The resulting value of εeff will be higher for

a short dipole than a long one, since the former operates at high frequencies, where the

FR-4 looks electrically thicker than at the low frequencies where the latter operates.

Variation in εeff becomes an important issue as the ratio fmax/fmin increases. We

used a linear approximation, based on electromagnetic simulations of single dipoles

of various lengths, to quantify the variation in εeff with frequency:

εeff (f) ≈ εeff (fmax) + (εeff (fmax)− εeff (fmin))

[
f − fmin

fmax − fmin

]
(4.4)

Since the center frequency fn = fmax exp (−n/Nnat) of each dipole is known, we

can now compensate for εeff by “pre-distorting”, i.e. changing the length of the n-th

dipole to l′n = ln/
√
εeff (fn). A Matlab script was written to automatically generate

the layout of the LPDA (as a CIF file) based on design parameters specified by the

user. The antenna shown in Figure 4-1 (17” × 12.5” in size) used fmin = 430MHz,

fmax = 5GHz, εeff (fmin) = 1.15 and εeff (fmax) = 1.60.

The antenna was fed from the high-frequency end, while the low-frequency end of

the feed line was terminated using an external load RL. Figure 4-2 shows measured

values of the input reflection coefficient to a 50Ω source for three different values

of RL: 0 (short), ∞ (open) and 50Ω (matched). In all three cases we have good

impedance matching (V SWR < 2, or |S11| < −10dB) between 400MHz and 6GHz.

The matched termination also provides a good impedance match at low frequencies
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Figure 4-1: A planar, broadband log-periodic dipole antenna (LPDA) that can be
interfaced with the RF cochlea for collecting radiated RF energy from the environ-
ment.

(< 400MHz), as expected. Figure 4-3 shows measured directivity (on-axis gain) of

the antenna with a matched low-frequency termination. We see that the average gain

is 5dBi between 400MHz and 3GHz2. We designed the LPDA geometry to have an

on-axis gain of 7dBi. Some of the reduction in gain is due to dielectric loss in the

FR-4. Similar antennas (with different values of fmin and fmax) have been successfully

interfaced with both unidirectional and bidirectional RF cochlea chips.

4.2 Enhancements of the RF Cochlea

We now discuss several enhancements of the basic RF cochlea structure. It is to be

understood that what follows applies to both unidirectional or bidirectional cochlear

structures (unless mentioned otherwise). Important nonlinear aspects of cochlear

operation include spectral masking, enhancement and automatic gain control. The

cochlea is energy-efficient because it uses distributed gain to get a large gain-bandwidth

2This particular measurement was made with a network analyzer that was limited to 3GHz.
Other measurements (not shown here) indicate that the gain continues to exceed 5dBi up to 5GHz.
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Figure 4-2: Measured input reflection coefficient of the LPDA, measured at the high-
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Figure 4-3: Measured far-field on-axis gain of the LPDA, measured at the high-
frequency end with the low-frequency end terminated with a 50Ω load.
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product. Let us compare the power consumption of the bidirectional RF cochlea

with an all-digital software-defined radio which has the same speed (bandwidth)

and precision (signal-to-noise ratio or number of bits). To directly digitize 7GHz

of bandwidth with 50dB of dynamic range, we need 16GS/s and 9 bits of precision.

This step requires 7W even if we assume a state-of-the-art ADC that consumes only

1pJ/quantization level. By contrast, the bidirectional RF cochlea has a bandwidth of

7GHz and an output SNR of greater than 50dB but only consumes 180mW of power.

The RF cochlea has inherently higher dynamic range than audio-frequency silicon

cochleas, mainly because integrated passive inductors can be used at RF. As shown

earlier, active inductors, which produce more noise as passive inductors with the same

quality factor Q, must be used at audio. Nevertheless, cochlea-like structures that

take advantage of the ideas described in this chapter can also be used for spectral

analysis at lower frequencies.

Different process technologies are optimally suited for hardware implementations

of the cochlea at various frequency ranges. For example, MEMS cochleas using masses

and springs are attractive at audio (in the kHz range). Power-efficient electronic

implementations at these frequencies are also possible using analog subthreshold MOS

circuits. Similar circuits using BJT’s are suitable for ultrasonic and VHF cochleas.

MOS and BJT cochleas can be realized using either voltage-mode or current-mode

signal processing. Implementations that are partially or completely digital are also

possible. In this thesis we have focused on CMOS RF cochleas that use lumped

transmission lines and passive LC filters; these structures are best suited for UHF

and low-GHz frequencies. Above 10GHz distributed cochleas using true transmission

lines and high-speed compound semiconductor devices become feasible.

An important characteristic of the RF cochlea is masking, where the presence

of a strong tone suppresses the response to smaller tones both above and below it

in frequency. However, the low-pass response of the cochlea means that masking

is asymmetric: large low frequency tones suppress small high frequency tones very

effectively and not the other way around. A way to modify this behavior is to use the

difference in output signals across each cochlear stage as the output, not the signal
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itself, as shown in Figure 4-4(a). This operation is equivalent to spatial differentiation,

and converts the low-pass cochlear response to a band-pass one. Simulated results are

shown in Figure 4-5 for the unidirectional cochlea. The small, highest-frequency tone

is normally almost drowned out; however it is resolved clearly when stage differences

are used as outputs.

STAGE STAGE STAGE
n-1 n n+1

OUT

x(n-1) x(n)

y(n)

STAGE STAGE STAGE
n-1 n n+1

OUT

x(n-1) x(n+1)

y(n)

(a)

(b)

Figure 4-4: Spectral sharpening schemes for the RF cochlea: (a) a linear scheme and
(b) a nonlinear scheme inspired by the action of coincidence-detecting cells in the
biological cochlear nucleus.

In addition to the linear filtering provided by the RF cochlea, nonlinear spectral

sharpening strategies can also be used. These techniques can further improve the

frequency selectivity of the system by utilizing spatiotemporal correlations between

the outputs of cochlear stages [268]. One simple strategy, inspired by the action of

coincidence-detecting “octopus” cells in the biological cochlear nucleus (CN), is shown

in Figure 4-4(b) [303]. The CN receives inputs from the cochlea via the auditory nerve,

and projects to structures higher up in the auditory pathway, such as the superior

olivary complex and the inferior colliculus. Its main task is to extract simple spatio-

temporal features, such as the onset of a sound and the direction of frequency sweeps

(chirps).

In our strategy, outputs of cochlear stages two positions apart in the cascade are
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Figure 4-5: Simulated outputs (spatial response) of the unidirectional RF cochlea to
three input tones spaced one octave apart. The middle tone is 30dB larger than the
other two.

multiplied together to produce the sharpened output. The multipliers act as analog

correlators that detect phase-coincidence, thus combining phase and magnitude in-

formation present in the cochlear outputs. The average output of a multiplier driven

by two sinusoidal inputs with a phase difference θ between them is given by

y = x sin(ωt)× x sin(ωt+ θ) =
x2

2
cos(θ) (4.5)

where the averaging operation is carried out over a complete input cycle. We see that

the average output magnitude is maximal, and equal to the average power of each

input signal, when | cos(θ)| = 1, i.e., when θ = {0, π}. The output is zero when the

inputs are in quadrature, i.e., θ = {π/2, 3π/2}.

In our case θ corresponds to the sum of the phase differences across two adjacent

cochlear stages. At frequencies much lower than the local center frequency θ is small

and the output magnitude is maximal. The phase shift θ increases with frequency,

causing the output magnitude to decrease. At frequencies just higher and lower than
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the center frequency θ = π/2, resulting in nulls (zero output). Finally, at the center

frequency θ ≈ π, the inputs to the multiplier are almost in phase, and the output

magnitude is again maximized. Thus we expect y(n) to exhibit nulls on either side of

the peak, but otherwise track the input amplitude x(n). We refer to this process as

spectral sharpening, because it effectively decreases the width of the peak. In fact,

it can be shown that our strategy approximately doubles the frequency resolution

with no loss in timing precision. Simulation results, shown in Figure 4-6, confirm our

predictions.
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Figure 4-6: Simulated unidirectional cochlea transfer functions at different spatial
locations before and after spectral sharpening.

Both strategies shown in Figure 4-4 are used in biological auditory and visual sys-

tems [268]. The first, linear strategy is implemented using lateral inhibition networks

that compute spatial derivatives. The outputs of lateral inhibition networks are then

fed into networks of coincidence detectors. The actions of these neurons can be mod-

eled using analog multipliers, as in our second, nonlinear strategy. We can combine

the two strategies in a similar way to efficiently extract features, such as edges and
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peaks, from the RF spectrum.

4.3 Architectures for Universal or Software Radio

4.3.1 Background

In this section, we define radios simply as devices that communicate with other

radios via wireless (radiated or near field electromagnetic energy). The commercially

interesting range of frequencies for wireless applications is very large, extending over

approximately three orders of magnitude from 100MHz to 100GHz. Nevertheless, this

resource is becoming increasingly crowded. Next-generation radios will need to be

smart enough to be able to find any available space in the RF spectrum, and flexible

enough to be able to operate there [114]. Furthermore, some of these next-generation

software, universal or cognitive radios may need to serve as translator or gateway

radios in a heterogenous wireless network. Gateway radios receive signals in different

formats and frequencies from input radios, translate them to other formats and then

transmit them to other radios.

Initial attempts to define software radio architectures emphasized analog-to-digital

conversion of the entire RF bandwidth immediately after the antenna in the receive

path, and digital-to-analog conversion immediately before the antenna in the transmit

path [127, 128]. All other signal processing was to be performed digitally. However,

no practical radios of this type have been built: the power consumption involved in

digitizing the entire RF bandwidth is prohibitively high, and the situation is not likely

to change in the near future. A flexible receiver architecture that has recently received

attention is the software-defined radio receiver [1,7]. This architecture is intermediate

in flexibility and power consumption between “true” software radio receivers and

traditional narrowband receivers: it is capable of receiving a single channel with any

bandwidth situated in any band. Other flexible receiver architectures reduce the

bandwidth that the analog-to-digital converter (ADC) in the software radio must

handle by performing analog pre-processing [228, 243]. However, the other half of a
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software radio, namely the transmitter, has received much less attention.

In this section we describe novel frequency analysis and estimation algorithms

that allow only interesting portions of the RF spectrum to be selected and digitized.

Our algorithms are based upon a new understanding of the conceptual similarities

between voltage estimators, i.e., analog-to-digital converters, and frequency estima-

tors. Their use results in universal radios which have the following advantages over

current implementations:

• Wide fractional bandwidth combined with high temporal resolution

• Fast signal acquisition

• Increased agility and programmability

• Low power consumption

• Low hardware complexity

We also show that efficient implementations of our algorithms can be realized

by using transmission lines and filter cascades that have characteristic frequencies

varying exponentially with position.

4.3.2 Analogies between ADC’s and frequency estimators

A signal can have many frequencies at once. We define frequency estimators as

systems that solve the general problem of estimating the instantaneous frequencies

present in a signal. Spectrum analyzers are frequency estimators that can, in addition

to estimating the frequencies present, also determine their amplitude, phase or power

levels. In other words, spectrum analyzers find the power spectral density of a signal.

Spectrum analyzers thus form a subset of frequency estimators. They may also be

viewed as a parallel, broadband generalization of narrowband radios that estimate

amplitude or phase of a narrowband signal centered around a single carrier frequency.

Define the minimum and maximum input frequency of interest to a spectrum analyzer
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to be fL and fH respectively. The bandwidth ratio β characterizes the “frequency-

domain dynamic range” required by the corresponding receiving system, where

β =
fH
fL

(4.6)

In general, spectrum analyzers separate an incoming signal spread over a band-

width B = fH−fL into N outputs (“bins”) that each span smaller bandwidths which

(ideally) don’t overlap. The total power present in each bin is an approximation of

the local power spectral density.

We have found interesting analogies between frequency estimators and analog-to-

digital converters (ADC’s) and used it to develop new3 frequency estimation algo-

rithms based on well-known ADC algorithms. The problems that frequency estima-

tors and ADC’s solve are similar, but in different signal domains. ADC’s find the

value of an unknown analog amplitude (voltage or current); frequency estimators do

the same with an analog frequency variable. As a result, similar solution techniques

work in the two cases. In particular, ADC algorithms and automatic error-calibration

techniques can be easily adapted for frequency estimation. However, a signal can have

many instantaneous frequencies of interest, but only one instantaneous amplitude. A

better analogy is therefore to view frequency estimators as the frequency-domain

analogs of multiple parallel ADC’s. Each ADC corresponds to estimating the fre-

quency value (and possibly the power content) of one output bin. These analogies

between ADC’s and frequency estimators enable us to search for frequency-domain

analogs of most well-known ADC topologies. The result is the discovery of several new

architectures for frequency estimation. In addition, those architectures that turn out

to be already known are seen from a new perspective, improving our understanding of

their relative merits and disadvantages. The analogies are summarized in Table 4.1.

An important analogy between ADC and frequency estimator architectures is

shown in Figure 4-7. The basic operation of subtraction in the amplitude domain

(voltage or current) used by ADC’s has a natural frequency-domain analog through

3As far as we know.
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Table 4.1: Analogous ADC and spectrum analyzer architectures
ADC Frequency Estimator/ Remarks

Spectrum Analyzer
Single-slope Swept-sine (super-heterodyne) Known
Dual-slope Dual swept-sine New
Flash (parallel) Filter bank Known
Flash-interpolation Filter bank with finite filter roll-off slope Known
Successive sub-ranging Successive sub-ranging1 New
Successive approximation Cascaded super-heterodyne2 New
Algorithmic 1 or 2 New
Pipelined 1 or 2 New
Sigma-delta (over-sampled) Digital FM demodulator New

mixing (super-heterodyning). However, if real signals are used in the frequency do-

main, only an unsigned subtraction (difference) can be obtained by mixing since

positive and negative frequencies cannot be physically distinguished from each other.

This case is shown in Figure 4-7(a), where the low-pass filter (LPF) rejects the sum

frequency ω1 + ω2 also produced by the mixer, but passes the desired difference fre-

quency component |ω1 − ω2|. A signed subtraction can be performed in the frequency

domain if complex signals are used. Examples are shown in Figures 4-7(b) and 4-7(c).

These complex multiplier structures use side-band cancelation to reject unwanted fre-

quency components and produce only the desired component, i.e., exp ( (ω1 − ω2) t)

at the output.

We now describe several common ADC architectures and frequency estimators

that are analogous to them. Some of these estimators are well-known, while others

are novel. It should be noted that we shall use real signals everywhere in what

follows unless mentioned otherwise. However, it is straightforward to extend any

of the frequency estimator and spectrum analyzer structures that we describe to the

complex signal domain. For this purpose, the complex multipliers shown in Figures 4-

7(b) and 4-7(c) can be used to replace the simple multiplier shown in Figures 4-7(a).

Frequency estimators that use only real signals can be used to demodulate frequency-

modulated waveforms. The use of complex signals allows phase-modulated waveforms

to be demodulated as well.

The most obvious way to build a broad-band spectrum analyzer is to use multi-
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Figure 4-7: The analogy between difference operations in analog-to-digital converters
(left) and frequency estimators (right) with (a) real input signals, (b) and (c) complex
input signals.
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ple narrow-band frequency estimators that operate in parallel (simultaneously). This

“filter bank” approach corresponds to the parallel or “flash” ADC. Flash converters

are extremely fast (they convert in constant time, i.e, O(1)) but are extremely power-

hungry. When the filters in the filter bank have finite roll-off slope their frequency

responses can overlap. As a result a single input frequency will produce non-zero out-

puts from multiple filters at the same time. The amplitudes and phases of these out-

puts provide extra information that can be used to effectively improve the resolution

of the frequency estimator. This approach corresponds to the “flash-interpolation”

ADC structure.

Swept-sine (tunable super-heterodyne) spectrum analyzers mix the input fre-

quency with a local oscillator (LO) whose frequency is ramped linearly with time.

The power level present at the output of the mixer is estimated by a single super-

heterodyne receiver. Different frequency components in the input reach the pass

band of the output receiver at different times. Effectively, therefore, the architecture

converts frequency to time; this corresponds to serial ADC’s such as single-slope con-

verters. However, in contrast to the ADC, the swept-sine architecture can produce

multiple outputs (frequency estimates) in a single sweep. Nevertheless, both struc-

tures use linear sweeps, which make them extremely slow over large dynamic ranges

in signal amplitude (ADC’s) or frequency (spectrum analyzers). An exponential or

geometrically-scaled sweep synthesizes a wavelet-like transformation (a constant-Q

structure) that is much faster in such situations. The biological cochlea is an exam-

ple of a spectrum analyzer that has constant-Q characteristics. The analogous ADC

structure is a single-slope converter implemented in the logarithmic signal domain.

Dual-slope ADC’s are serial converters that use two sweeps (ramps), usually (but

not necessarily) in voltage. An upward ramp with a slope proportional to the input

signal is first performed for a fixed time Tref . The voltage at the end of this ramp

is V0 + αTrefXin where Xin is the input signal, α is a constant and V0 is the initial

voltage. This is followed by a downward ramp with fixed slope αXref , where Xref

is a constant. The time when the voltage reaches V0 is given by T = TrefXin/Xref .

Thus T ∝ Xin as long as Tref and Xref are constant, thus converting time to voltage.
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The advantage of this technique over a single-slope is that T does not depend on

the constant α (its effects are canceled out). Thus any uncertainties or nonlinearities

in α don’t affect the result of the conversion. We can use the same principle to

build a dual-slope frequency estimator. In the first phase, the input frequency ωin is

ramped up for a fixed time Tref with, for example, a frequency synthesizer. During

the second phase a reference frequency ωref is ramped down in time by using a similar

synthesizer. The time at which the two frequencies are equal encodes the value of the

input frequency. Note that, unlike the single-slope swept-sine system, only a single

frequency can be estimated per sweep with this technique.

Frequency-domain analogs of over-sampled (sigma-delta) ADC’s also exist. Fig-

ure 4-8 shows analogous sigma-delta architectures for ADC’s and frequency estima-

tors. A digitally-controlled oscillator (DCO) replaces the digital-to-analog converter

(DAC), but otherwise the two structures are identical. The first component is a sub-

tractor that calculates the instantaneous difference between the output of the DAC

(or DCO) and the input amplitude (or frequency). This error signal is fed into an

integrator. The output of the integrator drives a comparator, which in turn drives

the DAC (or DCO), thereby completing the loop. The output of the comparator is

a digital signal which can be low-pass filtered (decimated) in the digital domain to

produce the output bits.

Figure 4-9 is an example of how the sigma-delta frequency estimator structure

shown in Figure 4-8(b) may be implemented in practice. Note that the sign of the

frequency difference that gets fed into the integrator is important, so the simple

multiplier and low-pass filter combination shown in Figure 4-7(a) cannot be used.

Instead, we use the complex multiplier shown in Figure 4-7(c), which allows us to

retain the sign of the frequency difference in the phase of the complex output signal

exp ( (ωIN − ωDC0) t). In order to avoid problems with phase wrapping, we find the

phase of the ratio of this signal and a version of itself delayed by a small constant

time ∆T < 1/ |ωIN − ωDC0|. This operation is carried out by the ’DIV’ and ’ANG’

blocks in the figure. The output is (ωIN − ωDC0) ∆T , which is the error signal fed

into the integrator. The rest of the system is the same as shown in Figure 4-8(b).
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Figure 4-8: Analogous sigma-delta architectures for (a) analog-to-digital conversion
and (b) frequency estimation (FM to digital conversion).

Figure 4-10 shows simulation results from the sigma-delta frequency estimator of

Figure 4-9. The input frequency was varied sinusoidally and the digital output of the

comparator in the loop was low-pass filtered to produce the estimated frequency. We

see that the loop faithfully tracks the input frequency (with a slight delay introduced

by the output low-pass filter). The whole system acts as a direct frequency-to-digital

converter and may prove useful for demodulating frequency modulated (FM) or fre-

quency shift-keyed (FSK) waveforms in software-defined radios or other applications.
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Figure 4-9: Block-level implementation of the sigma-delta frequency estimator archi-
tecture shown in Figure 4-8(b).

We now describe the analogy between successive-subranging and successive-approximation
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Figure 4-10: Simulation results of the sigma-delta frequency estimator shown in Fig-
ure 4-9. The input frequency was varied sinusoidally about a normalized frequency
of 1 and the output of the comparator was low-pass filtered to produce the estimated
output frequency.

ADC’s and frequency estimators in more detail. The n-th conversion stage in successive-

subranging ADC algorithms is shown in Figure 4-11(a). This stage produces one out-

put bit and is cascaded successively in order to get more bits. The output of the previ-

ous conversion stage, Vn−1, is an analog signal, where VREF−VFS < Vn−1 < VREF+VFS

and VREF and VFS are the reference and full-scale voltages, respectively. This signal

is digitized by a comparator to produce bn−1 ∈ [−1, 1], the next output bit. This bit

is converted into an analog signal by a one-bit digital-analog converter (DAC) whose

output voltages are (VREF + bn−1VFS) /2. This signal is subtracted from the original

input signal, Vn−1 to extract a residue signal that is then amplified by a factor of two

to produce Vn, the input to the next conversion stage.

The analogous successive-subranging frequency estimation structure is shown in

Figure 4-11(b). The two structures are functionally equivalent but operate in different

signal domains: signal amplitude (voltage or current) and frequency, respectively. The

reference and full-scale voltages are replaced by the center frequency ωREF and band-

253



−

+
+

-
DAC x2

Vn-1

VREF

bn-1
Vn

−

+
x2

ωREF

bn-1 DCO
ωn-1 ωREF

B

2

ωn

(a)

(b)

Figure 4-11: A single successive-subranging stage for (a) an analog-to-digital converter
and (b) a frequency-to-digital converter (frequency estimator).

width B. Therefore ωREF − B < ωn−1 < ωREF + B, where ωREF > B. The voltage

comparator is replaced by a frequency comparator, the DAC by a digitally-controlled

oscillator (DCO) that produces ωDCO = (ωREF + bn−1B) /2 and the subtractor by

a multiplier (mixer) followed by a bandpass filter (BPF). The condition ωREF > B

ensures that ωn−1 > ωDCO, i.e., the frequency difference is always positive and the

multiplier and BPF together act as a linear subtractor in the frequency domain. It

is interesting to note that, in contrast to the amplitude (ADC) domain, accurate

multiplication and division by integer ratios is easy in the frequency domain. Well-

known circuits for frequency division and multiplication can be used for this purpose.

Harmonics and sub-harmonics of the signal itself may also be used.

Generalizations of the structures shown in Figures 4-11(a) and 4-11(b) to multiple

output bits (say n1 > 1) per stage are straightforward. In this case the comparator

and DAC must be modified to produce and accept n1 parallel bits, respectively. Also,

the residue must be amplified by 2n1 at the end.

Successive-approximation and successive-subranging ADC structures are similar

except for the absence of the residue-amplification (multiply-by-two) step in the for-

mer. The n-th stage of a successive-approximation ADC is shown in Figure 4-12(a).

We see that it is similar to Figure 4-11(a), except for changed signal ranges and

values. The input is VREF − VFS < 2n−1Vn−1 < VREF + VFS, the comparator ref-
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erence is VREF/2
n−1 and the DAC output is (VREF + bn−1VFS) /2n. The equivalent

frequency estimator structure is shown in Figure 4-12(b), where ωREF and B again

replace VREF and VFS. Successive subranging is usually an advantage for ADC’s be-

cause it reduces hardware performance requirements and noise contributions of later

conversion stages and makes pipelining easier. For frequency estimators eliminat-

ing residue-multiplication saves hardware and power (approximately a factor of two,

assuming power is proportional to bandwidth) but increases analysis time since the

later, lower-bandwidth stages take longer to settle. We shall only describe successive-

approximation frequency estimation algorithms in detail below since the generaliza-

tion to successive-subranging architectures is straightforward.
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Figure 4-12: A single successive-approximation stage for (a) an analog-to-digital con-
verter and (b) a frequency-to-digital converter (frequency estimator).

An advantage of the successive-subranging and successive-approximation struc-

tures shown in Figures 4-11 and 4-12 is that they can be pipelined to increase

throughput. Assume several stages are cascaded to perform a multi-bit conversion;

pipelining can be enabled simply by adding sample-and-holds between stages, as

shown in Figure 4-13(a). Adding a sample-and-hold also allows a single stage to be

used for multi-bit conversions by using feedback. This is the basis of the cyclic or

algorithmic ADC architecture. In this architecture a single approximation or subrang-

ing stage is used inside a feedback loop as shown in Figure 4-13(b). The conversion

proceeds in M steps, where M is the total number of output bits. The approxima-
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tion or subranging stage produces a single bit and residue in one time step. This

residue is then fed back into the same stage during the next time step to produce the

next bit. The key feature of algorithmic converters is hardware reuse, which reduces

throughput by preventing pipelining but eliminates mismatches between stages. Note

that successive-approximation stages (unlike successive-subranging stages) need to be

“re-tuned” at every time step during a algorithmic conversion. This is because the

comparator reference and BPF bandwidth during the m-th time step are both propor-

tional to 2−m. Successive-subranging stages keep these quantities constant because

they multiply the residue by two at the end. Pipelined and algorithmic approaches

can be extended to frequency estimation in a straightforward way. The same ba-

sic subranging and approximation stages shown in Figures 4-11 and 4-12 can be

used. An injection-locked oscillator or frequency-locked loop (FLL) can be used as

the frequency-domain analog of a sample-and-hold.

S / H S / H
STAGE STAGE

1 2

b1 b2OUTPUTS
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(a)

(b)

S / H STAGE
IN

RESIDUE
bm

Figure 4-13: Use of successive-subranging or successive- approximation stages for
multi-bit analog-digital or frequency-digital conversion by using (a) pipelining and
(b) a cyclic or algorithmic architecture.

A broad-band radio architecture that uses successive approximation to perform

hierarchical, parallel estimation of multiple frequencies is shown in Figure 4-14. The

logic behind this architecture is that, over large bandwidths, the real radio spectrum

is extremely sparse. It is dominated by a limited number of relatively narrow-band

signals which cumulatively occupy only a small fraction of the total bandwidth. Some
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of these signals are of interest to the user, while others are not, and are referred to

as interferers. In practical situations these interfering signals can be much larger

than the signal of interest. A system that observes several relatively narrow-band

signals (placed arbitrarily in frequency space) in parallel would therefore be able to

monitor essentially all signals of interest in an extremely large radio bandwidth. Our

architecture efficiently solves the problem of estimating where these observed regions

of the spectrum should be placed.

RF FILTER BANK
IN

DCO DCO DCO DCO

INTERFERER
CANCELLATION

THE CASCADED SUPER-HETERODYNE ARCHITECTURE

TUNER

IF1  FILTER BANK

DCO DCO DCO DCO

IF2  FILTER BANK

DECISION

NETWORK

Figure 4-14: A successive-approximation architecture for fast, hierarchical frequency
estimation of multiple narrowband signals. Interfering tones can be rapidly estimated
to any degree of precision and then canceled out using tunable notch filters.

Consider Figure 4-14. The advantage of this cascaded super-heterodyne architec-

ture is that it allows us to monitor N signals of interest in parallel with high temporal

resolution and any desired spectral resolution. Here N is the number of filters in each

filter bank. The architecture is also efficient in terms of hardware requirements be-

cause it only needs M filter banks and M ×N mixers to increase spectral resolution

by a factor of αM . The outputs of each filter bank are bandpass signals with cen-

ter frequencies that scale arbitrarily with position (linear or exponential scalings are

common). The bandwidth of these signals is successively reduced by the mixers and

succeeding filter bank. The output of the m-th filter bank has a bandwidth Bm. When

bandwidth is reduced by a constant factor α at each step, Bm decreases exponentially
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with m, i.e.,

Bm =
Bm−1

α
=
B0

αm
(4.7)

A common value for α is two, which corresponds to the canonical situation shown

in Figure 4-12(b). As in that figure, the decision network in Figure 4-14 consists of

frequency comparators and oscillators that determine which part of the input band-

width Bm−1 should be included in the output bandwidth Bm. Frequency comparators

can be built in several ways. For example, the total energy present on either side of

the center frequency ωREF can be integrated and the two results compared. The result

of the comparison is a decision on whether the frequency being estimated is higher or

lower than ωREF . Thus, the output of each successive filter bank allows the user to

examine signals of interest in greater and greater detail. In addition, the outputs of

the decision network are digital signals that are the results of N parallel frequency-

to-digital conversions (analogous to analog-to-digital conversions). It should also be

noted that the structure retains amplitude information about each output signal and

thus acts as a spectrum analyzer as well as a frequency estimator.

One application of the cascaded super-heterodyne structure is to allow weak sig-

nals to be detected in the presence of strong interferers. A simple interference cance-

lation strategy is shown in Figure 4-14. The cascaded super-heterodyne structure is

used to accurately estimate the frequencies and bandwidths of unwanted interferers.

These are then canceled out by using tunable notch filters at the input of the system.

Simulated results of this scheme are shown in Figure 4-15. Two tones one octave

apart are fed into the structure, with one being 80dB larger in amplitude than the

other. The curve labeled “original” shows the results without interferer cancelation:

the smaller tone is invisible. The lower curve shows filter bank outputs after the large

interfering tone has been estimated and notched out: the small tone is now clearly

resolved.

Finally, the cascaded super-heterodyne structure shown in Figure 4-14 can be

easily modified to use successive-subranging instead of successive-approximation. For
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Figure 4-15: Simulated performance of the cascaded super-heterodyne architecture.
The plots show outputs of the final filter bank in the presence of a large interfering
signal. The interferer, which was 80dB larger than the signal of interest and an octave
below it in frequency, was canceled out by using the procedure described in the text.

this purpose, frequency multipliers must be added at each filter bank output. Suc-

cessive filter banks are then identical to each other (i.e., their frequency range and

bandwidth remain constant, instead of decreasing by α every time). In fact, only a

single filter bank can now be used, with the output residues being fed back in the

manner similar to the cyclic or algorithmic structure shown in Figure 4-13(b).

4.4 Frequency Estimation with the RF Cochlea

4.4.1 Introduction

For the purposes of this section we define the RF cochlea as a system that performs

real-time, broadband RF spectrum analysis by using either exponentially-tapered

bidirectional transmission lines or unidirectional filter cascades. The transmission

line(s) can be continuous or discrete/lumped, and by “exponentially-tapered” we

mean that the characteristic frequency of the structure scales exponentially with
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position.

4.4.2 Complexity of the Cochlear Algorithm

We now show that exponentially tapered traveling-wave structures like the cochlea are

faster and more hardware-efficient than other spectral analysis techniques when the

fractional bandwidth β (defined in (4.6)) is large. Intuitively, this is because the out-

puts of the cochlea have bandwidths that scale with center frequency. High-frequency

stages have proportionally more bandwidth than low-frequency ones, reducing the to-

tal number of stages required to cover large frequency ranges than if the bandwidths

had been kept constant. This type of behavior is known as a constant-Q response,

and is also displayed by wavelet transforms. Here Q is defined as the bandwidth of

each frequency bin normalized by the center frequency, i.e.,

Qn =
fn+1 − fn−1

2fn
≈ 1

fn

dfn
dn

=
d ln (fn)

dn
(4.8)

where fn the center frequency of the n-th bin. Clearly, in order to keep Qn constant,

ln (fn) must be proportional to n, i.e., fn ∝ exp(kn), where k is a constant. Thus

constant-Q responses occur when the center frequencies of spectral analysis bins scale

exponentially with position.

The performance of various commonly used spectrum analysis algorithms is com-

pared in Table 4.2, where N is the number of outputs (frequency bins) obtained

within the acquisition time, β = fH/fL is the bandwidth ratio and B = fH − fL is

the total bandwidth. The hardware complexity of each algorithm is measured by the

number of elementary computational units it consumes. A second-order analog filter

is considered the elementary unit for the analog algorithms, while additions and mul-

tiplications fulfill a similar role for the FFT. We immediately see that the constant-Q

(exponentially-spaced) algorithms have lower acquisition time and hardware complex-

ity than similar constant-bandwidth algorithms (i.e., (fn − fn−1) =constant) when β

is large. Only the cochlea, however, combines low acquisition time with low hardware

complexity.
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Table 4.2: Comparing various spectrum analysis algorithms
Name Acquisition time Hardware

complexity

Swept-sine (linear sweep) O
(
N2

B

)
O(N)

Swept-sine (exponential sweep) O

(
1
fL

(
N

lnβ

)2
)

O
(

N
lnβ

)
Analog filter bank (linear spacing) O

(
N
B

)
O (N2)

Analog filter bank (exponential spacing) O
(

1
fL

(
N

lnβ

))
O
(
N2

lnβ

)
FFT O

(
N
B

)
O(N log(N))

Cochlea O
(

1
fL

(
N

lnβ

))
O(N)

The cochlea consists of N stages, each producing one of the spectrally-analyzed,

constant Q outputs. It is very efficient in its use of hardware because it uses a

traveling-wave architecture. In traveling-wave structures the output signal from each

stage is filtered by several other, nearby stages, which are simultaneously also produc-

ing their own outputs. In other words, the frequency selectivity of several stages is

reused while synthesizing output transfer functions. This co-operative action stands

in contrast to all the other algorithms listed in Table 4.2. In these other algorithms,

each of the N stages producing outputs are functionally independent of each other.

By filtering collaboratively, the cochlea reduces the filter order and complexity re-

quired by each of its stages. However, the overall cochlear transfer functions resemble

high-order filter responses since they combine the filtering action of several adjacent

cochlear stages. They thus exhibit high roll-off slopes and frequency selectivity. In

summary, the use of collective computation enables the cochlea to reduce hardware

complexity and power consumption without sacrificing performance. This is the rea-

son why the cochlea is not well-represented as a bank of constant-Q bandpass filters

that analyze the input in parallel. In fact, as shown in Table 4.2, the cochlea has an

acquisition time that is similar to exponentially-spaced banks of analog filters, i.e.,
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O(N/(fL ln β)). However, its hardware complexity is low (O(N)) and similar to that

of swept-sine spectrum analyzers.

Figure 4-16 shows simulated outputs of each stage of an RF cochlea in response

to an input signal consisting of multiple tones spaced one octave apart. Each peak in

this “spatial response” plot corresponds to a single tone, illustrating how the cochlea

performs spectral analysis. An added advantage of using constant-Q frequency sepa-

ration bandwidths is that they are better matched to the real RF environment. The

RF spectrum today is divided into licensed and unlicensed bands that roughly fol-

low constant-Q characteristics. Bands at higher frequencies are wider than at lower

frequencies. For example, the Q of the unlicensed industrial-scientific-military (ISM)

frequency bands allocated by the FCC in the United States only vary by about a

factor of ten as the center frequencies vary by over five orders of magnitude.

0 5 10 15 20 25 30 35 40 45 50
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Stage number

S
ta

ge
 o

ut
pu

t (
dB

)

 

 

Stage outputs
Stage difference outputs

Figure 4-16: Simulated outputs (spatial response) of the unidirectional RF cochlea
to multiple equal-amplitude input tones spaced one octave apart.

The RF cochlea is ideally suited for use as a front-end in an ultra-wideband radio

receiver because of its extremely rapid frequency scan rate. Possible applications for

such a receiver include cognitive radio. For example, the filter banks in Fig. 4-14 can
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be replaced by cochleas. We call this example of the cascaded super-heterodyne archi-

tecture the cascaded cochleas architecture; it is shown in Figure 4-17. In this structure

frequency estimation is performed hierarchically by cochlear models operating in dif-

ferent frequency ranges (for example, RF, IF and baseband), thus allowing multiple

frequency bands to be monitored in parallel at any desired level of resolution. This

structure is analogous to a successive-approximation ADC with many parallel outputs

and provides a scalable, efficient way to implement flexible, broadband, “universal”

radio receivers.

RF COCHLEA
IN

DCO DCO DCO DCO

INTERFERER
CANCELLATION

THE CASCADED-COCHLEAS ARCHITECTURE

TUNER

IF1  COCHLEA

DCO DCO DCO DCO

IF2  COCHLEA

DECISION

NETWORK

Figure 4-17: A successive-approximation architecture for hierarchically analyzing
spectra to any level of precision by cascading cochlea-like structures at each level
of the analysis.

The cascaded cochleas structure uses an adaptive successive-approximation ap-

proach to efficiently estimate sparse spectra. A typical value of the bandwidth-

reduction factor between successive cochleas is α = 2. Each cochlea shown in Figure 4-

17 then has half the bandwidth of the previous one but is otherwise identical, thus

providing double the frequency resolution. The outputs of the previous cochlea are

fed into it in parallel after being downconverted using mixers. Each downconversion

step selects half of the output bandwidth of the previous cochlear tap. As in Fig. 4-14,

a decision network controls which half gets selected by changing the LO frequency fij

of the mixer between fij,0 and fij,1, where i > 0 is the cochlea index and 1 < j < N
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is the tap index. A simple but effective decision rule is to use whichever value of

fij gives the higher output amplitude at the same tap location on the next cochlea,

i.e., at position (i + 1, j). This algorithm results in the structure adaptively “lock-

ing in” on features of interest in the spectrum at any level of frequency resolution.

Once the algorithm has converged the bits at any tap location j contain informa-

tion about frequencies present in the input. In fact, the whole process is a massively

parallel, successively-approximating frequency-to-digital conversion, with the outputs

of cochlea 1 providing the MSB’s, those of cochlea 2 the next-most-significant bits

and so on. It should also be noted that the structure retains amplitude information

about each output signal and thus acts as a spectrum analyzer as well as a frequency

estimator.

The total acquisition time of the cascaded cochleas structure is dominated by the

final cochlea since it analyzes the lowest input frequencies. It scales as O (N/fL,M),

where fL,M = fL,0/α
M is the lowest frequency analyzed by the final cochlea, there are

a total of M cochleas and fL,0 is the lowest frequency analyzed by the first (input)

cochlea. The hardware complexity of the cascaded cochlea structure is modest: it

scales as O(N log(M)). Figure 4-18 shows simulated outputs produced by the cas-

caded cochleas structure at different levels of spectral resolution. The input contained

five sinusoids with different frequencies and amplitudes. Resulting spatial responses

are shown for i = 1, 3 and 5. As expected, each successive cochlea (“stage”) increases

spectral resolution. For example, the figure shows how two inputs that were too close

to each other in frequency to be resolved after the first stage are clearly separated

after the fifth stage.

Finally, the cascaded-cochleas structure shown in Figure 4-17 can be easily mod-

ified to use successive-subranging instead of successive-approximation. For this pur-

pose, frequency multipliers must be added at each cochlear output. Successive cochleas

are then identical to each other (i.e., their frequency range and bandwidth remain

constant, instead of decreasing by α every time). In fact, only a single cochlea can

now be used, with the output residues being fed back in the manner similar to the

cyclic or algorithmic structure shown in Figure 4-13(b). The total acquisition time
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Figure 4-18: Simulated outputs (spatial response) of the cascaded cochleas structure
to an input consisting of five sinusoids with different frequencies and amplitudes.
Outputs after one, three and five cochleas are shown.

of this successive-subranging cascaded cochleas structure scales as O (NM/fL,0); it is

thus αM/M times faster than the successive-approximation version and has similar

or lower hardware complexity.
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Chapter 5

A Detailed Discussion of Noise

What stir is this? what tumult’s in the heavens?

Whence cometh this alarum and the noise?

– William Shakespeare, King Henry VI, Part 1

The ultimate precision of any computation is limited by noise. This chapter

therefore investigates noise mechanisms in detail. Some parts may strike readers as

being rather philosophical; the principle of caveat emptor applies. The work described

here was initiated by several long discussions the author had with Scott Arfin (who

also helped with several of the figures).

5.1 Types of Noise

An important point of departure for our work was Sarpeshkar et al.’s claim that ther-

mal noise is simply shot noise caused by diffusion in physical devices [257]. We agree

with this statement, which is contrary to conventional wisdom in electrical engineer-

ing. However, we wish to explcitly state why shot noise is the more fundamental

phenomenon. Essentially, shot noise is more fundamental because it simply involves

counting random events and is completely independent of the details of the micro-

scopic process involved, as long as individual arrival times are uncorrelated with each

other. As a result, shot noise formulas can be applied to systems that are in steady
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states far from thermodynamic equilibrium. On the other hand, thermal noise formu-

las only apply to systems that are actually at thermodynamic equilibrium. However,

thermal equlibrium is usually an uninteresting, “dead” state, and most useful systems

don’t operate there.

In this document, we show that fluctuation-dissipation relationships can be used

to derive well-known thermal noise formulas as special cases of shot noise formulas.

We emphasize that in general these derivations are only valid at thermal equlibrium.

However, shot noise can model counting uncertainty in cases where the system is far

from thermodynamic equilibrium and/or the underlying random process is not ther-

mal in origin. For example, the output of a device that measures rates of radioactive

decay, such as a Geiger counter, will exhibit shot noise.

Unless stated otherwise, we will limit ourselves to frequencies much smaller than

fc = kT/h, where k is Boltzmann’s constant, T is the absolute temperature and h

is Planck’s constant. This is not a major restriction, since, at room temperature

(300K) fc = 6.25THz, much higher than the operating limit of solid-state devices.

This regime is also known as the Rayleigh-Jeans limit. If individual arrival times

at the detector are uncorrelated, a shot noise process has a frequency-independent

(“white”) PSD given by

i2n = 2qI (5.1)

where I is the mean arrival rate of particles carrying charge q. Fundamentally, the

factor of two arises because, while we normally plot the PSD for positive frequencies

only, in reality the spectrum is double-sided and symmetric. The factor of two is

required to account for the equal contribution of positive and negative frequency

components to the observed variance of the time domain signal.

In a physical device a fraction of the current is carried by diffusion and the rest

by drift. Diffusion currents have random arrival times and show shot noise. Drift

current is the result of an electric field imposing a small drift velocity on top of

a random thermal velocity distribution. Typical drift velocities are much smaller
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than the mean thermal velocity (
√

8kT/πm, where m is the mass of the particle) at

room temperature. Therefore drift adds a small constant perturbation to the random

microscopic thermal motion that causes shot noise. In most cases (when the electric

field and drift velocity is not too large), this perturbation can be ignored and we can

safely say that drift currents cause no additional noise. This point can be confusing:

drift can carry most of the current through a device, yet it causes no noise. This is

because the behavior of the system is different on microscopic and macroscopic scales.

Microscopically, there is large random thermal motion that is largely unaffected by

the small amount of drift imposed by an external electric field. Macroscopically, this

small drift current wins out because it always moves the carriers in the same direction

(corresponding to the external field), while thermal motion, being random, on average

does not move the carriers anywhere.

Some caveats on what follows. We shall simplify our lives throughout by consid-

ering ideal lumped devices with no parasitic capacitances present. This limits the

validity of our results to relatively low frequencies. MOSFET gate noise shall also

be ignored since it is typically negligible at these frequencies. We will always assume

NMOS transistors unless mentioned otherwise. Our results can be easily extended to

PMOS transistors by reversing the signs of the control voltages, diode polarities, etc.

5.2 The Resistor

In subsequent sections, we shall show that shot noise and thermal noise formulas are

equivalent for a range of devices at thermodynamic equilibrium. Only in a resistor,

however, does this remain (mostly) true when an external bias voltage is imposed,

driving it away from equilibrium. The current noise PSD in a ideal resistor is always

4kT/R, independent of the bias voltage applied across it. This is because an ideal

resistor is essentially a featureless lump of resistive material. The only effect of the

external bias voltage is to impose a small drift velocity component on top of the

random thermal motion of the carriers inside it. Based on previous arguments, the

drift current will cause essentially no additional noise, so the noise PSD remains
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constant with bias. Another way to see this is to realize that, by definition, an ideal

resistor is linear. Linearity means that the behavior of the device cannot depend on

the bias point. Therefore the noise produced by it cannot change with bias. For

nonlinear devices like diodes and transistors there is no reason to expect the thermal

noise formulas to apply at arbitrary bias points far from equilibrium.

It is fairly easy to show that thermal and shot noise formulas agree in a resistor.

Since the resistor is featureless, no region should contain more charge than the other.

Assume that Q(0) is the constant charge per unit length inside the resistor. This

rectangular charge profile (Q(x) = Q(0) inside the resistor from x = 0 to x = L, where

L is the length of the resistor) can be split into two equal triangular pieces. These

correspond to equal and uncorrelated diffusion currents flowing in each direction. The

fact that they are equal is not surprising since the resistor is featureless and uniform

and the carriers therefore have no preferred direction of motion. Each diffusion current

causes 2qI of shot noise when it is detected at the terminals, where I is the diffusion

current (not the total current, which includes drift) flowing through the resistor.

Therefore the total current noise PSD is

i2n = 2qI + 2qI = 4qI (5.2)

Since I is a diffusion current, we can use the mathematical definition of diffusion

to find out what it is:

I = D
dQ

dx
= µφT

dQ

dx
(5.3)

where we have used the Einstein relation D = µφT , D is the diffusion constant, µ

the carrier mobility and φT = kT/q is the thermal voltage1. For each triangular piece

of charge dQ/dx = Q(0)/L, corresponding to a constant diffusion current. Therefore

we may write

1The Einstein relation is an example of a fluctuation-dissipation theorem. It is only valid under
the assumption that carrier drift is a small linear perturbation to the overall system. Not coinciden-
tally, this is exactly the conditions under which drift causes no excess noise.
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dQ

dx
=
Q(0)

L
=
ANq

L
(5.4)

where Q(0) = ANq is the charge per unit length, N is the number of charge

carriers per unit volume and A is the cross sectional area of the resistor. Substituting

(5.3) and (5.4) into (5.2) and collecting some terms, we get

i2n = 4kT (Nqµ)
A

L
= 4kT

1

R
(5.5)

where R = A/ (σL) is indeed the resistance of the resistor, with σ = Nqµ being

the bulk conductivity of the resistive material. Our derivation was independent of

any DC bias voltage applied across the resistor. Therefore, as expected, the thermal

and shot noise formulas always agree in this case.

An important caveat before we proceed further. We can only split up the charge

in a given two-terminal device into forward and reverse diffusion components injected

by the terminals (like we did here) if the charge profile Q(x) is linear or constant. If

Q(x) is not linear, simple geometry shows that it is not possible to split up Q(x) into

two triangular parts, with one part being the forward diffusion current from terminal

A and the other being the reverse diffusion current from terminal B. Therefore, a

more complicated formulation is clearly necessary when dQ(x)/dx is not constant.

5.3 The Junction Diode

A diode (see Figure 5-1) is a passive nonlinear resistor. In general, therefore, we

expect its noise to be DC-bias-dependent. The I-V equation for a diode is given by

I = Is

(
exp

(
V

nφT

)
− 1

)
(5.6)

where Is and n are constants, I is the current through the device and V is the

voltage across the device. The incremental conductance gd is defined as
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Figure 5-1: A junction diode with a bias voltage V across it. An ammeter A measures
the noise current produced by the diode.

gd =
dI

dV
=
I + Is
nφT

(5.7)

Therefore, at zero bias the diode has a conductance gd0 = Is/ (nφT ). Because

it is passive, the I-V curve of any diode must pass through the origin. In other

words, when there is no DC bias across the device, no DC current can flow through

it. As a result, we expect a zero-biased diode to exhibit the same noise as a resistor

with the same incremental resistance, i.e., with R = 1/gd0 (this is an application of

the fluctuation-dissipation theorem). Thus, the noise current power spectral density

(A2/Hz) is given by

i2n0 = 4kTgd0 = 4qIs/n (5.8)

This also looks a lot like the 2qI variance we expect from a shot noise process,

with I = 2Is/n. This is not a coincidence. Noise current flow through any physical

device can be modeled as an electron-counting, i.e., shot noise process. Because the

net current is zero at zero bias, equal noise currents (assumed to be uncorrelated)

must flow in both directions, i.e., we may rewrite (5.8) as

i2n0 = i2n0,+ + i2n0,− = 2qIs/n+ 2qIs/n (5.9)
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Physically, at equilibrium the diffusion current flowing across the junction must be

exactly balanced by drift current to ensure that the total current is zero. Diodes (and

other devices, like transistors) also obey a principle of detailed balance that specifies

that drift-diffusion balance be independently satisfied by both types of charge carriers,

i.e., electrons and holes. In addition, remember that, except under extremely high

field conditions, drift currents cause no noise. We may think of i2n0,+, the total forward

current, as being the sum of electron arrivals at the positive terminal and hole arrivals

at the negative terminal. Similar reasoning applies to i2n0,+, the total reverse current.

These currents are equal at equilibrium because there is no preferred direction of

current flow in the device.

The forward current flows from the majority to the minority side of the device up

the potential gradient at the junction, and is called the diffusion current. The reverse

current flows from the minority to the majority side of the device down the potential

gradient at the junction, and is called the drift current. However, seemingly contrary

to what we said earlier, both cause noise. It is true that the reverse current drifts with

the electric field across the depletion region at the junction. However, it is produced

by a random process (thermally induced carrier generation and recombination) and

therefore has shot noise to begin with. The fact that it drifts across the junction does

not remove this noise. Drift, consistent with what we said before, adds no noise of

its own, but does nothing to remove the noise already present2.

Now consider what happens when we put a bias voltage V across the device. This

causes the barrier potential that limits the forward current to be lowered; it becomes

Vbi − V , where Vbi, the built-in potential of the junction, is the height of the barrier

at zero-bias. We now assume Boltzmann distributions for electron and hole density

versus potential. Lowering the potential barrier causes the forward current (flowing

from the p-side to the n-side for holes, and in the opposite direction for electrons)

to become larger than the reverse current by the Boltzmann factor exp (V/φT ). The

reverse current does not change since lowering the potential barrier has very little

2Think of drift as adding a large constant component (the drift velocity) on top of a random
distribution of velocities and arrival times (the original noisy source).
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effect on motion of carriers down the potential gradient at the junction (since they’re

still going downhill in energy, the barrier does not limit their flow rate). Thus the

total noise current for non-zero bias voltage is given by

i2n = (2qIs/n)

(
exp

(
V

nφT

)
+ 1

)
(5.10)

By substituting (5.7) in the equation above we get the alternative form

i2n = 2kTgd

(
1 + exp

(
−V
nφT

))
(5.11)

This expression is also valid for metal-semiconductor (Schottky) diodes. The I-V

characteristics of Schottky diodes are identical to p-n junction diodes when appropri-

ate values of Is and n are used. The noise generation mechanism is also similar.

5.4 The Subthreshold MOSFET

At moderate frequencies, the noise produced by a MOSFET has a flat frequency

spectrum. Consider the subthreshold case first. The subthreshold MOSFET is most

simply viewed as being two back-to-back p-n junction diodes with the gate-bulk volt-

age VGB setting the common potential φs (see Figure 5-2). The diodes are associated

with the source and drain junctions, respectively, while φs is known as the surface

potential. The I-V characteristic of the device can be derived as follows. Assume that

the source diode injects charge carriers into the channel. These electrons or holes dif-

fuse across the channel and then get swept into the drain by the electric field of the

built-in potential of the channel-drain junction diode. Call this current If . The drain

diode similarly injects a current Ir. Since these currents flow in opposite directions

the total device current is ID = If −Ir. By using the I-V equation of a junction diode

((5.6), with n = 1), we get

ID = If − Ir = Is

[
exp

(
φs − VS
φT

)
− 1

]
− Is

[
exp

(
φs − VD
φT

)
− 1

]
(5.12)
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Figure 5-2: A simple model of a subthreshold MOS transistor.

where the same value of Is has been used for both diodes since the device is sym-

metric (source and drain are physically indistinguishable) and all terminal voltages

are measured with respect to the bulk (body) terminal B. The complicated part is

now relating φs to the gate voltage VG. The standard technique is to linearize the

φs-VG characteristic about some convenient operating point and call the slope κ, the

subthreshold constant. That is, we assume a relationship of the form

φs = φFB + κVG (5.13)

where φFB is a constant. By substituting (5.13) in (5.12) and collecting some

terms, we get

ID = I0 exp

(
κVG
φT

)[
exp

(
−VS
φT

)
− exp

(
−VD
φT

)]
(5.14)

where I0 = Is exp (φFB/φT ). This is known as the bulk-referenced MOSFET I-V

equation since all terminal voltages are referenced to the body (bulk,well) terminal.

Most circuit designers, however, prefer to refer terminal voltages to the source. The

terms in (5.14) can be rearranged to reflect this. The result is

ID = I0 exp

(
κVGS
φT

)
exp

(
(1− κ)VBS

φT

)[
1− exp

(
−VDS
φT

)]
(5.15)

This is known as the source-referenced I-V equation of the subthreshold MOSFET.
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The incremental conductance gds of the device is defined as the slope of the ID-VDS

curve when VGS and VBS are fixed. In this case (5.15) can be written in the simplified

form

ID = ID,sat

[
1− exp

(
−VDS
φT

)]
(5.16)

where the constant ID,sat absorbs all the other dependencies of ID. The incremen-

tal conductance gds is given by

gds =
δID
δVDS

=

(
ID,sat
φT

)
exp

(
−VDS
φT

)
(5.17)

First consider the situation at zero-bias, i.e., VDS = 0. The conductance of the

device is, from (5.17), gd0 = ID,sat/φT . The device is in thermodynamic equilibrium

and indistinguishable from a resistor with R = 1/gd0, so we expect it to produce a

thermal noise PSD of

i2n0 = 4kTgd0 = 4qID,sat (5.18)

This looks like the sum of two equal shot noise sources, each producing a noise

current PSD equal to 2qID,sat. This is exactly what we found for the junction diode at

zero bias. Again, this is not a coincidence. It occurs because the source-channel and

drain-channel diodes, which each produce shot noise according to (5.10), dominate

the total white noise current of the device. Let us examine this in more detail. We

recognize that the voltage V across the source diode is φs − VS. Therefore its noise

is given by (5.10) with V = (φs − VS) and n = 1 (usually a good assumption):

i2n,f = 2qIs

(
exp

(
(φs − VS)

φT

)
+ 1

)
≈ 2qIs

(
exp

(
(κVG + φFB − VS)

φT

)
+ 1

)
= 2q (ID,sat + Is) (5.19)
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Similarly, the noise from the drain diode is given by

i2n,r = 2qIs

(
exp

(
(φs − VD)

φT

)
+ 1

)
= 2q

(
ID,sat exp

(
−VDS
φT

)
+ Is

)
(5.20)

Since the noise produced by the two diodes are uncorrelated, the total noise current

produced by the device is

i2n = i2n,f + i2n,r = 2q

[
ID,sat

(
1 + exp

(
−VDS
φT

))
+ 2Is

]
(5.21)

At zero-bias (VDS = 0), no DC current flows through the device but noise is

present; (5.21) becomes

i2n0 = 4q (ID,sat + Is) (5.22)

We can now compare (5.22) with (5.18), our original “intuitive” expression for

zero-biased current noise in the subthreshold MOSFET. The two expressions are

identical except for the extra Is term in (5.22). Where did that come from? It’s

presence indicates that our earlier assumption of thermodynamic equilibrium at zero-

bias was incorrect. In fact, (5.19) and (5.20) show that the two diodes in the MOSFET

are not at thermodynamic equilibrium: the forward and reverse currents inside them

are not equal. This is because the gate, which is driven by some external voltage

supply, can force φs not to be equal to VS and VD, even when VDS = 0. In practice,

the Is term can usually be ignored since it is much smaller than practical values of

ID,sat.

Another possible source of noise in the MOSFET is the channel. In subthreshold,

however, there are so few charge carriers in the channel that it is usually safe to assume

that their own electric field is much smaller than that imposed externally by the gate.

The gate therefore keeps the whole channel, from source to drain, equipotential at φs.

Therefore the effective channel resistance is zero: it carries a DC current ID but there
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is no voltage drop across it. Therefore, to first order, the channel causes no noise.

5.5 The Above-Threshold MOSFET

We now consider the strongly inverted or above-threshold MOSFET. Long-channel

(square-law) behavior shall be assumed. The current-conduction mechanism in the

channel is more complicated than below threshold since both drift and diffusion are

involved. As the gate voltage VG increases, the surface potential φs also increases

(approximately following (5.13)). So many carriers are injected by the source and

drain diodes into the channel that, eventually, the electric field produced by these

carriers themselves becomes comparable to that imposed externally by the gate. At

this point the gate ceases to have sole control of the φs. The charge carriers also

begin to influence φs. As a result the gate can no longer force φs to remain constant

along the length of the channel, and drift begins to contribute to total current flow.

By using the mathematical definitions of drift and diffusion, we can write the total

current in the channel as

ID = W

(
−µQI

dφs
dx

+D
dQI

dx

)
(5.23)

where the first term is the drift current and the second term the diffusion current.

The width of the current conduction path is denoted by W . The carrier mobility

and diffusion constant in the channel are denoted by µ and D, respectively. Fi-

nally, QI , known as the inversion charge density, is the total carrier charge density

(coulombs/unit area) in the channel. The tricky part is finding φs (just like in the

subthreshold device). The simplest approximation is to say that QI is the sum of the

charges on the bottom plates of two capacitors. One is formed by the oxide capaci-

tance Cox (to the gate) and the other by the depletion capacitance Cdep (to the bulk).

The voltage on the plate is φs. Assuming VG and VB are fixed and remembering the

fundamental relationship dQ/dV = C, we may write
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dQI

dφs
= Cox + Cdep =

Cox
κ

(5.24)

where κ = Cox/ (Cox + Cdep) and is approximately constant. This definition of κ

is also equivalent to that in (5.13), which is comforting. We can now use the chain

rule to write

dφs
dx

=
dφs
dQI

dQI

dx
=

κ

Cox

dQI

dx
(5.25)

By using the Einstein relation D/µ = φT and substituting (5.25) in (5.23), we get

ID =
κµW

Cox

(
−QI +

φTCox
κ

)
dQI

dx
(5.26)

where x varies from 0 to L along the channel (from source to drain). By recognizing

that, because of KCL, ID must be independent of x, this equation can be easily

integrated along the channel to give

ID =
κµ

Cox

W

L

[
−1

2

(
Q2
I(L)−Q2

I(0)
)

+
φTCox
κ

(QI(L)−QI(0))

]
(5.27)

where QI(0) and QI(L) are the values of QI at the source (x = 0) and drain

(x = L) ends of the channel, respectively. Again, the first term in the equation above

is caused by drift and the second by diffusion. Each of them can be split into a

forward and reverse current term, so that (5.28) can be rewritten as

ID = If − Ir = µ
W

L

(
κ

2Cox
Q2
I(0)− φTQI(0)

)
− µW

L

(
κ

2Cox
Q2
I(L)− φTQI(L)

)
(5.28)

Now what do we use for QI(0) and QI(L)? The simplest approximation is a linear

one. Assume that QI = 0 is zero when φs = φsa and follows (5.24) (with constant κ)

thereafter. Thus we may integrate (5.24) to write

QI(x) =
Cox
κ

(φs(x)− φsa) (5.29)
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However, what is φs − φsa? This is the really confusing part. It seems reasonable

to conclude that the point at which QI becomes very small (approximately zero)

is the transition to subthreshold operation. In subthreshold, we know that φs is

independent of x and is only set by the gate, following (5.13). Therefore, we may

write

φsa = κVG + φFB (5.30)

Above threshold, the surface potential φs(0) close to the source terminal is set

primarily by the source, not the gate. One way to look at it is that the source-

channel diode turns on and effectively clamps φs(0) to one diode drop above Vs. Let’s

assume that, to first order, the clamp is perfect and the diode drops a fixed voltage

φ0 across it3

φs(0) = VS + φ0 (5.31)

Similarly, the surface potential φs(L) close to the drain terminal is set primarily

by the drain voltage VD in strong inversion, so we can write

φs(L) = VD + φ0 (5.32)

As VS and VD are increased, therefore, φs(0) and φs(L) follow. However, this only

continues up to a point. Eventually the terminal (source or drain) voltage gets high

enough that the terminal-channel diode turns off (becomes reverse-biased). In other

words, the current through the diode gets smaller and smaller because the electrons

would rather stay in the terminal (it is energetically favorable for them to do so,

because of the high terminal voltage) rather than go out into the channel. At this

point the diode clamp approximation breaks down and the terminal can no longer

3We should be careful about our terminology here. The terminal-channel diodes above threshold
don’t really behave as exponential elements. They are in a high-injection regime: so many electrons
are diffusing through them that electrons become the majority carriers in the normally p-type
channel (i.e., the channel inverts, making QI > 0). Since both sides of the diode now contain mostly
electrons, no real pn junction remains. This explains why the diodes look almost like batteries (fixed,
low-impedance voltage drops) above threshold.
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exert control over the surface potential or channel charge close to it. Control over φs

reverts to the gate, which sets it using (5.30). This process happens sooner at the

drain than the source, since by definition VD > VS.

A transistor where φs(0) is controlled by the source but φs(L) by the gate (not the

drain) is saturated. The drain can no longer effectively control current flow through

the device and becomes a high-impedance terminal. This is the normal mode of

transistor operation in analog circuits, because the high-impedance drain terminal

can be used to create signal gain.

We can now substitute (5.30) and (5.31) or (5.32) in (5.29) to get the inversion

charge densities at the source and drain ends of the channel:

QI(0) =
−Cox
κ

(κVG + φFB − φ0 − VS)

QI(L) =
−Cox
κ

(κVG + φFB − φ0 − VD) (5.33)

This may be superficially simplified by making the traditional substitution VT0 ≡

(φ0 − φFB) /κ, where VT0 is known as the threshold voltage of the transistor. The

result is

QI(0) =
−Cox
κ

(κ (VG − VT0)− VS)

QI(L) =
−Cox
κ

(κ (VG − VT0)− VD) (5.34)

We can also estimate VD,sat, the value of VD at which the transistor enters satu-

ration. A reasonable approximation is that saturation happens when φs(L) predicted

by (5.32) becomes equal to the subthreshold value φsa (thereby making QI(L) ≈ 0),

i.e.,

φs = φsa ⇒ VD,sat + φ0 = κVG + φFB ⇒ VD,sat = κ (VG − VT0) (5.35)
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The inversion charge expressions above can be substituted in (5.28) to give us

(after a little algebra) the above-threshold MOSFET I-V equations

ID = µκ
W

2L
Cox

[(
VG − VT0 −

VS
κ

)2

−
(
VG − VT0 −

VD
κ

)2

+
2φT
κ2

(VD − VS)

]
(5.36)

when VD < κ (VG − VT0) and

ID = µκ
W

2L
Cox

[(
VG − VT0 −

VS
κ

)2

+
2φT
κ

(
VG − VT0 −

VS
κ

)]
(5.37)

when VD ≥ κ (VG − VT0), i.e., in saturation when QI(L) ≈ 0. These are body-

referenced equations since all terminal voltages are referred to the body (bulk) ter-

minal. Traditionally, the diffusion current terms (the ones proportional to φT ) were

neglected because it was assumed that the gate overdrive voltage was much larger

than the thermal voltage, i.e. (VG − VT0 − VS/κ) � φT . It may be verified that the

ratio of the drift and diffusion current terms in (5.36) and (5.37) is equal to the ratio

of these two voltages. If one makes this approximation, (5.36) and (5.37) simplify to

ID = µκ
W

2L
Cox

[(
VG − VT0 −

VS
κ

)2

−
(
VG − VT0 −

VD
κ

)2
]

ID = µκ
W

2L
Cox

(
VG − VT0 −

VS
κ

)2

(5.38)

where the first equation applies if VD < κ (VG − VT0), and the second equation

otherwise. Just like in the subthreshold case, we can convert these equations to the

source-referenced form to keep circuit designers happy. After a little algebra, we find
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ID = µκ
W

2L
Cox

[
2 (VGS − VTS)

(
VDS
κ

)
−
(
VDS
κ

)2
]

ID = µκ
W

2L
Cox (VGS − VTS)2 (5.39)

where the first equation applies if VDS < κ (VGS − VTS) ≡ VDS,sat, and the second

equation otherwise. Notice that we have also sneakily redefined the threshold voltage

to be

VTS ≡ VT0 −
(

1− κ
κ

)
VBS (5.40)

This change of threshold voltage with VBS is known as the body effect. The

conductance of the device is ideally zero in saturation (VDS > κ (VGS − VTS)), and is

otherwise given by

gds =
δID
δVDS

= µ
W

L
Cox

(
VGS − VTS −

(VDS − 2φT )

κ

)
(5.41)

where, for completeness, we have reintroduced the term proportional to φT that

we ignored earlier. We can now (finally!) estimate the noise produced by the above

threshold MOSFET. Unlike in the subthreshold MOSFET, the dominant source of

noise above threshold is the channel. The channel resistance is no longer zero above

threshold: φs varies with position along the channel when current flows through the

device. Since the channel looks like a resistor, it should produce shot noise. We have

to be careful while calculating it, though. Only part of the channel current is due to

diffusion: most of it, in fact, is due to drift and is therefore noiseless. We start with

the zero-bias condition, when VDS = 0. At zero-bias φs(0) = φs(L) and therefore

there is no drift current. This simplifies matters considerably, because all the device

conductance is due to diffusion currents. Therefore we can view the channel simply

as a resistor with R = 1/gd0, where gd0 is the zero-bias conductance, obtained by

substituting VDS = 0 in (5.41). The noise PSD produced by the channel is then
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i2n,channel = 4kTgd0 = 4kT

[
µ
W

L
Cox

(
VGS − VTS +

2φT
κ

)]
(5.42)

We can generalize this expression as follows. Since only the diffusive part of the

total channel current causes noise, we can write

i2n,channel = 2q (Idiffusion,+ + Idiffusion,−) (5.43)

where Idiffusion,+ and Idiffusion,− are the diffusion currents collected at the drain

and source, respectively. We also know that, in general Idiffusion is given by

Idiffusion = WD
dQI

dx
= µWφT

dQI

dx
(5.44)

where we have used the Einstein relation D/µ = φT for charge carriers. The

problem is now to find QI(x). We shall (as always), make the simplest possible

approximation: let’s assume QI(x) is linear, varying from QI(0) at the source to

QI(L) at the drain. This approximation is actually not too bad when the electric

field dφs(x)/dx in the channel is relatively small (i.e., for long channel devices). We

now make the following assumptions:

Idiffusion,+ = WD

(
dQI

dx

)
+

≈ µWφT

(
QI(0)

L

)
Idiffusion,− = WD

(
dQI

dx

)
−
≈ µWφT

(
QI(L)

L

)
(5.45)

These assumptions may be justified as being the results of dividing the trapezoidal

QI(x) profile into two triangular pieces, the larger controlled by the source and the

smaller by the drain (see Figure 5-3). Each triangular piece has a constant value of

dQI(x)/dx, and therefore produces a constant diffusion current. The source triangle

produces Idiffusion,+, and the drain triangle, Idiffusion,−. The two currents are inde-

pendent and therefore we can substitute (5.45) into (5.43) to get the total noise PSD

from the channel:
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Figure 5-3: Calculating the noise of an above-threshold MOSFET by splitting the
inversion charge in the channel into individual diffusion currents controlled by the
source and drain.

i2n,channel = 2qµφT
W

L
[QI(0) +QI(L)] (5.46)

After substituting the inversion charge expressions from (5.34) into the equation

above, converting them to source-referenced form and doing a little algebra we get

i2n,channel = 4kT

(
µ
W

L
Cox

)(
VGS − VTS −

VDS
2κ

)
≈ 4kTgd0

(
1 + η

2

)
(5.47)

where we have assumed that (VGS − VTS)� 2φT/κ while substituting for gd0, and

η ≡ (1− VDS/VDS,sat) parameterizes the degree of saturation of the device. When

VDS = 0, η = 1 and the device is completely linear (unsaturated). Equation (5.47) is

only valid when VDS ≤ VDS,sat, i.e., η ≥ 0, since we have assumed that QI(L) > 0,

i.e., that the device is unsaturated. Equation (5.47) predicts that the noise decreases

by a factor of two as η goes from 1 to 0, i.e., the device becomes saturated.

As the transistor approaches saturation, QI(L) becomes zero but an additional
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complication is introduced by the fact that the effective channel length decreases; the

channel near the drain is weakly inverted (subthreshold) and QI ≈ 0 there. This

increases the slope of Idiffusion,+ from QI(0)/L to QI(O)/Leff , where Leff < L is

the effective channel length of the device. So we get more noise then expected. Once

saturation is reached, QI(L) = 0 and we may write

i2n,channel = 2qµφT
W

Leff
QI(0) (5.48)

We can substitute for QI(0) to get

i2n,channel = 4kT

(
µ
W

Leff
Cox

)
(VGS − VTS) = 4kTγgd0 (5.49)

where γ is a fudge constant that is trying to hide our ignorance. The problem

is that we don’t know what Leff to use. In other words, since QI(x) is no longer

linear, our forward-reverse diffusion current decomposition no longer works. The

decomposition isn’t self-consistent since Idiffusion ∝ dQI(x)/dx now varies from point

to point. Therefore we can’t really use a constant diffusion current injected from the

source in our formulas and expect that to work.

It turns out that γ = 2/3 fits experimental data for long-channel MOSFETs (and

can be justified theoretically by using more sophisticated models). This corresponds

to Leff = 3L/4, which is not unreasonable. To summarize, γ decreases (monotoni-

cally, as it turns out) from 1 to 2/3 as a long-channel MOSFET moves from VDS = 0

to saturation. Equation (5.47) correctly predicts the behavior of γ when VDS is non-

zero but small: γ = (1+η)/2. Finally, short-channel MOSFETs have additional noise

mechanisms that can substantially increase γ above long-channel values.

So far we have considered only noise produced by the channel. The source-channel

and drain-channel diodes also produce noise. However, remember that we assumed

that the diodes acted like clamps above threshold, dropping a fixed voltage φ0 across

them. As a result, they look like shorts for small signals (such as noise). In other

words, the effective impedance of the diodes is much smaller then the channel. There-

fore their noise contribution can be ignored.
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There is one added complication, however. The argument above is always valid

for the source diode, but is only valid for the drain diode when the device is not

saturated. In saturation, the drain diode is reverse-biased; the drop across it is set

by the gate-drain voltage and is not constant. However, because it is reverse biased,

current flows through it via drift, which, ideally, adds no noise. Therefore, the noise

contribution of the drain diode can also, to first order, be ignored4. In summary,

therefore, the total white noise produced by a long-channel transistor can be assumed

to be approximately equal to i2n,channel.

5.6 Noise Calculations based on Transit Time

Since the random arrival times of charge carriers leads to shot noise, it makes sense to

focus on diffusion, because it is inherently a random process. Consider an experiment

where the current produced by a physical device is being measured by an ammeter.

An electron starts at one end of the device at some known time, is transported through

it by drift, diffusion or both and then arrives at the ammeter, where it is detected.

The electrical circuit must be complete (KCL), so the electron eventually returns to

its starting position to repeat the process. The total time τ taken for this loop to

be completed is known as the transit time and is a random variable. We shall focus

on the case when the main contributor to τ is diffusion through the device. This is

an excellent assumption as long as drift is much faster than diffusion. We shall also

assume that the diffusion constants of the wires (comprising the rest of the circuit)

are much larger than that of the device. This is usually the case. The mean value of

the transit time is

τ =
L2

2D
(5.50)

where L is the length of the device in the direction of current flow, and D is

4This turns out to be a bad assumption for short channel devices, where the strong electric field
near the channel-drain junction causes the “drift is noiseless” approximation to break down. This
is one reason why γ typically increases as the channel is made shorter.
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a frequency and temperature-dependent quantity misleadingly called the diffusion

constant. Our assumption that drift is much faster than diffusion means that

L

vdrift
� L2

2D
⇒ L� 2D

vdrift
(5.51)

where vdrift is the drift velocity in the device. If L is small enough (/ 25 nm for Silicon

devices), (5.51) is not true and the following derivation is not applicable. Equation

(5.50) is easy to derive. Consider a typical particle inside the device. At t = 0 it

is moving in a given direction with an average velocity vth. It travels an average

distance lmfp (the mean free path) before it suffers a collision with another particle.

After the collision, it moves in a different direction with a different speed, neither

of which can be predicted. In effect, collisions randomize velocities and directions of

travel. We want to find out how long it takes an average particle to move a distance

L along a known direction, say x. However, vx, the component of the particle’s

velocity along x is a random number that varies with time, because the direction the

particle is traveling in is constantly changing. The average distance traveled after

N collisions, x(N), is the sum of these random numbers and is zero. This makes

sense since, in the absence of an external force, the particle will not on average, will

not go anywhere. The standard deviation

√
x2(N) of the particle’s position after

N collisions, is however non-zero and increases with time. If N is large

√
x2(N)

becomes Gaussian (by the central limit theorem). The variance in position due to

a single collision is about l2mfp. Each collision causes more variance. Since we are

summing up random numbers, the variances add, therefore

x2(N) = l2mfpN ⇒
√
x2(N) = lmfp

√
N (5.52)

In order to get

√
x2(N) = L, we therefore need N = L2/l2mfp. The average time

between collisions is τcoll = lmfp/vth. Therefore the average time taken to “move” a

distance L (i.e., to make the standard deviation in the particle’s position be equal to

L) is

288



τ = Nτcoll =
L2

lmfpvth
≡ L2

2D
(5.53)

where D = lmfpvth/2 is the diffusion constant in one dimension and has units of

cm2/sec. Diffusion is an example of a transport process. In a transport process some

conserved quantity is moved around by a potential gradient. In diffusion, the num-

ber of particles is conserved. Other examples include heat conduction in solids and

viscosity in fluid flow (the conserved quantities are energy and momentum, respec-

tively). The speed of transport processes are characterized by transport constants (D

is an example). The characteristic form of a transport constant is λv, where λ is the

characteristic length scale (lmfp in this case) and v is the characteristic velocity (vth

in this case).

Since each electron takes an average time to complete the circuit loop, it’s arrival

rate at the detector is 1/τ , corresponding to an average current of q/τ . The total

average current at the detector is therefore Iav = qNtot/τ , where Ntot is the total

number of electrons flowing in the circuit. We now make the approximation that at

any given time almost all the Ntot electrons are to be found in the device (and not

in the wires or the detector). This follows from our earlier assumption that the total

transit time is dominated by the device. On average, therefore any electron spends

most of its time inside the device. Therefore we may write Qtot = qNtot, where Qtot is

the (time-averaged) total charge contained in the device. We also assume that each

electron diffuses independently. Since their arrival times at the detector are then

uncorrelated, we can use simple shot noise formula (5.1) and write the current noise

PSD of the device as

i2n = 2qIav = 2q

(
|Qtot|
τ

)
= 4qD

(
|Qtot|
L2

)
(5.54)

where the modulus around Qtot represents the fact that we don’t care about the

direction of the noise current, but only its magnitude. Note that Iav 6= IDC , the

average current through the device, because in general some of this current will be

carried by drift, which is assumed to be noiseless. Let’s now see if this formula works
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in the simplest possible case, i.e., for a resistor. For a resistor Qtot = qNtot = qNAL,

where N is the density of charge carriers (electrons) inside it, A is its cross-sectional

area and L is its length. Therefore, from (5.54) we have

i2n = 4qD

(
NAL

L2

)
= 4kT

(
(Nqµ)A

L

)
= 4kT

(
σA

L

)
≡ 4kTG (5.55)

where σ = Nqµ is the conductivity of the resistive material, G ≡ σA/L is the total

conductance of the resistor and we have used Einstein’s relation D = µφT . Therefore

(5.54) agrees with the thermal noise formula for a resistor. The reader may question

whether anything has been gained, since we’ve already proven this result. The great

advantage of our current technique, however, is that it does not force us to split

Qtot into two linear charge profiles to get constant, oppositely directed drift currents

inside the device. As we have mentioned before, this split cannot be made if the

charge profile is not linear, such as in an above-threshold MOSFET. Let us therefore

now use our new technique to find the noise of the above-threshold MOSFET in a

more rigorous way.

First we need to find the channel charge density profile QI(x). Remember that

the total device current ID must be independent of x (KCL). Now consider splitting

the transistor into two shorter transistors at some location x along the channel. Each

shorter transistor, with lengths x and L − x respectively, should still carry ID. It is

easiest to see this if one considers integrating (5.26) from 0 to x instead of from 0

to L. The left-hand side must remain constant at ID in either case. Therefore the

right-hand sides must be equal as well, guaranteeing that

− (Q2
I(L)−Q2

I(0)) + 2φTCox
κ

(QI(L)−QI(0))

2L
=
− (Q2

I(x)−Q2
I(0)) + 2φTCox

κ
(QI(x)−QI(0))

2x
(5.56)

We can immediately solve the quadratic equation above to determine QI(x).

However, the final result is too complicated for hand calculations or physical in-

sight. We shall instead make the approximation that all the current is carried by

drift. This is a reasonable approximation when (VGS − VTS)� φT . In this situation
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Q2
I(x)� (2CoxφT/κ)×QI(x) for any x ∈ [0, L] and (5.56) simplifies to5

Q2
I(L)−Q2

I(0)

2L
≈ Q2

I(x)−Q2
I(0)

2x
(5.57)

This can be easily solved to give

QI(x) =

√
Q2
I(0)

(
1− x

L

)
+Q2

I(L)
(x
L

)
(5.58)

Remembering that QI(x) is the charge per unit area of the channel, the total

channel charge is given by

Qtot = W

∫ L

0

QI(x)dx =
2

3
WLQI(0)

[
Q3
I(L)−Q3

I(0)

Q2
I(L)−Q2

I(0)

]
(5.59)

We now substitute forQI(0) = Cox (VGS − VTS) using the source-referenced model,

and also define

η ≡ QI(L)

QI(0)
=
Cox

(
VGS − VTS − VDS

κ

)
Cox (VGS − VTS)

= 1− VDS
VDS,sat

(5.60)

where VDS,sat = κ (VGS − VTS) is the saturation voltage. The result is

Qtot = −2

3
WLCox (VGS − VTS)

[
1 + η + η2

1 + η

]
(5.61)

where we have used the algebraic identities 1 − x3 = (1 − x) (1 + x+ x2) and

1− x2 = (1− x)(1 + x). Plugging |Qtot| from (5.61) into our transit-time based noise

formula, i.e., (5.54), gives

i2n = 4kTµ

(
2

3

W

L
Cox (VGS − VTS)

[
1 + η + η2

1 + η

])
= 4kTgd0

(
2

3

[
1 + η + η2

1 + η

])
(5.62)

where we have used Einstein’s relation to write qD = kTµ, and gd0, as defined

previously, is the zero-bias conductance of the device. This is the classic equation for

5The discerning reader will immediately notice a problem with this argument at the drain end
(x = L) when the device is saturated. Since the drain of the saturated MOSFET is weakly inverted,
QI(L) is likely to be small. More on this later.
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the noise of a long-channel, above-threshold MOSFET. It may be rewritten as

i2n = 4kTγgd0 (5.63)

where we now have an explicit, bias-dependent formula for γ

γ ≡ 2

3

[
1 + η + η2

1 + η

]
(5.64)

It is easily seen that γ decreases from 1 (η = 1, zero-biased condition) to 2/3 (η =

0, saturation) as VDS increases. Finally, let’s try to clear up what happens to QI(L),

the channel charge density at the drain end, in saturation. The above-threshold

equation (5.34) predicts that it should be zero, but that equation is inaccurate since

the drain end of the channel is weakly inverted. By differentiating (5.58), we get

dQI

dx
=

1

L

(
Q2
I(L)−Q2

I(0)

QI(x)

)
(5.65)

At the drain end, x = L, this becomes

(
dQI

dx

)
x=L

=
1

L

(
Q2
I(L)−Q2

I(0)

QI(L)

)
≈ 1

L

(
Q2
I(0)

QI(L)

)
(5.66)

since QI(0) � QI(L) in saturation. As QI(L) decreases, dQ/dx at the drain in-

creases. Note that the diffusion component of the channel current ID is WD(dQ/dx),

where D is the diffusion constant. Therefore more and more of ID is carried by dif-

fusion at the drain end as the device approaches saturation. Saturation occurs when

the concentration profile at the drain becomes steep enough to carry all of ID via

diffusion. This sets QI(L)sat, the lowest possible (limiting) value of QI(L). We can

easily estimate this value by setting

DW

(
dQI

dx

)
x=L

= ID (5.67)

After substituting for QI(0) and ID (in saturation), using the Einstein relation

and doing some algebra we get
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QI(L)sat =
2φT
κ
Cox (5.68)

Going back to our derivation of the long-channel above-threshold MOSFET noise

formula (5.62), it is now evident why we should take the predicted value of γ in

saturation, 2/3, with a pinch of salt. That derivation assumed that QI(x)� QI(L)sat

for all x ∈ [0, L]. This is obviously not true close to the drain when the device is

saturated. Intuitively, we expect the real value of γ to be somewhat greater than

2/3 because the finite transit time of carriers through the channel region close to the

drain (where most of the device current is carried by diffusion) should cause excess

shot noise.

5.7 The Resistor at High Frequencies

In this section we consider what happens to our noise expressions outside the Rayleigh-

Jeans limit. Let’s first try to find the noise of a resistor as a function of frequency. We

shall assume that the resistor is lumped and has no internal structure or dynamics of

its own. In order for this to be true, the physical dimensions of the resistor must be

much smaller than λmin = c/fmax, where fmax is the highest frequency of interest.

A resistor generates noise because it exchanges energy with its surroundings. It

captures photons from the electromagnetic radiation field surrounding it, and occa-

sionally releases photons (“radiates”) back into this field. Each photon has an energy

E = hf . Therefore, the process of picking up and losing photons causes the total

energy inside the resistor to fluctuate with time. This is thermal noise.

How does the resistor absorb and radiate photons? Consider the capture process

first. A photon can be absorbed only if its quantum-mechanical wave function hap-

pens to intersect the volume occupied by the resistor. Let’s start with the simplest

case: a beam of monochromatic photons traveling in some direction z. Let the size

of the photon’s wave function (i.e., the rms value of the uncertainty in its position)

in some perpendicular direction x be ∆x. It seems reasonable to associate ∆x with

the length over which the photon detection probability falls to half. In other words, a
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f(p)

0.5

0 p

Figure 5-4: The probability distribution function f(p) of momentum detected by a
resistor illuminated by a monochromatic source of photons.

photon at a distance ∆x from the resistor has 50% chance of being absorbed. Remem-

ber that a photon is said to be absorbed if its energy is transferred to charge carriers

or lattice vibrations in the resistor, thereby changing the energy of the resistor and

causing noise. The Heisenberg uncertainty principle tells us that

∆x∆p ≥ h

4π
(5.69)

where ∆p is the rms uncertainty (standard deviation) in the momentum of the

photon. We now need to calculate ∆p. Remember that 50% of the photons are

absorbed and transfer a momentum p = E/c = hf/c to the resistor, while the

remainder are not absorbed and contribute nothing. Therefore the distribution of p,

the detected momentum, is two-valued, with equal values of 0.5 at p = 0 and p = hf/c

and nothing in-between (see Figure 5-4)6. The standard deviation of this distribution

is ∆p = p/2 = hf/(2c). By substituting this value into (5.69) and remembering that

c = fλ, where λ is the wavelength of the photon, we get

∆x ≥
(
λ

2π

)
(5.70)

Since the orientation of x in the plane perpendicular to z, was arbitrary, in general

photon capture occurs within a circle of radius ∆x centered around the resistor. This

defines the capture area Ac of the resistor:

6Remember that we assumed that the incident photon beam was monochromatic.
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Ac = π (∆x)2 ≥ λ2

4π
(5.71)

The fact that this expression looks exactly like the effective area of an omnidi-

rectional antenna is no coincidence [59, 162]. A resistor is, after all, nothing but an

antenna: it captures photons from the electromagnetic radiation surrounding it. The

only difference between resistors and antennas lies in how they are used. Antennas

are typically used for picking up desired photons (“signal”), while resistors pick up

unwanted photons (”noise”). We may therefore write

Ac =
G(f)λ2

4π
(5.72)

where G(f) ≥ 1, known as the antenna gain, is in general a function of frequency.

Also, in steady state (thermodynamic equilibrium) the resistor cannot be gaining or

losing any energy on average. Therefore it must be radiating photons at the same

rate it is capturing them. The radiation field surrounding our resistor can usually be

assumed to be produced by, and in equilibrium with, a blackbody at a temperature

T . This defines what we mean by the temperature of our resistor. Therefore, the

power density (W/m2) present in the radiation field per unit solid angle over a small

frequency range df is the same as that radiated by the blackbody, which is known to

be given by

B(f, T )df =
2hf 3

c2

(
df

exp
(
hf
kT

)
− 1

)
=

1

λ2

(
2hf

exp
(
hf
kT

)
− 1

)
df (5.73)

(this is known as the Planck radiation function). Let’s assume that the radiation

field is isotropic, i.e., there is no preferred direction for photon motion. At ther-

modynamic equilibrium, the power present in the resistor must be the same as that

present in the surrounding radiation field over an area 4πAc, where Ac is the capture

area of the resistor (defined earlier)7. The 4π arises because we considered a beam of

photons traveling in some direction while deriving Ac. In an isotropic radiation field

7If this wasn’t true, the resistor couldn’t be at thermodynamic equilibrium (steady state), since
the average power entering it would not be zero.
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equal numbers of photons travel in all possible directions, and so we must sum over

all possible directions to get the total number of photons captured by the resistor.

This summation gives us the total solid angle contained by a sphere, i.e., 4π. The

power (in W ) contained within the resistor between f and f + df is therefore

S(f, T )df = 4πAcB(f, T )df =

(
2hfG(f)

exp
(
hf
kT

)
− 1

)
df (5.74)

Remembering that the power present in a resistor is V 2/R, the power spectral

density (in V 2/Hz) of the noise voltage developed by the resistor is given by

v2
n(f, T ) = R× S(f, T ) =

(
2hfG(f)R

exp
(
hf
kT

)
− 1

)
(5.75)

However, since the time domain signal we measure is real, it has a power spectrum

that is symmetric about f = 0. By Parseval’s theorem, the total power in the time

domain signal (extending from −∞ to +∞) is equal to that in the power spectrum

from −∞ to +∞. Therefore only half the observed time domain noise power is

contained in the positive frequency components of the power spectrum (extending

from 0 to +∞). However, in deriving (5.75), we implicitly assumed that the frequency

f was positive. Therefore the measured voltage PSD will be twice that predicted by

(5.75), i.e.,

v2
n(f, T ) =

(
4hfG(f)R

exp
(
hf
kT

)
− 1

)
(5.76)

The low-frequency behavior of the function in (5.76) constitutes the Rayleigh-

Jeans limit. At low frequencies hf � kT , exp (hf/kT )− 1 ≈ hf/kT , so we get

v2
n(f, T ) ≥

(
4hfG(f)R

hf/kT

)
= 4kTG(f)R (5.77)

The lower limit of this expression, i.e. G(f) = 1 at all frequencies, is the familiar,

frequency-independent thermal noise expression for a resistor. Therefore an ideal

resistor may be viewed as the most inefficient possible antenna. Its capture area Ac

is determined solely by the uncertainty principle and is independent of geometry. A
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practical antenna uses various geometrical tricks to increase Ac and thus the gain

G(f). From now on, we shall assume G(f) = 1 unless otherwise specified. An

intuitive way to visualize the frequency-independent result in (5.77) is to realize that

the thermal power contained in the resistor (in W ) is the product of two terms: the

blackbody spectrum B(f, T ), which is a radiation intensity (W/m2) and the capture

area Ac in m2. At low frequencies hf � kT , B(f, T ) becomes (from (5.91)):

B(f, T ) =
2h

c2

(
f 3

exp
(
hf
kT

)
− 1

)
≈ 2h

c2

(
f 3

hf/kT

)
= 2kT

(
f

c

)2

(5.78)

Therefore B(f, T ) ∝ f 2 at low frequencies. By contrast, the capture area is given

by

Ac =
λ2

4π
=

1

4π

(
c

f

)2

(5.79)

We see that Ac ∝ f−2. As before, the noise PSD of the resistor (W/Hz) for

hf � kT is given by

S(f, T ) = 4πAc(f)×B(f, T ) = 2kT (5.80)

We see that S(f, T ) becomes independent of f because it is the product of two

terms with opposing frequency dependencies. One term, B(f, T ) ∝ f 2, means that

the energy density of photons in the space surrounding the resistor increases with

frequency8. The other, Ac ∝ f−2, means that the volume of space from which the

resistor can capture photons decreases with frequency. These relationships are shown

graphically for several values of T in Figures 5-5(a), 5-5(b) and 5-5(c).

The sharp roll-off of the thermal noise PSD at high frequencies hf � kT means

that a detector with infinite bandwidth would still measure a finite variance in the

voltage of the resistor. The total voltage variance is obtained by integrating S(f) in

(5.76) over all positive frequencies

8Only if hf � kT , of course. If this relationship held for all f , B(f, T ) would increase without
bound as f →∞. This is the so-called ultra-violet catastrophe that originally led Planck to postulate
the existence of discrete quanta of energy (now known as photons).
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Figure 5-5: Intuitive explanation for the presence of frequency-independent thermal
noise in a resistor at low frequencies (hf � kT ).
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v2
n = 4R

∫ ∞
0

hfdf

exp
(
hf
kT

)
− 1

= 4R
(kT )2

h

∫ ∞
0

xdx

exp (x)− 1
(5.81)

where x = hf/kT . The integral above can be found from the more general

tabulated integral

∫ ∞
0

xndx

exp (x)− 1
= ζ(n+ 1)Γ(n+ 1) (5.82)

where ζ(n) is the Riemann zeta function, and Γ(n) is the gamma function. In our

case, since n = 1, the integral is equal to ζ(2)Γ(2). We also know that ζ(2) = π2/6

and Γ(n) = (n− 1)! for integer n. Therefore

v2
n = 4R

(kT )2

h

(
π2

6

)
≡ 4kTRB (5.83)

where B = (π2/6) × (kT/h) is the equivalent noise bandwidth of the system. If

we plug in values for the constants, this formula predicts that a 1Ω resistor produces

thermal noise with an rms magnitude of 413µV at T = 300K if the detector used to

measure the noise has infinite bandwidth. Interestingly, (5.83) can also be written as

v2
n = φ2

T

(
2π2

3

)
R

RK

(5.84)

where RK = h/q2 = 25812.8Ω is known as the von Klitzing constant. The von Kl-

itzing constant is a fundamental resistance unit that is used for accurately calibrating

resistance values. It can be directly measured using the quantum Hall effect.

Since the shot noise produced by devices at thermodynamic equilibrium agrees

with the thermal noise formulas for low frequencies, we also expect their high fre-

quency behaviors to be related. Consider a spherical detector surrounding a isotropic

source of diffusion current. The shot noise spectrum is flat at low frequencies because

successive electron arrivals at the detector are uncorrelated. Therefore the autocor-
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relation function R(τ) of i(t), the detected current waveform, is approximately δ(τ),

the Dirac delta function. This is only approximately true because each electron ar-

rival takes some characteristic time ∆t to occur. Correlations do exist in i(t) for

timescales shorter than ∆t, making R(τ) 6= 0 for τ < ∆t. Also, the power spectrum

is the Fourier transform of R(τ). The finite width of R(τ) makes the shot noise power

spectrum roll off at high frequencies.

Electron arrivals are not instantaneous because of Heisenberg’s uncertainty prin-

ciple; electron wave packets have a characteristic size that is non-zero. As a result, we

have to wait some time before the whole packet can enter the detector and be counted.

This situation can be quantified by using another quantum-mechanical uncertainty

relationship

∆E∆t ≈ h

2π
(5.85)

where ∆t is the rms uncertainty of the arrival time and ∆E is the rms uncertainty

in the detected energy. Once the electron has been detected, ∆E simply becomes the

rms thermal energy of the electrons in three dimensions, i.e.,

∆E =
3

2
kT (5.86)

where each dimension (degree of freedom) contributes kT/2 of thermal energy.

Substituting (5.86) in (5.85), we get

∆t ≈ 1

3π

(
h

kT

)
(5.87)

Since the characteristic width of each electron arrival pulse is ∆t, the bandwidth

of the shot noise spectrum is given by

∆f =
TBP

∆t
= TBP× 3π

(
kT

h

)
(5.88)

where TBP = ∆f∆t is the time-bandwidth product of the electron arrival pulses.

The actual value of TBP depends on the exact shape of the pulses. For example,
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TBP=0.441 for Gaussian pulses, 0.142 for Lorentzian pulses and 0.443 for rectangular

pulses. Comparing the shot noise bandwidth predicted by (5.88) with the equivalent

thermal noise bandwidth B in (5.83) shows that they are both of the form αkT/h,

where α is a constant of order unity. In the absence of other mechanisms that cause

correlation between electron arrival times9, the thermal and shot noise behavior of

devices at thermodynamic equilibrium therefore remain similar to each other at high

frequencies.

5.8 The Real Resistor at High Frequencies

The derivation of thermal noise in the previous section is, while appealing, flawed.

Our problems begin with the Planck blackbody formula, equation (5.91). Planck

derived this formula in 1900 by calculating the average energy of a single energy

radiator/vibrating atom/oscillator at a temperature T . His result was

E1 =
hf

exp
(
hf
kT

)
− 1

(5.89)

However, in 1913 Einstein & Stern modified this formula to take into account real

experimental data. Their result was

E2 =
hf

exp
(
hf
kT

)
− 1

+
hf

2
=
hf

2
coth

(
hf

2kT

)
(5.90)

where the additional hf/2 term is known as zero-point energy, since it is present in

the oscillator even at zero temperature. Zero-point energy is the lowest possible energy

that a quantum-mechanical system may have, and is also known as the ground-state

energy. Intuitively, non-zero ground-point energy ensures that the system’s energy

can fluctuate randomly when interacting with a measurement apparatus while in

9This is a big assumption. In practice significant correlations may exist between carrier arrival
times due to other mechanisms, such as Coulomb interactions. For example, shot noise is reduced by
the electric field generated by the carriers themselves. The field tends to cause the carriers to bunch
together, making their arrival times correlated. This process is known as space-charge smoothing
and occurs in an above-threshold MOSFET. It is easy to check that the noise of a saturated above-
threshold MOSFET is significantly lower than 2qID, where ID is the total drain current. In fact,
the reduction factor (in power units) is approximately (VGS − VT )/φT , which makes intuitive sense.
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the ground state, thereby satisfying the uncertainty principle. It is now known that

(5.90) is the correct expression for the mean energy of a quantum harmonic oscillator

at temperature T . Therefore the radiation field surrounding the resistor should really

be given by

B2(f)df =
2E2

λ2
=

2

λ2

[
hf

exp
(
hf
kT

)
− 1

+
hf

2

]
(5.91)

where the factor of 2 arises because of the two possible spin orientations of a

photon. Therefore the power contained in the resistor between f and f + df is given

by

S(f)df = 4πAcB2(f)df = 2

(
hf

exp
(
hf
kT

)
− 1

+
hf

2

)
= (hf) coth

(
hf

2kT

)
(5.92)

The measured voltage PSD in the resistor is therefore

v2
n(f) = 2R× S(f) = (2hfR) coth

(
hf

2kT

)
(5.93)

It is easy to show that (5.93) predicts the same PSD as our earlier result, (5.76), at

low frequencies hf � kT . The result is 4kTR, as expected. On the other hand, (5.93)

blows up (becomes infinite) as ω → ∞, while (5.76) goes to zero. This also means

that the total integrated noise power (V 2) of a constant resistor R is, in contrast with

our earlier derivation, infinite. Why does our resistor then not blow up? Clearly, R

itself must decrease at high frequencies for a physical resistor10.

Optical systems typically operate in the limit where hf � kT . The power spec-

trum of noise at these high frequencies is simply

10The presence of zero-point energy imparts infinite total energy to the vacuum. This is a real
problem because it makes quantum field theory calculations of apparently simple quantities blow
up. This problem can be avoided by postulating that only differences in energy are meaningful, not
absolute energy values. The resulting mathematical trick involves subtracting two infinite quantities
to get a finite final answer and is known as renormalization. Fortunately, QED (quantum electro-
dynamics, the theory of electron-photon interactions) is amenable to this process. Not all quantum
field theories are this lucky.
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S(f) = hf (5.94)

This is frequently referred to as the quantum noise limit of an optical detector.

5.9 The Fluctuation-Dissipation Theorem

It is interesting to note that the Nyquist noise formula for a resistor is really a

fluctuation-dissipation theorem, with equilibrium voltage fluctuations at equilibrium

resulting in dissipation at macroscopic scales. The resistance R is the macroscopic

variable characterizing the amount of dissipation observed. The original quantum-

mechanical proof of the fluctuation-dissipation theorem was due to Callen & Welton in

1951 [29]. An excellent review of the fluctuation-dissipation theorem in both classical

and quantum contexts may be found in [152].

A system is said to be dissipative if it can absorb energy when a time-periodic

perturbation (force) is applied to it. It is said to be linear if the power dissipation

varies quadratically with the amplitude of the perturbation. Callen & Welton showed

that for small perturbations, any system with energy levels (quantum mechanical

stationary states) that are densely distributed in energy is dissipative and linear. Let

the Hamiltonian of the system in the absence of perturbation be defined as H0. A

small perturbation V (t) will change it to

H = H0 + V (t)Q (5.95)

where H0, H and Q are functions of the coordinates and momenta of the par-

ticles in the system. The quantity δQ/δt ≡ I is known as the response function

(or susceptibility) of the system. Assume V (t) varies sinusoidally with time, i.e.,

V (t) = V0 sin(ωt). For a linear system we can now define a complex impedance Z(ω)

such that

V (ω, t) = Z(ω)I (5.96)
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In the familiar electrical case, an example of this relationship is V = (R+ ωL)I,

where I ≡ δQ/δt. The instantaneous power in the system is V I cos(θ), where θ is the

angle between V and I. It is easy to see that θ = R(ω)/ |Z(ω)|, where R(ω) is the

real (in-phase) component of Z(ω). The average power dissipated is

P =
1

2
V 2

0

R(ω)

|Z(ω)|2
(5.97)

which is, as expected, quadratic in V0. Now consider the system in thermodynamic

equilibrium with no applied force. Even at equilibrium the system may generate

spontaneously fluctuating forces and responses (i.e., noise). Let the mean square

value of this spontaneously fluctuating force be denoted by 〈v2〉. Callen & Welton’s

fundamental theorem is the statement that

〈v2〉 =
2

π

∫ ∞
0

R(ω)E(ω, T )dω (5.98)

where T is the temperature and

E(ω, T ) =
~ω
2

+
~ω

exp
( ~ω
kT

)
− 1

=
~ω
2

coth

(
~ω

2kT

)
(5.99)

Equation (5.98) is known as the generalized Nyquist relation. It can be applied

to many types of systems, which do not have to electrical in nature11. In an electrical

system the interpretation of forces and responses is obvious: V and v are voltages, I

is current and R is the resistance. The term E(ω, T ) is equal to the mean energy of a

quantum harmonic oscillator at temperature T and frequency ω = 2πf . It is easy to

show that (5.98) reduces to the original Nyquist formula at high temperatures; when

kT � ~ω, we have E(ω, T ) ≈ kT and therefore

〈v2〉 ≈ 2kT

π

∫
R(ω)dω (5.100)

If R(ω) is constant, (5.98) gives us the noise produced by an ideal resistor R:

11Motion of particles in a viscous fluid is an example.
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〈v2〉 =
2R

π

∫ ∞
0

[
~ω
2

+
~ω

exp
( ~ω
kT

)
− 1

]
dω (5.101)

which diverges to infinity. Equation (5.98) and Parseval’s theorem also allows

us to find S(ω), the power spectral density of v(t) (the noise at thermodynamic

equilibrium):

S(ω) =
2

π
R(ω)E(ω, T ) = R(ω)

[
2~ω
2π

coth

(
~ω

2kT

)]
(5.102)

Equation (5.102) can be rewritten in terms of f = ω/(2π) to get

S(f) = R(f)

[
(2hf) coth

(
hf

2kT

)]
(5.103)

Equation (5.103) agrees with the noise power spectral density of a resistor R

derived earlier by considering the blackbody spectrum, but only when the ground-

state energy ~ω/2 of a quantum harmonic oscillator has been added to it. Ground

state energy is the minimum energy that can be possessed by any quantum system.

The ground-state energy term is important: it reflects the presence of zero-point

energy (vacuum fluctuations in quantum field theory) in the system. It also causes

the total integrated noise to diverge as ω → ∞ (contrary to what would happen

without it). One measurable effect of zero-point energy is the Casimir effect, where

closely-spaced conductors attract each other with a measurable force even in vacuum.

Another effect of zero-point energy is van der Waals forces. Zero-point energy, which

is the energy in the ground/lowest possible energy state of a system, provides enough

fluctuations to make sure that the uncertainty principle is not violated even at T = 0.

5.10 Physically-Observable Fluctuations

Equation (5.98) predicts that 〈v2〉 diverges when R(ω) is constant with frequency.

The culprit is the zero-point energy, i.e., E(ω, 0) = ~ω/2. There are two possible

ways for the measured value of 〈v2〉 to not diverge. The first possibility is that R(ω)

is a strongly decreasing function of frequency. For example, any practical resistor R
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will contain some parasitic shunt capacitance C that will tend to short it out at high

frequencies. As a result R(ω) will be given by

R(ω) = Re[Z(ω)] = Re

(
1

1/R + ωC

)
=

R

1 + ω2τ 2
(5.104)

where τ = RC. In this particular case the integral in (5.98) still diverges, although

logarithmically rather than quadratically. The second possibility was first discussed

by Weber in the 1950s [308, 309]. In the real world, we need some sort of apparatus

to measure 〈v2〉. This measurement apparatus should have much lower input-referred

noise than 〈v2〉. In fact, it should ideally be noiseless, i.e., at zero temperature with

a well-defined energy Ea. For example, the apparatus could consist of electrons at a

fixed potential V , in which case Ea = qV . In order to make accurate measurements

we do not allow the apparatus to thermally equilibrate with the noisy system (the

resistor), which is at temperature T 12. Instead, the two systems are only connected

for short periods of time. Inbetween these measurement periods the system is allowed

to re-equlibrate with a heat bath at temperature T . When the systems are connected,

they exchange energy, causing fluctuations in Ea which can be detected.

When the system and the measurement apparatus exchange energy, the system

can transfer quanta of any frequency to the apparatus, because its energy can have

any value (weighted by the usual Boltzmann probability distribution). However, the

apparatus can only transfer quanta of frequency ≤ Ea/~ to the system, because its

energy has a well defined value Ea prior to the transfer, and cannot go negative13.

In other words, we must have Ea − ~ω > 0 for such transitions. Weber showed that

this restriction causes the physically-observable value of 〈v2〉, i.e., that detected by

our measurement apparatus, to be given by

12Reducing the temperature of the measurement apparatus is sometimes the only way to increase
measurement accuracy.

13All energies are measured with respect to the vacuum, which is, by definition, the lowest energy
state. Negative energies would contradict this definition.
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〈v2〉 =
2

π

[∫ ωa

0

R(ω)
~ω
2

coth

(
~ω

2kT

)
dω +

∫ ∞
ωa

R(ω)
~ω

exp
( ~ω
kT

)
− 1

dω

]

=
2

π

[∫ ωa

0

R(ω)
~ω
2
dω +

∫ ∞
0

R(ω)
~ω

exp
( ~ω
kT

)
− 1

dω

]
(5.105)

where the cutoff frequency ωa = Ea/~. Comparing (5.105) with (5.101), we see that

the temperature-dependent part of the noise extends over all frequencies, as before.

However, the temperature-independent part, contributed by the zero-point energy,

only results in fluctuations at frequencies less than ωa. As a result, 〈v2〉 does not

diverge even when R(ω) is constant with frequency. To summarize, the fluctuations

at T = 0 are limited by the fact that the energy of the system (also at T = 0) that is

used to measure them cannot go negative. From (5.105), these measured zero-point

fluctuations are given by

〈v2〉zp =
~
π

∫ ωa

0

ωR(ω)dω (5.106)

5.11 Noise In Quantum Systems

The power spectral density S(ω) of a time-domain signal x(t) is the Fourier transform

of its autocorrelation function. The autocorrelation function in classical systems is

defined as R(τ) = 〈x(t)x(t− τ)〉, where 〈〉 denotes averaging over time. For classical

systems, R(τ) is a real signal and so S(ω) = S(−ω), i.e., the power spectrum is

symmetric. This applies to noise spectra as well. However, this is no longer true

when quantum mechanical effects are significant.

Define 〈x̂(t)〉 to be the expected value of the operator x̂(t) when the quantum

system is in a stationary state14. The quantum autocorrelation operator is not com-

14In quantum mechanics, a stationary state is an eigenstate of a Hamiltonian, or in other words, a
state of definite energy. It is called stationary because the corresponding probability density has no
time dependence. As an eigenstate of the Hamiltonian, a stationary state is not subject to change
or decay (to a lower energy state) over time. In practice, small perturbations eventually cause all
stationary states to decay to the lowest energy state of the system, which is known as the ground
state.
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mutative. In other words, 〈x̂(t)x̂(t − τ)〉 is not equal to 〈x̂(t − τ)x̂(t)〉. Concisely,

[x̂(t)x̂(t− τ)] 6= 0 for τ 6= 0, where [AB] ≡ AB − BA is known as the commuta-

tor. As a result, a common way to define R(τ) for quantum systems is the so-called

symmetric form

R(τ) =
1

2
〈x̂(t)x̂(t− τ) + x̂(t− τ)x̂(t)〉 (5.107)

This definition makes the autocorrelation a complex function. In fact R(τ) =

R(−τ)∗ 6= R(−τ), where ∗ denotes the complex conjugate. As a result S(ω) is not

symmetric in general, i.e., S(ω) is not equal to S(−ω). For example, the autocorre-

lation function of flux fluctuations in a quantum LC oscillator is given by [57]

R(τ) = 〈φ(t)φ(t− τ)〉 =
~Z0

2

[
coth

(
~ω0

2kT

)
cos (ω0τ)−  sin (ω0τ)

]
(5.108)

where Z0 =
√
L/C is the characteristic impedance, ω0 = 1/

√
LC is the oscillation

frequency and φ(t) is the flux in the inductor L. Note again that R(τ) is not real.

The power spectrum S(ω) measures the random fluctuations of a system and is

proportional to the power exchanged with surrounding photons (i.e., an electromag-

netic field). Positive frequencies can be thought of as the system adding energy by

absorbing photons, while negative frequencies correspond to the system losing energy

by radiating photons. Classically the two processes are identical and S(ω) is sym-

metric. A non-symmetric power spectrum means that, in general, radiated power is

not equal to absorbed power. This is a violation of the antenna reciprocity theorem.

In particular, at zero temperature the system is in its lowest energy state and

cannot radiate, though it can absorb energy. Therefore S(−ω) is zero at zero tem-

perature, but S(ω) is not. An explicit formula for S(ω) was derived by van Hove in

1954 [120] based on a Born scattering approximation. It is given by

S(ω) = ~
∑
if

Pi |〈f |x̂| i〉|2 δ(Ei − Ef − ~ω) (5.109)
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where |i〉 are the stationary states (Eigenstates) with energies Ei and populations

(occupancies) Pi, and δ() is the Dirac delta function. The delta function may be

considered a statement of energy conservation: the energy change Ef − Ei in the

system is the result of the absorption or radiation of a photon with energy ~ω. The

term |〈f |x̂| i〉| may be interpreted the transition probability between states |i〉 and

|f〉. At a finite temperature T , the populations Pi follow a Boltzmann distribution,

as follows

Pi =
exp

(−Ei
kT

)∑
i exp

(−Ei
kT

) ≡ exp
(−Ei
kT

)
Z

(5.110)

where Z is known as the partition function of the system. The summation in

(5.109) is carried over each possible state transition in the system. From detailed

balance considerations it can be shown that, at equilibrium, (5.109) implies that

S(−ω) = S(ω) exp

(
−~ω
kT

)
(5.111)

This asymmetry in the power spectrum of noise disappears only when ~ω � kT

and has been measured experimentally. The quantum version of the fluctuation-

dissipation theorem [57,152] predicts that the power spectral density of spontaneous

voltage fluctuations exhibited by a system with resistance R(ω) at thermodynamic

equilibrium is given by

S(ω) = R(ω)

[
~ω
2π

(
coth

(
~ω

2kT

)
+ 1

)]
(5.112)

The quantum fluctuation-dissipation theorem is essentially a generalization of

Planck’s blackbody radiation law. The impedance Z(ω) = R(ω) + X(ω) acts as

the black body radiator. It couples with a surrounding electromagnetic field by ex-

changing photons. It can be easily verified that S(ω) in (5.112) satisfies the relation

in (5.111), and S(ω) 6= S(−ω). In the various limits S(ω) is given by
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S(ω) =
2kT

2π
R(ω), |~ω| � kT

=
~ω
2π
R(ω), ~ω � kT

= 0, ~ω � −kT (5.113)

Note that in experiments one usually measures (for example, with a spectrum

analyzer) the total noise between two frequencies ω1 and ω2 in both positive and

negative frequency bands. Therefore, the measured noise spectrum is the “symmetric”

spectrum Ssym(ω) ≡ S(ω) + S(−ω), where in general S(ω) is not equal to S(−ω).

From (5.112), we have

Ssym(ω) ≡ S(ω) + S(−ω) = R(ω)

[
2~ω
2π

coth

(
~ω

2kT

)]
(5.114)

Comparing (5.114) with (5.102), we see that Ssym is exactly the same power spec-

trum predicted by Callen & Welton’s original derivation of the fluctuation-dissipation

theorem! The various formulas for S(ω) for a constant resistance R(ω) = 1Ω are

graphed in Figure 5-6. In a real experiment, the zero-temperature part of the PSDs

will only contribute noise up to a finite frequency, as shown in (5.105). As a result,

the total measured noise will always be finite.

The net absorption of energy by a device in an electromagnetic field with Nω

photons is equal to NωS(−ω)− (Nω + 1)S(ω). In a classical field with Nω � 1 this

results in the device having a net DC conductance G given by

G = αGK

(
S(−ω)− S(ω)

~ω

)
= 2αGK (5.115)

where GK = e2/h is the basic unit of conductance (the van Klitzing constant)

and α is a device-dependent constant. The relationship above can be proved by

substituting S(ω) from (5.112) and is known as the Kubo conductance formula. Many

mesoscopic systems have been shown to exhibit the Kubo conductance.

An interesting aside now follows. It can be shown that a active linear amplifier has

310



−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

hf / kT

S
(f

) 
in

 u
ni

ts
 o

f k
T

 

 

Quantum FDT
Symmetric FDT
Planck law
Quantum limit

Figure 5-6: Various expressions for the voltage noise PSD of a 1Ω resistor. The curves
show: (a) the quantum fluctuation-dissipation theorem (FDT) prediction (5.112),
(b) the symmetric quantum FDT spectrum (5.114), (c) the symmetrized spectrum
predicted by the Planck radiation law with no zero-point energy (5.75) and (d) the
high-frequency quantum noise limit (5.94). Note that formulas (a)-(c) agree with
each other at low frequencies hf � kT - they all predict 2kT .
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to add noise to the input signal [113]. Otherwise it could violate the Heisenberg uncer-

tainty principle (i.e., ∆x∆p ≥ ~/2). Fundamentally, this is because all active devices,

such as amplifiers, must be coupled to power sources (“reservoirs”). As a result their

governing equations cannot be derived from a Hamiltonian (which is time-reversible).

In other words, they exhibit dissipation, which causes them to spontaneously gener-

ate fluctuations (noise). It is however, possible to get signal amplification without

adding noise. Parametric amplification, where the value of a lossless reactance (such

as a capacitance) is varied with time, is an example. The governing equations of a

parametric amplifier can be derived from a Hamiltonian. In other words the system

is (ideally) lossless and therefore adds no noise to the signal.

Standard Hamiltonian formulations of quantum mechanics have trouble dealing

with dissipation and dissipative elements like resistors because the underlying equa-

tions are time-reversible. One way to avoid this problem is known as the Caldeira-

Leggett model. It replaces each dissipative element by an infinite array of lossless

independent oscillators. This provides the large number of degrees of freedom needed

to model dissipation. In spirit, this is similar to why an infinite transmission line can

provide a resistive input impedance even though it is lossless.

Calculations of noise in mesoscopic devices open up a whole can of worms. The

fluctuation-dissipation theorem still applies in its quantum version, so we can find the

noise at zero-bias pretty easily. However, at non-zero bias the shot noise expressions

can get arbitrarily complex depending upon how much correlation is exhibited by

the charge carriers (electrons, Cooper pairs, etc.). The high-temperature limit when

electron arrivals are uncorrelated usually reduces to the form 2γqI, where γ (the

“Fano factor” or “shot noise suppression/ enhancement factor”) is a constant that

depends on the physical structure and charge transport properties of the system. A

nice discussion is available in [277].

Mesoscopic devices are usually analyzed somewhat similarly to RF systems, by

using a N-port scattering matrix. The reflected and transmitted terms are complex,

reflecting the fact that we have wave phenomena (i.e., phases are important). The

waves of course are quantum mechanical wave functions.
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At very low temperatures the noise in physical devices is dominated by zero-

point fluctuations. This transitions smoothly into thermal noise as temperature in-

creases, i.e. kT > ~ω. Similarly, the equilibrium thermal noise fluctuations transition

smoothly into non-equilibrium (bias-dependent) shot noise as the bias voltage V in-

creases, i.e., qV > kT . In general therefore, the current noise PSD in a mesoscopic

device depends on ω = 2πf , V and T , and can be written as SI(ω, V, T ). This reflects

the presence of three different energy scales in the system: ~ω, kT and qV . See [277]

for an example.

5.12 Noise in Antennas

Antennas are interesting from a thermodynamic point of view since their effective

noise temperature is not necessarily that of their physical surroundings. This is

because they can be in thermodynamic equilibrium with distant blackbody sources at

any temperature. The thermal noise voltage PSD at the terminals of an impedance-

matched antenna is given by 4kTARA, where RA is the real part of the antenna

terminal impedance and TA is the noise temperature. In general TA is a function

of the antenna’s radiation pattern and physical orientation with respect to visible

sources of radiation. For example, consider a high-gain antenna in free space. If the

main lobe is pointing away from bright nearby sources, like the sun, the measured

noise temperature will be close to 2.73K, which is the temperature of the cosmic

microwave background. On the other hand, if the antenna is pointing directly at the

sun, the measured noise temperature will be close to that of the solar photosphere,

i.e., about 5700K.

Now imagine that we have a receiver connected to the antenna through a trans-

mission line of length L. If the line is lossless it is thermodynamically isolated from

its surroundings and adds no noise of its own to the received signal. Therefore the

noise temperature Trec seen by the receiver will be equal to TA, that of the an-

tenna. However, if the line has loss this statement is no longer true. Consider a

slightly lossy line where the signal attenuates by a factor of e in a distance 1/α, i.e.
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I(x) = I(0) exp(−αx), where I(x) is the power at position x along the line and the

line extends from x = 0 to x = L. Here α is known as the attenuation constant of the

line. Say the temperature of the line is Tline, i.e., it absorbs and reradiates photons

in thermodynamic equilibrium with a blackbody radiation field at temperature Tline.

It is easy to show that the noise temperature of the receiver is given by

Trec = TA exp(−τ) + Tline (1− exp(−τ)) (5.116)

where τ =
∫ L

0
αdx is known as the optical depth. We see that as the optical depth in-

creases, the line becomes opaque. In other words, the receiver reaches thermodynamic

equilibrium with the line and no longer “sees” the antenna.

We now add a final note on antenna effective areas. We have shown that the

minimum possible effective area Aeff,min of an antenna is set by the uncertainty

principle and is equal to λ2/(4π). In general, the effective area Aeff is bigger than

Aeff,min by a ratio G > 1, known as the antenna gain. In other words, Aeff =

GAeff,min. We now want to relate Aeff to the aperture area Aphys of large aperture

antennas such as horns and dishes. For simplicity, consider a circular, uniformly

illuminated aperture of diameter D � λ. The effective area of the aperture is then

equal to the physical area, and is given by Aphys = πD2/4. In order to calculate the

gain of this antenna, we use the well known fact that the first nulls in the diffraction

pattern from circular apertures occur at angles ∆θ = ±1.22 (λ/D) when λ� D and

θ is the solid angle measured with respect to the axis perpendicular to the aperture

and passing through its center.

The main lobe of the antenna radiation pattern fits within the nulls in the diffrac-

tion pattern, i.e., ±∆θ, instead of spreading uniformly over a solid angle of 2π (the

hemisphere on the outward, radiating face of the aperture). If we approximate the

intensity within ±∆θ as uniform, simple geometry shows that the illuminated spot

at a distance r from the antenna has an area π (r∆θ)2. Therefore the antenna gain

G is given by
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G ≈ 2πr2

π (∆θr)2 = 1.34

(
D

λ

)2

(5.117)

By definition, therefore, the effective area of the antenna is given by

Aeff =
λ2

4π
G =

1.34

π2

(
πD2

4

)
= 0.136Aphys (5.118)

Thus the effective area of the antenna is a constant fraction of its physical area,

a result that makes intuitive sense. The result may also be generalized to other

geometries, i.e., dishes which are non-circular and/or not uniformly illuminated. The

proportionality between Aeff and Aphys always remains, but the numerical constant

relating them is geometry-dependent.

5.13 Flicker Noise

Flicker or 1/f noise is an example of a dynamic process with a power-law power

spectrum, i.e. P (f) = f−α, where α is a constant that in the case of 1/f noise is

equal to 115. Typically a device exhibits a 1/f power spectrum only over a certain

range of frequencies. However, power spectra with power-law behavior are found in

a surprisingly wide range of physical systems. To give just a few examples:

• The distribution of stellar luminosities follows a broken power law (as do many

other astrophysical distributions).

• The spatial frequency distribution of natural images is approximately 1/f 2, i.e.,

is analogous to 1/f noise, but in two dimensions [247].

• The power spectral density of much orchestral music is approximately 1/f [304].

• The degree distribution of many natural and man-made “scale-free” networks,

such as the internet and ecological webs, follow power laws.

15Flicker noise was first discovered in vacuum tubes. The term “flicker” appears to have been
proposed by Schottky in a paper published in 1926 [264], where he says: “If we had to do with
emission of light instead of electrons, we would speak of a chaotic variation in light intensity taking
place over the surface of the cathode, a phenomenon which we should describe by the word “flicker.””
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• Zipf’s law says that a power-law plot with slope -1 results if the words in a

language are ordered (ranked) by frequency of usage, and then these frequencies

plotted versus the rank. In other words, the frequency with which a word is

used is inversely proportional to its rank.

Examples may be multiplied. The basic feature these diverse systems share is a

tendency for phenomena to occur over large ranges of parameter values. Adding up

these “scale-free” or “scale-invariant” phenomena results in power spectra that are

power-law in nature. Several attempts have been made to derive more quantitative

mechanisms to explain the somewhat vague statement above, but without too much

success. The truth appears to be that the detailed mechanisms that cause power-law

behavior are different across systems, so “universal” theories are likely to fail.

5.13.1 MOSFET Flicker Noise

We shall briefly consider 1/f noise in MOSFETs. Further details are available in

many places, for example [101, 312]. Long-term measurements of flicker noise in

bulk semiconductors are also available in the literature [30]. There are two main

mechanisms that have been postulated for 1/f noise generation in MOSFETs:

• Mobility fluctuations due to carriers being scattered by vibrations of immobile

atoms in the channel. Such vibrational modes are quantized by the regularity

of the Silicon crystal lattice, and are known as phonons.

• Threshold voltage fluctuations due to the presence of electron traps in the gate

oxide. Traps are metastable energy levels within the oxide band-gap. Elec-

trons can reach such energy levels by quantum-mechanical tunneling through

the oxide. Traps are produced by impurities or defects in the oxide crystal lat-

tice, and their average number per unit area of gate oxide is a measure of the

“cleanliness” of the fabrication process.

Each mechanism can produce 1/f spectra by itself; it seems likely that both are

involved in real devices. However, we shall use the oxide charge trap concept, as

316



it has been shown to adequately describe the experimentally-measured 1/f noise of

MOSFETs [124]. Experimental data from MOSFETs that are small enough to contain

a single trap within their gate oxide has been analyzed in [101]. The drain current in

such devices fluctuates between just two levels, corresponding to the trap being either

empty or full. In the simplest model, each trap receives carriers as Poisson arrivals

with a mean rate λi that depends on the average current through the device and the

location of the trap. Once filled, the probability of the trap being empty increases

exponentially with a time constant 1/µi, which varies across traps. We define the

trap occupancy function Fi as having a value 1 if the trap is occupied, and 0 if it is

empty.

Each trap can be compactly described by a two-state Markov process. By requiring

detailed balance in steady-state it is easy to show that the probability of the trap

being filled is given by

Di =
λi

λi + µi
(5.119)

The effect of a filled trap is to change the threshold voltage of the transistor by

an amount ∆VT , which to a good approximation can be taken as constant [101] and

given by ∆VT = q/ (CoxWL). The resultant change in drain current is given by

∆I = gm ×∆VT = I

(
q

CoxWLVL

)
(5.120)

where gm = I/VL is the small-signal transconductance of the transistor, and VL is its

linear range. The amplitude distribution of ∆I has two states: 0, with probability

(1−Di) and ∆I, with probability Di. The variance of this distribution is

∆I2 = Di (1−Di) (∆I)2 = σ2
i (∆I)2 (5.121)

where σ2
i = Di (1−Di) is the variance of Fi. Note that σ2

i is maximized when

the “duty cycle” Di = 1/2, i.e., λi = µi. Electrons arrivals and departures at the

trap are assumed to be uncorrelated, and occur with rates λi and µi, respectively.
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Counting either flux leads to a Poisson distribution. Therefore the average rate at

which Poisson events occur at the trap is λi + µi, allowing us to define the trap time

constant τi = 1/ (λi + µi). It is easy to show that the autocorrelation function of the

Fi is simply exp (−|t|/τi). As a result, the power spectrum Pi(f) of Fi is simply that

of a first-order low-pass filter, and is given by

Pi(f) = 4σ2
i

[
τi

1 + (2πfτi)
2

]
(5.122)

We have seen that fluctuations in drain current are proportional to the trap oc-

cupancy function Fi. This function varies between 0 and 1, and its variance σ2
i varies

between 0 and 1/4. Now assume we have a total of N traps and that their dynamics

are uncorrelated. The total drain current fluctuation will simply be the sum of fluc-

tuations due to individual traps. The central limit theorem guarantees that, in the

limit of large N , the amplitude distribution distribution of drain current fluctuations

will converge to a Gaussian with variance ∝ N∆I
2
.

The arrival rate λi is proportional to the probability of electron tunneling between

the channel and the trap, and decreases exponentially as the distance d between the

two increases. It is usually assumed that traps are uniformly spread throughout the

gate oxide. In this case d has an uniform distribution, and both λi and the trap time

constant τi ≈ 1/λi should have exponential distributions. Let us assume that trap

time constants extend from τmin to τmax, with the i-th trap having a time constant

given by τi = τmin exp (i/Nnat). Here Nnat is the number of traps per e-fold. The

power spectrum produced by the combined affect of all N traps is simply

P (f) = (∆I)2
N∑
i=1

Pi(f) (5.123)

We can obtain an upper bound on the power spectrum by assuming that λi = µi

for all traps. This choice makes the variance σ2
i = 1/4, its maximum value ∀i. The

sum can be approximated as an integral when Nnat � 1. The result is

P (f) = (∆I)2Nnat

[
tan−1 (2πf/fmin)− tan−1 (2πf/fmax)

2πf

]
(5.124)
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where fmin = 1/τmin and fmax = 1/τmax. For frequencies much smaller than fmax,

but much larger than fmin, i.e. for fmin � f � fmax, the expression above can be

simplified to

P (f) ≈ Nnat

4

(
(∆I)2

f

)
(5.125)

which is indeed proportional to 1/f , and also to Nnat, the spectral density of traps,

as one might expect. Thus, 1/f power spectra result for frequencies between fmin

and fmax. The results of adding together a finite number of individual trap spectra

are shown in Figure 5-7 for ∆I = 1, fmax/fmin = 103 and Nnat = 145. We see

that a very good approximation to the 1/f behavior predicted by (5.125) results

between fmin and fmax. The figure also shows that this behavior is robust: replacing

the constituent first-order low-pass functions with resonant second-order low-pass or

band-pass functions does not significantly change P (f)16.

In general, we do not expect λi = µi for each trap. In this case we cannot

analytically show that a 1/f spectrum results. However, to first order we might

expect (5.125) to still hold, but with σ2
av =

(∑N
i=1 σ

2
i

)
/N , the average variance of

the traps, replacing the factor of 1/4. Note that we must have σ2
av ≤ 1/4. In this

case, we get

P (f) ≈ σ2
av

(
(∆I)2Nnat

f

)
, (5.126)

Substituting (5.120) in (5.126), we get

P (f)

I
2 =

(
σavq

CoxWLVL

)2
Nnat

f
(5.127)

Writing Nnat = NotWL, where Not is a process-dependent parameter that scales

with the number of traps per unit gate area, we get

16This statement is true as long as the quality factor Q of the resonant low-pass or band-pass
functions is lower than approximately 1/

√
2. For larger values of Q peaks appear in P (f) around

fmin and fmax.
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Figure 5-7: Flicker noise power spectra produced by adding together low-pass (LPF)
and band-pass (BPF) spectra with exponentially distributed time constants. The
theoretical result, i.e. (5.125), is also included for comparison.

P (f)

I
2 =

Not

WL

(
σavq

CoxVL

)2
1

f
(5.128)

Equation (5.128) has all the right scaling relationships associated with 1/f noise in

MOSFETs. In particular, the power spectral density of drain current fluctuations

scales inversely with the square root of the gate area WL, indicating that we can

trade-off between layout area and 1/f noise. The same scaling behavior is predicted

by the classical Pelgrom model for MOS transistor mismatch [223], again illustrating

that DC offsets and flicker noise are manifestations of the same physical phenomenon.

Let us denote the lowest frequency resolvable in a given 1/f noise measurement

to be fexp = ωexp/(2π). The time-frequency tradeoff guarantees that ωexp ≈ 1/Texp,

where Texp is the length of the measurement. Traps with rate constants (λi + µi) <

ωmin will, on average, show no dynamic behavior during the duration of the mea-

surement. However, we cannot predict whether they are empty or filled. The result

is static variability, or “DC” offset between transistors. Thus, flicker noise and DC
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offsets (mismatches) between transistors are deeply related. The variance of DC offset

in drain current may be defined as

I2
off =

∫ fexp

0

P (f)df (5.129)

The alert reader may have spotted a problem with our definition of Ioff . If trap

time constants extend to ∞, i.e., fmin → 0, it is evident from (5.125) that P (f)

diverges as f → 0. As a result, Ioff must also diverge as fmin → 0. However, we

do not measure transistor mismatch that increases without bound as measurement

time increases (in fact, it seems to saturate to a fixed value). Of course, the integral

only diverges logarithmically, which may simply be too slow to be observed. The

other obvious possibility is that fmin 6= 0, i.e., there is a “slowest” trap. In fact,

modern CMOS transistors often contain a small number of traps, i.e., N is frequently

a small number. In this case P (f) should flatten out and reach a constant value at

frequencies smaller than 1/(2πτmax), where τmax is the time constant of the slowest

trap. Any measurement that is longer than approximately τmax will then measure a

fixed value of DC offset, i.e. the integral
∫ fexp

0
P (f)df will converge.

5.13.2 Experimental Measurements

We decided to experimentally check whether P (f) flattens out at very low frequencies.

Our experimental setup is shown in Figure 5-8. The test device was an NMOS

transistor of size 3.6µm ×1.8µm, fabricated in the AMI 0.5µm process and biased at

a current of 10µA. Its drain current was sampled by measuring the drain voltage at

a rate of 0.7Hz with a Keithley 2400 source-meter, and dividing by the known load

resistance (RL = 100kΩ). The power supply was an Agilent E3610A, with VDD set to

2V. The whole setup was placed inside a grounded metal box to reduce noise pickup

from environmental electromagnetic fields. The whole system was kept in a room

whose temperature was maintained at 298±0.5K. In order to prevent aliasing due to

sampling the bandwidth at the output node was reduced by placing a capacitor of

value 220µF there. In conjunction with the 100KΩ load this capacitor forms a first-
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Figure 5-8: Experimental setup for measuring flicker noise in a MOSFET.

order low-pass filter with corner frequency τLPF = 7.2mHz. The effects of this filter on

the power spectrum P (f) were later removed in software by multiplying the measured

P (f) with the inverse of the its (squared) transfer function, i.e. 1 + (2πfτLPF )2.

The power spectrum P (f) was obtained from the time-domain data (after the

average value had been removed) using Welch’s method. In this method the time-

domain waveform is split into M overlapping windows (we used 8 Hamming-weighted

windows). The discrete fourier transform (FFT) X(f) of each window is taken. The

squared magnitude of X(f) is then averaged over all windows to get P (f). The

method, because it effectively creates an ensemble average of M runs, decreases the

displayed variance of the P (f) curve by a factor of M . Its disadvantage is that the

minimum frequency that can be resolved also increases by a factor of M . Figure 5-9

shows the measured power spectrum obtained from 340 days of time-domain data

(20.7 million points). The sharp peaks correspond to a daily periodicity (1/86400

seconds or 11µHz) and harmonics of it. Diurnal temperature fluctuations are probably

responsible for this periodicity, but other diurnal phenomena, such as fluctuations in

the AC line voltage due to varying power requirements on the grid, may also be

involved. By taking data for close to an entire year we avoid possible long term

trends due to temperature fluctuations that occur on an annual scale.

A potential source of error arises from the well-known fact that discrete resistors
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Figure 5-9: Measured drain current power spectrum. The power spectrum of the
resistor by itself and fits to 1/f and 1/f 2.5 spectra are also shown.

themselves exhibit 1/f noise (for example, see [158]). We therefore ran a calibration

test where we replaced our experimental setup with a simple resistive divider con-

nected between VDD and ground. Resistors identical to RL (100kΩ, 0.5W, carbon)

were used. Since the 1/f noise in a resistor often depends on the DC voltage across

it, we also ensured that the DC voltage drop across each resistor was the same (1V)

as that across RL in our experimental setup. The measured power spectrum for a

single resistor is shown in Figure 5-9. It is also 1/f in nature, but at least two orders

of magnitude lower than the spectrum measured with the transistor. Therefore the

transistor produces essentially all the measured 1/f noise. This makes intuitive sense:

the discrete resistor is physically much larger than the integrated transistor and con-

tains many more traps or scattering centers, making their relative effects on current

smaller. In other words, these randomly-distributed objects are spatially averaged

out to a larger extent in the big discrete resistor.

Figure 5-9 shows that there are three main regions in the power spectrum: 1/f at

high frequencies, 1/f 2.5 at intermediate frequencies and 1/f again at low frequencies.
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The high-frequency region is due to the dynamics of multiple traps (or scattering

centers) within the device itself. The intermediate region ends almost exactly at

1/(day) (11µHz), leading us to believe that it is the result of diurnal temperature

fluctuations. The power spectrum of atmospheric temperature fluctuations has been

measured to be approximately 1/f 1.5 for frequencies higher than 1/month ( 0.3µHz),

and 1/f 0.5 for lower frequencies [224].

From SPICE simulations we expect this transistor to have a small-signal transcon-

ductance at I = 10µA of gm = 5.4×10−5f17. The expected thermal noise power spec-

tral density at the drain node due to the transistor and load resistor is 4kT (1/RL + γgm),

where γ ≈ 2/3 is the transistor’s excess noise factor. Substituting known values, we

get 7.7× 10−25A2/Hz, which is orders of magnitude smaller than P (f) at all frequen-

cies of interest. Therefore thermal noise can be ignored.

The standard deviation in drain current that we expect to measure with a mea-

surement of length τmeas = 1/fstop can be obtained by integrating the power spectrum

from high frequencies till fstop. Thus it is given by

σI (fstop) =

∫ ∞
fstop

P (f)df (5.130)

In this equation ’∞’ should be understood to be the highest available frequency,

which, by Nyquist, is fsamp/2, where fsamp is the sampling frequency of 0.7Hz. The

measured values of σI (fstop) are plotted in Figure 5-10. We see that most of the

variance accumulates during the 1/f 2 region, i.e., between 10−4Hz and 10−5Hz (a

coupled of hours to 1 day). The maximum measured value of σI is σI,max = 13.7nA,

corresponding to fstop ≈ 10−7Hz. The standard deviation of the entire measured time-

domain waveform is 15.4nA, which matches the measured value of σI,max from the

power spectrum to within 10%. Our methods therefore pass a sanity check: Parseval’s

theorem is indeed valid.

A note on the noise floor of our instrumentation. The accuracy of our measurement

is set by that of the Keithley source meter. This instrument was set to its “high-

17Simulations also show that the expected value of output resistance is ro = 3.4MΩ, much larger
than RL = 100kΩ, allowing its effects to be ignored.
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Figure 5-10: Measured standard deviation in the drain current as a function of fstop,
the lowest frequency of interest.

accuracy” mode, where it averages over 10 power line cycles for each measurement and

displays 6.5 significant digits. This mode corresponds to a noise floor of approximately

±10pA, orders of magnitude lower than the standard deviation of the measured flicker

noise. However, according to the instrument manual, the reading is only guaranteed

to be approximately ±4nA on an annual timescale. Slow drifts in the values of

electrical components within the instrument may be responsible for this decrease in

accuracy over long time scales (hence explaining the need for periodic re-calibration of

the instrument). However, no overall linear trend is visible in the time-domain data,

indicating that component ageing and instrument drift are not significant sources of

error.

The power spectrum does not completely characterize a random process. For ex-

ample, there are infinitely many types of white noise with different amplitude proba-

bility distributions [144]. Thermal noise is that particular variety of white noise that

has a Gaussian probability distribution18. Numerous measurements of the power

18Objections to this statement usually involve appeals to the Central Limit Theorem (CLT).
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spectral density of MOSFET flicker, or 1/f noise are available in the literature, but

its amplitude distribution has received much less attention. The few measurements

that are available were made in bulk semiconductors or discrete carbon resistors, and

showed Gaussian distributions [13,26,119], as predicted theoretically [107]. Deviations

from Gaussian behavior have, however, been found in small (µm scale) resistors [238]

and thin resistive films [220]. The matter is worth investigating because the power

spectrum alone does not completely characterize a random process unless it is sta-

tionary, ergodic and Gaussian [144, 304]. In particular, the amplitude distribution is

important for evaluating reliability.

Figure 5-11 shows the measured probability distribution of the amplitude of the

drain current noise. The distribution is asymmetric, with a long negative tail. It also

contains several distinct peaks (according to a rough visual estimate, 15-20). The

data is well fit by a bi-exponential distribution, i.e.

P (∆I) = P (0) exp (−|∆I|/Inat) (5.131)

where P (∆I) is the probability that the drain current has a value I + ∆I, and Inat is

a constant. The best fit values of Inat are 8.9nA for I > 0 and 13.3nA for I < 0.

Initially, temperature fluctuations in the environment were suspected of producing

the deviations from 1/f behavior visible in the power spectra. However, the two

identical resistors of value RL used in the calibration experiment should vary in the

same way with temperature, making the output voltage temperature-insensitive. As

a result PR(f) should not, to first order, exhibit any temperature dependence. We

therefore decided to check whether slow fluctuations in the power supply voltage VDD

were responsible for part of the measured noise. At frequencies that are slow enough

for the capacitors to be ignored, a change ∆VDD in VDD causes the drain voltage

given by

It must be remembered that the CLT is only applicable to the sum of independent, identically-
distributed random variables with finite variance. The latter requirement is relaxed in generalized
versions of the CLT due to Gnedenko and Kolmogorov. However, the attractor distribution in such
cases is not necessarily Gaussian, but one of the family of Lévy α-stable distributions. The parameter
α lies between 0 and 2, with the Gaussian corresponding to α = 2.
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Figure 5-11: Probability distribution of the amplitude of the drain current noise as
measured from time-domain data. A fit to an asymmetric bi-exponential distribution
is also shown.

∆V = ∆VDD

[
1− gmRL

(
VG
VDD

)]
(5.132)

where VG is the average gate voltage. With VG/VDD = 0.6, the equation above pre-

dicts that ∆V ≈ −2.2∆VDD. Figure 5-12 shows the measured time-domain voltage

generated by the so-called “DC” power supply in a 8-day period. The waveform has a

standard deviation of 0.37mV and displays a pronounced daily periodicity. Assuming

that the magnitude of the gain between ∆V and ∆VDD is 2.2, the standard deviation

in drain current caused by power supply fluctuations is approximately 8.1nA. From

Figure 5-10, the total standard deviation in the drain current for fstop = 1µHz is

about 9nA. Therefore the power supply is responsible for about 90% of the measured

noise amplitude, and also the bi-exponential (Laplacian) shape of the amplitude dis-

tribution! It is interesting that the power-supply voltage is bi-exponentially and not

normally distributed. The reason for this behavior is unclear, but we note that such

distributions arise naturally in birth-death processes (continuous time Markov chain

327



0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (days)

V
ol

ta
ge

 d
ev

ia
tio

n,
  Δ

V
 (

m
V

)

Figure 5-12: Measured time-domain voltage generated by the DC power supply.

models) and other queueing problems [100].

In order to remove the effects of power supply fluctuations, we high-pass filtered

the time domain data obtained from the test setup and the load resistor alone. The

resultant amplitude distributions, both of which are almost perfectly Gaussian, are

shown in Figure 5-13. Here N(µ, σ) denotes the Gaussian (normal) distribution with

mean µ and standard deviation σ (both in nA). The power spectral densities after

high-pass filtering both display nearly ideal 1/f behavior; they are shown in Figure 5-

14.

In order to verify that the time-domain samples came from a stationary random

process we divided them into M = 20 time intervals. The mean square value x2
i of the

samples in each interval was calculated, where 0 < i ≤M . The sequence of x2
i values

was subjected to the runs test, a standard non-parametric test of randomness. The

sequence passed the test with a probability value p ≈ 1, indicating that the random

process is stationary with high probability. We also found that the distributions shown

in Figure 5-13 are robust to the exact cutoff frequency and shape of the high-pass
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Figure 5-13: Measured amplitude distributions of the noise produced by the entire
test setup (left) and load resistor alone (right) after high-pass filtering. We used
fourth-order Butterworth filters with cutoff frequencies equal to 0.5mHz and 1mHz,
respectively. Fits to Gaussian (normal) distributions are also shown.
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Figure 5-15: Modified test setup for measuring MOSFET flicker noise. The DC power
supply has been replaced by a lead-acid battery (nominal output voltage = 2V).

filters used for pre-whitening and removal of power-supply fluctuations. In fact they

persist even if the pre-whitening filter is omitted altogether. It therefore appears to be

a fundamental feature of the random process that generates the noise. We conclude

that the flicker noise processes in both the transistor and resistor have stationary

amplitude distributions that are Gaussian in nature.

5.13.3 More Experimental Measurements

As described in the previous section, noise from the DC power supply limited our mea-

surement of 1/f noise to frequencies greater than approximately 1mHz. We therefore

decided to replace the power supply with a battery. In general, large batteries are

extremely “quiet”: they produce much less noise current than power supplies [139].

In order to facilitate comparison with our previous results, obtained with VDD = 2V ,

we used a single lead-acid cell (Hawker Cyclon, size X, 5Ah or size BC, 25Ah) with a

fully-charged open circuit voltage of 2.14V. We also decided to simultaneously mea-

sure the drain current of two NMOS transistors, with different W/L ratios, laid out

next to each other on the same die and sharing the same gate voltage. The modified

experimental setup is shown in Figure 5-15.

Figure 5-16 shows 40 days of measured time-domain data. The DC component

of each voltage has been removed. The 9.0µm/3.6µm transistor carries an average
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Figure 5-16: Measured time-domain voltages from the modified test setup, showing
the effects of battery droop.

current of I1 = 5µA, while the 3.6µm/1.8µm transistor carries an average current

of I2 = 10µA. The linear decrease of both output voltages with time is because of

droop in the battery voltage, estimated at approximately 0.5mV/day. This droop is

removed before further analysis.

The total current being drawn from the battery is approximately 220µA, leading

to an estimated battery life of 950 days. In practice the experiment must be stopped

much earlier since the gate voltage VG also droops: ∆VG ≈ 0.6∆VDD. As a result

the average drain current of both transistors decreases slowly with time. We decided

to limit this decrease to 10% of the initial value to avoid non-stationarity in the

noise process. It is easy to show that the allowable battery droop is limited by this

requirement to

∆VDD = 0.6VL
∆I

I
(5.133)

Using ∆I/I = 0.1 (i.e., 10%) and VL = 180mV gives us ∆VDD = 30mV. At the
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measured droop rate of 0.5mV/day this corresponds to an experimental time-span of

60 days.

The main goal of measuring two transistor currents simultaneously was to elim-

inate the effects of temperature fluctuations. The total drain current fluctuation

∆I can be divided into a temperature-independent part ∆In and a temperature-

dependent part ∆IT , i.e., ∆I = ∆In + ∆IT . However, the transistors are located

close to each other on the same die and share the same temperature. Therefore the

∆IT term is correlated across the two transistors, while the ∆In term, which is caused

by thermal and flicker noise, is not.

MOSFET currents depend polynomially on temperature via two parameters: thresh-

old voltage and carrier mobility in the channel. Since temperature fluctuations ∆T

are much smaller in magnitude than the average room temperature of 298K, both

polynomials can be linearized. As a result, ∆IT is linearly related to ∆T , i.e.,

∆IT i = βi∆T (5.134)

where i is 1 or 2 depending on which transistor is being referred to, and βi is bias-

dependent. We now define

α =
∆IT2

∆IT1

(5.135)

where α ≡ β2/β1. We can therefore eliminate the effects of temperature fluctuations

by forming the linear combination ∆I ′ = ∆I2−α∆I1. Figure 5-17 shows the standard

deviation σ of this combination as a function of α. In subsequent measurements we

use α = 2.2 since, as shown in the figure, this choice minimizes the standard deviation.

The existence of an unique minimum in σ indicates that our assumption of a linear

dependence of drain current on temperature was correct. The minimum corresponds

to the true value of α, i.e. the value that cancels as much of the correlated fluctuations

as possible. For α = 2.2, the standard deviation of ∆I ′ is only 1.46nA, compared

to 4.86nA and 10.18nA for ∆I1 and ∆I2, respectively. Most of this excess variance

accumulates at frequencies below 0.1mHz.
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Figure 5-17: Residual standard deviation of the measured flicker noise as a function
of the parameter α.

Figure 5-18 shows the amplitude distribution of ∆I ′ for α = 2.2. The amplitude

distribution is well described by a Gaussian with zero mean. Figure 5-19 shows the

power spectral density (PSD) of ∆I ′ for α = 2.2. We see that the spectrum is very

nearly an uniform power law with a slope of 1.2 down to approximately 1µHz, with no

traces of diurnal periodicity. Such periodicity, caused by temperature fluctuations,

reappears if our cancelation scheme is not used, i.e. ∆I1 and ∆I2 are analyzed

separately.

Figure 5-20 shows the measured PSD (after removal of temperature fluctuations)

obtained by repeating the experiment five times with the same setup. The five ex-

periments lasted 59, 78, 40, 30 and 73 days, respectively. We see that the plots line

up very well with each other, indicating that the PSD remained essentially stationary

over the 280 days for which data was taken. The lowest frequency shown on these

plots is approximately 0.5µHz. The best-fitting power law spectrum has a slope of

-1.2, and is given by 1.6× 10−20/f 1.2A2/Hz.
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Figure 5-18: Measured amplitude distribution of the flicker noise for α = 2.2. The
best-fitting normal distribution is also shown.
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Figure 5-19: Measured PSD of the flicker noise for α = 2.2. The best-fitting power-law
spectrum is also shown.
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Figure 5-20: Measured PSD of the flicker noise from five independent experimental
runs, each lasting an average of 56 days.
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5.14 Noise in Oscillators

The basic components needed for an autonomous oscillator are passive frequency-

selective element(s) and active energy restoration element(s). Real oscillators follow

closed, stable paths in state space, known as limit cycles. A continuous-time dynam-

ical system needs at least two state variables (energy storage elements) to exhibit

regular limit-cyle oscillations, and three or more state variables to exhibit srange at-

tractors and chaos. However, discrete-time dynamical systems in only one variable

(1D maps) can exhibit both regular oscillations and chaos. The frequency (rate of

completion of limit cycles) of a real oscillator is not perfectly stable with time, a

phenomenon known as phase noise.

5.14.1 Why is Phase Noise Bad?

As a result of phase noise, the spectrum of an oscillator is not a delta function,

but has finite width. Phase noise is measured in dBc/Hz units: power present in a

1Hz bandwidth centered about an offset of ∆ω from the carrier ω0, normalized to

the carrier power. Phase noise is an important problem in wireless systems [236].

Phase noise in the Local Oscillator (LO) creates adjacent channel interference in

wireless systems via “reciprocal mixing”, as shown in Figure 5-21. In this process,

the LO mixes with a strong interfering symbol close to the desired frequency band.

As a result, some of the power in the interfering signal appears in-band after down-

conversion.

The maximum allowable amount of LO phase noise depends on the modulation

scheme, data rate, wireless environment and other system parameters. Some typical

numbers are shown in Table 5.1. Here NADC stands for “North American Digital

Cellular”, while the 802.15.4 specification assumes the co-existence of other standards

in the 2.4GHz ISM band.
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Standard Center Frequency Offset Phase Noise
NADC 869-894MHz 60kHz < −115dBc/Hz

802.15.4 2.4GHz 1MHz < −110dBc/Hz
802.11b/g 2.4GHz 1MHz < −115 to < −125dBc/Hz
802.11a 5.3GHz 1MHz < −110dBc/Hz

Table 5.1: Typical LO phase noise specifications in wireless systems

ω

ω

Wanted
signal

Interferer

ω0

LO

ωAfter
downconversion

Figure 5-21: Reciprocal mixing in wireless systems.
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Figure 5-22: LTI oscillator model used in this section.

5.14.2 LTV Theory

A real oscillator can be modeled as a controlled oscillator with many control inputs

and two outputs: amplitude and phase, as shown in Figure 5-22. We will focus on

effects on phase, since there is no feedback loop to regulate it. Oscillator frequency

variability can be modeled by assuming that each noise source (in or vn) can change

the oscillator frequency via a control gain KC :

ω(t) = ω0 +

√√√√ N∑
j=1

K2
Cjin(t)2

= ω0 + ∆ω (5.136)

Frequency errors are integrated into phase errors, so if ∆ω is white ∆φ will have

a 1/f 2 power spectrum.

Noise sources that affect oscillators can be divided into two types. The first

consists of fundamental sources, such as resistors and active elements, like transistors,

within the oscillator. These sources generate white noise (thermal/shot) and colored
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noise (flicker). In addition, many oscillators are subject to external, non-fundamental

sources of interference, typically consisting of a mixture of broadband and narrowband

sources. Such sources are particularly important in mixed-signal systems, where

the clock is a prominent source of narrowband noise, and are usually grouped into

substrate and power-supply noise terms.

The well-known Linear-Time-Varying (LTV) theory of oscillator phase noise was

first developed by Hajimiri & Lee in 1998 [103, 159]. They assumed that the trans-

fer function from noise current to phase is linear (superposition still applies) but

periodically-time-varying (frequency conversion occurs). Conceptually, we can think

of the oscillator as having a periodically-time-varying control gain KC (ω0τ), where

0 < ω0τ < 2π. Noisy devices either act as current sources in in parallel with capac-

itors that have charge swing amplitude qmax = CV0, or voltage sources vn in series

with inductors that have flux swing amplitude φmax = LI0.

As before, noise impulses are integrated into step changes in phase. However, the

sizes of the steps are now allowed to depend on τ , the time when they occur, giving

us a time-varying impulse response hφ(t, τ). The Impulse Sensitivity Function (ISF),

Γ defines the normalized height of the step response, as follows

hφ(t, τ) =
Γ (ω0τ)

qmax
u(t− τ)

φ(t) =

∫ ∞
−∞

hφ(t, τ)in(τ)dτ (5.137)

Figure 5-23 shows why a time-varying theory is necessary: changes in capacitor

voltage due to noise result in different amounts of phase change, depending on where

in the limit cycle the noise is applied. As a result, Γ is not constant but is periodically

time-varying. As power consumption increases, so does the charge swing qmax, which

causes the phase noise to decrease. Thus phase noise, like other forms of noise, can

be reduced by burning more power. Phase noise can also be reduced by increasing

the quality factor of the drequency-selective system within the oscillator, since, for a

given amount of power consumption, increasing Q causes qmax to increase.

339



q

q

A

B

δφB

t

hφ(t,τA)

t

hφ(t,τB)

.

Figure 5-23: Noise impulses injected into an oscillator result in a periodically time-
varying amount of phase change.
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Figure 5-24: Conversion of phase noise into voltage is a nonlinear process.

The actual output of an oscillator is not phase, but voltage. The transfer function

from phase to voltage is nonlinear, unlike that between noise amplitude and phase.

In fact, as shown in Figure 5-24, noise in the phase, φ(t), causes phase-modulation

(PM) of the oscillator’s voltage output V (t).

V (t) = A(t)f [ω0t+ φ(t)] (5.138)

Since the ISF is periodic, we can write it as a Fourier series:

Γ (ω0τ) =
c0

2
+
∞∑
n=1

cn cos(nω0τ + θn) (5.139)

In addition, since oscillators are large-signal circuits, active noise sources are usu-

ally cyclostationary, i.e., produce periodically-time-varying amounts of noise during
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one oscillation cycle. As a result, we can define a Noise Modulation Function (NMF),

α (ω0τ), such that

in(t) = in0(t)α (ω0τ) (5.140)

where in0(t) is assumed to be a white, stationary noise process. Cyclostationary

noise can be modeled by replacing the ISF with an “effective ISF function” given by

Γeff (x) = Γ(x)α(x), x = ω0τ , and the cyclostationary noise source in(t) with the

stationary source in0(t). From now on, we shall assume that Γ refers to the effective

ISF, unless mentioned otherwise.

In general, the ISF is proportional to the time derivative of the oscillator voltage

waveform. For sinusoidal oscillators, therefore, the ISF is 90◦ out of phase with

the voltage, becoming exactly zero at voltage extrema. Figure 5-25 shows a typical

sinusoidal oscillator, the Colpitts oscillator, and Figure 5-26 shows approximate plots

of its waveforms, ISF and NMF. We see that the drain current of the transistor,

and the noise produced by it, is zero except close to the negative peak of the drain

voltage. At this location, however, the ISF is zero. Therefore the ISF and NMF

are out of phase with each other, reducing the rms value of Γeff and the amount of

phase noise for a given power consumption. We also note that there is an optimum

value of the capacitive divider ratio n in this circuit for minimizing phase noise.

As n decreases, the conduction angle decreases, decreasing Γeff , but the oscillation

amplitude also decreases, decreasing qmax, which increases phase noise. Therefore

there is an optimum value of n; it is often found to be in the vicinity of 4.

Figure 5-27 shows waveforms, ISF and NMF for a typical non-sinusoidal oscillator,

a ring oscillator. In contrast to the Colpitts oscillator, Γ and α reach maxima at the

same points in the cycle, which increases Γeff and is bad for phase noise.

Consider applying identical, correlated noise sources, such as supply voltage fluc-

tuations, to all nodes of a N -stage ring oscillator. The resultant ISFs differ only in

phase by multipes of 2π/N . By using superposition, we see that
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Figure 5-25: Circuit diagram of the Colpitts oscillator.

φ(t) =
1

qmax

∫ t

−∞
i(τ)

[
N−1∑
n=0

Γ

(
ω0τ +

2πn

N

)]
dτ (5.141)

The term in brackets in the equation above is the sum of N symmetric phasors and

disappears except at DC and integer multiples of Nω0. Thus we can reduce the effects

of substrate and supply noise by making their effects identical at every stage [104,116].

Practically, this goal can be reached by laying out stages symmetrically with respect

to power supply buses and placing identical, possibly dummy, loads on them.

Because of the time-varying nature of the ISF, frequencies around integral multi-

ples of ω0 are downconverted (“folded”) to symmetric sidebands on either side of ω0,

becoming phase noise, as shown in Figure 5-28. This type of frequency conversion

is not predicted by LTI theories of phase noise, such as Leeson’s original work [160].

Frequency conversion causes a sinusoid In [(nω0 ±∆ω) t] to be weighted by cn and

appear as phase noise at an offset of ±∆ω from ω0. As a result of this conversion,

the sideband power relative to the carrier is given by

PSBC(∆ω) =

(
cn
qmax

In
4∆ω

)2

(5.142)

We can use Parseval’s theorem to define Γrms, the RMS value of the ISF, as follows

1

2

∞∑
n=0

c2
n =

1

2π

∫ 2π

0

|Γ(x)|2dx = Γ2
rms (5.143)

Since a white noise source in can be decomposed into a sum of sinusoids with
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Figure 5-26: Colpitts oscillator phase noise properties, (top) typical drain voltage
and current waveforms and (bottom) typical impulse sensitivity and noise modulation
functions.
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form and (bottom) typical impulse sensitivity and noise modulation functions.
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appear as phase noise sidebands around ω0.

345



random phases, we can use superposition to find the phase noise caused by in. Thus

the sideband power relative to the carrier is given by

L(∆ω) =

∑∞
n=0 c

2
n

q2
max

i2n/∆f

4(∆ω)2

=
Γ2
rms

q2
max

i2n/∆f

2(∆ω)2
(5.144)

Flicker noise near DC is upconverted by the c0 term of the ISF, creating 1/f 3

frequency dependence in phase noise close to the carrier frequency. We define Γdc =

c0/2 to be the average (DC) value of the ISF. It can now be shown that the 1/f 3

corner frequency is given by

ω1/f3 = ω1/f

(
Γdc

Γrms

)2

(5.145)

In order to reduce ω1/f3 we can make the waveform shape symmetric to reduce

Γdc. In ring oscillators, for example, relative NMOS and PMOS sizes can be adjusted

to vary rise and fall times. Differential half circuits must be symmetric to reduce

ω1/f3 . Linear loads (like resistors) can also be used to increase waveform symmetry.

5.14.3 Amplitude Noise

Because of the amplitude-feedback loop present inside practical oscillators, amplitude

(unlike phase) perturbations die away with some time constant, typically ≈ Q/ω0.

However, the amplitude impulse response hA(t, τ) is still time-varying, so we can

define another periodic sensitivity function Λ, as follows:

hA(t, τ) =
Λ (ω0τ)

qmax
d(t− τ)

A(t) =

∫ ∞
−∞

hA(t, τ)in(τ)dτ (5.146)

If we assume a first-order amplitude-feedback loop with τ = Q/ω0, we get an expo-
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Figure 5-29: The total voltage PSD of an oscillator consists of contributions from
both phase and amplitude noise.

nential impulse response, i.e., d(t) = e−t/τu(t). In this case the PSD due to amplitude

noise is the squared magnitude of a first-order lowpass filter, i.e., a Lorentzian:

SV,amp(∆ω) =
Λ2
rms

q2
max

 i2n/∆f
ω2

0

Q2 + (∆ω)2

 (5.147)

We see that the amplitude-regulating negative feedback loop converts the pure

integrator present in phase noise into a low-pass filter with finite low-frequency gain.

The total voltage PSD is given by the sum of phase and amplitude noise terms, i.e.,

SV,tot = SV,phase + SV,amp. As shown in Figure 5-29, it consists of a part near the

carrier dominated by phase noise. Further away from the carrier, the power spectrum

follows the Lorentzian shape of amplitude noise, consisting of a “pedastal”, or flat

portion, and an eventual 1/f 2 roll-off.

5.14.4 Phase Noise as a Diffusive Process

If we consider only white noise sources, phase noise sidebands are ∝ 1/f 2. Diffusive

processes like Brownian motion also produce 1/f 2 spectra. In fact, we can view oscilla-
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tor phase as diffusing along the limit cycle with periodically-varying diffusion constant

Dφ (ω0τ). We now define the cycle-averaged diffusion constant Dφ ≡ Dφ (ω0τ). If all

noise sources are white, frequency deviations ∆ω are also white, so the autocorrelation

of such deviations is a delta function:

R∆ω(τ) = 2Dφδ(τ)⇒ σ2
∆ω = 2Dφ (5.148)

Since phase φ(t) is a pure integral of frequency, we see that its variance increases

without bound, just like the variance in position of a random walker increases linearly

with time:

σ2
φ = σ2

∆ω × t = 2Dφt⇒ Sφ(∆ω) =
2Dφ

(∆ω)2
(5.149)

However, what is the phase diffusion constant? To answer this question, we com-

pare (5.144) with (5.149), and find that

Dφ =
Γ2
rms

4q2
max

i2n
∆f

(5.150)

We have qmax = CV0 and i2n/(∆f) = 4kT/R, so

Dφ =
kT

CV 2
0

Γ2
rms

RC

=
1

SNR

ω0

Qeff

(5.151)

Thus, we see that Dφ = BW/SNR, where BW = ω0/Qeff . Here BW and

Qeff ≡ ω0RC/Γ
2
rms are the open-loop bandwidth and effective quality factor of the

frequency-selective element in the oscillator, respectively, and SNR = CV 2
0 /kT is the

carrier to noise power ratio of the closed-loop oscillator.

We see that phase diffusion is a non-stationary “random walk”. Perturbations in

phase persist forever because phase is a pure integral of frequency, just like position

is a pure integral of velocity. However, the voltage waveform V0 cos (ω0t+ φ(t)) is
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Figure 5-30: Frequency deviations in an oscillator are continually integrated into
phase (top), but are only integrated into voltage for a time ≈ 1/Dφ (bottom).

periodic: unlike phase, voltage diffuses in a closed domain. As a result, the probability

distribution around the limit cycle feeds back on itself and relaxes to a stationary value

with time constant 1/Dφ, converting the pure integrator into a leaky one, as shown in

Figure 5-30. It can be shown [156] that the autocorrelation function of the oscillator

voltage is given by

RV (τ) =
V 2

0

2
exp (−Dφ|τ |) cos(ω0τ) (5.152)

The process shown in Figure 5-30 is similar to what happens within electrical

circuits. Electrons diffusing through a series of components, like resistors and transis-

tors, eventually have to return to the starting node to complete the loop and satisfy

KCL. The relaxation time in this case is given by τr ≈ L2/2D, where L is the total

length diffused by electrons during one transit of the loop, and D is the diffusion

constant.

When the limit cycle is circular (or, more generally, the surface of a hypersphere

in phase space), the stationary probability distribution is uniform [267]. We now use

the fact that the autocorrelation function and power spectral density of stationary

signals are Fourier transform pairs. Again, the exponential decay in autocorrelation

with time results in a Lorentzian power spectrum, given by
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SV (ω) =

(
V 2

0

2

)
2Dφ

(ω0 − ω)2 +D2
φ

(5.153)

The power spectrum in (5.153) is flat for frequency offsets less than Dφ, and then

shows a second-order rolloff, as expected. A similar result holds for shot noise in

circuits, which, as described earlier, is also caused by diffusion within closed domains

(current loops, in this case). For circuits, Dφ is replaced by its equivalent 2D/L2 ≈

1/τr, and ω0 = 0. Also, transistors have a unity-gain frequency ωT ≈ 1/τr, showing

that the PSD of the noise is flat (white) for ω � ωT , and rolls off for ω > ωT .

Intuitively, charge storage within transistors causes them to low-pass filter the noise

at such high frequencies. In practical circuits, however, this behavior is almost never

observed: the slowest node within each current loop, which sets the overall noise

bandwidth for that loop, is usually much lower than ωT . The total amount of noise

can be found by combining noise from all loops in the circuit.

By integrating SV (ω), we find that
∫∞
−∞ SV (f)df = V 2

0 /2, the total output power.

Thus the total power in frequency and time domains is identical, as required by

Parseval’s theorem. The effective bandwidth of the oscillator, i.e., Dφ, is 1/SNR of

that of the frequency-selective element within it. Thus closing the positive feedback

loop reduces bandwidth by a factor of SNR, a phenomenon known as linewidth

compression [105]. For practical oscillators SNR� 1, i.e., Dφ is very small (10−6ω0

to 10−9ω0), so SV (ω0 − ω) ≈ (V 2
0 /2)× Sφ(∆ω).

5.14.5 Jitter

Oscillator frequency instability shows up as phase noise in the frequency domain and

as timing uncertainty, i.e., jitter, in the time domain. There are two main types of

jitter: random, due to fundamental noise mechanisms present within the oscillator,

and deterministic, due to external noise or interference. The former usually has a

Gaussian probability distribution, while the latter is often non-Gaussian. Figure 5-31

compares the amplitude distribution function of thermal noise, which is Gaussian,

with that of a typical source of external interference, namely a sinusoid. Sinusoids
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have bimodal probability distributions, as shown in the figure.

Phase diffusion is the underlying cause of jitter. Assume that we know the precise

phase of an oscillator at time t = 0. The variance in phase of the oscillator with

white-noise inputs after a time ∆T is given by

σ2
φ = 2Dφ(∆T ) (5.154)

We can find timing variance can be found from phase variance easily by using the

relationship σ∆T = σφ/ω0. Thus, we get

σ∆T =

(√
2Dφ

ω0

)
√

∆T ≡ κ
√

∆T (5.155)

where κ =
(√

2Dφ/ω0

)
is a constant. We see that σ∆T ∝

√
∆T . However, in the

presence of non-white (correlated) noise sources σ∆T can grow faster than
√

∆T . In

certain cases, however, such as in a phase-locked loop, σ∆T ceases to grow with time

and reaches a finite steady-state value [197]. In such cases a stationary phase power

spectrum Sφ exists, and we can relate it to the jitter:

σ2
∆T =

1

ω2
0

(φ(t+ ∆T )− φ(t))2

=
2

ω2
0

[Rφ(0)−Rφ(∆T )] (5.156)

where R is the aurocorrelation function. Since autocorrelation and power spectral

density are Fourier transform pairs, we can write

σ2
∆T =

8

ω2
0

∫ ∞
0

Sφ(f)sin2(πf∆T )df (5.157)

5.14.6 Jitter in Phase-Locked Loops

Phase noise of the VCO inside a phase-locked loop (PLL) is attenuated at offset

frequencies within the loop bandwidth fl. Thus, jitter produced by the VCO only
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Figure 5-31: Amplitude distribution functions for (top) a Gaussian source, such as
white thermal noise, and (b) a non-Gaussian source, in this case a sinusoid.
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Figure 5-32: Jitter and phase noise of phase-locked loops, (top) linearized model with
main noise sources, (bottom left) output power spectra and (bottom right) output
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accumulates for time scales faster than the loop bandwidth. As a result, the total jitter

is finite. In other words, “the loop locks”. In the frequency domain, this behavior

manifests itself as attenuation of the VCO’s phase noise by the loop gain, i.e., within

an offset approximately equal to the loop bandwidth. Typical power spectra and

jitter plots are shown in Figure 5-32 in two cases: with the loop locked and with the

loop unlocked (free-running VCO). In either case, however, jitter present at the PLL

input is transferred to the VCO output by the closed-loop transfer function, i.e., it is

not attenuated.

When the PLL is close to lock, we can use the linearized model shown in Figure 5-

32. The loop gain is given by L(s) = NKPKVH(s)/s, and the transfer functions from

φn and in to the output phase of the VCO are given by

φ2
out

φ2
n

=

∣∣∣∣ L(s)

1 + L(s)

∣∣∣∣ (5.158)

φ2
out

i2n
=

1

KP |H(s)|
φ2
out

φ2
n
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Figure 5-33: Measured power spectrum of the output of a PLL with the loop either
locked or unlocked.

Figure 5-33 shows measured open and closed-loop phase noise plots of an inte-

grated PLL built by the author in a 0.5µm CMOS process for clock and data recovery

applications. The PLL had a third-order loop filter, operated at a center frequency

of f0 = 2.5MHz, and had a loop bandwidth of fl ≈ 20kHz. We see that, as expected,

phase noise is attenuated within the loop bandwidth when the loop is locked. Fig-

ure 5-34 shows measured output jitter of the same circuit with the loop locked. The

probability distribution is approximately Gaussian, indicating that random jitter is

dominant.

5.15 Stochasticity in Chemical Reactions

5.15.1 Mathematical Formulation

Consider a spatially homogenous (well-stirred) reaction medium at constant volume

and temperature, and containing N ≥ 1 species and M reactions. The basic assump-
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Figure 5-34: Measured jitter of a PLL with the loop locked, (top) eye diagram and
(bottom) histogram.

tion made in most stochastic chemical simulation algorithms is that the underlying

random process is Markovian, i.e., the probability that a certain reaction j occurs

within a time period dt is aj(x)dt, where aj, known as the propensity, is only a func-

tion of the current state of the system, denoted by x. Thus the random process has

no memory and different reaction events are not correlated with each other. Chem-

ical reactions change the numbers of various molecular species based on a M × N

stoichiometry matrix S. Element sji of the matrix is an integer that specifies the

change in number of molecules of the i-th species due to one occurrence of the j-th

reaction. We shall denote the j-th row of S by sj.

The propensity function aj(x), when multiplied by a small time interval dt, mea-

sures the probability that the j-th reaction will occur during that time interval. It can

be written as the product of two terms: the specific probability cj, and the number of

distinct combinations of reactant molecules, denotd by hj(x). Thus, we may write

aj(x) = cjhj(x) (5.159)

The quantity cjdt is equal to the probability that a randomly chosen combination

of reactant molecules will react in the time interval dt. For the first-order (unimolec-
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ular) reaction A→ products, we have cj = kj, the rate constant in the deterministic

reaction rate equations, and hj(x) = xA, the number of reactant molecules. For the

second-order (bimolecular) reaction A+B → products, we have cj = kj/V or 2kj/V

depending on whether A and B are distinct or identical, and V is the volume of the

reaction medium. The values of hj(x) in the two cases are xAxB and xA (xA − 1) /2,

respectively.

In most cases of practical interest the Markovian assumption is a good one for

each elementary chemical reaction. However, in certain cases we may wish to formally

combine several elementary reactions into one for modeling or simulation purposes.

In that case the composite reactions are no longer guaranteed to be Markovian, i.e.,

the random process can have memory. For example, kinetic models that include time

delays are non-Markovian.

The state vector X(t) consists of the numbers of molecules of each species at time t,

and is a random variable. A particular value of this random variable will be denoted

by x. Since species numbers must be non-negative integers, the Markov process

occurs on an N -dimensional, non-negative integer space. Such processes are known as

discontinuous or jump Markov processes in contrast to continuous Markov processes,

which operate with real numbers. The time-evolution of probability distributions in

jump Markov processes is given, without any approximations, by the master equation

[198], which may be written as

δP (x, t|x0, t0)

dt
=

M∑
j=1

[aj (x− sj)P (x− sj, t|x0, t0)− aj (x)P (x, t|x0, t0)] (5.160)

where P (x, t|x0, t0) is the probability that X = x at time t, given that X = x0 at time

t0. We see that the master equation is the discrete analog of a conservation law: the

probability that the system is in a certain state changes at a rate equal to the difference

between inward and outward fluxes to that state. While conceptually simple, in all but

the simplest cases the master equation is impossible to solve, even numerically. Daniel

Gillespie, one of the pioneers of the field, has shown [94] that, under certain conditions,
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the original Markov condition can be used to derive a stochastic differential equation

of the Langevin type that approximates the master equation, and is much easier to

solve. In other words, we can approximate the underlying discrete Markov process

with a continuous Markov process. The necessary conditions can be summarized as

follows: the system must be such that there exists a domain of “macroscopically

infinitesimal” time intervals. During any time interval dt in this domain,

1. No propensity function changes noticeably in value, i.e., aj(x(t+dt)) ≈ aj(x(t)),

∀j ∈ [1,M ], and

2. each reaction is expected to occur many times, i.e., aj(x(t))dt� 1. ∀j ∈ [1,M ].

Similar time intervals were used by Einstein in his original analysis of Brownian

motion. If these conditions are satisfied, the following chemical Langevin equation

holds for X(t):

dX(t)

dt
=

M∑
j=1

sjaj (X(t)) +
M∑
j=1

sj

√
aj (X(t))Γj(t) (5.161)

where the Γj(t) are uncorrelated Gaussian white-noise sources, defined as follows:

Γ(t) ≡ lim
dt→0

N(0, 1/dt) (5.162)

where N(0, σ) is a Gaussian random variable with zero mean and standard deviation

σ. We should note that, since the time interval dt in (5.161) is a macroscopic infinites-

imal, we cannot rigorously take the limit as dt→ 0 in the definition above. In other

words, the noise sources cannot actually be white, though they usually fluctuate on

timescales much faster than the deterministic dynamics given by the first term on the

right-hand side of (5.161). We also note that the size of the second term in (5.161),

relative to the first, is a measure of SNR and scales as 1/
√
aj (X(t)).

Every ordinay stochastic differential equation of the Langevin type, with white

noise sources, can be uniquely associated with a deterministic partial differential

equation (PDE). This equation, known as the Fokker-Planck equation, describes the
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temporal and spatial evolution of the probability distribution of the random vari-

able in the Langevin equation. Fokker-Planck equations may be considered as the

continuous analogs of master equations for discrete-space systems, and have the form

δP (x, t)

δt
= −δ [D1(x, t)P (x, t)]

δx
+
δ2 [D2(x, t)P (x, t)]

δx2
(5.163)

Here the first term describes drift, with D1 being the drift vector, and the second

term describes diffusion, with D2 being the diffusion tensor. In our case, the Fokker-

Planck equation has the form

δP (x, t|x0, t0)

δt
=−

M∑
j=1

δ [sjaj(x)P (x, t|x0, t0)]

δx

+
1

2

M∑
j=1

M∑
i,i′=1

δ2 [sjisji′aj(x)P (x, t|x0, t0)]

δxiδxi′
(5.164)

There are a couple of caveats, however. Converting the master equation into

continuous phase space actually creates a PDE of infinitely large order, known as a

Kramers-Moyal equation. Discarding all terms except those of first and second order

is what gives us a Fokker-Planck equation. We are justified in dropping these terms

only if a domain of macroscopically infinitesimal time intervals exists.

In the thermodynamic limit, the volume and number of molecules in the system

are both assumed to be infinite. In this limit, all stochastic equations usually, but not

always, reduce to the deterministic mass action rate equations of chemical kinetics.

Exceptions include systems with multiple steady states: their long-term behavior

is not well described by deterministic rate equations. Analytically solving master

equations, Fokker-Planck equations or stochastic differential equations like Langevin

equations is hard because the variable being solved for is a random variable. However,

such equations can be reduced into an infinite hierarchy of equations for the moments

(expectation values) of the random variable. In general, the hierarchy is not closed,

i.e., the equation for a given moment (such as the mean, or first moment) always

includes terms that depend on higher-order moments (such as the variance, or second
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moment).

The hierarchy of moment equations can be closed if we assume that higher-order

moments are either related to lower-order moments in a known way, or are zero.

For example, Gomez-Uribe and Verghese [97] assumed that all third-order moments

were zero, and obtained closed-form equations for the means, variances and covari-

ances of X(t) directly from the master equation. They referred to these equations

as mass-fluctuation kinetics, and showed that they provide, at a computational cost

comparable to deterministic mass-action kinetics, fairly accurate estimates of the

means and variances of X(t). Mass-fluctuation kinetics takes into account the fact

that means are coupled to variances, and is therefore more accurate (for the same

number of molecules) than mass-action kinetics, where variances are ignored.

5.15.2 Simulation Algorithms

Solving the master equation, even numerically, is intractable except in the simplest of

cases, because it requires us to solve simultaneously for the probability of all possible

reaction trajectories. However, finding a particular trajectory that satisfies the mas-

ter equation is a much easier problem, and forms the basis of stochastic simulation

algorithms (SSAs). A given SSA run only generates one value, say x of the random

variable X(t). It must be run many times to generate the probability distribution

P (x, t|x0, t0) via random sampling. Thus SSAs are examples of sampling, or Monte

Carlo methods [201] that are widely used in all areas of science. Formally, SSAs gen-

erate Markov chains that transform the probability distributions of random variables

from known, standard distributions (typically uniform or Gaussian) into the ones that

satisfy the master equation.

A given SSA is considered “exact” if it produces a given reaction trajectory x(t)

with exactly the same probability as would be obtained by solving the chemical master

equation. For a system in a given state, any exact SSA answers two questions: which

reaction occurs next, and when does it occur? Gillespie’s original SSA, proposed in

a landmark 1976 paper [92] as the first-reaction method, is an exact algorithm in this

sense. The first-reaction method is simple, easy to implement, and does not even
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require that the master equation be explicitly written down. These appealing features

have contributed to its enduring popularity. The algorithm is summarized below:

1. Initialize (i.e., set initial numbers of molecules, set t = 0).

2. Calculate the propensity function, aj, for all j.

3. For each j generate a putative time, τj, according to an exponential distribution

with parameter aj.

4. Let µ be the reaction whose putative time, τµ, is least.

5. Change the number of molecules to reflect execution of reaction µ. Set t = t+τµ.

6. Go to Step 2.

The first-reaction algorithm needs M random numbers per iteration, where M is

the number of reactions. In 1977, Gillespie proposed a mathematically equivalent “di-

rect” SSA that uses only 2 random numbers per iteration [93]. This is an advantage

since random numbers are computationally intensive to generate. For example, Gib-

son & Bruck found that a single call to their random number generator took 10 times

as long as a division [90]. Further optimizations of Gillespie’s algorithm have been

proposed over the years; the prominent ones are listed in Table 5.2. All the “exact”

algorithms on that list are mathematically equivalent. They suffer from the common

problem of being computationally intensive for large numbers of molecules. Under

these conditions propensities are large and reactions (which have to be individually

accounted for) happen frequently, increasing the computational workload for a given

simulation timespan.

SSA algorithms can be easily extended to model time-dependent Markov pro-

cesses, i.e., systems where the specific probabilities, or rate “constants” cj are ac-

tually functions of time. For example, modeling cell growth and division requires

time-varying specific probabilities. As a cell grows, a given pool of molecules collides

less frequently, causing reaction rates to decrease; thus, the values of cj decrease with

time.
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Name of algorithm Precision Reference
First-reaction Exact Gillespie, 1976 [92]
Direct Exact Gillespie, 1977 [93]
Next-reaction Exact Gibson & Bruck, 2000 [90]
Modified direct Exact Cao et al., 2004 [34]
Just-in-time (moleculizer) Exact Lok & Brent, 2005 [169]
Event-leaping Exact Riedel & Bruck, 2005 [242]
Sorting direct Exact McCollum et al., 2006 [195]
Explicit tau-leaping Approximate Gillespie, 2001 [95]
Langevin leaping Approximate Gillespie, 2001 [95]
Implicit tau-leaping Approximate Rathinam et al., 2003 [235]
Trapezoidal implicit tau-leaping Approximate Cao & Petzold, 2005 [35]
Binomial tau-leaping Approximate Chatterjee et al., 2005 [40]
Optimized tau-leaping Approximate Cao, Gillespie & Petzold, 2005 [31]
Slow-scale SSA Approximate Cao, Gillespie, & Petzold, 2005 [32]
Adaptive tau-leaping Approximate Cao, Gillespie, & Petzold, 2007 [33]

Table 5.2: Stochastic simulation algorithms (SSAs) for chemical systems. This table
was inspired by a diagram on Mario Pineda-Krch’s blog, which may be found at
http://pineda-krch.com/.

In 2001, Gillespie proposed a technique known as tau-leaping for speeding up

SSAs while sacrificing some accuracy [95]. Tau-leaping techniques generate reaction

trajectories that only approximately satisfy the master equation. The basic idea

behind tau-leaping is to not keep track of the time at which every reaction occurs.

Instead, a number of reaction events are treated as a single event whenever possible,

thereby advancing, or “leaping” the simulation by a larger time step. In general, we

can write the state vector at time t+ τ , i.e., X(t+ τ), in terms of the vector at time

t as follows

X(t+ τ) = x +
M∑
j=1

Kj (τ ; x, t) sj (5.165)

where X(t) = x and Kj (τ ; x, t) is the number of times reaction j occurs in the interval

[t, t+ τ). In general the M random variables K1, K2...KM are statistically dependent

and it is not possible to calculate their joint probability distribution, or generate

samples corresponding to that distribution. However, suppose τ is small enough

that none of the propensity functions aj changes by a significant amount during the
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interval [t, t + τ). This is known as the leap condition. In other words, during the

interval [t, t+τ) the number of molecules of any species changes by an amount that is

much smaller than its value at the beginning of the interval. In electrical engineering

terms, this condition allows us to use a small-signal approximation. In particular, if

the leap condition is satisfied each component of X(t) evolves as a Poisson process.

Therefore K1, K2...KM can be approximated by a set of M statistically independent

Poisson random variables Pj, i.e.,

Kj (τ ; x, t) ≈ Pj(aj(x), τ) (5.166)

We see that tau-leaping will increase simulation speed if many reactions occur

during the interval [t, t+τ), since the algorithm will treat them all as one event. If this

condition is true for all reactions, i.e., aj(x)τ � 1, ∀j ∈ [1,M ], τ is a macroscopically

infinitesimal time interval by our previous definition. In this case, we can approximate

Pj by Gaussian random variables Nj with the same mean and variance, namely,

aj(x)τ :

X(t+ τ) ≈ x +
M∑
j=1

Nj (a(x), a(x)) sj

= x +
M∑
j=1

a(x)τsj +
M∑
j=1

√
a(x)τNj(0, 1)sj (5.167)

where we have used the fact that N(µ, σ2) = µ + σN(0, 1), where µ and σ are the

mean and standard deviation of the Gaussian random variable N . Equation (5.167)

is simply a restatement of the Langevin equation, i.e., (5.161). Thus tau-leaping algo-

rithms simulate the Langevin equation if the average time between successive reaction

events is much less than τ , the leap time. Picking τ so that substantial speedup occurs

while maintaining acceptable simulation accuracy is the main challenge in designing

tau-leaping algorithms, and many schemes have been proposed. Some of these are

listed in Table 5.2.

Exact SSA’s are particularly slow when dynamics occur on widely-separated time
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scales, i.e., the system is stiff, because the algorithms keep track of each event that

belongs to the fast dynamics. Several approximate SSA algorithms optimized for

stiff systems have been proposed. For example, an implicit state update rule allows

larger tau-leaps to be made without sacrificing accuracy [235], and quasi-steady-state

approximations can be made for certain species [32]. An excellent recent review of

stochastic chemical simulation methods may be found in [96].

An important alternative to Gillespie-type SSAs for chemical systems is StochSim

[207]. StochSim discretizes the master equation in time, converting it into a difference

equation that is then solved numerically. The algorithm also treats each molecule as

a software object with modifiable properties, which makes it extremely suitable for

modeling reactions between multi-state systems such as protein complexes. How-

ever, it is significantly slower than Gillespie-type SSAs for most biochemical reaction

networks, especially when there are many molecules present. A detailed comparison

between the Gillespie and StochSim algorithms shows that StochSim is a first-order

approximation of the Gillespie algorithm when its time step, ∆t, is small [166]. Thus,

the two algorithms become mathematically equivalent as ∆t→ 0.

5.15.3 Spatial Inhomogenities

Broadly speaking, our initial assumption of a well-mixed, spatially homogenous reac-

tion medium may fail for two separate reasons. Firstly, there may be non-negligible

gradients in species concentrations due to mass transport (drift and diffusion), and

secondly, there may be inhomogeneties in the reaction medium such as cell organelles,

membranes and other three-dimensional structures. Roughly speaking, the former

affects species concentrations, while the latter affects reaction rate constants. In

both cases these quantities become functions of both position and time. Determinis-

tic simulations of such spatially-inhomogenous systems are usually performed using

finite-element methods. SSAs for modelling such systems have also been proposed.

The basic idea is to divide space into cells. The number of molecules in each cell

can change in two ways: via chemical reactions and transport processes, typically

diffusion.
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In any chemical system, only a small subset of the collisions between molecules re-

sults in chemical reactions; the rest cause diffusion. The cells used in reaction-diffusion

simulations must be small enough to remain spatially homogenous, yet large enough

to be in local thermal equilibrium, i.e, larger than the mean free path between colli-

sions. In practice, a good choice for cell size is the reactive mean free path, defined as

the average distance traveled by molecules between reactive collisions. By assuming

Markovian behavior, a master equation, known as the reaction-diffusion master equa-

tion (RDMS), can be derived for the system [12,64]. In addition to drift and diffusion

in the state space of species numbers, the resultant Fokker-Planck equation now in-

cludes terms corresponding to drift and diffusion in physical space. In other words,

both chemical reactions and molecular diffusion cause fluctuations in the numbers of

molecules. Extensions of Gillespie-type SSAs can be used to generate trajectories that

satisfy the RDMS. A popular technique is known as the next-subvolume method [112].

It is a combination of the direct method [93] and the next-reaction method [90]. The

former is used to determine which reaction happens next (and when), while the latter

is used to determine the cell in which it occurs.

In addition to general simulation programs such as Matlab, there are literally

hundreds of specialized software packages for stochastic modeling of both spatially

homogenous and inhomogenous systems. Some freely-downloadable examples are

StochSim, StochKit, MCell, GridCell and MesoRD. StochKit and StochSim are es-

sentially general-purpose spatially-homogenous SSA solvers, though they can be ex-

tended to simple inhomogenous systems. MCell and GridCell use ray-tracing al-

gorithms to track the three-dimensional trajectories of individual particles, and are

suitable for modeling complicated spatial geometries. MesoRD uses an extension of

the Gillespie SSA to model reaction-diffusion systems.

5.16 Stochasticity in Biology

Biological systems function in noisy, dynamic environments. Thus, they need to

adapt, or evolve, based on changing environmental conditions, and also be robust, or
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resistant, to perturbations from internal and external noise sources. Biology is robust

at several levels of organization, ranging from the genetic code to embryonic devel-

opment and ecological structure [302]. Herein lies a fundamental dilemma that must

be addressed by any theory of complex adaptive systems: what is signal (to which

we should adapt), and what is noise (which we should reject)? In other words, how

can we be robust and adaptive at the same time? There are no completely general

answers, but studies of evolutionary dynamics [216], learning theory, and systems bi-

ology [4,233] have provided several clues. Heterogenity in the population is important

for rapid responses to environmental stress. Regulatory networks in dynamic environ-

ments should be modular, so that certain functions can be modified without affecting

other functions. In fact, modular networks, which assemble complexity hierarchically,

are evolutionarily favored in dynamic environments, but not in static ones, because

in static environments the additional overhead required to maintain modularity can

be removed without affecting fitness. Not surprisingly, human engineers, such as chip

designers, tend to build modular networks because they are easier to maintain and

upgrade.

Some natural and engineered systems utilize noise to improve performance, a

phenomenon known as stochastic resonance (SR) [83, 144, 315]. For example, it is

known that neural signal processing, particularly within sensory systems, often in-

volves SR [58]. Behavioral evidence for enhancement of feeding performance, and

search strategies in general, using SR has also been found [248]. However, the func-

tional significance of noise in cellular processes remains controversial. There are only

a few cases where it has been unambiguously shown that noise is necessary for normal

operation of the cell. For example, consider cellular differentiation into specialized

subtypes. This process is usually deterministic, and controlled by cell lineage and

extracellular signalling molecules. In certain cases, however, it is known to involve a

stochastic (probabilistic) choice between two or more alternatives [172,179,279].

Theoretical studies have shown that the same biological models can behave in qual-

itatively different ways depending on whether they are noisy (stochastic) or noise-free

(deterministic). For example, stochasticity can generate bistability in phosphoryla-
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tion cycles and cascades operating out of equilibrium [203]. Noise can also induce

limit-cycle oscillations around a deterministically-unstable steady state. This phe-

nomenon has been postulated as a possible mechanism for the creation of genetic

timers, such as those within circadian oscillators [289]. Finally, noise can induce in-

stability and oscillations in deterministically-stable systems containing time delays,

such as models of gene expression [24].

Many biological systems operate far from equilibrium. As a result, the fluctuation-

dissipation theorem cannot be applied directly. In particular, temperature gradients

cannot be used to predict the direction of heat flow. However, an extended version of

the theorem can be used to define an “effective temperature” if the non-equilibrium

system changes slowly with time [46, 174]. Dynamics on different time scales exhibit

different ratios of response (dissipation) and fluctuation (noise) functions, and thus

have different effective temperatures19.

It has been argued that biochemical signalling networks within cells operate close

to fundamental physical limits set by molecular shot noise [16,17].

5.16.1 Stochasticity in Gene Expression

Noise in gene expression has usually been divided into two parts: intrinsic, or uncor-

related across genes, and extrinsic, or correlated across genes. There are two major

sources of extrinsic variability: upstream transcriptional regulatory networks shared

across multiple genes, and heterogenity in the cellular population [232, 301]. The

former tends to dominate when the number of expressed proteins is small, while the

latter tends to dominate at high expression levels. The coupling of population dynam-

ics to gene expression levels means that extrinsic variability can often be significantly

reduced by measuring a subset of cells that is more homogenous than the population

as a whole. This process, known as gating, is often carried out on the basis of cell

size [215].

19We note that the fluctuation-dissipation theorem defines the normalized temperature variable
kT to be the ratio of fluctuation to dissipation functions, as in the Einstein relationship D/µ = kT .
Effective temperature is defined in the same way.
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Cross-correlation functions can be used to separate extrinsic noise into components

due to shared genetic regulatory networks, and truly global sources such as variations

in cell size [60]. The former reaches maximal magnitude for a characterstic, non-zero

value of delay set by the dynamics of the regulatory network. By contrast, the latter

affects different genes almost simultaneously, leading to cross-correlation functions

that peak at zero delay. Both intrinsic and extrinsic noise sources have low-pass

power spectra. In the simplest case, such spectra can be modeled as single-pole filters

with single time constants20. For extrinsic noise, the dominant pole frequency is

≈ 1/Tdiv, where Tdiv is the average time between cell divisions. For intrinsic noise,

the pole frequencies are set by the dynamics of transcription, translation and gene

regulation, and are usually (but not always) much faster than 1/Tdiv.

Population variability depends both on the initial conditions and also on the en-

vironmental, i.e., growth conditions [175]. Small initial populations result in high

initial variability, following Poisson statistics, both in the cell numbers distributed

amongst different phenotypes in the same population (known as intra-colony vari-

ability), and different populations (known as cross-colony variability). Intra-colony

and cross-colony variability are analogous to instrinsic and extrinsic gene expression

noise, respectively. In unbounded growth media the dynamical system describing cel-

lular growth has no feedback terms21. As a result, variability due to initial conditions

persists forever. As we might expect, when growth is subject to environmental con-

straints, variability due to initial conditions eventually dies away, and steady-state

variability is determined only by the internal dynamics of the system.

5.16.2 Stochasticity in Neural Systems

Broadly speaking, the nervous system performs three tasks: signal transduction, in-

formation processing and actuation. Each of these steps is subjected to random

fluctuations, or noise. Noise puts upper limits on the density of neural information

20Known to mathematicians as Ornstein-Uhlenbeck or mean-reverting processes, or AR(1) pro-
cesses in discrete time.

21For example, in the linear dynamical system dx/dt = Ax + Bu absence of feedback means that
A = 0.
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processing, particularly in the brain [66, 67]. This limit is imposed through various

mechanisms: the number of ion channels in small axons, the amount of neurotrans-

mitter in synapses, and crosstalk, or ephaptic coupling, between adjacent neurons.

In each case the amount of noise increases as the structures become smaller, because

their behavior is then averaged over fewer noisy events, such as openings and closings

of ion channels or release of neurotransmitter molecules in synapses.

Ion channels in nerve membranes open and close randomly because of thermal

motion. The flow of charge through these channels causes spontaneous sub-threshold

fluctuations in the membrane voltage of nerve cells. It has been suspected for over

50 years that such noise can have important physiological consequences [71]. Let us

assume we have N0 ion channels and a capacitance C0 per unit area of the mem-

brane. If nearby ion channels are uncorrelated the noise voltage amplitude scales as

N0

√
A/ (C0A) ∝ 1/

√
A, where A is the total area of the membrane. Thus large cells

are less noisy than small cells. In fact, the noise amplitude scales as 1/
√
N , where

N = N0A is the total number of ion channels. This behavior is an example of the

law of large numbers, or reduction in variance by averaging.

There are several families of ion channels that change states (open or close) in

response to different stimulii, such as membrane voltage, the presence of ligand

molecules, light, and mechanical pressure or displacement. Voltage-sensitive chan-

nels are required for the generation of action potentials, and are therefore common in

nerve cells. The opening and closing of a single channel causes charge to flow, which

affects the membrane voltage. However, the changed membrane voltage now affects

the opening and closing of every channel in the membrane. This interesting feed-

back loop between single-channel and collective dynamics can affect the voltage noise

across the membrane. In particular, the noise amplitude was observed to decrease

as 1/N , not 1/
√
N when N , the total number of ion channels, was large [249, 250].

Thus, it is possible that the nervous system exploits correlated fluctuations in order

to improve computational precision.

The effects of noise are felt at all levels of the nervious system, ranging from

molecular to behavioral, but are not always detrimental. Stochastic resonance is a
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common example. Other benefits include linearization of neural activation functions,

and improved learning and adaptation to dynamic environments [67].

5.17 Log-Normal Distributions

The central limit theorem guarantees that most random processes that can be decom-

posed into the sum of many independent parts have Gaussian, or normal probability

distributions. However, many probability distributions in biological systems are log-

normally distributed, i.e., they are normally distributed on a logarithmic scale [164].

In particular, cellular properties with relatively high coefficients of variation (more

noise) are usually well described by log-normal distributions. Such distributions occur

when the random process can be decomposed into the product of many independent

parts.

Consider a practical example. The low-frequency gain of the unidirectional RF

cochlea is the product of the gains of the individual stages. Ideally each stage should

have unity gain. Let us assume that the actual gain of the n-th stage is 1 +χn, where

χn is a zero-mean random variable. Then the gain after n stages is given by

G(n) =
n∏
i=1

(1 + χn) (5.168)

As described earlier, we use feed-forward and feedback techniques to ensure that

stage gains are close to 1, so we can assume that |χn| � 1 ∀n. In this case we can

use the identity log(1 + x) ≈ x for |x| � 1 to rewrite (5.168) as

log (G(n)) ≈
n∑
i=1

χn (5.169)

We can now apply the central limit theorem: As long as each χn is independent

and has finite variance, log (G(n)) approaches a normal distribution as n→∞. Thus,

G(n) approaches a log-normal distribution. For simplicity, assume that the variance

of χn is equal to σ2, a constant ∀n. Then the log-normal variable G(n) has the

following statistical properties:
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mean = enσ
2/2

median = 1

mode = e−nσ
2

variance =
(
enσ

2 − 1
)
enσ

2

(5.170)

Note that the mean value of G(n) is greater than unity even though individual

stages have a mean gain of unity. The asymmetry, or skewness of the log-normal

distribution is responsible for this surprising phenomenon.

5.18 Further Reading

The literature on noise, even within the restricted sub-field of semiconductor device

physics, is vast, and, one is tempted to say, beyond mortal reckoning. However, listing

a few highlights may prove useful. A. van der Ziel’s original papers from the 1950’s

and 1960’s are still excellent references for the basic theory of noise in diodes, junction

transistors (like BJTs), field-effect transistors (like MOSFETs) and other electronic

devices. An excellent review of his work is presented in [295]. Sarpeshkar, Delbruck

and Mead have, in [257], argued that shot and thermal noise are actually the same

phenomenon. An excellent summary of various types of MOSFET noise can be found

in [158]. Another feature of [158] is the large collection of excellent references on the

subject, several of them historical in nature. An excellent book that, amongst other

things, discusses evidence for 1/f noise in cognition is [304].
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Chapter 6

Circuit Models of Chemical

Reactions

The rest is chemistry!

– Carl D. Anderson, after discovering the positron in 1932

In this chapter we describe fast, scalable hardware models of chemical reaction

networks. The detailed analogy between transistors and chemical reactions is used to

build integrated circuits that can efficiently simulate the dynamics of complex chem-

ical reactions. We also present experimental results from a prototype chip designed

for simulating chemical kinetics.

6.1 Introduction

Cells are truly impressive molecular machines. Table 6.1 summarizes the performance

of a typical mammalian cell. We see that cells are very efficient : they perform large

numbers of biochemical operations within a small volume while consuming very little

power. We define biochemical operations as active or endothermic chemical reactions

that only occur when energy, in the form of ATP molecules, is supplied to them.

Cells are also very flexible, and use such active reactions to perform a wide variety

of functions. Examples include nanoscale sensing, actuation, and pattern recogni-

tion; communication, transport, and feedback regulation; maintenance, growth, and
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Table 6.1: Performance numbers of a typical mammalian cell
Parameter Value

Power consumption 1pW
Molecular interaction network ≈20,000 nodes (genes & proteins)

Biochemical operations 107/sec
Volume 10× 10× 10µm3

Table 6.2: Some typical cellular parameter values
Parameter Bacterial Yeast Mammalian

(E. coli) (S. cerevisae) (human fibroblast)
Cell volume ≈ 1µm3 ≈ 103µm3 ≈ 104µm3

Concentration of single ≈1nM ≈1pM ≈0.1pM
proteins/cell

Transcription delay ≈ 1min ≈ 1min ≈ 30min
Translation delay ≈ 2min ≈ 2min ≈ 30min

Typical mRNA lifetime 2 – 5min 10min – 1hr 10 min – 10hrs
Cell generation time 30min – hrs 2 – hrs 20hrs – ∞

Protein active/inactive 1 – 100µs 1 – 100µs 1 – 100µs
transition timescale

Small molecule/protein ≈ 1ms ≈ 1s ≈ 1s
binding timescale

Transcription factor ≈ 1s
binding timescale

reproduction; detoxification, and defense. Thus cells should serve as fertile sources of

biological inspiration for building efficient computers.

Cellular processes can be modeled at many different levels of abstraction [281].

We shall focus on mechanistic models based on systems of chemical reactions. Ta-

ble 6.2 shows typical values of some parameters that are useful for modeling cellular

dynamics. Numbers are quoted for several representative species, and were taken

from a more complete list in [4]. Many other numbers of biological interest can also

be obtained from the BioNumbers website (http://bionumbers.hms.harvard.edu/).

The idea of using analog computers for simulating chemical kinetics is at least

50 years old [180]. Simple circuit analogies can also be used for modeling genetic

networks. Basic electronic models of such networks have recently been discussed in

the literature [50, 110]. However, no one thus far appears to have exploited detailed

similarities behind the equations of chemistry and the equations of electronics. This
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chapter outlines how we may do so, thus allowing us to implement models of complex

molecular networks in chemistry and biology as analog integrated circuits. Our chips,

which take full advantage of parallelism, may be useful in performing fast simulations,

parameter discovery, optimizations, and other operations. Such computations run

slowly on microprocessors, especially when stochastic effects have to be included. The

performance of both analog and digital computers, as measured by chip size, speed

and power consumption, improves with process scaling [44]. Thus, our performance

advantage should not diminish over time.

Field-Programmable Gate Arrays (FPGAs) constitute another approach towards

reducing the computational cost of stochastic simulations [251]. The data flow and

processing architecture of FPGA’s can be dynamically reconfigured to suit a particular

algorithm. By implementing multiple parallel processing paths, FPGA’s can run

stochastic simulation algorithms much faster than conventional microprocessors. As

an added bonus, such slow-and-parallel processing decreases the energy needed per

operation, i.e., improves energy efficiency. Similar improvements in speed and energy

efficiency can be obtained by running stochastic simulation algorithms on graphics

processing units (GPUs) instead of conventional microprocessors [163].

The most computationally expensive part of Gillespie’s well-known stochastic sim-

ulation algorithm, consuming approximately 98% of total processor time, is the gen-

eration of exponentially-distributed random numbers. Custom analog integrated cir-

cuits for generating such numbers have recently been reported [191]. The authors of

the latter paper claim a potential speed-up of about two orders of magnitude over

a purely software implementation of the algorithm. Thus, it appears that special-

purpose hardware provides significant performance advantages over general-purpose

computers for studying large biological networks.

6.2 Models of Chemical Reactions

The standard formulation of chemical kinetics in terms of the law of mass action is

not universally valid in intracellular environments, because of several reasons [99,325].
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The high concentrations and large sizes of biomolecules leads to crowding, in which a

significant fraction of the reaction volume is excluded, i.e., occupied by the molecules

themselves. Some biomolecules are spatially confined, which can lower the effective

dimensionality of the reaction envrionment. Time-dependent rate “constants” are

often observed [140]. In addition, cells are spatially heterogenous because of the

presence of organelles, large molecules and electric fields; as a result, the “well-mixed”

approximation may not be valid. Finally, non-specific interactions, i.e., interactions

between molecules who not react chemically, are common in cells and can change

reaction rate constants.

In practice, however, mass action models are found to be approximately valid for a

wide range of cellular processes. Excluded volume effects can be modeled by retaining

mass-action rate laws, but replacing molecular concentrations with quantities called

activities. The activity of a molecule is defined as the product of its concentration

and an empirically-measured or calculated activity coefficient. Spatial heterogeneity

can also often be handled within the mass-action framework: We can define multiple

reaction compartments, each of which is assumed to be internally homogenous. For

example, the extra-cellular environment, the cell membrane, the cytoplasm and the

nucleus can be modeled as individual compartments. In this section, we shall therefore

focus on mass-action models of chemical reactions.

6.2.1 Simple Circuit Analogs

Analog circuit designers have to deal with many of the same problems as biological

systems while processing information. Both fields use low levels of abstraction. As

a result, they have to rely on the detailed physics of noisy and unreliable devices to

perform computation. However, this same property also enables them to minimize

consumption of hardware and energy resources, i.e., to be efficient. These deep under-

lying similarities suggest that representing biological systems using analog electronics

might be useful both for modeling and design purposes. The field of neuromorphic

VLSI grew from this basic premise [199].

In this chapter, we show that chemistry can also be efficiently modeled using ana-
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log electronic circuits. For example, Figure 6-1 shows two examples of how simple

resistor-capacitor circuits can model mass-action kinetics of reversible chemical re-

actions [5]. In such models, the concentration of each species is represented by the

charge stored on a capacitor. The figure on the left shows a resistive-divider network

that models Michaelis-Menten kinetics in enzyme-substrate binding reactions. The

reaction in question may be represented as

E + S
kf−⇀↽−
kr
ES (6.1)

where E is the enzyme, S is the substrate, ES the enzyme-substrate complex and kf

and kr are the kinetic rate constants of the forward and reverse reactions, respectively.

The voltage source represents the total enzyme concentration [Et] = [E] + [ES]

(whether bound to substrate or not), while the capacitor voltage represents the bound

enzyme concentration [ES]; the rates of the forward and backward reactions are

modeled by the resistors. The figure on the right shows a similar model for an acid

dissociation reaction (hydrolysis), which may be represented as

A
kf−⇀↽−
kr
A− +H+ (6.2)

where A is the undissociated acid and A− is its anion. In the figure [At] = [A] + [A−]

represents the total concentration of the acid anion (whether bound to hydrogen or

not), and [A−] is the concentration of the dissociated acid anion.

Saturation effects that arise in such chemical reactions transparently manifest

themselves as the laws of resistive-divider action in electronic systems, the time con-

stant of the reaction manifests as that of a parallel RC circuit, and the forward and

backward reaction fluxes manifest themselves as current flows through the kf and kr

resistors. The resistor values can depend on other concentrations in the circuit, as

shown, resulting in nonlinear dynamics. Complex reactions can be decomposed into

elementary molecular steps, each of which can be modeled by a simple RC circuit

similar to the ones shown in Figure 6-1.

Figure 6-2 shows a more complicated example: a network that models the pro-
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Figure 6-1: Electronic circuit models of two simple, but important chemical reactions:
Michaelis-Menten kinetics (left) and an acid dissociation reaction (right).

duction of a protein from a gene. The kinetic parameters gmtri (1 < i < n), grep,

gmtl, KR, τmRNA and τP characterize the behavior of the network. Several parallel

promoters, with concentration [TPi], where 1 < i < n, and a common repressor with

concentration [R] and rate constant KR control the rate of transcription of a gene

into messenger RNA (mRNA). The concentration of mRNA, [mRNA], is encoded as

the voltage across a capacitor, while a resistor in parallel models its degradation. The

voltage across another RC network represents [P ], the concentration of the protein

P that is produced when this mRNA is translated. Networks of this type can be

extended in an obvious way to incorporate the effects of multiple genes and proteins

and interactions between them.

6.2.2 General Analog Circuit Model

We will now generalize the examples considered in the previous section. Consider a

reaction network composed of N distinct molecular species. We will always assume

that individual chemical reaction events are uncorrelated. To start with, the reac-

tion medium is assumed to be a well-stirred single-phase system, such as a dilute

aqueous solution. This is a “single compartment” model, i.e., we assume that spatial

concentration gradients are negligible, so that the concentration of any species can

be uniquely represented by a single number1. The set of reactant concentrations at

any time t can be represented as a vector x(t) = [x1(t), x2(t), . . . , xN(t)] of length N ,

where xi(t), 1 ≤ i ≤ N is the concentration of the i-th species.

1We later describe how to model multi-compartment systems.
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TRANSCRIPTION TRANSLATION

COMMON
REPRESSOR

τmRNA τP

Figure 6-2: A simple electronic circuit that models the processes of transcription and
translation of a single gene.

A given set of chemical reactions can be decomposed into elementary molecular

steps in many ways. The physically correct set of such steps is known as the mech-

anism of the reaction. each elementary step follows mass-action kinetics [222], the

rate of change of xi with time is given by

dxi
dt
≡ ẋi = ci +

N∑
j=1

dijxj +
N∑
j=1

N∑
k=1

eijkxjxk + . . . (6.3)

where the first, second, third... terms on the right-hand side correspond to zeroth,

first, second... order kinetics, respectively. Also, ci, dij, eijk,... are constants known

as kinetic rate constants. Each rate constant can be positive (if species i is being

produced in that reaction) or negative (if it is being consumed). In this formulation

each reaction is unidirectional, i.e., the forward and backward parts of a reversible

reaction are considered separately.

Using the usual Einstein summation-over-indices convention, we can rewrite equa-

tion (6.3) in simplified form as

377



ẋi = ci · 1 + dijxj + eijkxjxk + . . . (6.4)

The mathematical structure of the expression on the right hand side now becomes

clearer. Remember that i is fixed (we are considering the i-th species). The first

term is the product of the vector ci with the constant 1 (i.e., a rank 1 tensor with a

rank 0 tensor). The second term is the inner product of the matrix dij and the vector

xj (i.e., a rank 2 tensor with a rank 1 tensor). The third term is the inner product

of eijk and xjxk (i.e., a rank 3 tensor with a rank 2 tensor). Here xjxk, which is a

N × N matrix, is the outer (tensor or Kronecker) product of the vectors xj and xk.

The series in (6.4) can be continued to include higher order tensor products in an

obvious way. In general, the n-th term in this series represents (n− 1)-th order rate

kinetics and consists of the inner product of two tensors, with ranks n and (n − 1),

respectively.

In principle, M -body molecular collisions result in M -th order mass-action kinet-

ics. However, the probability of three or more molecules colliding simultaneously is

usually negligible at practical temperatures, concentrations, and pressures. Therefore

elementary steps are limited to zeroth, first or second order kinetics and the series in

(6.3) can be safely terminated after the first three terms. In order to generalize our

formulation we also note the following:

• Species concentrations can also depend on external inputs to the system. Let

the vector of such external inputs be denoted by u(t) = [u1(t), u2(t), . . . , uM(t)],

where in general N 6= M . Inputs can affect species concentrations directly

(resulting in first-order kinetics) or in combination with other species (resulting

in second-order kinetics).

• The outputs of interest may consist of linear combinations of all the N species

in the reaction network. Let the vector of such outputs be denoted by y(t) =

[y1(t), y2(t), . . . , yP (t)], where in general P 6= N or M .

Thus, our complete reaction model is given by
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dxi
dt

= ci · 1 + dijxj + eijkxjxk + fijuj + gijkxjuk

yi = hijxj + kijuj (6.5)

where ci, dij, eijk, fij, gijk, hij and kij are constant coefficients. In matrix notation

(6.5) becomes

dx

dt
= C + Dx + E (x⊗ x) + Fu + G (x⊗ u)

y = Hx + Ku (6.6)

where ⊗ denotes the tensor, outer or Kronecker product. The similarity of (6.6) to

the standard ABCD matrix model of a linear dynamical system is evident:

dx

dt
= Ax + Bu

y = Cx + Du (6.7)

where, as before, u, x and y denote the vectors of inputs, state variables and out-

puts, respectively. We see that the chemical system is a generalization of the linear

system represented by (6.7). The tensor product term (i.e., second-order mass-action

kinetics) adds a second-order nonlinearity to it.

6.2.3 Electrical Circuit Equivalent

Our goal is to emulate the dynamics of the reaction system described in the previous

section with an electrical circuit. Chemistry and electronics are analogous in several

ways. Chemical potentials map naturally to voltages, i.e, electronic potentials, while

molecular fluxes map to electron flows, i.e., currents. The chemical potential of

an enzyme or catalyst A, denoted by µA, controls the energy barrier of a chemical
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reaction, exponentially changing its speed. In an analogous fashion, gate voltage VG

controls the electron energy barrier between source/drain terminals and the channel of

a transistor, exponentially changing electron flow rate. The detailed analogy between

chemical reactions and transistors with exponential I-V characteristics, in this case,

subthreshold MOSFETs, is illustrated in Figure 6-3. We can use this analogy to

efficiently model large-scale chemical information-processing systems found in biology.
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Reaction variable Transistor channel

Enzyme
concentration

Gate
voltage

Reactant Product
Source Drain

e∆µA/kT

eq∆VG/kT
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Figure 6-3: Reactant/product chemical potentials, molecular flux and enzyme chem-
ical potential in a chemical reaction (left) are analogous to source/drain voltages,
electronic current and gate voltage in a subthreshold MOS transistor, respectively
(right).

We encode the chemical potential of each species as the voltage V on a capacitor

of value C. In dilute solutions2 the chemical potential of the i-th species is given by

µi = µ0 + kBT ln

(
xi
X0

)
(6.8)

where µ0 and X0 are constants referred to as the reference chemical potential and

reference concentration, respectively, and xi is the concentration of the species. Note

that µ0 and X0 are assumed to be the same for all species. It can be shown that

(6.8), where this assumption is implicit, can be used to derive a number of well-known

colligative laws, such as the ideal gas law, the law of mass action, Henry’s law, Raoult’s

law, Nernst’s distribution law and the osmotic pressure law [132]. Conceptually,

therefore, (6.8) should be treated as a basic law, like the laws of thermodynamics.

For non-dilute solutions and/or charged species, i.e., ions, (6.8) can often still be

2A solution is considered dilute when interactions between solute particles are negligible compared
to solute-solvent interactions. In this situation solute molecules essentially behave like an ideal gas.
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applied, but with xi replaced by an effective concentration xiai, where ai is known as

the activity coefficient of the species in question. To convert from µ to V we divide

by κq, where κ is a constant and q is the electronic charge. Equation (6.8) can then

be written as

ln

(
xi
X0

)
=
κ (vi − V0)

φT
⇒ xi = X0 exp

(
κ (vi − V0)

φT

)
(6.9)

where φT = kBT/q is the thermal voltage and V0 = µ0/(κq) is a constant reference

voltage. The concentrations of the input and output species are encoded similarly.

Differentiating (6.9) on both sides, we get

d ln (xi)

dt
=

1

xi

dxi
dt

=
κ

φT

(
dvi
dt

)
(6.10)

For convenience we now convert concentrations to currents by defining ii/I0 =

xi/X0, i.e., ii = I0 exp (κ (vi − V0) /φT ), where I0 is a constant reference current.

Similarly, we also define iui/I0 = ui/X0 and iyi/I0 = yi/X0. Substituting (6.10) in

(6.5), we get

C
dvi
dt

=
CφT
κI0

[
ci
X0

I2
0

ii
+

N∑
j=1

dij
I0ij
ii

+X0

N∑
j=1

N∑
k=1

eijk
ijik
ii

+
M∑
j=1

fij
I0iuj
ii

+X0

N∑
j=1

M∑
k=1

gijk
ijiuk
ii

]
(6.11)

iyi =
N∑
j=1

hijij +
M∑
j=1

kijiuj (6.12)

Equations (6.11) and (6.12) are statements of KCL. The index i runs from 1 to

N in the first equation (N state variables) and 1 to P in the second (P outputs).

The reference concentration and current (X0 and I0) are normally chosen to be the

geometric means of the minimum and maximum concentrations and currents of inter-

est. In subthreshold CMOS implementations the minimum allowable current is set by

leakage and parasitic capacitances, while the maximum is set by the onset of strong
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inversion. The circuit equations shown in (6.11) and (6.12) are dynamically equiva-

lent to the original chemical equations. Dynamical equivalence refers to the fact that

the dynamics of normalized chemical and electrical state variables, i.e., xi/X0 and

ii/I0, respectively, are identical.

Equation (6.11) can be easily implemented in hardware using log-domain circuits

[76]. The currents ii are proportional to exp (κvi/φT ), where ii ≥ 0,∀i. Thus each

current can be created by a single BJT or subthreshold MOSFET operated in its

forward active (BJT) or saturated (MOSFET) region. In addition, real biochemical

networks are sparse: most species participate in fewer than four reactions. Because of

this sparseness, most of the coefficients ci, dij, eijk, fij and gijk are zero (the reactions

in question do not occur). Therefore only a small subset of the 1+N+N2 +M+MN

terms on the right hand side of (6.11) are non-zero. Each of these contributes a

current ±βi1i2/ii to Cdvi/dt, where β is a dimensionless, non-negative constant and

i1 and i2 are non-negative currents. As a result, (6.11) can be easily implemented

with single-quadrant log-domain integrators, which can be implemented with very

few transistors.

Equation (6.12) is also easy to implement: the state variable currents ij and input

currents iuj (we have N of the former and M of the latter) are summed together at

a single node with appropriate weighting factors hij and kij. The result is the output

current iyi. We carry out P such summations to produce the P output currents.

6.2.4 Thermodynamics

All reaction networks must satisfy the thermodynamic constraint that the net change

in thermodynamic potential around any reaction loop is zero. In other words, ther-

modynamic potentials are state variables. It is also a statement of the first law of

thermodynamics, i.e. that total energy is conserved. Biological systems usually op-

erate at constant temperature and pressure. As a result the appropriate potential is

Gibbs free energy G. Mathematically, any reaction network, irrespective of whether

or not it is at equilibrium, must satisfy
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∑
j ∈ loop

∆Gj = 0 (6.13)

where ∆Gj is the change in Gibbs free energy of the j-th reaction. This quantity is

defined as

∆Gj =

 ∑
k ∈ productsj

Gk

−
 ∑
k ∈ reactantsj

Gk

 (6.14)

In dilute solutions, the free energy change of any reaction is given by

∆Gj = ∆Gj0 +NA∆µj (6.15)

where NA is Avogadro’s number and ∆µj is the change in chemical potential of the

reaction (analogous to (6.14)). Thus, the free energy change ∆Gj in any reaction

is the sum of two parts. The first part, ∆Gj0, is independent of species concentra-

tions. However, it depends on the rate constant, i.e., the properties of reactant and

product species. The second part, ∆µj, depends only on species concentrations via

(6.8). In addition, the second law of thermodynamics predicts that ∆Gj = 0 ∀ j at

thermodynamic equilibrium. Thus, we get

∆Gj0 = −NA∆µj,eq (6.16)

where µj,eq is the value of ∆µj at equilibrium. As a result, (6.13) may be rewritten

as

∑
j ∈ loop

(µj − µj,eq) = 0⇒
∑

j ∈ loop

(∆vj −∆vj,eq) = 0 (6.17)

where the second equation follows from the first by using (6.8) and (6.9). This equa-

tion, which is applicable to our circuit model, is a version of Kirchoff’s Voltage Law

(KVL). However, we cannot directly connect the voltage drops ∆vj into a KVL loop

because of the presence of the ∆vj,eq terms, which act as batteries. Active circuits,

such as current mirrors, must be used to generate these terms. Fundamentally, the
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circuits compensate for the fact that electrons, unlike different chemical species, are

indistinguishable.

Chemical rate “constants” are actually strong functions of temperature. A simple,

widely used, and remarkably accurate formula for predicting this dependence is the

Arrhenius equation. It is given by

k = Ae−Ea/kBT (6.18)

where A and Ea are relatively weak (often polynomial) functions of temperature.

This empirical formula can be derived by assuming the presence of an high-energy

intermediate, or transition state, between the reactants and products, as shown in

Figure 6-3. The quantity Ea, also known as the activation energy, can be viewed as

the energy difference between the transition state and the reactants. Transistors have

a similar energy landscape, with the channel corresponding to the transition state. At

room temperatures both electronics and chemistry are well described by Boltzmann

statistics. Thus, flux or current flow in both cases is proportional to exp(−Ea/kBT ),

where Ea is the height of the energy barrier that controls the flow. The Arrhenius

equation follows as long as Ea is a weak function of temperature. In transistors Ea

is set by the gate-source voltage. As a result, current flow in a transistor with fixed

gate-source voltage obeys the Arrhenius equation.

We can exploit the similar thermodynamic properties of chemical reactions and

transistors. All rate constants in our model will satisfy the Arrhenius equation if the

reference current I0 increases exponentially with temperature. This behavior occurs

if I0 is produced by a transistor with temperature-independent gate-source voltage

VGS0. In this case, we get

I0 = ISe
κ(VGS0−VT )/φT (6.19)

where IS and VT are assumed to be weak functions of temperature. In general, how-

ever, our model will not reproduce deviations from Arrhenius-like behavior caused by

temperature-dependent prefactors A and activation energy Ea. This is because the
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analogous electronic quantities, namely IS and VT , need not have the same tempera-

ture dependence as A and Ea. In fact, activation energies can depend on temperature

in complicated ways that have no direct electronic analog. Intuitively, this is because

molecules may have several internal degrees of freedom that affect how they react

with each other. For example, diatomic molecules can rotate about the bond linking

the two atoms, a process which has its own characteristic dependence on temperature.

Similarly, the threshold voltage VT of a transistor is, in general, also a complicated

function of temperature with no direct chemical analog.

The total potential energy of charged molecules (ions) is determined both by

chemical and electrostatic potentials. Their combined effects are expressed via the

electrochemical potential, which is defined as

µec = µc + zqNAV (6.20)

where µc is the chemical potential, zq is the charge on the ion, NA is Avogadro’s

number, and V is the voltage, or electrostatic potential. Since µec is proportional to

V , we can use voltage to exponentially speed up or slow down the rates of reactions

that involve loss or gain of electrons (redox reactions). Such dependence of reaction

rates on voltage is basic to the operation of batteries and fuel cells. We can model

such effects by individually programming the rate constants of forward and reverse

reactions. In addition, voltage gradients, i.e., electric fields, cause gradients in µec

that cause ions to flow via drift. However, such gradients are absent by definition in

homogenous media. As a result, fluxes in well-mixed, homogenous media are purely

diffusive in nature.

6.2.5 Polynomially Nonlinear Dynamical Systems

The circuit formulation described by the KCL equation in (6.11) can be extended to

dynamically simulate any polynomially nonlinear dynamical system. Such a system

can be used to model mass-action chemical kinetics of any order; it consists of a set

of N differential equations of the form
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dxi
dt

=
R∑
j=1

cij (xp11 x
p2
2 ...x

pN
N uq11 u

q2
2 ...u

qM
M ) (6.21)

where R is a positive integer, [p1...pN ] and [q1...qM ] are integers that in general are

different for each value of i and j, the cij’s are real constants and, as before, we have

N state variables xi and M inputs ui. Following the same procedure described in the

previous section, equation (6.21) can be rewritten in terms of the rate of change of

ln (xi). The result, which is easier to implement in log-domain circuit form, is

d ln (xi)

dt
=

R∑
j=1

cij

(
xp11 x

p2
2 ...x

pN
N uq11 u

q2
2 ...u

qM
M

xi

)
(6.22)

Equation (6.22) can be interpreted as KCL, i.e., the rate of change of ln (xi),

the voltage on a capacitor, is equal to the sum of R currents that add and subtract

charge from it. Each term on the right hand side of (6.22) represents a current that

is a multinomial function of the state variables and inputs. Log-domain circuits can

easily implement such functions. Therefore any polynomially nonlinear dynamical

system can be modeled using a dynamically equivalent log-domain circuit. The order

S of the each term of the summation in equation (6.22) is defined as the sum of all

the power-law coefficients in the numerator, i.e.,

S =
N∑
k=1

pk +
M∑
k=1

qk (6.23)

The system of chemical reactions modeled by (6.11) is a special case of (6.22)

when S ∈ [0, 1, 2], i.e. only zeroth, first and second-order kinetics are allowed.

6.2.6 Multi-Compartment Models

So far, we have considered models of chemical reactions where all species reside within

a single, well-mixed reaction compartment. A single compartment implies that its

volume is constant for all species. This fact allows us to write mass-action rate laws

in terms of concentrations, i.e., mass/volume, because the volume is simply a scalar.

However, our circuits can also simulate more general, multi-compartment models.
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Such models, where each compartment is assumed to be well-mixed, are common

in biology. Cell-signalling pathways are an important example, where the extra-

cellular environment, cell membrane, cytoplasm and nucleus are often considered to

be separate compartments. Drug delivery is another example.

Systems that are not well-mixed exhibit spatial gradients in concentration, which

cause mass transport due to diffusion. Such systems can be viewed as the continuous

limit of multiple-component models. Our circuits can simulate these systems after

they have been spatially discretized into chambers small enough to be approximated

as well-mixed on the time scales of interest.

In multi-compartment models we cannot replace mass by concentration, because

the volume is not a scalar. However, we can usually assume that all reactants that par-

ticipate in a reaction are present in the same compartment. Consider the second-order

reaction A+ B → C. Assuming mass-action kinetics and well-mixed compartments,

the rate of production of C is given by

dMC

dt
= k

MAMB

VAB

⇒ d (VCXC)

dt
= kVABXAXB (6.24)

where M , V and X denote mass, volume and concentration, respectively, k is the

usual rate constant and VAB is the volume of the compartment containing A and B.

For now, we assume that all reaction volumes are constant with time. In this case we

can rewrite (6.24) as

dxC
dt

=

(
kX0

VAB
VC

)
xAxB (6.25)

where we have normalized all concentrations by the constant reference concentration

X0, as before. We would like to simulate such equations using the translinear cir-

cuits described earlier. Firstly, we drop our earlier assumption that the value of the

capacitor C is constant for all nodes. Here the voltage across C encodes the chemi-
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cal potential of a chemical species. In this case we can modify (6.11) to encode the

reaction A+B → C as

diC
dt

= β

(
κI0

CCφT

)
iAiB (6.26)

where we have normalized all currents by the constant reference current I0, as before,

and β is a dimensionless number that can be programmed on-chip. In order to get

dynamical equivalence with a speedup factor of α, we need

β

(
κI0

CCφT

)
= α

(
kX0

VAB
VC

)
⇒ β = ατ0X0

(
VAB
VC

)(
CC
C0

)
k (6.27)

where the time constant τ0 ≡ C0φT (κI0), and C0 is a constant reference capacitance.

We want to ensure that β is only a function of the reactants, since a single reaction can

generate products in compartments with different volumes. This condition is satisfied

by scaling capacitors with the volumes of the compartments where their respective

molecular species are located, i.e., by using

Ci
C0

=
Vi
V0

(6.28)

where i is any species, and V0 is a constant reference volume. In our chip the ratio

Ci/C0 can be set in discrete steps using a capacitor DAC. Using this scaling, (6.27)

becomes

β = ατ0X0

(
VAB
V0

)
k (6.29)

Equation (6.29) can be generalized to reactions of any order, giving us the following

rule for setting β:

β = ατ0X
S−1
0

(
VR
V0

)
k (6.30)

where S is the order of the reaction and VR is the volume of the compartment contain-

ing the reactants. In certain situations we might also be interested in time-varying

volumes. Modeling cell growth is a common and important example. In this case
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(6.25) must be modified to

vC
dxC
dt

+ xC
dvC
dt

= (kX0vAB)xAxB (6.31)

where we have normalized all volumes by V0. We see that the equation has an extra

term that depends on the time-derivative of the normalized volume vC . One might

expect that the scaling rule in (6.28) would also apply if vi was a function of time,

i.e., that we could set ci(t) = vi(t), where ci = Ci/C0 is the normalized capacitance.

Firstly, we rewrite (6.11) by replacing Cdv/dt with the version required for applying

KCL with time-varying capacitances, namely dq/dt = Cdv/dt+ vdC/dt. After some

algebra, we find that (6.26) must be modified to

cC
diC
dt

+ iC ln (iC)
dcC
dt

=

(
β

τ0

)
iAiB (6.32)

We see that (6.31) and (6.32) are dynamically equivalent once β is chosen in the

usual way (using (6.29)), except for the additional ln (iC) term in the latter equation.

This unwanted term prevents us from accurately simulating systems where compart-

ment volumes vary with time. The problem arises because in our analogy the voltage

across a capacitor does not represent concentration, but free energy. As a result its

charge does not represent mass, even when the capacitance is made proportional to

compartment volume. This issue disappears in a voltage-mode implementation where

capacitor voltages directly represent concentrations.

Equation (6.31) can be rewritten as

dxC
dt

+ xC
d ln (vC)

dt
=

(
kX0

vAB
vC

)
xAxB (6.33)

Consider the special case when both reactant and product volumes change ex-

ponentially with time, i.e., ∝ eλt, where λ is a constant. In this case (6.33) can be

simplified to

dxC
dt

+ λxC =

(
kX0

vAB
vC

)
xAxB (6.34)
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Since the ratio vAB/vC is constant with time, we see that the only effect of ex-

ponential growth or contraction is to add the extra term λxC to the equation. This

term causes first-order decay (if λ > 0) or growth (if λ < 0) of the product xC with

time. Its effects can be modeled by adding another reaction to the system, giving us

A+B
k−→ C

λ−→ φ, where φ is a “dummy” species [4]. Thus, we can model the special,

but common case of exponential growth using our circuits.

6.2.7 Conservation Laws in Chemical Reactions

Consider a generic chemical reaction with NR reactants and NP products. We may

represent the stoichiometry of such a reaction as

NR∑
i=1

riRi ↔
NP∑
i=1

piPi (6.35)

The definition of chemical stoichiometry guarantees that, irrespective of the form

of the rate law,

1

r1

dR1

dt
=

2

r2

dR1

dt
= ... =

NR

rNR

dRNR

dt
= − 1

p1

dP1

dt
= − 1

p2

dP2

dt
= ... =

2

rNP

dPNP
dt

(6.36)

Note that we have dropped the square brackets around species concentrations.

These relationships, which are more fundamental than the rate laws themselves, imply

the presence of conservation laws of the form d (Ri −Rj) /dt = 0, d (Pi − Pj) /dt = 0

and d (Ri + Pj) /dt = 0, where i and j vary between 1 and NR or NP . Thus, the

rates of change of concentration of every pair of chemical species participating in the

reaction obey a conservation law. Either the difference between them, or their sum,

is constant with time. The former occurs if they are both reactants or products,

while the latter occurs if one is a reactant and the other a product. These laws hold

irrespective of how many molecules are present, i.e., are valid in both deterministic

and stochastic regimes. There are a total of NCL such conservation laws, where
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NCL =
1

2
(NR +NP ) (NR +NP − 1) (6.37)

All chemical reactions can be decomposed into elementary molecular steps, which

are limited to

1. Transformation: Reactions of the form A ↔ B, where NR = NP = 1 and

NCL = 1. The single conservation law is (dA/dt) + (dB/dt) = constant.

2. Combination/Decomposition: Reactions of the form A + B ↔ C, where

NR = 2, NP = 1 and NCL = 3. The three conservation laws are d (A/dt) −

(dB/dt) = constant, dA/dt + dC/dt = constant, and (dB/dt) + (dC/dt) =

constant.

3. Combination/Decomposition with Indistinguishable Species: Reactions

of the form A↔ B +B, i.e., A↔ 2B, where NR = NP = 1 and NCL = 1. The

single conservation law is 2 (dA/dt) + (dB/dt) = constant.

In order to model chemical reactions with electronic circuits we have to deal

with a smaller “basis set” of interactions than these elementary molecular steps. All

electronic computations must be performed with electrons, which, unlike molecular

species, are indistinguishable. Electrons are also indestructible. As a result, their

total number, i.e., the electronic charge, is conserved. This is the only conservation

law obeyed by electronic circuits. Because electronic circuits use only one type of

charge, we must encode the diversity of chemical species using some other property

of the circuit. The most obvious way is to use the current location of an electron to

encode its simulated chemical identity, which is why we have used node voltages or

branch currents to represent concentrations. However, it is now evident that we must

also ensure that our electronic circuit satisfies all relevant chemical conservation laws.

Assume that we are representing concentrations using node voltages. The question

is if a purely passive circuit, consisting of a collection of capacitors connected together

by two-terminal elements, will suffice. The elements may be linear or non-linear.

However, because of charge conservation, the currents entering and leaving them must
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be equal and opposite. In other words, a two-terminal element connected between two

nodes A and B always ensures that iA = −iB, where positive currents leave nodes by

convention. Within this simulation framework, the three elementary molecular steps

described earlier imply the following relationships:

1. Transformation: Reactions of the form A↔ B require iA + iB = 0.

2. Combination/Decomposition: Reactions of the form A + B ↔ C require

iA − iB = 0, iA + iC = 0, and iB + iC = 0.

3. Combination/Decomposition with Indistinguishable Species: Reactions

of the form A↔ B +B, i.e., A↔ 2B, require 2iA + iB = 0.

We see that two-terminal circuit elements only satisfy conservation laws of the

form iX + iY = 0, which only occur when X is a reactant in a chemical reaction and

Y a product, or vice versa. This is enough for simulating chemical reaction networks

consisting only of transformations. They cannot satisfy laws of the type iX − iY = 0,

which occur when both X and Y are reactants or products, and so cannot model

chemical combination or decomposition. In order to model such reactions we need

a circuit element that satisfies iX = iY . Such an element is known as a current

copier, and is commonly realized using two transistors configured as a current mirror.

Current copiers are active circuits, because they require a power supply to operate.

Power supply nodes, usually denoted by VDD and ground, are sources of free energy,

and can sink and source currents without changing their own potentials. This fact

allows us to generate conservation laws, such as iX = iY , which do not conserve the

total amount of electronic charge.

Elementary molecular steps of the third type require a conservation law of the

form 2iX + iY to be satisfied. This law also cannot be constructed out of two-terminal

elements, and needs current amplifiers with gains of 2 and 1/2. Such amplifiers are

active circuits that require a power supply to operate. Thus, irrespective of the rate

laws and kinetics, simulating chemical reactions electronically requires, at a minimum,

two-terminal elements, current copiers and current amplifiers. The problem is that
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while passive elements like diodes and resistors behave as two-terminal elements with

very high precision, the active circuits required to build current copiers and amplifiers

are fundamentally imprecise. These circuits rely on matched, or identical, circuit

components for their operation, but real circuit components always mismatch by

finite amounts.

The situation is even worse for translinear circuits, because they use active circuits

to implement all conservation laws, including those of the form iX + iY = 0. As a

result, such laws will only be satisfied on-chip to a finite level of precision, i.e., will

be subjected to mismatch. The situation for the three types of conservation laws can

be represented as

iX + (1 + ε)iY = 0

iX − (1 + ε)iY = 0

2iX + (1 + ε)iY = 0 (6.38)

where the relative, or fractional error, denoted by ε, is a random variable that is

typically assumed to have a Gaussian probability distribution. Finally, we note that

these conservation laws should be individually satisfied by the fluxes of every reaction

in the system.

The only equilibrium state for a passive electronic circuit occurs when all nodes

reach a common potential, which we usually designate as ground. One might similarly

expect a chemical system to reach equilibrium when all species have equal chemical

potentials. Equation (6.8) predicts that, in dilute solutions where the law of mass

action is valid, the reference potential µ0 and reference concentration X0 are the same

for all molecular species. Thus equal chemical potentials imply equal concentrations.

However, we know that species concentrations are not equal at chemical equilibrium,

implying that they have different chemical potentials. For example, at equilibrium

forward and backward reactions have non-zero, but equal fluxes, so the reversible

reaction A
k+−⇀↽−
k−

B satisfies
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Kd ≡
k−
k+

=
Aeq
Beq

⇒ ∆µeq = (µB,eq − µA,eq) = −kBT ln (Kd) (6.39)

where Kd is the dissociation constant of the reaction, and eq subscripts denote quan-

tities at equilibrium. We see that the equilibrium chemical potentials of A and B

are not equal unless Kd = 1, i.e., k+ = k−. Thus the equilibrium state of a passive

electronic circuit cannot emulate chemical equilibrium, unless all forward and back-

ward reaction rates are equal. For example, two terminal devices can only emulate

transformation reactions where k+ = k−. Thus, in general active electronic circuits

with power supplies are required to simulate chemical reactions. Conceptually, we

can endow each simulated reaction with its own battery, or power supply voltage

∆veq = −kBT ln (Kd) /q, thus creating a distributed power supply. For practical

reasons, however, we we use a common power supply voltage for the entire circuit.

Transistor-based circuits generate effective, or “virtual” batteries that emulate the

distributed power supply.

6.2.8 Effects of Mismatch

Consider the unidirectional first-order reaction A → B, and assume that the rate

constant is equal to k. The reaction conserves the total amount of A and B, since

d([A] + [B])/dt = −k[A] + k[A] = 0. The conserved quantity arises from the physical

fact that the creation of a molecule of B implies the destruction of a molecule of B.

However, when this reaction is simulated electronically the flux (current) leaving the

node that represents [A] (or its associated free energy) will in general not be precisely

equal to the flux entering the node that represents [B]. This issue arises because of

mismatch between the transistors used to carry the fluxes, and is unavoidable in any

real electronic circuit. Circuit design techniques can reduce the amount of mismatch,

but not eliminate it entirely. The only way to completely avoid mismatch is to use

the same transistor, or other two-terminal device) to shuttle charge between the two

nodes. However, this is not always possible, as discussed earlier.

In general, therefore, we will be left with some fractional mismatch between the
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fluxes, which we denote by ε. The equations describing the reaction can be written

in matrix form as

 Ȧ

Ḃ

 =

 −k

(1 + ε)k

A (6.40)

where, for convenience, we have dropped the square brackets denoting concentrations.

We see that the mathematical effect of mismatch is to make the column vector on

the right hand side not sum up to zero. Solving these equations gives us

A(t) = A(0)e−kt

B(t) = B(0) + (1 + ε)A(0)
(
1− e−kt

)
(6.41)

where A(0) and B(0) are the initial concentrations of A and B. We see that the sum

of A and B is not conserved with time, but is instead given by

A(t) +B(t) = A(0) +B(0) + εA(0)
(
1− e−kt

)
(6.42)

In this case the consequences of mismatch do not appear to be too serious. The

sum of A and B in steady state (t → ∞) is increased by an amount εA(0) over its

initial value. However, now consider adding the reverse reaction B → A. The new

system of reactions is A↔ B. The rate constants and mismatches are k+ and k−, and

ε+ and ε−, respectively. The dynamics are described by the following set of equations

 Ȧ

Ḃ

 =

 −k+ (1 + ε−) k−

(1 + ε+) k+ −k−

 A

B

 (6.43)

Again, flux mismatch causes the columns of the matrix on the right hand side,

which we denote by K, to not sum up to zero. The original reaction (with no mis-

match) has a single stable steady state where A/B = Kd, and Kd = k−/k+ is the

dissociation constant. Equation (6.43), however, has no steady-state solutions, unless,
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by some miracle, we have (1 + ε−) (1 + ε+) = 13.

Since the system is linear we can gain further insight by finding the eigenvalues

of K. After much algebra, we find that

λ1,2 =
(k+ + k−)

2

[
1±

√
1 + χ

]
(6.44)

where χ is defined as

χ =
4k+k−

(k+ + k−)2 (ε+ + ε− + ε+ε−) (6.45)

Assuming that |χ| � 1, (6.44) can be simplified to

λ1,2 ≈ (k+ + k−) , − (k+ + k−)
χ

4

= (k+ + k−) , − k+k−
(k+ + k−)

(ε+ + ε− + ε+ε−) (6.46)

We see that there are two non-zero eigenvalues, indicating that in general A(t)

and B(t), which are given by c1e
−λ1t + c2e

−λ2t where c1 and c2 are constants, have

no steady-state solutions except 0 or ∞. The two eigenvalues correspond to two

modes: λ1 is the normal, or desired mode, while λ2 is an undesirable “slow” mode.

In fact, λ2/λ1 = χ/4, so that this mode becomes slower as the mismatches decrease

in magnitude and χ becomes smaller. When ε+ = ε− = 0, χ = 0 and we get λ2 = 0,

which gives us the usual steady state solution.

Our simulation will be valid if the fast mode is much faster than the slow mode,

i.e., if |χ| � 1. In this case the system will reach a quasi-steady state, where the

simulation can be halted, before the slow mode has had time to act. Therefore |χ|

should be as small as possible. Examining (6.45), we find that χ is the product of

two parts: χ1, which depends only on the rate constants, and χ2 = (ε+ + ε− + ε+ε−),

which depends only on the mismatches. We can rewrite χ1 as

3Assuming that |ε| � 1, this condition reduces to ε− = −ε+.
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χ1 =
4k+k−

(k+ + k−)2 =
4(√

k+/k− +
√
k−/k+

)2 (6.47)

Equation (6.47) shows that if k+ � k−, we get χ1 ≈ 4(k−/k+) � 1. Similarly, if

k− � k+, we get χ1 ≈ 4(k+/k−) � 1. The maximum value of χ1 = 1 occurs when

k+ = k−. Thus, for a given amount of mismatch, |χ| and the effects of the slow mode

are minimized when one rate constant is much larger than the other. Each reversible

reaction in a system of chemical reactions that is being electronically simulated will

have its own slow mode. We can guarantee the accuracy of the simulation if the

fastest of these undesirable modes is much slower than the slowest mode of interest.

Fundamentally, this requirement limits the range of rate constants that can be suc-

cessfully simulated. In general ε+ and ε− are set by transistor geometry and do not

scale with k+ and k−. Therefore the allowable dynamic range of rate constants is

approximately 1/χ2 ∝ 1/ε.

Further insight into the situation can be obtained by rewriting (6.43) as follows

 Ȧ

Ḃ

 =

 − (1 + ε+) k+ (1 + ε−) k−

(1 + ε+) k+ − (1 + ε−) k−

 A

B

+

 ε+k+

−ε−k−

 A

B

 (6.48)

We see that the rate constant matrix can be broken up into two parts. The

first part consists of an “ideal” reversible reaction with no mismatch4. The second

part consists of either first-order creation or degradation reactions, depending on the

signs of ε− and ε+. These additional reactions cause exponential growth or decay

of A and B, and are responsible for the so-called “slow mode”. In the electrical

circuit equivalent, mismatch causes an unwanted positive or negative-valued resistor

to appear between node A and ground. A similar phenomenon occurs at node B.

We shall now describe the effects of mismatch on a slightly more complicated

set of reactions, namely Michaelis-Menten kinetics. This set of reactions adequately

describes the kinetics of many common enzymes, and is given by

4Notice that both columns in the first matrix sum to zero.
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E + S
k1−−⇀↽−−
k−1

ES
kcat−−→ E + P (6.49)

where E, S, ES, and P represent the concentrations of enzyme, substrate, enzyme-

substrate complex, and product, respectively. The rates of the reversible reaction are

denoted by k1 and k−1, and that of the irreversible reaction by kcat. We assume that

mismatch is present in each reaction, and denote the fractional mismatches by ε1, ε−1,

εcat and ε′cat, respectively. Finally, we also assume that the substrate concentration

S is constant. This assumption is valid at the beginning of the reaction when the

substrate has not been appreciably depleted. The resultant differential equations are

given by


Ė

ĖS

Ṗ

 =


−k1[S] (1 + ε−1) k−1 + (1 + εcat) kcat 0

(1 + ε1) k1[S] − (k−1 + kcat) 0

0 (1 + ε′cat) kcat 0




E

ES

P

 (6.50)

To solve this set of equations we make the usual quasi-steady-state assumption

(QSSA) that d[ES]/dt = 0. This assumption is valid if the following statements are

true:

1. The time taken for ES to reach its QSSA value is much shorter than the overall

time for the substrate to be depleted

2. Negligible substrate is consumed during the approach of ES to its QSSA value

It can be shown that both conditions are satisfied if

E0

Km + S0

� 1 (6.51)

where E0 and S0 are the initial concentrations of the enzyme and substrate, respec-

tively, and Km ≡ (k−1 + kcat) /k1 is known as the Michaelis-Menten constant of the

enzyme. In our case, we further assume that the magnitudes of the mismatch terms
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are much smaller than one. After much algebra, the rate of product formation is

found to be

v ≡ dP

dt
= kcat (1 + ε′cat)ES

= vmax

(
S

Km + S

)
ekεt (6.52)

where

kε = k1S

(
ε1 +

k−1ε−1 + kcatεcat
k−1 + kcat

)
vmax = kcat (1 + ε′cat)E0

Km =
k−1 + kcat
k1 (1 + ε1)

(6.53)

We see that the rate law has the usual Michaelis-Menten form, except for the

exponential term. Thus, the effects of the mismatch are to cause small errors in the

values of vmax and Km, and, much more importantly, to introduce an unwanted “slow”

mode with rate constant kε. Its properties are very similar to that of the slow mode

in the simple reversible reaction analyzed earlier. Firstly, kε consists of the product

of two terms: the first, equal to k1S, is independent of the mismatch terms, while the

second is a weighted sum of them. Secondly, the mode causes species concentrations

to blow up or die with time, depending on the signs of the mismatch terms. Finally,

dynamic simulations will be valid on timescales where the mode has not had time to

act, i.e., when t� 1/kε.

To summarize, mismatch limits the stiffness of the differential equations that can

be simulated electronically. Thus, the effects of mismatch are analogous to the effects

of finite-precision arithmetic on simulations performed by digital computers. Tran-

sistor mismatch can be reduced in two ways: passive and active. Passive techniques

do not require changes to the circuits themselves. For example, the transistors can

be made physically larger, and also laid out closer to each other on the die [111].
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To first order, the standard deviation between two similar MOS transisors scales as

1/
√
WL, where WL is their layout area [223]. Active techniques include the use of

fully-differential circuit topologies, and also dynamic matching schemes where the

circuit uses one of an array of transistors at any given time, and rapidly switches

between them.

6.2.9 Noise in Chemistry and Electronics

Individual chemical reaction events are usually uncorrelated. As a result, molecular

fluxes exhibit shot noise. This behavior is exactly analogous to electronic shot noise,

which is caused by diffusion currents within physical devices. In both electrical circuits

and chemistry, thermodynamic equilibrium, which results in zero net flux, does not

result in zero noise. Instead, equal and opposite reaction fluxes diffuse independently

and cause fluctuations in the concentrations of electrons and molecules. In both cases,

individual fluxes usually consist of uncorrelated events, and thus exhibit Poisson

statistics5.

We want chemical and electronic state variables that behave identically in the

high SNR or deterministic limit to also have identical noise properties, thus allowing

our circuits to peform fast, accurate stochastic simulations. This ability is important

because while noise has important effects in many biological systems, noisy systems

are numerically stiff and simulate slowly on digital computers.

In log-domain circuits noisy fluxes (currents) do not directly act on a state variable,

i.e., species concentration. Instead, they add or subtract charge from a capacitor, the

voltage on which is log-compressed, i.e., must be exponentiated to get a current that

is the state variable. Because this operation is nonlinear, positive and negative fluxes

that affect state variables will not display Poisson statistics, unless the log-compressed

fluxes are somehow ‘predistorted’. We shall describe how translinear circuits naturally

generate such predistortion.

Chemical conservation laws arise at the microscopic level because of interactions

between molecules with distinct identities. For example, in the reaction A ↔ B,

5Exceptions include flows caused by drift, such as in above-threshold MOSFETs.
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reaction fluxes obey the conservation law (dNA/dt) + (dNB/dt) = 0 because, micro-

scopically, the production of a molecule ofB implies the destruction of a molecule of A,

and vice versa. Thus, in the absence of other reactions, NA+NB = constant and fluc-

tuations in A and B, which we denote by ∆NA and ∆NB, respectively, are completely

anti-correlated on all time scales. Mathematically, (NA + ∆NA +NB + ∆NB) =

(NA +NB)⇒ ∆NA = −∆NB.

We should emphasize that conservation laws for reaction fluxes only cause corre-

lated fluctuations in concentrations (or numbers of molecules) in the absence of other

reactions. Consider the chain of reactions A1 ↔ A2 ↔ ...↔ An...↔ AN+2, where we

have interposed N intermediate species between A1 and AN+2. Clearly A1 and AN+2

will display anti-correlated fluctuations if N = 0. However, these correlations should

decrease in magnitude as N increases. The reactions that produce A1 and consume

AN+2, for example, will occur at uncorrelated times, leading to reaction fluxes that

do not fluctuate in a correlated way.

Figure 6-4 shows the simulated cross-correlation between A1 and AN+2 in steady

state as a function of N . All forward and backward reactions were assumed to have

the same rate constant k. The plot confirms our expectations. It shows that A1 and

AN+2 are ideally anti-correlated (correlation coefficent of -1) for N = 0, and become

increasingly decorrelated as N increases. Plots are shows for various values of Nf ,

the average number of molecules of each species An in steady state. We see that

the correlation coefficient is essentially independent of Nf , and depends only on N .

These simulations were performed using an optimized version of Gillespie’s stochastic

simulation algorithm [90].

Electronic analogs of chemistry use the location of electrons (circuit node or

branch) to encode molecular identity. We assume that concentrations are repre-

sented by the number of electrons on capacitors. There are two basic ways for an

electronic analog of a chemical reaction to change the amount of charge at various

nodes in a circuit. Firstly, two-terminal elements can physically transport electrons

between different nodes. Such transport occurs via drift and diffusion in resistors and

transistors, and takes a finite amount of time. However, we have seen previously that
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Figure 6-4: Correlation between two chemical species as a function of the number of
intermediate species between them, as predicted by the Gillespie stochastic simulation
algorithm.

this scheme can only implement transformation reactions.

For example, consider an electron that has to move between nodes A and B to

emulate the single chemical reaction A ↔ B. It takes a time τ to do so, where

τ is approximately equal to the diffusion time through the charge-transfer device.

Because of charge conservation we have QA +QB +QT = constant, where QT is the

charge stored in the transport device, rather than the desired QA + QB = constant.

The effects of QT become significant on time scales smaller than τ . As a result,

correlated fluctuations ony occur on time scales longer than τ , the transport delay.

In transistors, τ ≈ 1/ωT , where ωT is the unity-gain frequency.

The second scheme uses active circuits and needs a power supply. The basic idea

can be illustrated by trying to construct the conservation law (dQA/dt) = (dQB/dt),

i.e., iA = iB, for the reaction A + B ↔ C. One way to enforce this constraint is to

first draw a current iA from node A and convert it to a voltage, which is then used to
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control the amount of current iB drawn from node B6. Thus, fluctuations in iA affect

iB, but not vice-versa. As a results, fluctuations in iA and iB are not fully correlated.

The noise sources associated with different transistors are uncorrelated as long as

they act as ‘small-signal’ perturbations, i.e., as long as the SNR is not too low. Active

circuits must use several transistors to implement the rate laws in chemical reactions.

As a result, it is very difficult to build circuits that accurately reproduce correlated

fluctuations in reaction fluxes, as shown in the previous example. In practice, however,

this may not be an important limitation, for two reasons. Firstly, we shall show that

active circuits can match the power spectral density (PSD) of fluctuations produced

by chemical reactions. PSD ignores correlations, or phase information, but this level

of realism may be enough for many applications. Secondly, transport delays due

to diffusion are also ubiquitous in chemical reactions. These random delays make

correlated fluctuations difficult to measure experimentally.

6.3 Design of the Chemical Network Chip

6.3.1 Translinear Circuits

Let us re-examine (6.8), which defines the chemical potential. In our model chemical

potential energy maps to electrical potential energy, i.e., µi maps to qvi. Similarly,

concentrations map to currents, so xi maps to current ii. Chemical potential differ-

ences generate “concentration currents”, while electrical potential differences generate

electronic currents. Since the current increases exponentially with potential differ-

ence, (6.8) is equivalent to a diode.

Chemical reactions create molecular fluxes that depend on species concentrations

and change them. In our model, reactions correspond to current-dependent changes

in current, i.e., dii/dt = f (i1, i2, ...), where f() is any function. The most obvious

way to implement a reaction is to use a a current-controlled voltage source, i.e.,

transresistance:

6What we have described here is simply a current mirror!
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vL = Lf (i1, i2, ...) (6.54)

where L is a constant that gives the equation the right dimensions. The output

voltage of the transresistance, i.e., vL is applied across an inductance of value L that

carries the current ii:

dii
dt

=
vL
L

= f (i1, i2, ...) (6.55)

However, such a scheme is inconvenient for integrated circuit implementations for

two reasons. Firstly, passive inductors are hard to build below RF frequencies, while

active inductors are noisy and have limited dynamic range. Secondly, transistors are

inherently voltage-controlled current sources, i.e., transconductors, and not current-

controlled voltage sources, i.e., transresistors. Therefore, we need another way to

generate dii/dt terms. Fortunately, the dynamic translinear principle comes to the

rescue. Subthreshold FETs and BJTs are exponential transconductances, i.e.,

ii = I0 exp

[
κ (vi − V0)

φT

]
(6.56)

where vi is the gate-to-source voltage, and I0, V0 and κ are constants. As a result,

dii/dt can be replaced by the product of two currents: ii itself, and the current

iC = Cdvi/dt that flows through a capacitor C connected between the gate and

source terminals:

dii
dt

=
iCii
CφT

(6.57)

Therefore the problem of generating dii/dt as a function of other currents has

been replaced by the easier problem of generating iC as a function of these currents

and ii itself. By inverting (6.56) we get

vi = v0 +
kT

κq
ln

(
ii
I0

)
(6.58)

Since the mathematical forms of (6.58) and (6.8) are identical, vi simply represents
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µi/(κq). Thus another advantage of the translinear circuit model is that it gives us

access to both species concentrations and their associated chemical potentials. Equa-

tions (6.58) and (6.8) are identical because they are both caused by particle concen-

trations that follow exponential, i.e., Boltzmann probability distributions on energy

landscapes. Thus, at thermodynamic equilibrium, concentration ∝ exp (−Ei/kT ),

where Ei is the energy of species i. For chemical reactions Ei = µi = δG/δxi, where

G is the Gibbs free energy of the system. Similarly, for electronics Ei = κqvi.

6.3.2 Reaction Circuits

We reference all state variables to VDD since PMOS transistors are our exponential

elements. We use the translinear, or log-domain integrator proposed in [231] as our

primary building block. This circuit is guaranteed to be stable at all current levels

and can be implemented on low power-supply voltages. Each integrator only needs

to be unidirectional, since it models how flux from an unidirectional reaction changes

the concentration of one species. In other words, the capacitor storing the chemical

potential of the species is either charged or discharged by a current iC = βi1i2/ii,

depending on whether the species is a product or a source, respectively. In some

cases one of the inputs (i1 or i2) to the integrator is equal to the output ii. In these

cases iC simplifies to either i1 or i2 and the integrator can be replaced by a current

mirror. A complete reaction is modeled by using an integrator or current mirror for

every participating species.

Both transient and steady-state behaviors of chemical networks can be simulated

using our circuits, since the circuit equations shown in (6.11) and (6.12) are dynam-

ically equivalent to the original chemical equations. Dynamical equivalence refers to

the fact that the dynamics of normalized chemical and electrical state variables, i.e.,

xi/X0 and ii/I0, respectively, are identical. However, in order to simulate typical bio-

chemical time constants of seconds to hours rapidly, our electronic circuits should be

dynamically equivalent, not to the chemical dynamics themselves, but a time-scaled

(sped-up) version of them. In order to get a speedup factor of α, normalized elec-

tronic state variables ii/I0 must have time derivatives that are α times larger than
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their chemical equivalents. As a result, the dimensionless number β that scales the

capacitor current iC is given by

β = ατ0X
S−1
0 k (6.59)

where the characteristic electronic time constant τ0 = CφT/ (κI0), S ∈ [0, 1, 2] is

the order of the chemical reaction, and k is its kinetic rate constant. Consider a

reversible reaction with forward and backward rate constants k1 and k2, respectively.

The ratio β2/β1 is proportional to the equilibrium dissociation constant Kd = k2/k1

of the reaction:

β2

β1

=

(
k2

k1

)
XS2−S1

0 = KdX
S2−S1
0 (6.60)

where S1 and S2 are the orders of the forward and backward reactions, respectively.

From (6.11), a single unidirectional second-order reaction of the form A+ B → C is

described by the following equations:

CdvA/dt = +βiAiB/iA= +βiB

CdvB/dt = +βiAiB/iB= +βiA

CdvC/dt = −βiAiB/iC (6.61)

Note that the signs of the currents have been reversed since the state variable is

now referenced to the constant voltage VREF , i.e., given by VREF − vi. As a result

increasing vi decreases the state variable, and vice-versa. The first two equations in

(6.61) require current mirrors, while the third requires a log-domain integrator. A

simplified circuit implementation is shown in Figure 6-5. In order to ensure that all

transistors remain saturated we usually set VREF to a value that is a few hundred mV

below VDD. The W/L ratio of some transistors, indicated in the figure, are made β1

and β2 times larger than the other transistors using binary-weighted N -bit transistor

arrays (N = 5 in this implementation). Therefore β1 and β2 can vary between 1 and
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Figure 6-5: Simplified schematic of a circuit that models a second-order chemical
reaction.

2N , and β = β1β2 between 1 and 22N . Not all numbers between 1 and 22N can be

obtained in this way. A detailed analysis is provided in Appendix E.

Once the chemical rate constants k are given, α, τ0 and X0 must be chosen such

that β for all reactions falls within this range. We also add a fixed current Imin to

β1iB in the actual implementation to ensure that iB does not become small enough

for parasitic capacitances inside the integrator to noticeably affect the dynamics of

the state variables, i.e., A, B and C. An additional integrator and current mirror

(not shown) is used to remove the effect of Imin, as follows:

CdvA/dt = +β2 (β1iB + Imin)− β1β2Imin

= +β1β2iB

CdvC/dt = −β2 (β1iB + Imin) iA/iC + β2IminiA/iC

= −β1β2iAiB/iC (6.62)

A first-order reaction A→ B is defined by the following equations:
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CdvA/dt = +βI0iA/iA= +βI0

CdvB/dt = −βI0iA/iB (6.63)

These equations can be implemented with a current mirror and an integrator.

However, since the value of the constant current I0 is known a priori, Imin is not

needed. This fact simplifies the circuit implementation. Finally, a zeroth-order reac-

tion [ ]→ A, where the species A is produced by an external flux (current source) is

defined by the equation

CdvA/dt = −βI2
0/iA (6.64)

This equation can be implemented with a single integrator, and again, Imin is not

needed. The value of β for both first and zeroth-order reaction circuits is set in a

similar way to the second-order case, i.e., by factorizing β into β1 and β2, which are

set by binary-weighted transistor arrays. We can now combine reaction circuits of

various types to implement arbitrarily complicated systems of chemical reactions.

6.3.3 Scaling

We want to fit as much of the dynamic range in reaction rates as possible into the

limited dynamic range of the on-chip dimensionless scaling variable β, which is pro-

grammed by transistor geometry. The value of β is given by

β = βmin (D1 + 1) (D2 + 1) (6.65)

where D1 and D2, which represent the DAC codes used to program β, are integers

between 0 and 2N − 1. In the current chip we used N = 5. Thus, a limited set of β

values is available. Given a desired value of β we can always pick D1 and D2 such

that the fractional error η is minimized, where η is given by
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η =

∣∣∣∣ β/βmin
(D1 + 1) (D2 + 1)

− 1

∣∣∣∣ (6.66)

The relationship between β and the rate constant k is given by (6.59). We shall

denote β/k for a reaction of order S ∈ [0, 1, 2] by cS = ατ0X
S−1
0 , where α is the

speedup factor, X0 is the reference concentration, and τ0 = CφT/ (κI0). The definition

of cS guarantees that the following relationship is always true:

c2
1 = c0c2 (6.67)

Mathematically, we have to pick the values of the three coefficients c0, c1 and c2

so that we know what values of β to use for given values of k. The coefficients depend

on two variables, ατ0 and X0. Once the coefficients are known we can determine the

values of ατ0 and X0 using the relationships

ατ0 = c0X0 = c1 = c2/X0

X0 = c1/c0 = c2/c1 =
√
c2/c0 (6.68)

On this chip the minimum and maximum values of β were βmin = 1/24 and

βmax = 26, respectively, resulting in a dynamic range of 210 : 1 = 1024 : 1. We also

denote the geometric mean of βmin and βmax by β =
√
βminβmax = 2. In the simplest

scaling strategy, cS is defined to be

cS =
β

kS
(6.69)

where kS is the geometric mean of all the rate constants of reactions with order S7.

Values of k that result in β < βmin or β > βmax will be clipped. This strategy

simultaneously aligns the center of the dynamic ranges of β and k for all values of

S. As a result the maximum possible range of k values can be accommodated on

7Other measures of centrality of a distribution can also be used. One which we have found
particularly useful is the geometric mean of the maximum and minimum rate constants that have
to be implemented.
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chip. However, the strategy does not work if zeroth, first and second order reactions

are simultaneously present on the chip. This restriction arises because the three

coefficient values cannot be picked independently; they are related by (6.67). In this

case we modify (6.69) as follows

cS =
β

γSkS
(6.70)

where γS is a constant which determines the extent to which the centers of the dynamic

ranges of β and k are misaligned. Ideally γS = 1 ∀S, so there is no misalignment, as

in (6.69). Combining (6.67) and (6.70), we get

γ1√
γ0γ2

=

√
k0k2

k1

(6.71)

Based on symmetry arguments, we devised the following heuristic rules for picking

γS, which work well in practice: γ1 = 1/
√
γ0γ2, and γ0 = γ2. These choices allow us

to write

γ0 =
1

γ1

= γ2 =
k1

1/2(
k0k2

)1/4
(6.72)

In order to complete our on-chip implementation of the chemical reaction model,

we also need to set initial conditions. We want normalized electrical and chemical

state variables, ij = Ij/I0 and xj = Xj/X0, to be identical. Here j is the index of the

state variable. This condition applies to initial conditions as well, and so we have

Ij,init = I0

(
Xj,init

X0

)
(6.73)

where the subscript init denotes initial conditions. We pick values for Ij,init from a

set generated by a binary current divider. The relevant circuit is described later in

more detail. It produces a set of currents described by

Iinit(N) = Imin2N (6.74)
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where, on this chip N is an integer between 0 and 15 and Imin = 30pA. The maximum

current available is Imax = Imin215 ≈ 1µA. We use the value of N that provides the

closest match between the required initial current Ij,init and the available set Iinit(N).

The result is

N =

[
N0 + log2

(
Xj,init

X0

)]
(6.75)

where N0 = log2 (I0/Imin), so that I0 = Imin2N0 , and [ ] is the nearest integer function.

6.3.4 Noise Analysis

Noise Statistics

We know that counting the arrivals of uncorrelated events leads to a Poisson proba-

bility distribution in the value of the counter N , i.e., we get

p(N) =
N
N

exp
(
−N

)
N !

(6.76)

where N is the mean (expected) number of events. The variance of a Poisson distri-

bution is also equal to N . White shot noise is caused by the arrival of uncorrelated

events at a detector, and counting is the discrete analog of integration. Therefore,

integrating one or more uncorrelated white shot noise currents Ii (with PSD’s equal

to 2qIi) onto a capacitor causes its charge to have a Poisson distribution, with mean

Q and variance 2qQ. Similarly, a Poisson distribution also results when chemical

reactions produce molecular fluxes with white PSDs that are then integrated into

concentrations. However, there are many cases in electronics and chemistry when the

distribution of capacitor charge or species concentration is not Poisson. The main

reasons are

• There is feedback in the system, so that the mean value of the charging current

depends on the voltage that is being charged. This is true of a resistor, for ex-

ample. Feedback changes the bandwidth over which the noise PSD is integrated
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from 1/T , where T is the observation time, to a value approximately equal to

the bandwidth of the feedback loop.

• The current that charges the voltage is not the same as the current that sets

its variance. For example, in a resistor some of the current is carried by drift,

which is noiseless as long as the drift velocity vd is much smaller than the mean

thermal velocity
√
kT/m. The total current through a resistor R is VR/R, where

VR is the voltage drop across it. However, the noise PSD is 2qID, where the

diffusion current ID = 2φT/R. Similarly, in an operational transconductance

amplifier with bias current IB, the output noise current PSD is 2qNIB, where

N is the effective number of noisy devices inside the amplifier. In particular,

the noise currents of all transistors connected to the input node directly add up

and contribute to the total output noise current. The current that charges the

capacitor, on the other hand, is equal to the difference between the currents

carried by PMOS and NMOS transistors connected to the output node.

• There are correlations between charging currents.

• There are other, external sources of noise. For example, the mean values of

the charging currents could be functions of other potentials in the system, and

could therefore themselves be noisy. In genetic circuits, for example, the noise

in protein concentrations can be divided into intrinsic and extrinsic parts [215,

234]. Intrinsic noise is uncorrelated across genes, unlike extrinsic noise, which

is caused by environmental fluctuations and global gene regulatory networks.

The signal-to-noise ratio (SNR) if a variable X is defined as the average power of

X divided by its total variance, i.e.,

SNR =

(
X
)2(

X −X
)2

=

(
X
)2

σ2
X

(6.77)

In the biological literature CV = 1/
√

SNR is often used instead of SNR. Here CV

stands for ‘coefficient of variation’, and is equal to the standard deviation divided
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by the mean. Another measure of variance that is commonly used is noise strength,

defined as the variance divided by the mean. Noise strength is a type of population-

normalized variance: for Poission processes variance is equal to the mean, so noise

strength is equal to 1 for all values of the mean. The functional dependence of

SNR on mean level can have a variety of forms because of the mechanisms described

previously. Some commonly-observed types of dependence are:

1. Noise is constant with signal level. For example, the variance of capacitor

voltages in resistor-capacitor circuits scales as v2
n ∝ kT/C, independent of signal

level. In this case σ2
X is independent of X, so SNR ∝

(
X
)2

.

2. Noise power scales with signal level. This case corresponds to Poission statistics.

Since σ2
X ∝ X, SNR ∝ X.

3. Noise power scales with signal power. As we shall show, this case occurs in

current-mode circuits at large signal levels. Since σ2
X ∝

(
X
)2

, SNR is constant.

Elementary Chemical Reactions

Let us consider the elementary chemical reaction A + B ↔ C in steady state. The

forward and backward rate constants are denoted by k1 and k2, respectively. We want

to analyze the concentration fluctuations, i.e., noise, produced by this reaction. In

general all the species concentrations have noise. However, we will consider the simple

case when two of the species are assumed to be effectively noiseless. For example,

they could be present at much higher concentrations than the third species. Since A

and B can be reversed without affecting the reaction, their noise properties will be

identical. Thus, there are only two unique cases: either A or C is noisy.

We assume that every reaction flux consists of uncorrelated arrivals or departures

of molecules, and thus displays Poisson statistics. A signal-flow block diagram of

the chemical reaction is shown in Figure 6-6. Consider part (a) of the figure, which

models fluctuations in A. The figure shows that the difference between the fluxes

that create and destroy A is integrated into the concentration of A. Each of these

fluxes has a power spectral density equal (PSD) to twice the mean flux, just like any
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Figure 6-6: Signal-flow block diagrams for calculating the noise of (a) the species A
and (b) the species C due to the elementary chemical reaction A + B ↔ C. Wavy
lines represent noise power spectral densities in steady state.

Poisson variable. The two mean fluxes are k2[C] and k1[A][B], leading to PSDs of

2k2[C] and 2k1[A][B], respectively. These PSDs are independent, and therefore the

total PSD that is filtered by the low-pass filter is the sum of the two. However, at

steady state the two fluxes must have identical mean values, and so the total PSD is

2 × 2k2[C] = 4k2[C]. Similarly, if we consider part (b) of the figure we see that the

total PSD that is filtered by the low-pass filter in this case is also 2k2[C]+2k1[A][B] =

4k2[C] in steady state.

We note that the noise bandwidth of a first-order low-pass filter is π/2 times larger

than its 3dB bandwidth. Thus the noise bandwidth of the filter in Figure 6-6(a) is

(π/2)× k1[B]/(2π) = k1[B]/4. Similarly, the noise bandwidth of the filter is filter in

Figure 6-6(b) is k2/4. We can now immediately write down, by inspection, that

σ2
A = 4k2[C]× 1

(k1[B])2 ×
k1[B]

4

=
k2[C]

k1[B]

= [A] (6.78)
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for A, and

σ2
C = 4k2[C]× 1

k2
2

× k2

4

= [C] (6.79)

for C, where [A] and [C] are the mean concentrations of A and C, respectively. We

see that the variances of A and C are both equal to their mean values, i.e., they both

behave as Poisson random variables. Electronically, the same reaction A+B ↔ C is

modeled by the following equations:

C
dVA
dt

= −β1IB + β2
ICI0

IA

C
dVB
dt

= −β1IA + β2
ICI0

IB

C
dVC
dt

= β1
IAIB
IC
− β2I0 (6.80)

Here β1 and β2 are defined as

β1 = ατ0X0k1

β2 = ατ0k2 (6.81)

where α is the speedup factor, τ0 = CφT/ (κI0), and X0 and I0 are the reference

concentration and current, respectively. The electronic analog of the dissociation

constant of the reaction is given by

Kd =

(
β2

β1

)
I0 = Kd,chem

(
I0

X0

)
(6.82)

where Kd,chem = k2/k1 is the dissociation constant of the original chemical reaction.

A simplified version of the circuit that determines the concentration of C, i.e., imple-
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Figure 6-7: A simplified circuit that controls the concentration of C in the reaction
A+B ↔ C.

ments the third equation in (6.80), is shown in Figure 6-7.

In general the concentrations of A, B and C can depend on other species. Thus,

fluctuations in the concentrations of other species can cause fluctuations in [A], [B]

and [C]. We shall ignore such extraneous sources of noise, because we want to cal-

culate the fluctuations in concentration produced by fluxes within a single reaction.

Thus, as in our earlier analysis, we will only allow one species in the reaction to fluc-

tuate at any time. The other two will be held at fixed values. In addition, the circuit

is assumed to be in steady-state, so that the average current through the capacitor

C is zero. In this analysis we shall ignore non-fundamental sources of noise, such as

flicker noise. Each transistor’s noise model then consists of a white current source

with PSD 2qIi connected between the source and drain, where Ii is the average (DC)

current through the transistor Mi. These sources are assumed to be uncorrelated with

each other. The total short-circuit output noise current at vC is found by adding up

contributions from each transistor. The results are shown in Table 6.3.

It is possible in principle to run the NMOS mirror transistors M2, M3, M7 and
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Transistor PSD at vOUT
M1 2qβ1IB (gm6/gm4)2 = 2q (β2I0)2 / (β1IB)

M2 2qβ1IB (gm6/gm4)2 = 2q (β2I0)2 / (β1IB)

M3 2qβ1IB (gm6/gm4)2 = 2q (β2I0)2 / (β1IB)

M4 2qβ1IB (gm6/gm4)2 = 2q (β2I0)2 / (β1IB)
M5 0
M6 2qβ2I0

M7 2qβ2I0

M8 2qβ2I0

M9 2qβ2I0

Total 2qβ2I0 [4 + 4 (β2I0) / (β1IB)]

Table 6.3: Current-mode LPF output noise sources

M8 far enough above threshold for most of their current to be carried by drift. As a

result their PSD’s will be neglible compared to those of M1, M4, M6 and M9 (which

must remain below threshold since they are part of the translinear loop). In this case

the total short-circuit current noise PSD at vC is reduced by a factor of two from the

value shown in Table 6.3, and is given by

i2C
∆f

= 2qβ2I0

[
2 + 2

(
β2I0

β1IB

)]
(6.83)

It is easy to see that the small-signal impedance at vC is equal to 1/gm6. Since

the steady-state current through M6 is equal to β2I0, the impedance is given by

rC =
1

gm6

=
(φT/κ)

β2I0

(6.84)

The noise bandwidth of vC is that of a first-order low-pass filter with time constant

τ = rCC. It is given by

BW =
1

2π
× 1

τ
× π

2
=

β2I0

4C (φT/κ)
(6.85)

where we have substituted for rC using (6.84). Therefore the total variance of vC is

given by

v2
n =

i2C
∆f
×BW × r2

C =
kT

2κC

[
1 +

(
β2I0

β1IB

)]
(6.86)
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We see that v2
n depends on IB, but not on the other input A. In a real implemen-

tation we use two translinear circuits to make the circuit symmetric with respect to

A and B, as described earlier. In this case it is easy to show that the variance at C

is modified to

v2
n =

kT

2κC

[
1 +

(
β2I0

β1IB

)
+

(
β2I0

β1IA

)]
(6.87)

Also, in steady-state, we have β2I0 = β1IAIB/IC . Substituting this relationship

into (6.88) we get

v2
n =

kT

2κC

[
1 +

(
IA + IB
IC

)]
(6.88)

We see that the variance in vC is proportional to kT/C, like in simple resistor-

capacitor circuits, but also depends on the ratio (IA + IB) /IC . Assuming that v2
n �

φT/κ, the variance in iC is given by

i2n = v2
n (κIC/φT )2

=
qI2
C

2C (φT/κ)

[
1 +

(
IA + IB
IC

)]
(6.89)

where we have assumed that the exponentiation of vC to iC generates no additional

noise. In our case this is a valid assumption since exponentiation is done off-chip in

software. Thus the SNR of C is given by

SNRC ≡
I2
C

i2n
=

(
2CφT
κq

)
1

[1 + (IA + IB) /IC ]
(6.90)

We see that the SNR increases ∝ IC when IC , i.e., the mean output current,

is much smaller than (IA + IB). This behavior is similar to a Poisson process, and

occurs because the noise voltage at C is “predistorted” by the factor 1/IC before

being exponentiated into a current. Thus, in this regime the noise properties of our

circuit are similar to the chemical reaction. However, unlike in chemistry our SNR

saturates to a value SNRmax for large values of IC . The maximum SNR is given by
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SNRmax =
2CφT
κq

(6.91)

In practice several noisy transistors will be needed to implement current mirrors

within the circuit, reducing SNRmax to

SNRmax =
4CφT
κqNeff

(6.92)

where Neff is the number of noisy transistors, i.e., the excess noise factor. For

example, it is easy to show that SNRmax is lowered by a factor of 2, i.e., 3dB, if the

NMOS transistors shown in Figure 6-7 are assumed to operate in sub-threshold. In

other words we get Neff = 4 in this case. We can carry out a similar analysis to find

the SNR of A and B. The result is

SNRA =
SNRmax

[1 + IC/IA]

SNRB =
SNRmax

[1 + IC/IB]
(6.93)

where SNRA and SNRB refer to the SNR of A and B, respectively, and SNRmax is

the same as before. We see that the SNR of A also goes up linearly with its mean

level before saturating to SNRmax, and that B behaves similarly. Thus, the noise

properties of our circuit are similar to the original chemical reaction for values of

SNR < SNRmax. The effects of noise are important at low values of SNR. Thus, such

effects will be accurately modeled by our circuit if SNRmax � 1. For C = 1pF at

room temperature, and assuming κ = 0.7, (6.91) predicts SNRmax = 56.7dB.

In order to verify our theoretical predictions we used SPICE to simulate the re-

action A + B ↔ C. The system was implemented using the reaction circuits that

were described earlier. The same circuits were later implemented on-chip. Figure 6-8

shows the simulated SNR of IC as a function of the capacitance C for various mean

levels of IC . The values of Kd, IA and IB were fixed at 28nA, and flicker noise was

absent. We see that SNR increases linearly with C but saturates with increasing IC ,
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Figure 6-8: Simulated SNR of IC as a function of the capacitance C. Plots are shown
for various mean levels of IC in the absence of flicker noise and with Kd = 28nA.

as expected. However the slopes as a function of C are somewhat lower than pre-

dicted, particularly for small values of C. It is possible that parasitic capacitances,

which produce larger effects as C decreases, are responsible.

Figures 6-9 and 6-10 show the simulated SNR of IA and IC , respectively, as a

function of their mean values. Plots are shown for various values of Kd in the presence

and absence of flicker noise. We see that SNR is almost independent of Kd when flicker

noise is absent, as expected. In addition, we obtain a good fit to theory by assuming

Neff = 16. However, when flicker noise is taken into account higher values of Kd

result in somewhat higher SNR. Also, the SNR curves with flicker noise saturate

more quickly, and at lower values of SNRmax, than those without. The PSD of flicker

noise ∝ I
2
, as predicted by (5.128), while that of thermal noise is ∝ I. Here I is the

mean current level. The faster increase in flicker noise PSD with I explains why its

relative contribution to the SNR increases with IA and IC .

Both DC mismatch and flicker noise are primarily caused by traps within the gate

oxide, and can be reduced by using larger transistors. However, larger transistors
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also have larger parasitic capacitances, which decrease the stability of our translinear

loops for a given value of C. Thus the oxide trap density, which is a process-dependent

parameter, imposes lower bounds on C. The speedup factor α is inversely propor-

tional to C when β is fixed, implying that the amount of simulation speedup is also

ultimately limited by trap density.

Equation (6.92) can be rewritten as SNRmax = 4CVL/ (qNeff ), where VL = φT/κ

is the linear range of a subthreshold transistor. In reality VL is not constant, but

increases gradually with mean current level, particularly as the transistors approach

the moderate inversion region. As a result SNRmax increases slowly with IA and IC ,

explaining why the SNR curves shown in Figures 6-9 and 6-10 do not saturate as

rapidly as predicted theoretically, at least in the absence of flicker noise.

Finally, we see that very small capacitors and current levels are required to get low

values of SNR. Small currents are undesirable because they are difficult to generate

reliably, and eventually become comparable to transistor leakage. Parasitic leakage

currents within transistors are mainly caused by quantum-mechanical tunneling of

electrons across the gate oxide and source/drain junctions. They are poorly modeled,

do not match particularly well, and increase in magnitude as process scaling shrinks

device sizes [213]. On the other hand, at low values of C the dynamics of our circuits

are distorted by parasitic poles within the translinear loops. Eventually the loops go

unstable, limiting the minimum allowable value of C. In a standard 0.18µm CMOS

technology it appears that the minimum SNR that can be reliably achieved is limited

to approximately 25dB.

6.3.5 System Design

In this section we describe the circuits used to build the chemical simulator chip in

greater detail. A high-level block diagram of the chip is shown in Figure 6-11. The

current chip occupies 1.5mm x 1.5mm in a 0.18µm CMOS process. It contains 81

second-order reaction circuits, 40 first-order reaction circuits, 40 zeroth order reaction

circuits, N = 32 state variables, NI = 8 inputs and P = 16 outputs.

The main connection matrix represents an array of programmable switches that
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Figure 6-9: Simulated SNR of IA as a function of its mean value. Plots are shown for
various values of Kd in the absence (top) and presence (bottom) of flicker noise, and
compared to the theoretical prediction for Neff = 16.
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and compared to the theoretical prediction for Neff = 16.
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Figure 6-11: A high-level block diagram of the entire chemical network simulator
chip.
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makes the topology of the reaction network completely arbitrary. Thus, it allows the

user to connect any terminal in any of the equation circuits and output generators

to any of the state variables or external inputs. The parameters of a given network

topology, i.e., reaction rates and initial conditions, are also individually programmable

by transistor DACs within the reaction circuits.

State variables are stored on capacitors in log-compressed form, i.e., as chemi-

cal potentials. The value of these capacitors can be individually set by capacitor

DACs, allowing us to simulate systems where reactants and products are present in

compartments with different volumes. The reference voltage generator determines

the allowable set of initial conditions that can be set on these capacitors. A second

connection matrix allows the user to select an arbitrary member of this set for each

state variable.

Reaction Circuits

We used the reaction circuits described in Section 6.3.2. All state variables were

stored on capacitors and distributed to the various reaction circuits as log-compressed

voltages, not currents. There are two advantages to distributing voltages: less long-

distance routing, as disussed in more detail below, and lower noise because of the

elimination of one or more current mirrors.

We use a flipped voltage follower circuit [36], shown in Figure 6-12, to regen-

erate state variable currents. In this circuit M2 and the current source ISET act

as a common-source amplifier wrapped around the transistor M1. The small-signal

impedance at the node VREF is reduced by the the gain of this amplifier, i.e., goes

down from 1/gm1 to approximately 2/ (gm1gm2ro1). In addition, the circuit can supply

VREF with large amounts of current, but can only sink an amount ISET . Thus, the

flipped voltage follower provides a simple way of creating a variable, unidirectional

power supply. One of these circuits is located within each reaction circuit. The user

sets the values of the global variables ISET and VSET , which fixes the reference voltage

VREF . The user can also set the values of the global variables Imin and I0 required

by the reaction circuits.
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Figure 6-12: The scheme used on the chip for locally regenerating state variable
currents from log-compressed voltages.

Each state variable is regenerated by a PMOS transistor with its source tied to

VREF and its gate tied to the log-compressed, globally distributed voltage in question.

The width of the transistor can be set by a DAC, allowing its current to be scaled in

a programmable way. For example, Figure 6-12 shows that the two state variables iA

and iB have been regenerated with scaling factors K1 and K2, respectively.

Transistor mismatches will cause static errors in the local value of a given state

variable. They will also cause errors in the rate constants and initial conditions

assigned to a reaction. Thus, mismatch and device noise both act as sources of

random variability in the behavior of our reaction circuits. The dominant source

of transistor mismatch is the threshold voltage VT . A given threshold voltage offset

∆VT is exponentiated into a fractional error ∆VT/VL in the value of the state variable,

where VL = φT/κ ≈ 37mV is the linear range of the transistor. The most widely-

accepted model of mismatch between integrated MOS transistors was proposed by

Pelgrom et al. in 1989 based on experimental measurements [223]. The model states

that the variance in VT between two similar MOS transistors on the same die is

approximately given by

σ2
V T =

A2
V T

WL
+ S2

V TD
2 (6.94)
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where WL is the gate area of each transistor, D is the distance between them and

AV T and SV T are process-dependent constants. Both AV T and SV T tend to decrease

as processes scale and fabrication methods improve. For example, values of AV T

decreased from 30mV-µm in an old 2.5µm process [223] to ≈5mV-µm in our current

0.18µm process. Our default transistor size, corresponding to KA or KB = 1 in

Figure 6-12, was W = 10µm and L = 1µm, resulting in AV T/
√
WL ≈ 1.6mV.

Typical values of SV T range from 1-10µV/µm, showing that the first term is usu-

ally dominant. Thus, the fractional error between two nominally-identical state vari-

ables is expected to have a standard deviation of 1.6mV/37mV≈ 4.3%. Nevertheless,

the second term can contribute significant error when voltages are distributed across

chips and locally exponentiated into currents, as in our case, because transistors that

should match can be far apart (large D).

The generic problem of distributing a state variable to multiple locations on-

chip is known as fanout. Our current fanout strategy is based on distributing log-

compressed voltages. An alternate fanout strategy is to generate many copies of

each current at one location and then distribute them across the chip. This process

keeps D low, thus improving accuracy. The main disadvantage of this strategy is

increased wiring: Currents, unlike voltages, cannot be reused, and so we have to

distribute many currents per state variable, instead of a single voltage. Hybrid fanout

strategies located somewhere between these two extremes often provide the best trade-

off between accuracy and layout area.

The first term in (6.94) is caused by random fluctuations on length scales shorter

than
√
WL, such as the presence of oxide charge traps. The second term is caused by

fluctuations, such as gradients in doping density, that occur on longer length scales.

Deviation in other transistor properties follow a similar equation, but with different

constants replacing AV T and SV T . Thus, we must use large transistors located close to

each other in order to get low mismatch. In principle mismatches can also be measured

during an initial calibration step and then removed during actual simulations. This

process can be carried out in hardware, in which case it is known as auto-zeroing, or

in software.
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Figure 6-13: A circuit that accepts an external current or voltage input and converts
it into a form suitable for on-chip use.

Input/Output Circuits

Figure 6-13 shows how external inputs are fed into the chip. The chip accepts both

currents iIN and log-compressed, ground-referenced voltages vIN as inputs. A current

mirror and a flipped voltage follower circuit are used to generate a VREF -referenced

voltage vOUT from vIN . In other words, the circuit sets vOUT such that the current

through a standard-size PMOS transistor with its source at VREF and gate at vOUT is

equal to iIN . We also see that the voltage vOUT is buffered by an operational amplifier

before being fed to the rest of the chip. The buffer guarantees stability and rapid

transient response when a single input is connected to many reaction circuits and

therefore has a large capacitive load on it. The current chip has NI = 8 such inputs.

Figure 6-14 shows the circuit that generates outputs from the chip. The circuit

implements one row of the output matrices H and K of the original chemical reaction

system shown in (6.6). The electrical equivalent of (6.6) is given by (6.12), and shows

that a single output is the weighted sum of all on-chip state variables and external

inputs. We expect most of these weights to be zero, and therefore only allow S terms

to be present in the summation, where S is much smaller than the total number of

state variables and inputs, i.e., N + NI . The current chip used S = 2, and provided

P = 16 independent outputs.

Each input voltage vIN,s to the circuit shown in Figure 6-14 is selected from theN+
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Figure 6-14: A circuit that generates the weighted sum of multiple on-chip currents
and converts it into a buffered, log-compressed voltage that can be sent off-chip.

NI possible state variables and inputs by a connection matrix, i.e., analog multiplexer

(not shown). The connection matrix is similar to the one used for connecting reaction

circuits to state variables and inputs. The S transistors that convert these VREF -

referenced voltages into currents actually represent 5-bit transistor DACs. Each DAC

value Ks can be individually set by the user. Thus the s-th transistor carries a current

KsiIN,s. Using KCL, the output current is given by the weighted sum

iOUT =
S∑
s=1

KsiIN,s (6.95)

The current iOUT is log-compressed into a ground-referenced voltage vOUT by an

NMOS transistor before being buffered and taken off-chip. The buffer ensures that

large capacitive loads, such as oscilloscope channels, can be driven with adequate

bandwidth.

Initial Conditions

We used a Bult-Geelen current-splitter circuit [56] to generate binary-weighted refer-

ence currents. The divider accepts an input current I0, which is generated on-chip by

a constant-gm reference circuit similar to the one described in [184]. It divides I0 into

M output currents, where the m-th current is given by IIC(n) = I02−m, where m is
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an integer between 1 and M . On this chip, we used M = 16 and I0 = 2µA, giving us

reference currents between I0/2 = 1µA and I0/2
16 = 30pA.

The current divider circuit is shown in Figure 6-15. It contains M stages, each

consisting of a lateral transistor and two series-connected transverse transistors. At

every stage, equal currents flow through the lateral and transverse transistors, re-

sulting in binary current splitting. The current splitting ratio at every stage is only

determined by the geometries of the lateral and transverse transistors, which share

the same source and gate voltages. Thus the circuit operates accurately both above

and below threshold. The circuit also contains a termination stage that has a single

transverse transistor. The termination prevents an impedance discontinuity at the

last stage, and makes the splitter appear infinitely long8. Finally, each current is log-

compressed and referenced to the reference voltage VREF to generate a set of voltages

VIC that can be used to set initial conditions on the chip.

An operational amplifier, shown in Figure 6-16, was used in its unity-gain config-

uration to buffer both the voltages used to set initial conditions, and also the off-chip

inputs. This circuit may need to drive large capacitive loads. For example, several

state variables may share the same initial condition, causing their capacitors to ap-

pear in parallel at the corresponding line within the initial condition bus. We used a

class-AB push-pull output stage, which has low output impedance and high slew rate

in both directions, to guarantee low overshoot and rapid settling under these condi-

tions. The quiescent bias current of the output stage is set by the current through

the diode-connected MOS transistor. This current is ratioed to be K times smaller

than IBIAS, the tail current of the input stage.

At the balance point the input transistor connected to v+ carries a current IBIAS(1+

1/K)/2, while the one connected to v− carries a current IBIAS(1− 1/K)/2. In order

to prevent systematic offset these transistors should have the same VGS drop. We en-

force this constraint by making the former transistor R times wider than the latter,

where the ratio R is given by

8The current-splitter circuit can be viewed as a lumped transmission line. The matched termi-
nation eliminates reflections, which would disturb the steady-state current profile on the line.
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Figure 6-15: An R-2R current divider circuit. The circuit generates DC voltages VIC
used for setting initial conditions.
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Figure 6-16: A two-stage operational amplifier with a class-AB output stage.
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Figure 6-17: The scheme used on-chip for setting initial conditions. BEGIN is a
global control signal that signals the beginning of a simulation.

R =

(
K + 1

K − 1

)
(6.96)

We used K = 4 in our design, which results in R = 5/3. In order to save layout

area we used an MOS capacitor for internal compensation. We also self-cascoded

the tail current source to increase its output impedance. The lower transistor in the

cascode was a 3.3V I/O transistor, which has higher threshold voltage than the upper

transistor (a 1.8V device). The difference in threshold voltages provides enough VDS

to keep the lower transistor saturated.

Figure 6-17 shows how initial conditions are set on the chip. The chip contains

N capacitors, each of which can store a log-compressed state variable. Each capac-

itor is actually implemented as the parallel combination of binary-weighted NMOS

capacitors. Its value can be programmed by the user over a five-bit range (0.25pF

to 8pF), thus allowing the simulation of multi-compartment models. The capaci-

tors can be hooked up to any of the M = 16 available initial condition voltages VIC

through analog multiplexer circuits. On exponentiation, these voltages correspond to

binary-weighted currents, as described earlier.

The user raises the global control signal BEGIN to start a simulation. Series

switches disconnect the initial condition bus from the capacitors when BEGIN is

high. The simulated model’s own dynamics can now set the voltages VSV on these
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Table 6.4: Structure of the on-chip shift register
Bit Range Function

0–159 Connection matrix/analog multiplexers
160–169 Transistor and capacitor DACs
170–179 Address

capacitors. The BEGIN signal is also used to trigger off-chip data acquisition equip-

ment that records these dynamics for posterity. For details, please see the Appendix

attached to this chapter. Finally, the reaction circuits can be hooked up to external

inputs instead of on-chip state variables, as described earlier. The BEGIN signal does

not disconnect these external inputs during a simulation.

Programming Interface

Chip parameters are programmed by the user through a three-wire bus. The signals

on the bus are denoted by CLK. DATA and ENABLE. Bits on the DATA pin are

loaded into an internal shift register at rising edges of the CLK signal. On the

current chip, this global shift register is 180 bits long, and consists of three sections,

as shown in Table 6.4. Each reaction circuit, output generator and state variable

capacitor contains local memory and an unique 10-bit address. Local addresses are

always being compared with the address bits currently stored within the global shift

register. All shift register bits are loaded into local memory if the two addresses

match and the ENABLE signal is high. Thus, in order to program the chip the user

first sends all 180 bits, including the address, on the DATA pin, and then raises the

ENABLE pin.

Our three-wire programming interface is simple and extremely robust. The chip

does not have to recover a clock from the data stream, because it is generated exter-

nally and supplied on a separate pin. However, the scheme does have the disadvantage

of not conforming to any industry standard, making it more difficult to interface our

chip to microcontrollers and other peripherals. This issue can be addressed in later

iterations of the design.
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Figure 6-18: Die photograph of the programmable chemical simulator chip.

6.4 Measurements

A die photograph of our chemical simulator chip, which is 1.5×1.5mm in size, is shown

in Figure 6-18. The chip was mounted on a printed circuit board and interfaced with

a desktop computer running MATLAB. Please see the Appendix at the end of this

chapter for more details of the chip/computer interface. The nominal power supply

voltage was VDD = 1.6V.

As described earlier, networks of switches allow one of a set of 16 voltages VIC to

be connected to each capacitor that stores a state variable. The set VIC was designed

to yield binary-weighted currents IIC after exponentiation. Figure 6-19 shows the

measured initial concentration IIC of one state variable as a function of the digital

code DIC used to program its initial condition selection network. The voltage set

by the network on the capacitor was connected to three different output buffers and

exponentiated off-chip in software to obtain the three IIC curves shown in Figure 6-19.

We see that IIC decreases exponentially as DIC is lowered, which is what we expected.

However, at very low values of DIC the current stops decreasing and saturates to a

value of ≈ 4nA. This behavior is probably caused by poorly-modelled junction leakage

currents within transistors.

Multiple output buffers were connected to the same input VIC to estimate the offset
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Figure 6-19: Measured current IIC set at a node by its initial condition selection
network. The log-compressed voltage corresponding to the current was measured by
connecting the node to three different output buffers.

between them. A static voltage offset of ∆Voff betweem two buffers causes a constant

fractional error of ∆I/I = Voff/ (φT/κ) in their output currents after exponentiation.

The largest offset measured between any pair of output buffers on a single chip was

approximately 15mV, resulting in ∆I/I = 40%. Outputs 1 and 3 in Figure 6-19

have an offset that is close to this worst case. Fortunately, the offset is constant with

current level, as shown in the figure, and can be easily removed by creating a static

lookup table in software. Alternatively, we can remove it in hardware by periodically

auto-zeroing the output buffers. Auto-zeroing is a technique for cancelling the offset

voltage of a closed-loop amplifier. The offset is first sampled on a capacitor CAZ during

an auto-zero phase. It is then removed during the operating phase by connecting CAZ

to the negative input terminal of the amplifier. We can easily auto-zero our buffers

by using the periods between simulation runs as auto-zero phases.

Figure 6-20 shows measured concentrations of C as a function of time in the

second-order reaction A+B → C. We used equal initial concentrations of A and B,

and a low initial concentration (DIC = 0) of C. The plots in the figure correspond to
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various values of the normalized rate constant β. We used the following set of values:

β = {1, 4, 9, 16, 25, 49, 81} /24. We see that β has no effect on the final concentration

of C, as expected.
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Figure 6-20: Measured concentration of C as a function of time in the second-order
reaction A+B → C for various values of the normalized rate constant β.

Figure 6-21 shows the results of implementing the reversible reaction A
 B on-

chip. The normalized forward and reverse rate constants were β1 = β2 = 1. The

initial concentration of A was varied by changing the digital code DIC between 7 and

13, i.e., IA(0) was varied over a range of 213−6 : 1 = 64 : 1. The initial concentration

of B was fixed to a low value by setting DIC = 0, resulting in IB(0) ≈ 0. This

reaction should obey the conservation law IA + IB = IA(0) + IB(0). As a result the

steady-state values of IA and IB should be

IA,ss =

(
β1

β1 + β2

)
(IA(0) + IB(0))

IB,ss =

(
β2

β1 + β2

)
(IA(0) + IB(0)) (6.97)

In this case we used β1 = β2, resulting in IA,ss = IB,ss = (IA(0) + IB(0)) /2 ≈
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IA(0)/2. Figure 6-21 shows that the reaction indeed reaches a steady state where both

species concentrations are equal. In addition, this steady state value is ≈ IA(0)/2

and scales exponentially with DIC , as expected. However, we also notice a slow,

but noticeable decrease in the “steady-state” value with time. In other words, IA

and IB decrease slowly while tracking each other, instead of remaining fixed at IA,ss

and IB,ss. This behavior is because of random mismatch, and corresponds to the

unwanted “slow” mode that we had earlier predicted theoretically. We implemented

the same reaction using other reaction circuits on the same chip, and noted that the

magnitude and sign of this slow node was highly variable, as expected. In particular,

the sign of the mode, i.e., whether it caused exponential decay or growth, was often

concentration-dependent, and could be changed by varying initial conditions.
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Figure 6-21: Measured concentrations of A (blue) and B (red) in the first-order
reversible reaction A 
 B. The plots correspond to different initial concentrations
of A. The initial concentration of B was fixed at a low value.

We simulated the zeroth-order reaction [ ]→ A for various values of the normalized

rate constant β. The initial concentration of A was set to a low value. The equation

that describes the concentration of A as a function of time is dIA/dt = αkI0/X0,

where k is the rate constant, X0 is the reference concentration, I0 is the reference

current, and α is the speedup factor. Also, αk/X0 = β/τ0. Thus, we expect IA to
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increase linearly with time with a slope given by βI0/τ0.

Figure 6-22 shows measured values of dIA/dt as a function of β. We notice that

dIA/dt increases with β, as expected. However, very low values of β result in a slope

that is significantly lower than βI0/τ0. This behavior probably occurs because the

current charging VA, which is proportional to β, becomes comparable to transistor

junction leakage when β is very small. In addition, dIA/dt tends to saturate to a fixed

value for large values of β because the output buffers used to measure it have limited

slew rates. Finally, the three plots shown in Figure 6-22 were measured by connecting

VA to three different output buffers on the same chip. There is static offset between

the buffers, as in Figure 6-19.
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Figure 6-22: Measured rate of change of the concentration of A in the zeroth-order
reaction [ ]→ A, as a function of the normalized rate constant β. Multiple indepen-
dent measurements of IA were made by connecting VA to different output buffers on
the same chip.

We verified that our chip responded to external inputs by studying the reaction

IN → A, where IN is the input species. In this particular case we kept IN constant

with time. The initial concentration of A was set to a low value. The equation that

describes the concentration of A as a function of time is dIA/dt = αkIIN , where k is

the rate constant, and α is the speedup factor. Also, αk = β/τ0. Thus, we expect
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IA to increase linearly with time with a slope given by βIIN/τ0. Figure 6-23 shows

measured values of dIA/dt as a function of both IIN and β. We notice a good match

to theory when the slope is less than 20nA/µs. Measured slopes saturate beyond

this value because of two reasons. First, the output buffers used to measure VA have

limited slew rates. Secondly, at high values of IA transistors enter moderate and

strong inversion, which increases the value of τ0 and decreases dIA/dt.
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Figure 6-23: Measured charging slope of the first-order reaction IN → A, where IN
is an external input that is constant with time, for various values of IIN . Plots are
also shown for several values of β.

We can analyze output slew rate limitations as follows. Let us suppose that

the maximum current that can be produced by the buffers is Imax. As a result the

maximum rate of change of the output voltage is (dVOUT/dt)|max = Imax/CL, where

CL is the load capacitance. The output current IOUT is exponentially related to VOUT ,

giving us

dIOUT
dt

∣∣∣∣
max

=
IOUT

(φT/κ)

dVOUT
dt

∣∣∣∣
max

= IOUT

(
Imax

CLφT/κ

)
(6.98)

We see that (dIOUT/dt)|max ∝ IOUT . Thus it is hard to detect rapid changes
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in small currents. We typically used Imax = 5µA and CL = 25pF, resulting in

(dVOUT/dt)|max = 200mV/µs and (dIOUT/dt)|max ≈ 5.4IOUT/µs. For example, con-

sider the curves in Figure 6-23, which were drawn by fitting straight lines to the

measured values of IA. They saturate because IA cannot move rapidly when it is

small, i.e., at the beginning of the charging process. Our analysis predicts that the

maximum initial charging slope is limited to ≈ 5.4IA(0)/µs, where IA(0) is the initial

value of IA. Measured results are in fair agreement with this prediction.

We showed earlier that the volume of the compartment containing a product

species is proportional to the value of the capacitor that stores its chemical potential.

Consider the simple unidirectional transformation reaction A → B. In this case, we

have WB ∝ CB, where WB and CB are the reaction volume and capacitor size of

species B, respectively. Figure 6-24 shows transient responses of this reaction for

various values of CB. We used the following set: CB = {0.5, 1, 2, 4, 8}pF. The species

A and B were assumed to have high and low initial conditions, respectively, and the

normalized rate constant was fixed at β = 4. The simulation speedup factor is given

by α = β/ (τk), where τ = CφT/ (κI0) and k is the chemical rate constant. Thus,

the value of α should scale as 1/CB, i.e., as 1/WB, when β and k are fixed. In other

words, the speedup factor is inversely proportional to reaction volume.

Experimentally, Figure 6-24 shows that k indeed decreases as CB increases. How-

ever, the measured rate constants only vary by a factor of 6 as the capacitance varies

by a factor of 16 between 0.5pF and 8pF. We believe that the rise and fall times

for low values of CB are being limited by the bandwidth of the buffers that drive the

data capture equipment. In addition, we notice overshoot in the IB curves at very low

values of CB. Parasitic poles within the translinear filters are probably responsible

for this effect.

As a final example, we implemented the simple reaction system A + A → B,

B → C, which consists of one second-order and one first-order reaction, both in

software (using MATLAB) and on our chip. The system was initialized at time t = 0

with a high initial concentration of A and low initial concentrations of B and C. The

MATLAB simulation used an optimized version of the Gillespie stochastic simulation
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Figure 6-24: Measured species concentrations of the reaction A→ B for a fixed value
of β = 4 and varying reaction volume WB.

algorithm (SSA) [92], with the initial number of molecules of A set to a value that

results in the same SNR as obtained experimentally from our chip (approximately

32dB).

Figure 6-25 compares the results of simulation and experiment. The two sets of

trajectories are very similar, being always within 10% of each other. Since biological

systems are both noisy and heterogenous, this level of accuracy may be sufficient for

simulating many interesting phenomena. We see that the chip runs approximately

30 times faster than the simulation, which was performed on a 2.4GHz quad-core

desktop computer. The speed advantage increases with the complexity of the reaction

network: The simulation time of this optimized SSA scales as log(r), where r is the

number of reaction channels [90], whereas it is independent of r on the chip.

When the SNR of every species is high enough, we can in principle use deter-

ministic differential equations instead of the SSA. Since they ignore noise, the former

run much faster then the latter, particularly when SNR levels are high. However,

the SNR of each species varies with time, making it difficult to determine a priori if
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Figure 6-25: Software simulation (top) and measurements from our chip (bottom) of
the dynamics of the system of chemical reactions described in the text.
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the resultant loss in accuracy will be acceptable. We can potentially avoid this issue

entirely by using our chips, since they run stochastic simulations with no performance

penalties.

Figure 6-26 shows the measured dynamics of the same set of reactions as in Fig-

ure 6-25. However, in this case we varied the rate constant of the second reaction, i.e.,

B → C, while keeping rate constant of the first reaction, i.e., A+A→ B, fixed. Plots

are shown for the following values of β2, the normalized rate constant of the second

reaction: β2 = {0.0625, 0.25, 1, 2.25, 4, 9}. We see that the intermediate species B

reaches a maximum concentration and then decays away to zero. Larger values of

β2 result in lower maximum concentrations and higher rates of decay. This behavior

matches what we would expect theoretically.
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Figure 6-26: Measurements from our chip of the dynamics of the system of reactions
A + A → B, B → C. Plots are shown for various values of the rate constant of
the second reaction. The y-axis indicates the simulated number of molecules of each
species.
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6.5 Appendix A: Software

There are several ways for the user to interact with our chip. The most obvious

is to keep the network topology fixed, but change the values of the rate constants.

The goal of such programming may be to match model outputs with experimental

data or theoretical predictions. Some form of supervised learning can be used to

determine the optimum parameter values. Such learning may be implemented using

analog hardware, digital hardware or software. It is easiest to store parameter values

digitally by using current DACs, as we have described. However, since the values

only need to be held for as long as a single simulation is running, i.e. a relatively

short period of time, analog storage can also be used [218]. Our chips also support a

second level of programmability, namely changing network topology, i.e., connectivity.

In theory, this process can also be automated using learning, although in general it

is much harder to learn connectivity than it is to learn parameter values.

Programming can be carried out both off-line (i.e. before a simulation is started)

or on-line (i.e. while a simulation is running). In either case, programming is usually

performed with a digital computer, since it allows us to implement arbitrarily com-

plex programming algorithms. The resultant system is usually considered a hybrid

computer, i.e., a computer that contains both analog and digital subsystems, and

interfaces between them [141,142,260].

Our chemical network simulator chip is best viewed as the analog subsystem or

coprocessor within a hybrid computer. The chip is difficult to use without specialized

software, which we wrote in MATLAB. The program, named protein ui, is essentially

a hardware driver. It provides a set of high-level, chip-specific functions that abstract

out all low-level communication with the chip. This set of functions may be viewed as

a rudimentary Application Programming Interface (API). The functions within the

API can be grouped into broad categories:

1. Utility functions for displaying help files and interacting with MATLAB.

2. “Write” functions for adding and modifying reactions, outputs, initial conditions
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and genes, and also loading mass-action models in KroneckerBio format9.

3. “List” functions for viewing the current contents of the chip.

4. “Read” functions for performing simulations and capturing data from the chip.

The protein ui program was written in a modular, object-oriented way, which

allows it to be easily modified to work with new hardware. The help file of this

program, which includes names and brief descriptions of the functions within the

API, is reproduced below for reference.

• protein ui help file (version 0.22, 03/01/09)

---------------------------------------

1. Utility functions:

help: display this help file

bye/done/exit: finished, exit to MATLAB

---------------------------------------

2. Write functions:

chip_reset: reset the chip (all reactions will be lost)

add_output: add an output from the chip

add_reaction: add a reaction to the chip

change_reaction: change a reaction rate constant

load_model: load a KroneckerBio model into the chip

delete_output: delete an output from the chip

delete_reaction: delete a reaction from the chip

set_initial: set one initial condition

set_initials: set all initial conditions

---------------------------------------

3. List functions:

9KroneckerBio is a MATLAB-based toobox for simulating and analyzing mass-action models of
biological systems. The software is currently under development. For more details, please contact
Prof. Bruce Tidor (tidor@mit.edu).
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list_initial: list all initial conditions

list_outputs: list all assigned outputs

list_reactions: list all assigned reactions

list_sv: list all assigned state variables

---------------------------------------

4. Read functions:

set_scope: change oscilloscope settings

simulate: perform a single simulation and grab data

simulate_repeat: perform several simulations and grab data

---------------------------------------

A description of our test setup, including programming and data acquisition hard-

ware, is provided in an appendix attached to the next chapter of this thesis.

6.6 Appendix B: Some Notes on Thermodynamics

Thermodynamic potentials reach minimum values at thermodynamic equilibrium.

Systems at constant temperature and volume minimize Helmholtz free energy, while

those at constant temperature and pressure minimize Gibbs free energy. Concentra-

tions of all chemical species are constant in time at equilibrium. As a result, the net

production rate of all species is zero: production (positive) fluxes are exactly balanced

by consumption (negative) fluxes. This is known as flux balance, and corresponds to

KCL in electrical networks. In addition, the flux of every chemical reaction must be

exactly balanced by that of its reverse reaction at thermodynamic equilibrium. This is

the principle of detailed balance, and ensures that the net flux around any closed loop

of reactions (cycle) is always zero. Such cycles can be present in a non-equilibrium

steady state (NESS), though flux balance must still be satisfied.

Most chemical and electronic systems are not, strictly speaking, in thermodynamic

equilibrium, i.e., there are non-zero gradients in intensive system variables like tem-

perature, chemical potential and electrical potential10. For example, if the potentials

10These intensive variables are similar in the sense that they all measure average energies per
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at the two terminals of a diode are different, the electrical potential graidient causes

net current flow. Therefore we cannot simply assume the presence of Boltzmann

distributions in such systems. However, consider pieces of the system that are small

enough for the change ∆X in an intrinsic variable X to be much smaller than the

average value X, but that are much larger than the mean free path λ for collisions

between particles. Each particle in such subsystems will collide many times with

other particles with almost the same thermodynamic properties before it can reach

a region with different properties. Such subsystems are therefore said to be at local

thermodynamic equilibrium (LTE), and Boltzmann distributions will still apply inside

them. Thus, for LTE to apply, λ� X/(dX/dy), where y is the spatial variable.

For example, semiconductor devices are usually modeled as LTE systems that ex-

hibit Boltzmann statistics at every point, i.e., by assuming that carrier concentrations

are∝ exp (− [Ei − EF (y)] /kT ), where EF (y) is known as the quasi-Fermi energy. Ap-

plying non-zero potential across the device causes a gradient in EF (y); based on our

earlier reasoning, the LTE approximation is valid as long as EF/(dEF/dy) is much

larger than λ. At 300K, λ ≈ 20nm for heavily-doped (≈ 1019cm−3) and ≈ 40nm for

lightly-doped (≈ 1016cm−3) silicon [307]. Experimentally, exponential flux-potential

curves usually imply LTE.

particle. For example, temperature is the average internal, i.e., kinetic energy per particle, while
chemical and electrical potentials are the average chemical and electrical potential energies per
particle, respectively.
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Chapter 7

Circuit Models of Genetic

Networks

They are in you and me; they created us, body and mind; and their preser-

vation is the ultimate rationale for our existence. They have come a long

way, those replicators. Now they go by the name of genes, and we are

their survival machines.

– Richard Dawkins, The Selfish Gene

In this chapter we describe fast, scalable hardware models of genetic networks.

We also present experimental results from a prototype chip that was designed for

simulating gene activation, transcription and translation.

7.1 Models of Genetic Networks

7.1.1 Binding and Activation

Genes are transcribed into messenger RNA (mRNA) by an enzyme known as RNA

polymerase (RNAp). The rate of transcription is regulated by other proteins, known

as transcription factors, that promote (activate) or hinder (repress) the action of RNA

polymerase. Transcription factors bind to specific DNA regions, known as binding

sites. Binding sites are usually clustered into so-called enhancer and promoter regions
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located near the beginning of the gene. Activator proteins bind at the enhancer

site, while repressor proteins usually bind somewhere on the promoter, as shown in

Figure 7-1. We will denote such transcription factors as X. The inducer or substrate

S is typically a small molecule that binds to a transcription factor (whether repressor

or activator). Inducer binding converts inactive transcription factors into active forms

that can bind to the DNA:

S +X ↔ X∗ (7.1)

Y*

DNA

YY*

SY

X*

X X*

SX

ENHANCER

PROMOTER GENE

REPRESSOR

INDUCER

RNAp

ACTIVATOR

INDUCER

mRNA

TRANSCRIPTION

TRANSLATION

P
P

P
PROTEIN

Figure 7-1: A highly simplified view of gene regulation. The gene is activated and
repressed by transcription factors X and Y , respectively. Each transcription factor is
converted into its active form by binding to an inducer.

where X and X∗ are the inactive and active forms of the transcription factor, re-

spectively. We will assume that this reaction is always at equilibrium. The typical

parameter values quoted in Table 6.2 indicate that this asumption is valid. As a

result, we have

[X∗] =
[S] [X]

KSX

(7.2)
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where KSX is the dissociation constant of the reaction. We will also assume that

[X∗]� [S] and [X], i.e., that S and X are present in excess. As a result [S] and [X]

are not depleted by the reaction, and can be treated as external inputs to the system.

On the chip, we can program KSX between I0/2
6 to 24I0 using a DAC, where I0 is a

constant reference current.

The relationship between the concentrations of active transcription factors X∗

and the rate of transcription of a gene is known as its input function. Most genes are

regulated by multiple transcription factors. As a result, input functions are usually

multi-dimensional, i.e., depend on multiple variables. The measured input functions

of bacterial genes are diverse and often non-monotonic [135], and those of eukaryotic

genes are frequently even more complex. In many cases, however, these functions

show separation of variables, i.e., can be factorized into products of simple, single-

variable functions. Such functions are often assumed to be proportional to the fraction

of DNA binding sites B occupied by an activator, or left vacant by a repressor.

The co-operative binding of n transcription factor molecules to B may be formally

expressed as B+nX∗ ↔ B∗, where B and B∗ represent vacant and occupied binding

sites, respectively. We assume that this binding reaction is always at equilibrium, an

approximation which is again justified by the parameter values shown in Table 6.2.

As a result the single-variable input functions are described by Hill functions:

fA (X∗) ≡ βmax

(
B∗

B +B∗

)
= βmax

(
(X∗/KI)

n

1 + (X∗/KI)
n

)
fR (X∗) ≡ βmax

(
B

B +B∗

)
= βmax

(
1

1 + (X∗/KI)
n

)
(7.3)

where fA and fR are the input functions for an activator or repressor, respectively,

KI is the concentration of X∗ at which half the binding sites are occupied, βmax is the

maximal rate of transcription, and n is known as the Hill coefficient. Values of n > 1

occur due to co-operative binding. As n increases the functions fA and fR become

switch-like, i.e., transition abruptly between 0 and βmax as the value of [X∗] crosses

KI . In the limit as n→∞ they may be represented as two-state, or logic functions:
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fA (X∗) = βmaxθ (X∗ > KI)

fR (X∗) = βmaxθ (X∗ < KI) (7.4)

where the “threshold” function θ( ) is equal to 1 if its argument is true, and 0 other-

wise. In this approximation, transcription abruptly turns on or off when the concen-

trations of activators or receptors cross the threshold level KI . Simple differential-

pair-based circuits can be used to implement Hill functions of the form shown in (7.3)

when n is an integer, i.e., for n = 1, 2, .... On this chip, however, we used the logic

approximation shown in (7.4) for simplicity.

Promoter and enhancer regions in our model are assumed to bind N different

transcription factors, i.e., the genes have N -dimensional input functions. We know

that in general the input function cannot be factorized into the product of single-

variable functions such as those shown in (7.4). However, we know that arbitrary

Boolean functions, i.e., functions of binary variables, can always be written in one of

two equivalent canonical forms. These forms are known as “sum of products” (SoP)

and “product of sums” (PoS). The SoP form is the sum (logical OR) of minterms.

Minterms of N -variable Boolean functions are formed by ANDing together each vari-

able or its negation (inverse). For example, XY Z, XY Z and XY Z are minterms of

the boolean function f(X, Y, Z). An N -variable function has 2N minterms.

Our approach to realizing arbitrary input functions was inspired by the SoP canon-

ical form. We made two changes to generalize its applicability. Firstly, the i-product

term is not restricted to a minterm, which must include all N variables, but can

be the product of the normal or negated forms of ni variables, where 0 ≤ ni ≤ N .

Here ni = 0 corresponds to product terms that are always 0 or 1, independent of the

inputs. It is easy to see that the canonical SoP form corresponds to the special case

where ni = N ∀i. By allowing ni to vary, we can express many functions with far

fewer product terms than the 2N minterms required for the SoP form.

Our second change to the SoP form was more profound. We did not restrict our
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output to be the logical OR of the product terms (which are Boolean variables), but

allowed it to be any arbitary weighted sum of them. Thus, our output is no longer

a Boolean variable. In fact, it is a “soft”, or analog OR of terms that are formed

by ”hard”, or binary AND operations. Intuitively, each product term is allowed to

set its own maximal transcription rate βmax, and the total transcription rate is found

by adding the rates of all active terms. This approach has a couple of advantages.

Firstly, it is more general than a purely Boolean function. Secondly, it is easy to

implement in hardware, since the product terms only require logic, and KCL can

be used for weighted summations of currents. The output, which we refer to as the

activation strength IACTV , controls the rate of transcription. Physically, activation

strength is proportional to the number of active copies of a gene, and the rate at

which transcripts are produced from each active copy. Formally, it is given by

IACTV = I0

s∑
i=1

βi

[
ni∏
j=1

{fA (X∗k) , fR (X∗k)}j

]
(7.5)

where s is the number of product terms, k ∈ {1, 2, ..., N}, the βi are dimensionless

numbers, and I0 is a constant reference current. The term within curly braces in (7.5)

denotes the selection of either the activator function fA or the repressor function fR

for any transcription factor Xk. We also define the Boolean variable ACTV as the

logical OR of the same product terms as in (7.5):

ACTV = OR

[
n1∏
j=1

{fA (X∗k) , fR (X∗k)}j , ...,
ns∏
j=1

{fA (X∗k) , fR (X∗k)}j

]
(7.6)

In other words, the gene is being actively transcribed whenever ACTV = 1, with

a non-zero activation strength IACTV . It is inactive whenever ACTV = 0, which

also implies IACTV = 0. It is also interesting to speculate on other ways of im-

plementing genetic input functions. The basic goal is to approximate an arbitrary

multi-dimensional function using a finite set of easily-implemented basis functions.

We have described one approach to the problem, but there are many others. Even

453



restricting ourselves to SoP and PoS-type expansions leads to several distinct possi-

bilities. For example, one can first perform soft-OR operations, threshold the outputs

and then form product terms using logical-AND operations. Alternatively, both OR

and AND operations could be “soft” - in which case, the order in which they are ap-

plied matters! At this stage, it is not clear to us, given the large diversity of genetic

input functions, what the best way to approximate them might be.

7.1.2 Transcription and Translation

We shall assume that a single mRNA transcript is directly translated into a single

protein. This assumption often leads to an acceptable model of the dynamics of real

genes and gene networks [4]. However, one should be aware of the fact that such

models are gross simplifications of real cellular processes. For example, prokaryotic

genes are often organized into units, known as operons, that share a common regu-

latory region and are transcribed into a single mRNA molecule. Such ‘polycistronic’

mRNA molecules code for multiple proteins. On the other hand, eukaryotic genes

are organized into regions that code for proteins, known as exons, and non-coding

regions, known as introns. Primary mRNA transcripts contain both exonic and in-

tronic regions. However, the introns are subsequently removed, in a process known

as gene splicing to form the mature mRNA that is eventually translated. It is not

difficult, in principle, to develop more complicated models that include such effects,

and implement them in hardware.

We model transcription and translation as pseudo-chemical reactions. They are

not true chemical reactions because the production, of, say mRNA from a gene does

not result in the gene being consumed. In general, reaction fluxes in such unidi-

rectional systems only change the concentrations of products, not reactants. The

simplest reasonable model that describes transcription and translation is given by

X
k−→ Y

γ−→ φ (7.7)

where X and Y are the reactant and product, respectively, of either process, and
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φ is a degraded, inactive form of Y . The symbols k and γ represent the rates of

first-order pseudo-reactions, and are known as the synthesis and degradation rates of

Y , respectively. The dynamics of Y are described by the equation

dY

dt
= kX − γY (7.8)

The frequency response of this system is that of a first-order low-pass filter with

the following transfer function

Y

X
=

k/γ

1 + s/γ
(7.9)

Thus the DC gain and time constant of this filter are given by k/γ and 1/γ,

respectively. The time constant 1/γ is often referred to as the lifetime of Y . We can

exactly emulate the dynamics described above on-chip by using a current-mode low-

pass filter. The dynamics of this filter are based on the following constraint, which is

established by a translinear loop:

IBIX = (IA + IC) IY (7.10)

where IA and IB are constant currents, IC is the current flowing through the capacitor

C connected to the output of the filter and IX and IY are the concentrations of the

input X and output Y , respectively. In the case of transcription, IX = IACTV ,

the activation strength of the gene, while IY refers to the concentration of mRNA.

Similarly, in the case of translation IX and IY refer to the concentrations of mRNA

and translated protein, respectively. By using the dynamic translinear principle, we

can write

ICIY =

(
CφT
κ

)
dIY
dt

(7.11)

Substituting (7.11) in (7.10), we get

dIY
dt

=

(
κIB
CφT

)
IX −

(
κIA
CφT

)
IY (7.12)
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Comparing equations (7.8) and (7.12), we see that the systems are dynamically

equivalent, with an electronic speedup factor of α, if

IB
I0

= ατ0k

IA
I0

= ατ0γ (7.13)

where, as before τ0 = CφT/ (κI0), and I0 is a constant reference current. The currents

IA and IB are programmable using a binary-weighted DAC, such that

βj ≡
Ij
I0

= βmin (1 +Dj) (7.14)

where j ∈ A,B and βmin is the minimum possible value of the dimensionless number

βj used to set γ and k. Also, Dj, the DAC code, is an integer between 0 and 2N − 1.

On this chip we used βmin = 1/4 and N = 5, allowing βj to be varied between 1/4

and 8.

7.1.3 Transcription and Translation Delays

We know that RNA polymerase moves at a finite velocity along the gene during

transcription. As a result it takes a finite amount of time to “read” a gene and

produce each mRNA transcript. This time-span is known as the transcription delay.

Eukaryotic cells, particularly from multi-cellular organisms, often have large genes

with many introns, resulting in long transcription delays. For example, an everage

human gene is 27kb (base pairs) long, of which only 5% consists of exons [280]. As

a result, transcription delays are often of dynamical significance in eukaryotic cells,

but not in prokaryotic cells, which have short genes with no introns [4].

RNA polymerase velocities in mammalian cells range from 18-72 nucleotides/second.

Similar numbers have been measured for other species, including prokaryotes (see

the BioNumbers website for references). However, these transcript elongation rates

are best viewed as upper bounds, since the enzyme frequently pauses during tran-
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scription in response to rearrangements of the activation complex, i.e., transcription

factors bound to the enhancer and promoter regions. Such pauses can significantly

reduce the average transcript elongation rate. For example, a peak elongation rate

of 70 nucleotides/sec was measured to result in an average elongation rate of 6.3

nucleotides/sec in mammalian cells [49]. At this rate a typical 27kb gene is read in

70 minutes. The time needed for gene splicing must be added to this number to get

total transcription delay. Moreover, individual molecules within RNA polymerase

populations exhibit rather broad distributions in peak and average elongation rates.

There is also significant delay involved in translation, because ribosomes synthesize

proteins relatively slowly. Typical rates range from 15 amino acids/sec in E. coli to

0.75 amino acids/sec in rabbits1. Thus, the backbone of a typical protein, which

contains about 300 amino acids, takes between 20 seconds and 7 minutes to form.

The protein then folds into its active form, usually within a few milliseconds.

In general transcription and translation delays will be significant if their values

are comparable to or larger than the lifetimes of their associated products, namely

mRNA and protein. In general, as shown in Table 6.2, mRNA lifetimes are much

shorter than protein lifetimes. In fact, proteins are often stable, and their effective

lifetimes are often equal to the cell generation time. In other words, protein lifetimes

are often set by dilution due to cell growth, as in (6.34), and not degradation. Thus

we expect transcription delays to have much more dynamical significance than trans-

lation delays. We therefore ignored translation delays in our model, but retained

transcription delays.

We will ignore the complicated internal dynamics of transcript formation. In-

stead, we simply assume that gene activation turns on mRNA formation after some

transcription delay time TD. In other words, the concentration of mRNA begins

increasing at t = TD when ACTV goes high at t = 0. However, the delay TD is

sign-sensitive, and occurs only when the gene is activated. Thus, when the gene is

deactivated mRNA formation is assumed to stop immediately, because incomplete

1DNA synthesis is much more rapid than protein synthesis. In E. coli, for example, DNA poly-
merase synthesizes at approximately 103 nucleotides/sec.

457



transcripts do not lead to functional proteins and can be ignored. Figure 7-2 shows

a simple circuit that generates such sign-sensitive delays. The output of the D-type

flip-flop is ACTD, the delayed version of ACTV . It is immediately reset when ACTV

goes low. However, it can only go high on rising clock edges, which are delayed by a

time TD.

D
RST

Q
CLKTD

DELAY

βD

V
dd

ACTV
ACTD

Figure 7-2: A simple circuit that generates sign-sensitive transcription delay.

The value of TD is the product of average elongation rate and gene length, and is

assumed to be independent of activation strength IACTV . However, we allow the user

to independently set the transcription delay for every gene by making TD dependent

on an external control parameter βD, as shown in Figure 7-2.

7.1.4 Noise

The study of stochasticity, or random fluctuations in gene expression, has recently

received much attention. Several recent review articles provide useful summaries

of the field [134, 182, 232]. Stochastic behavior is usually studied by observing the

concentration of the protein encoded by the gene as a function of time. Fluorescence

microscopy is often used for this purpose. In general, as explained in Chapter 5,

fluctuations in protein concentration can be attributed to two sources: intrinsic and

extrinsic. Intrinsic noise is uncorrelated across genes, and arises from the inherent

stochasticity within the processes of gene activation, transcription and translation.

Extrinsic noise is correlated across multiple genes, and arises from fluctuations

external to the gene itself, such as changes in transcription factor and inducer con-

centrations with time. We can model extrinsic noise by varying the inputs to our gene
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circuit, i.e., inducers and transcription factors (S and X, respectively) as functions

of time.

Models of intrinsic noise have been proposed for both prokaryotic and eukaryotic

cells. The basic model for prokaryotes was first proposed by Oudenaarden et al. in

2002 [221]. The authors of this paper studied the bacterium B. subtilis. An important

model for eukaryotes was proposed by Raser and O’Shea in 2004 based on observations

of the yeast S. cerevisiae [234]. Both models can be summarized by the system of

reactions shown in Figure 7-3(a) for a single active transcription factor X∗.

B+X* B*
ka

γa

fA(X*)

kr
mRNA

φ

γr

kp
prn

φ

γp

A

prn

(a)

(b)

γr

kp

γp

s
1

s
1mRNA

(c)
1/γr

1+s/γr

mRNA 1/γp

1+s/γp

prn
kpkr

kr

A

4krA 4kpmRNA

A

Figure 7-3: A model of intrinsic noise in gene expression. The model is shown as (a)
a set of pseudo-chemical reactions, (b) a feedback block diagram and (c) simplified
block diagram with noise sources. In (c) wavy lines represent the power spectral
density of random fluctuations (noise) in steady state.

In prokaryotes, transcription factor binding occurs on timescales that are much

faster than transcription and translation, as shown in Table 6.2. As a result, fluc-

tuations caused by binding and unbinding of X∗ are low-pass filtered and do not

contribute significantly to variability in gene expression. In eukaryotes, however,

transcription may not be initiated even when all required transcription factors are

bound, because it depends on the completion of other regulatory processes, such as

459



chromatin remodelling [232]. Such processes are often relatively slow, causing gene

activation to fluctuate on slow timescales and generating an additional source of vari-

ability.

Consider the model shown in Figure 7-3. The transcription factor binds co-

operatively to vacant binding sites B in the promoter region, as described earlier.

As a result, the fraction of sites that are bound, which is defined as the activation

function fA (X∗), is given by the Hill function shown in (7.3). In prokaryotes we can

assume that B∗ corresponds to the activation function ACTV , abbreviated in this

section to A. In eukaryotes, however, activation is also subjected to other regulatory

control, as described in the previous paragraph. The dynamics of these regulatory

processes is modelled by defining B∗ and A as two separate states, and allowing tran-

sitions between them with first-order rate constants ka and γa. In the former state

transcription factors are bound but the gene is not active, while in the latter the gene

is being actively transcribed.

We are interested in calculating the noise in mRNA and protein concentrations

when X∗ is high enough for most activator binding sites to be occupied, i.e. B∗ � B.

In prokaryotes, the result is a gene that is always on, i.e. A = 1. However, the

model predicts that eukaryotic genes stochastically transition between on and off

states (A = 1 and A = 0, respectively). Thus, for eukryotic genes A can be modeled

as a two-state random telegraph signal.

Assuming random, uncorrelated transitions results in the fluxes kaB
∗ and γaA

having Poisson distributions. The average residence time in each state is 1/ka and

1/γa, respectively. Also, residence times follow the exponential waiting-time distribu-

tion corresponding to a Poisson variable. Mathematically, this sytem is identical to

one that describes threshold-voltage fluctuations in a MOSFET due to single oxide

traps. We analyzed the latter in Chapter 5 in the context of flicker noise. Using our

previous results, we see that the gene is in its actively transcribing state for an ‘on’

fraction D given by

D =
ka

(ka + γa)
(7.15)
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Thus, the mean value of A is given by A = DA. Also, the power spectrum of A is

that of a first-order low-pass filter with time constant τA = 1/ (ka + γa). A signal-flow

block diagram view of the entire model is shown in Figure 7-3(b). Dynamically, we

see that both transcription and translation are modeled as first-order low-pass filters

with DC gain. This is the same result as derived mathematically in Section 7.1.2.

The cutoff frequencies of the filters are given by τr = 1/γr and τp = 1/γp, respectively,

while their DC gains are given by Ar = kr/γr and Ap = kp/γp, respectively.

Let us consider the case when τA � {τr, τp}, i.e., promoter transitions are rapid

compared to both transcription and translation. In this case most of the variance due

to A lies at frequencies larger than 1/τr and 1/τp and will be low-pass filtered out.

Thus A can be replaced with its mean value A = AD, where D = 1 for prokaryotic

genes. We can easily extend the noise analysis that follows to the more general case

where τA is arbitrary.

We assume that every reaction flux consists of uncorrelated arrivals or departures

of molecules, and thus displays Poisson statistics. The difference between the mRNA

synthesis and degradation fluxes is integrated into the mRNA concentration [mRNA].

Each of these fluxes has a power spectral density equal (PSD) to twice the mean flux,

just like any Poisson variable. The two mean fluxes are krA and γr[mRNA], leading

to PSDs of 2krA and 2γr[mRNA], respectively. These PSDs are independent, and

therefore the total PSD that is filtered by the transcription filter is the sum of the

two. However, at steady state the two fluxes must have identical mean values, and

so the total PSD is 2 × 2krA = 4krA. Similarly, the total PSD that is filtered by

the translation filter is 2kp[mRNA] + 2γp[prn] = 4kp[mRNA] in steady state, where

[prn] is the protein concentration. The resultant steady-state noise model is shown

in Figure 7-3(c).

Our noise model is very similar to a situation one might encounter in electronics

while analyzing a cascade of low-pass filters, and yields similar insights. It also

allows us to analytically calculate the variance in mRNA and protein concentrations.

We note that the noise bandwidth of a first-order low-pass filter is π/2 times larger

than its 3dB bandwidth. Thus the noise bandwidth of the transcription filter is
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(π/2) × 1/(2πτr) = γr/4. Similarly, the noise bandwidth of the translation filter is

γp/4. We can now immediately write down, by inspection, that

σ2
mRNA = 4krA×

1

γ2
r

× γr
4

=
krA

γr
= mRNA (7.16)

for mRNA, and

σ2
prn =

(
4krA

(
kp
γr

)2

+ 4kpmRNA

)
× 1

γ2
p

× γp
4

= prn

(
1 +

kp
γr

)
≡ prn(1 + b) (7.17)

for protein, where

mRNA =
krA

γr

prn =

(
kp
γp

)
mRNA (7.18)

are the mean concentrations of mRNA and protein, respectively. We see that the

concentration of mRNA has variance equal to its mean, i.e., behaves like a Poisson

random variable. However, the upstream noise from transcription increases the vari-

ance of the protein concentration by a factor (1 + b) over a Poisson variable. The

quantity b = kp/γr is known as the burst parameter. Physically, it is equal to the

average number of protein molecules produced from a single mRNA transcript, and

often has a value > 1. We see that the protein has (1 + b) times more noise than

we might have naively expected. Interestingly, however, the quantity (1 + b) is inde-
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pendent of the signal level, i.e., mean protein concentration. In electronic circuits a

similar situation often occurs, with (1+b) being referred to as the excess noise factor,

or the effective number of noisy devices.

While deriving (7.17) we implicitly assumed that γp � γr, i.e., the translation

bandwidth is much smaller than the translation bandwidth, and sets the overall noise

bandwidth γp/4 that determines σ2
prn. This case is typical of prokaryotic genes, and

many eukaryotic genes. However, some eukaryotic mRNA lifetimes are very long,

which might make our assumption invalid. We can easily analyze this case by making

the opposite assumption, i.e. γp � γr. In this case the transcription bandwidth

is much smaller than the translation bandwidth, and the slow mRNA fluctuations

are simply amplified by the DC gain kp/γp of the translation filter. Thus, (7.17) is

modified to

σ2
prn = 4krA×

1

γ2
r

× γr
4
×
(
kp
γp

)2

+ 4kpmRNA×
1

γ2
p

× γp
4

= prn

(
1 +

kp
γp

)
≡ prn (1 + Ap) (7.19)

where Ap = kp/γp. We see that (7.17) and (7.19) have similar forms, except for the

fact that mRNA fluctuations affect the protein in proportion to the low-frequency

translation gain Ap = kp/γp instead of the burst parameter b = kp/γr. Our noise

model predicts the same result as the full stochastic analysis described in [221]. How-

ever, it has the important advantage (for electrical engineers, anyway) of being simple

to analyze using standard block-diagram techniques, thus yielding important insights

quickly. Our current gene circuit implements the same model as shown in Figure 7-

3(c), with IACTV = A, and other concentrations also represented by currents.
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7.2 Design of the Genetic Network Chip

7.2.1 System Design

Our first genetic network chip contained 6 gene circuits and 16 external (off-chip)

inputs, and was fabricated in standard 0.18µm CMOS technology. A high-level block

diagram of the chip is shown in Figure 7-4. A power-on reset circuit initializes all

on-chip memory to known states when the chip first turns on. The input conditioning

circuits and programming interface were very similar to those used in the chemical

network simulator chip. A connection matrix, consisting of an array of programmable

switches, allows any external input to act as an inducer or transcription factor for any

gene. Programmable parameter values were set on-chip by individually-addressable

transistor or capacitor DACs. Both the connection matrix and DACs were pro-

grammed by loading bits into a 30-bit long global shift register. The contents of this

shift register can be divided into two sections:

• A 10-bit address section, which can be further split into the 4 most significant

digits (used to locate a gene) and the 6 least significant digits (used to locate

sub-circuits within that gene).

• A 20-bit data section.

Each gene circuit contains programmable circuits for modeling activation, tran-

scription and translation. The outputs generated by the chip consist of the activation

signal ACTV , the mRNA concentration, and the protein concentration associated

with each gene.

7.2.2 Input Selection and Activation

Figure 7-5 is a high-level block diagram of the circuits that simulate the induction

and binding of transcriptional activators and deactivators to DNA. Each gene can

be activated or repressed by a maximum of N active transcription factors, denoted

by X∗. Thus, the input function of the gene can be at most N -dimensional. Active
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Figure 7-4: A high-level block diagram of the entire genetic network simulator chip.

transcription factors can be induced from their inactive forms, denoted by X, by

molecules known as inducers and denoted by S, We allow each transcription factor

to have its own inducer, resulting in a total of N + N = 2N input signals for the

gene (N inducers and N trancsription factors). The connection matrix allows the

concentration of each of these signals, denoted by IS and IX respectively, to be set

equal to any of the 2N external inputs, denoted by IIN .

CONNECTION
MATRIX

INDUCER

2N
IIN

βSX

ACTIVATOR

IX

IS
fA

IX

IS
IX* IX*

βI

N

N

N N
fAIIN

Figure 7-5: High-level block diagram of the circuits that simulate the induction and
binding of transcriptional activators and deactivators to DNA.

The concentration of any active transcription factor is given by the electronic

analog of (7.2), i.e., with chemical concentrations replaced by currents:
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IX∗ =
ISIX
βSXI0

(7.20)

where βSX is a programmable, dimensionless number and βSXI0 is the electronic

analog of the dissociation constant KSX , i.e.,

βSXI0 = KSX

(
I0

X0

)
⇒ βSX =

KSX

X0

(7.21)

where X0 is the reference chemical concentration. On this chip we can program the

value of βSX between 26 and 1/24, i.e., over a 10-bit range. Figure 7-6 shows the

circuit that implements (7.20) for a single inducer-transcription factor pair. We use

N of these circuits per gene. Each circuit uses a translinear loop that guarantees the

constraint IX∗ (βSXI0) = ISIX . We have used this circuit extensively in the past. For

example, it was used within the reaction circuits of the chemical simulator chip, as

shown in Figure 6-5.

Vdd

iX

iX

vX

vS

VREF

βSXI0
VREF

vX*

iX*

βII0

Vdd

fR(X*)
fA(X*)

INDUCTION ACTIVATION

Figure 7-6: Schematic of the circuit that generates the input function of a single
transcription factor X. The function can either be activating or repressing (fA or fR,
respectively).

The active transcription factor concentration, denoted by X∗, is compared with
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the threshold concentration KI to generate the “logic” activation function fA, and its

inverted version fR, as shown in (7.4). In our electronic analog, these equations are

written as

fA (IX∗) = θ (IX∗ > βII0)

fR (IX∗) = θ (IX∗ < βII0) (7.22)

where βI is a dimensionless number whose value on this chip can be programmed

between 26 and 1/24, i.e., over a 10-bit range. The value of βI is set such that the

threshold of the electronic analog matches that of the original biological system, i.e.,

βII0 = KI

(
I0

X0

)
⇒ βI =

KI

X0

(7.23)

The circuit that implements (7.22) is a simple current comparator that requires

only two transistors, and is also shown in Figure 6-5. The circuit acts as an in-

verter with a current-source load, and therefore produces the repression function fR.

Another inverter is used to convert this signal into the activation function fA.

The next step is to combine N single-variable activation functions into the activa-

tion function of the entire gene, as shown in (7.5) and (7.6). It is easier to implement

these equations if the number of terms in the products and summations are fixed,

i.e., ni and s are constants. We can indeed make ni and s constant without loss of

generality by allowing each term to be chosen, not from the set {fA, fR}, but from

the larger set {fA, fR, 0, 1}. In this case, all the products can have N terms, because

inputs that should be ignored for a given product are assigned the value 1. Similarly,

S products can always be summed to form the output, because unwanted products

can be removed by assigning 0 to one or more of the terms within them. Here N and

S are fixed for a given chip. For example, on the current chip we used N = S = 8.

Thus, (7.5) and (7.6) may be rewritten as
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Table 7.1: Truth table of selector blocks in the PLA
SEL(1) SEL(0) OUT (IN, fA)

0 0 0
0 1 IN.fA
1 0 IN.fA
1 1 IN

IACTV = I0

S∑
i=1

βi

[
N∏
j=1

{
fA
(
X∗j
)
, fR

(
X∗j
)
, 0, 1

}]

ACTV = OR

[
N∏
j=1

{
fA
(
X∗j
)
, fR

(
X∗j
)
, 0, 1

}]
(7.24)

where it is understood that the OR operation has S inputs. We can implement (7.24)

using a generalization of the well-known Programmable Logic Array (PLA) approach

for synthesizing arbitrary Boolean functions. PLAs consist of an AND-plane and

an OR-plane. The AND plane consists of an array of AND gates that compute the

minterms of the function, while the OR-plane uses OR gates to combine them into

the output(s). In our modification of the PLA, the AND gates are replaced by more

complex combinational logic blocks. Each block accepts the previous block’s output,

and ANDs it with a member of the set {fA, fR, 0, 1}, thus building up a product term.

Two control bits, SEL(0) and SEL(1), are fed into each block and determine which

member of the set is selected for product formation. The truth table for each block

is shown in Table 7.1, where IN and fA are the inputs to the gate and OUT is its

output. In addition, since fA and fR are binary-valued functions, fR = fA, the logical

negation of fA.

Once the product terms have been formed they can be combined by an S-input

OR gate to create ACTV , or added together with weighting factors βs to create

IACTV . We simply use KCL to perform the latter operation. The values of βs can

be individually programmed by transistor DACs over a five-bit range (1/4 to 8, in

this case). A simplified block diagram of our generalized PLA is shown in Figure 7-7.

Thick lines in the figure denote multi-wire buses. For example, the fA bus is N bits
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Figure 7-7: Block diagram of a generalized programmable logic array (PLA) circuit
that simulates the activation of a single gene by combining the effects of several
transcription factors.

7.2.3 Transcription and Translation

Figure 7-8 shows a high-level block diagram of the circuits that simulate the processes

of transcription and translation of a single gene. The circuits can be divided into three

blocks. The first block contains out model of transcription delay, the second simulates

the dynamics of transcription, and the third simulates translation.

DELAY
TIME

βD

ACTV

DYNAMICS
mRNA ImRNA

DYNAMICS
PROTEIN

kr,γr,βsnr

IACTV

kp,γp

Iprn

Figure 7-8: Simplified block diagram of the circuits that simulate the processes of
transcription and translation of a single gene.
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Transcription Delay

On this chip transcription delays were produced by the circuit shown in Figure 7-2.

Each delay block was implemented with an M -bit long shift register that was driven

by an on-chip, current-controlled ring oscillator running at a frequency fD. The

frequency of the oscillator can be set by the user over a 10-bit range. The DAC value

βD is linearly proportional to the oscillator frequency, i.e., fD = βDf0, where f0 is a

constant. The value of f0 is in turn proportional to the global reference current I0,

i.e., f0 = I0/qosc, where qosc depends on the oscillator design and has units of charge.

Thus, we get

fD =
βDI0

qosc
(7.25)

The quantity qosc can be viewed as the total charge supplied to the capacitors

within the oscillator during one oscillation cycle. This charge ultimately comes from

the power supply. For ring oscillators qosc ≈ NCLVosc, where N is the number of

stages, CL is the capacitance at every stage, and Vosc is the oscillation amplitude2.

The activation signal ACTV is not synchronized with respect to the oscillator. As

a result, it goes high at a random time within the oscillator cycle. However, the shift

register only loads new values at rising edges of the oscillator. Thus the total delay

consists of two parts. The first part consists of the time between ACTV going high

and the next rising oscillator edge, and is a uniformly-distributed random number

between 0 and 1/fD. Assuming that oscillator jitter is negligible, the second part of

the delay is fixed and equal to M cycles of the oscillation frequency. Thus, the total

delay is given by

TD =

(
M + 1/2

fD

)(
1 +

χ

M + 1/2

)
=
qosc
I0

(
M + 1/2

βD

)(
1 +

χ

M + 1/2

)
(7.26)

2The power dissipated by the oscillator per cycle, which we may think of a figure of merit, is
approximately qoscVosc, and scales as CLV

2
osc/Q, where Q is the open-loop quality factor, i.e., the

quality factor of the frequency-selective network within the oscillator. Ring and relaxation oscillators
have Q = 1, making them less power-efficient than LC oscillators, which can have Q� 1.
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where χ is a random variable that is unifomly distributed between ±1/2. The mean

value and standard deviation of the delay are given by

TD =
qosc
I0

(
M + 1/2

βD

)
σTD =

qosc
I0

(
1√

12βD

)
(7.27)

From (7.27), the signal-to-noise ratio (SNR) of TD is given by TD
2
/σ2

TD = 12 (M + 1/2)2.

Thus, we can set the mean value of the transcription delay using βD, and its SNR us-

ing M . On this chip we used the fixed value M = 16, which results in an SNR of 35dB.

In addition, we found that qosc = 1.5× 10−12C = 9.2× 106q for Vosc = VDD/2 = 0.9V,

where q is the electronic charge. Finally, βD could be varied between 26 and 1/24.

Thus, for a typical value of I0 = 10nA, we get f0 = 6.8kHz, allowing TD to be varied

between 38µs and 39ms. Finally, we also allow the user to bypass the delay circuit

entirely, thereby setting TD = 0.

Scaling

Equations (7.13) and (7.14) are applicable to both mRNA and protein concentrations.

They show that relative synthesis and degradation rates, denoted by βB and βA,

respectively, are programmable over a 5-bit range. Our goal is to scale the values of

these parameters such that this limited dynamic range in β values (25:1) is maximally

utilized. We came across the same problem while scaling chemical reaction models,

and use a similar approach in this case. We assume that

ατ0

√
kγ = β ⇒ ατ0 =

β√
kγ

(7.28)

where β =
√
βminβmax =

√
2 is the center of the available dynamic range in β val-

ues. Thus, our assumption maps the geometric mean of k and γ to β. Equation

(7.13) provides the additional constraint that βB/βA = k/γ, leading to the following

equations:
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βB = β

√
k

γ

βA = β

√
γ

k
(7.29)

Equation (7.29) was used to determine the values of β for on-chip implementation.

Values of β outside the allowable range were clipped to βmin or βmax. Finally, the

capacitor C was implemented as a 5-bit DAC, and can be varied between 0.25pF

and 8pF. By varying C we can adjust τ0 = CφT/ (κI0) over a 5-bit range. However,

choosing βA and βB fixes the product ατ0. Thus, we get α ∝ 1/τ0, allowing us to

control the speedup factor α independent of the values of k and γ.

SNR Adjustment

We have seen that obtaining very low values of SNR with intrinsic device noise would

require impractically small capacitors and bias currents. We have designed a feedback

loop that solves this problem by dynamically adjusting the level of noise of any

reaction flux in a system of chemical reactions. The circuit generates fluctuations

that are consistent with Poisson statistics, i.e., ensures that the SNR of the flux is

always proportional to its mean value.

Our SNR adjustment loop can be used to set the level of noise in a system of sim-

ulated chemical reactions to any desired value. Thus, the circuit allows us to perform

stochastic simulations of systems that have small numbers of molecules, and thus low

SNR. We have implemented the loop on-chip for the special case of transcription,

since the concentration of mRNA within a cell is usually low enough for it to be the

noisiest molecular species.

Our circuit is shown in Figure 7-9. A current 2IA that is proportional to the

mRNA degradation rate γ is shut off by a pseudo-random waveform generated by the

linear-feedback shift register (LFSR). The waveform has 50% duty cycle, resulting in

an average degradation current of IA, as assumed in previous sections. However, in
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this case the current is not constant, but generated by a square wave that switches

pseudo-randomly between 2IA and 0. The clock frequency of the LFSR is controlled

by a current-controlled oscillator (CCO) whose input is a scaled version of the mRNA

concentration, i.e. βsnrImRNA, where βsnr is a dimensionless number that can be

programmed by the user. The output frequency of the CCO is given by

fcco =
ImRNA

(qosc/βsnr)
(7.30)

CURRENT
MODE

INTEGRATOR

CCO LFSR
vmRNA

IACTV

exp

2IA
C

imRNA βsnr

Figure 7-9: Block diagram of a circuit that controls the signal-to-noise ratio of mRNA
in a manner consistent with Poisson statistics.

where qosc, which has units of charge, is characteristic of the CCO, as described earlier.

LFSRs produce waveforms with properties close to random telegraph (RT) signals, as

described in the appendix at the end of this chapter. RT signals consist of random,

uncorrelated transitions between two states3, which in this case are ±IA. The power

spectral density of the switched current source in steady state is given by

in(f)2 = 2I2
ATccosinc2 (πfTcco)

=

(
qosc
βsnr

)
2I2
A

ImRNA
sinc2 (πfTcco) (7.31)

where the CCO time period is Tcco = 1/fcco, and sinc(x) ≡ sin(x)/x. We have

substituted from (7.30) to get the second line of the equation. We have also assumed

that fcco is an instantaneous, or memoryless function of ImRNA. In order for this

3More precisely, state transitions of an RT signal constitute a Poisson process.
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assumption to be valid we need the CCO frequency to be much larger than the

bandwidth of the low-pass filter. In other words, we need fcco � 1/τr, where τr =

ατ0I0/IA, as defined earlier. The pseudo-noise voltage PSD at the node vmRNA is

given by

vn(f)2 = in(f)2 |Z(f)|2 (7.32)

where |Z(f)| is the impedance at this node. The PSD of the pseudo-noise component

of the mRNA concentration ImRNA is given by

imRNA(f)2 = g2
mvn(f)2 (7.33)

where gm = ImRNA/ (φT/κ) is the small-signal transconductance of the transistor

that converts vmRNA to imRNA. We are assuming here that the pseudo-noise voltage

amplitude at vmRNA is smaller than the linear range φT/κ of this transistor. Putting

together (7.31), (7.32) and (7.33), we find that

imRNA(f)2 = 2

(
qosc
βsnr

)
I2
AImRNA

[
sinc (πfTcco) |Z(f)|

(φT/κ)

]2

(7.34)

The total pseudo-noise power in ImRNA is found by integrating imRNA(f)2 over all

frequencies:

i2tot =

∫ ∞
0

imRNA(f)2df = 2

(
qosc
βsnr

)
I2
AImRNA

(φT/κ)2

∫ ∞
0

|Z(f)|2sinc2 (πfTcco) df (7.35)

It is easy to show that Z(s) is given by

Z(s) =
1

C

(
τr

1 + sτr

)
(7.36)

We can substitute (7.36) in (7.35) and solve the integral by again assuming that

fcco � 1/τr, which ensures that sinc(πf/fcco) ≈ 1. In this case we get the same

first-order noise integral we have seen many times. The solution is

474



∫ ∞
0

|Z(f)|2sinc2 (πfTcco) df ≈
τr

4C2
(7.37)

Physically, in this case the LFSR looks like a flat, or white noise source over the

bandwidth of interest, i.e., 1/ (2πτr). As a practical matter, the spectrum is flat to

within 0.1dB for frequencies f < fcco/ (4π), so we can set our lowest allowable CCO

frequency to

fcco,min
4π

≈ 1

2πτr
⇒ fcco,min =

2

τr
(7.38)

Equation (7.38) is a version of the Nyquist sampling theorem. The CCO must

update the state of the node vmRNA at a rate that exceeds twice its bandwidth, which

is approximately 1/ (2πτr). We can generalize (7.38) to

fcco,min =
αs
τr

(7.39)

where the value of αs depends on how much deviation from a white noise spectrum

we are willing to tolerate. Finally, substituting (7.37) in (7.35), we get

i2tot =

[
IA (qosc/βsnr)

2C (φT/κ)

]
ImRNA (7.40)

We see that the total noise power of ImRNA is proportional to ImRNA itself. When

i2tot � I2
mRNA, i.e. the SNR is high, the mean mRNA concentration ImRNA ≈ ImRNA,

and noise power scales with mean just like a Poisson random variable. On this chip

we found that qosc = 1.5 × 10−12C = 9.2 × 106q for Vosc = VDD/2 = 0.9V, where

q is the electronic charge. We can compare (7.40) with our previous results for the

noise of the translinear filters used for modeling chemical reactions. For example, by

comparing with (6.89), we see that we have essentially replaced the electronic charge

q by the much larger charge qosc/βsnr, resulting in lower SNR for the same mean

level of mRNA. The SNR at a given mean level can be set by the user through the

parameter βsnr. Clearly we get SNR ∝ βsnr when all other parameters are fixed.

The minimum achievable SNR is set by the samppling criterion shown in (7.39).

475



We substituting (7.30) in (7.39), we get

βmin =
αsqosc
τrImRNA

(7.41)

We can calculate the noise when β = βmin by substituting (7.40) in (7.40). The

result is

i2tot

∣∣∣
β=βmin

=
I2
mRNA

2αs
(7.42)

As a result, the minimum achievable SNR is

SNRmin =
I2
mRNA

i2tot
= 2αs (7.43)

For αs = 2, SNRmin = 6dB. On this chip, βsnr could be varied between 1/24

and 26. For the typical values ImRNA = 100nA, IA = 10nA and C = 2pF, we get

βmin = 4.3 for αs = 2, allowing us to vary the SNR between 6dB and 17.8dB. Lower

values of SNR can be achieved by lowering αs, i.e., relaxing our spectral constraint.

We can rewrite (7.40) as

i2tot =

[
(qosc/βsnr)

2τr

]
ImRNA (7.44)

Equation (7.44) shows a potential problem with our technique. We see that i2tot ∝

1/τr, while in the original chemical system the variance in mRNA concentration was

simply mRNA, and independent of τr. This is not a problem if τr is a constant.

However, if τr is varied (for example, by programming the value of IA) we must also

vary βsnr ∝ 1/τr, i.e., βsnr ∝ IA, to keep the noise invariant. However, this may not

always be convenient.

We can calculate the variance of the switched current source to find the root of

the problem. It switches between ±IA with 50% duty cycle, and thus has a variance

σ2 = I2
A. Since IA ∝ γr, the mRNA degradation rate, we get σ2 ∝ γ2

r . However,

the variance of a Poisson variable like the reaction flux should be proportional to

the mean arrival rate γr, and not γ2
r . Thus, our circuit does not scale properly with
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respect to γr = 1/τr. Figure 7-10 shows a modified circuit that solves this problem,

but has not yet been implemented on-chip.

CURRENT
MODE

INTEGRATOR

CCO LFSR
vmRNA

IACTV

exp

IA
C

imRNA
βsnr

Vdd

IAI0

IAI0

Figure 7-10: Block diagram of an improved circuit for adjusting the signal-to-noise
ratio of mRNA in a manner consistent with Poisson statistics.

The improved circuit is similar to the original version, except for the fact that IA is

now a continuous current source, and we inject two pseudo-random switched currents

of value
√
I0IA with opposite polarities at vmRNA. Here I0 is a globally constant

reference current. The current
√
I0IA can easily be generated from IA and I0 by a

single-quadrant translinear circuit similar to the one used within the current-mode

filter. It is easy to show that the PSD of the switched current sources is modified

from (7.31) to

in(f)2 = 2I0IATccosinc2 (πfTcco) (7.45)

We see that the variance of these sources is now proportional to IA, not I2
A, as

desired. The analysis of the improved circuit is very similar to the original version.

We find that the total variance in ImRNA is

i2tot =

[
I0 (qosc/βsnr)

2C (φT/κ)

]
ImRNA =

[
(qosc/βsnr)

2τ0

]
ImRNA (7.46)

where τ0 = CφT/ (κI0). Thus, the total noise i2tot produced by the modified circuit is
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proportional to 1/τ0, instead of 1/τA, which makes it independent of IA. In addition,

the minimum achievable SNR changes to

SNRmin =
I2
mRNA

i2tot
= 2αs

(
IA
I0

)
(7.47)

We see that SNRmin is no longer automatically fixed by αs, but can be lowered by

increasing I0. This is another advantage of the improved circuit shown in Figure 7-10.

We can easily extend our analysis to calculate the noise in Iprn, the protein con-

centration in the presence of the SNR adjustment loop. Consider the same cases

as before: γp � γr, which is usually valid, and γp � γr, which occurs in certain

eukaryotic genes. Afer some fairly simple algebra, we get

i2prn = b

[
(qosc/βsnr)

2τ0

]
Iprn, γp � γr

i2prn = Ap

[
(qosc/βsnr)

2τ0

]
Iprn, γp � γr (7.48)

where b = kp/γr and Ap = kp/γp, as before. We can compare (7.48) with the equiva-

lent expressions for the original chemical system, i.e., (7.17) and (7.19). We see that

they are completely analogous: Chemical concentrations display Poisson statistics,

and variances of currents in the electronic analog also have the usual Poisson form,

i.e., ∝ 2qeffI∆f , where qeff = qosc/βsnr is the effective charge and ∆f = 1/τ0 is the

bandwidth.

We also see that the excess noise factors (1 + b) and (1 + Ap) in the chemical

system are replaced by factors of b and Ap, respectively, in the electronic analog. The

two sets of excess noise factors are slightly different because our SNR adjustment

circuit only models noise from transcription, not translation. We can remove this

discrepancy, if necessary, by simply adding another SNR adjustment circuit to model

translation noise. This circuit can be identical in form to that shown in Figure 7-10,

but with ImRNA replaced by Iprn.

Finally, simple modifications to the circuits shown in Figure 7-9 or Figure 7-
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10 would allow the output of a single LFSR to introduce the same psuedo-random

waveform into more than one current. For example, suppose we have a current that

discharges the node corresponding to a reactant species, and another, with the same

mean value, that charges a product node. The two currents together simulate a single

reaction flux, and fluctuate in sync since they are perturbed by the same LFSR. Thus,

our circuit allows us to simulate correlated fluctuations in reaction fluxes. We have

shown earlier that intrinsic device noise cannot, in general, generate such correlations,

which may have important effects at low SNR.

Current-Mode Filtering

We used similar translinear low-pass filter circuits to model the dynamics of both

transcription and translation. However, the filter for modeling transcription, which

is shown in Figure 7-11, also included circuitry for SNR adjustment. The theory

behind SNR adjustment was described in the previous section. We can enable SNR

adjustment by making the control bit EN = 1, or disable it by making EN = 0.

The current discharging the output capacitor C has an average value of IA in both

cases, resulting in similar average waveforms. However, this average is produced by a

constant current of value IA when EN = 0, and a current that switches between 2IA

and 0 with a 50% duty-cycle when EN = 1. The switching waveform in the latter case

is set by the LFSR. All switches were implemented as differential, or current-steering

structures. Such structures significantly reduce “switching glitches” that result from

charge injected to nearby nodes via capacitive coupling.

The translinear filter in Figure 7-11 is similar to that used within the reaction

circuits of the chemical simulator chip. The log-compressed version of the input

current IIN is denoted by VIN . It is easy to show that the transfer function of this

filter in the noiseless case, i.e., when EN = 0, is given by

ImRNA
IIN

=
IB/IA

1 + s (τ0I0/IA)
(7.49)

where τ0 = CφT/ (κI0). The values of IA, IB, and C can be varied over a 5-bit range,
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Vdd VREF

EN LFSR
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IB

2IAC IA
vIN

mRNA

VREF

IIN

Figure 7-11: Simplified version of the circuit that simulates the process of transcrip-
tion.

as described previously. In order to model mRNA dynamics we set IB and IA based

on mRNA synthesis and degradation rates k and γ, respectively, as shown in (7.13).

Once IA and IB have been set the transfer function in (7.49) is dynamically equivalent

to the original chemical transfer function, i.e., (7.9). We used the following scheme

for setting the input current IIN :

• When ACTV = 0, i.e., the gene is “off”: IIN = IOFF , where IOFF is a global

constant that can be set by the user.

• When ACTV = 1, i.e., the gene is “on”: IIN = IACTV .

We used a network of switches (not shown in Figure 7-11) to change the input

to the filter as a function of the activation signal ACTV . The steady-state mRNA

concentrations, as predicted by (7.49) are then given by

ImRNA,on =
IACTV IB

IA

ImRNA,off =
IOFF IB
IA

(7.50)

480



We define the on/off ratio of the gene as the ratio of steady-state mRNA concen-

trations in the two cases. This quantity, which may have biological significance, is

given by

RmRNA =
ImRNA,on
ImRNA,off

=
IACTV
IOFF

(7.51)

There are two advantages of this scheme. Firstly, it gives us independent control of

ImRNA,on and RmRNA. For example, we can change IB to vary the former quantity, and

IACTV to vary the latter. Secondly, by making IOFF > 0 we ensure that transistors

within the filter are always saturated, and that the transfer function in (7.49) is always

valid.

The circuit that models translation is identical to that shown in Figure 7-11,

except for the fact that the switches are absent and IA is simply a constant current

source. This circuit takes as input IIN = ImRNA, and generates a current Iprn that is

the electronic analog of the protein concentration. We can guarantee that ImRNA > 0

in both active and inactive states because of the scheme discussed previously. As

a result transistors within the translation filter will also be saturated in both these

states. The parameters of this filter, namely IB, IA, and C, can be set by the user

using 5-bit DACs.

7.3 Measurements

A die photograph of the gene network simulator chip is shown in Figure 7-12. It was

mounted on a printed circuit board and interfaced with a desktop computer running

MATLAB. Please see the Appendix at the end of this chapter for more details of the

chip/computer interface. The nominal power supply voltage was VDD = 1.6V.

In our model, a gene that is activated by a single transcription factor X abruptly

turns on when the concentration of active transcription factor X∗ exceeds the thresh-

old KI = βII0. The concentration of X∗ depends both on X and the inducer S, as

shown in (7.20). Thus, the gene will be ‘on’ (actively transcribing) if
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Figure 7-12: Die photograph of the gene network simulator chip.

ISIX > βSXβII
2
0 (7.52)

We programmed the input function of an on-chip gene circuit to have this form,

and used a triangular pulse of inducer S to activate it. The pulse is shown in Fig-

ure 7-13. It had a peak concentration of 200nA and a total width of 400µs. The

concentration of transcription factor X was kept fixed during a particular simula-

tion, but varied between different simulation runs. We also used fixed values of

βSX = βI = 1.

Measured mRNA concentrations behave as expected, and are also shown in Fig-

ure 7-13. When IX is very low the gene never turns on because the inequality in

(7.52) is never satisfied. Conversely, when IX is large the inequality is always satis-

fied and the gene never turns off. At intermediate values of IX the gene turns on and

off abruptly when IS = βIβSX/ (I0IX). As a result the ImRNA waveforms resemble

square pulses with widths that increase with IX . Brief ‘glitches’ in the ImRNA wave-

forms are due to unwanted capacitive coupling between VmRNA and nodes on the chip

that rapidly switch between VDD and ground, such as the activation signal ACTV .

Figure 7-14 shows mRNA concentrations that were produced by the same gene

circuit when the triangular inducer waveform shown in Figure 7-13 was replaced by a
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Figure 7-13: Measured mRNA concentration (bottom) in response to a triangular
pulse of inducer S (top). Plots are shown for various values of the transcription
factor concentration IX .
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square pulse of IS. The pulse had a width of 80µs, as indicated by the grey rectangle

in the figure. Its height was fixed to a value that was high enough to activate the

gene, i.e., to satisfy inequality (7.52). We varied C, the size of the capacitor that

stores the log-compressed mRNA concentration, to draw the plots in Figure 7-14.
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Figure 7-14: Measured mRNA concentration in response to a square pulse of inducer
S. The duration of the pulse is indicated by the grey rectangle. Plots are shown for
various values of the mRNA capacitor C, which is proportional to the volume of the
cell.

The volume W of the simulated reaction volume, i.e., the cell, is proportional

to C, as shown earlier for chemical reactions. We used the following set of values:

C = {0.5, 1, 2, 4, 8}pF. The simulation speedup factor is given by α = βA/ (τγ), where

τ = CφT/ (κI0), and IA = βAI0 sets the mRNA degradation rate γ. Thus, the value

of α scales as 1/C, i.e., as 1/W , when βA and k are fixed. In other words, the speedup

factor is inversely proportional to reaction volume. Alternatively, the time constant

of the low-pass filter due to transcription, which is given by τI0/IA = CφT/ (κIA),

increases linearly with C. The responses shown in Figure 7-14 behave as predicted.

They are low-pass filtered versions of the input pulse, and the filter time constant is

proportional to C.

The user can program the mean amount of transcription delay TD using the pa-

rameter βD, as described earlier. In fact, equation (7.27) predicts that TD ∝ 1/βD.
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Figure 7-15 shows the measured transcription delay as a function of βD. The delay

only occurred at rising edges of the ACTV signal, as expected. We see that the

delay increases linearly with 1/βD, also as expected. On this chip, the delay can be

programmed over a 10-bit range, i.e., (DDEL,max/βD) can vary between 1 and 210.

Experimentally, we were indeed able to vary the delay over this full range. However,

biologically relevant values of delay usually fall within the smaller range shown in

Figure 7-15.
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Figure 7-15: Measured transcription delay as a function of the programmable param-
eter βD. Here DDEL,max = 24 is the maximum possible value of βD.

We also tested the SNR adjustment circuit shown in Figure 7-9. Equation (7.44)

can be rewritten in the form

SNRmRNA = βsnr

(
2τrImRNA

qosc

)
(7.53)

Thus, we expect the mRNA SNR to increase linearly with βsnr. The slope of

this straight line should be given by (2τr/qosc) ImRNA. From (7.48) we see that the

protein SNR should also increase linearly with βsnr. However, the slope is given
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by (τr/qosc) Iprn/γn, where γn is a dimensionless excess noise factor. Based on our

previous analysis, we expect γn = b when γp � γr. Also, we should get γn = Ap in

the opposite limit, i.e., when γp � γr.
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Figure 7-16: Measured SNR of mRNA and protein as a function of βsnr. The mean
mRNA and protein concentrations were fixed at 40nA and 100nA, respectively.

Figure 7-16 shows the measured SNR of mRNA and protein as a function of

βsnr. We used the following parameter values: γp = γr, Ap = 1 and b = 1. We

see that both mRNA and protein SNRs increase linearly with βsnr, as expected.

The best-fitting straight lines, also shown in the figure, were SNR ≈ 1.2βsnr for

mRNA, and SNR ≈ 4.1βsnr for protein. Also, the mean values of mRNA and protein

concentration were ImRNA ≈ 40nA and Iprn ≈ 100nA, respectively. As a result, we

get 2τrImRNA/qosc = 1.2⇒ qosc/ (2τr) = 33nA.

The plots in Figure 7-16 were obtained for γp = γr. In this case it can be showm

that the excess noise in protein concentration is γn = Ap/2. Intuitively, the noise

transfer function behaves as a second -order low-pass filter when the transcription

and translation pole frequencies γp and γn coincide. The sharper high-frequency

rolloff slope of this transfer function reduces the effective noise bandwidth by a factor

of 2. As a result, γn is lowered by the same factor. Experimentally, the measured
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slope of the SNR versus βsnr curve yields γn = 0.74, in reasonable agreement with

the predicted value of Ap/2 = 0.5.

We know that the SNR of a standard Poisson variable N is equal to its mean value

N , i.e., the mean number of random events that occur during a counting (integration)

period. Equation (7.53) shows that ImRNA can be normalized into NmRNA, a standard

Poisson variable, where

NmRNA = βsnr

(
2τrImRNA

qosc

)
SNR = NmRNA = βsnr

(
2τrImRNA

qosc

)
(7.54)

Here NmRNA = SNR
(
ImRNA/ImRNA

)
is a normalized version of the mRNA con-

centration ImRNA. Thus NmRNA should obey the Poisson probability distribution,

which is given by (6.76) and also rewritten below in terms of SNR:

p (NmRNA) =
SNRNmRNA exp (−SNR)

NmRNA!
(7.55)

Equation (7.55) predicts that the SNR of NmRNA is the only parameter that af-

fects its own probability distribution. Both βsnr and ImRNA can control the SNR.

We estimated probability distributions at various values of SNR by varying βsnr and

measuring ImRNA during a time interval of T = 200µs when transcription was active.

Figure 7-17 shows the measured probability distributions. The x-axis has been nor-

malized toNmRNA/SNR = NmRNA/NmRNA = ImRNA/ImRNA to facilitate comparison.

The figure also shows the theoretically-predicted Poisson distributions, i.e., (7.55)4.

The excellent match between measured and predicted probability distributions shows

that our theoretical analysis is valid.

In Figure 7-16 we varied SNR by programming the value of βsnr, while keeping

the mean concentration ImRNA fixed. However, (7.53) shows that the SNR of mRNA

4We actually used [SNR] instead of SNR to draw these theoretical plots, since the Poisson distri-
bution is only defined when both the number of counts and the mean count rate are integers. Here
[ ] is the nearest-integer function.
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Figure 7-17: Measured probability distribution of the mRNA concentration ImRNA
at several values of SNR. The broken red lines shows the theoretically-predicted
Poisson distributions.

is proportional to the product βsnrImRNA. Therefore it should increase linearly with

ImRNA when βsnr is fixed, just like any Poisson variable. The protein concentration

should behave similarly, but with an excess noise factor γn. We verified this prediction

experimentally by changing the input to the transcription filter, i.e., the activation

strength IACTV .

The mean mRNA and protein concentrations are given by ImRNA = ArIACTV and

Iprn = ArApIACTV respectively, where Ar = kr/γr and Ap = kp/γp. Thus, the SNR

of both mRNA and protein should be proportional to IACTV . We varied IACTV over

a 32:1 range by programming βs = IACTV /I0 between 1/4 and 8, while maintaining a

fixed value of βsnr = 10. We also kept the following parameter values fixed: γp = γr,

Ap = 2 and b = 2. The results are shown in Figure 7-18. We see that the SNR

increases linearly with mean concentration in both cases, as expected.

The best-fitting straight lines, also shown in Figure 7-18, were SNR ≈ 0.53ImRNA/nA

for mRNA, and SNR ≈ 0.65ImRNA/nA for protein. As a result, we get qosc/ (2τr) =

19nA. Our earlier estimate of this quantity was based on Figure 7-16, and was equal

to 33nA. The estimates differ because τr = τ0/βA was different in the two cases. Here
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Figure 7-18: Measured SNR as a function of mean concentration for both mRNA and
protein. Mean concentrations were set by varying IACTV while keeping all transcrip-
tion and translation parameters fixed.

βA = IA/I0 is set by the user, and τ0 = C (φT/κ) /I0. Finally, the measured value

of protein excess noise factor was γn = 0.81, which is close to the predicted value of

Ap/2 = 1.

A possible reason for differences between predicted and measured values of γn

is static offset between the output buffers used to measure VmRNA and Vprn, the

log-compressed versions of ImRNA and Iprn, respectively. Offset causes errors in the

measured values of ImRNA and Iprn, but not in SNR. The result is errors in the slopes

of the SNR curves. It is easy to show that an offset of ∆Voff causes a fractional error

of ∆Voff/ (φT/κ) in the ratio of the two slopes, i.e., the measured value of γn.

Gene regulation networks from a wide variety of organisms have been found to

contain specific sub-networks in much greater abundance than expected by chance.

Such sub-networks, which are repeatedly used by cells, are known as network motifs.

The widespread occurrence of a small set of common motifs implies that transcription

networks are highly modular. Motifs are of great scientific interest because they act

as reusable modules, i.e., carry out functions that are generic enough to be useful to

cells in a variety of environments. The simplest motifs, namely those that contain
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two or three genes, have been extensively studied [4]. We tested our chip by building

some well-known network motifs with it.

We first considered the coherent feed-forward loop (FFL) motif described in [4],

and shown in Figure 7-19(a). FFLs act as sign-sensitive delay elements and are

common in cell signaling networks. In the coherent FFL shown in the figure the

protein transcribed from gene X activates gene Y , while gene Z is activated only

when both the protein products of genes X and Y are present. In other words Z has

a two-input, AND-like input function. Induction of X by a pulse of the inducer SX

turns gene Z on after some delay. The delay is a result of the fact that both X and

Y have to be higher than their threshold values for the output of the AND gate to

go high. However, Z turns off immediately when the pulse of SX is removed, because

the output goes low when either X or Y go below their threshold values.

Y

Z

X

AND

SX

SY

(a) (b)

X Y Z

SI

Figure 7-19: Two simple motifs found in transcription networks, (a) the coherent
feed-forward loop, and (b) a ring oscillator that can be inhibited by the signal SI .

Another interesting property of the FFL is that it rejects short input pulses, i.e.,

pulses of SX that are shorter than the turn-on delay do not activate X. It has been

suggested that cells use this property to distinguish between long chemical pulses,

which might be signals from other cells, and shorter bursts, which might be due to

noise. Figure 7-20 shows measured transient responses of our coherent FFL circuit

to a aquare pulse of inducer SX . The figure shows concentrations of the proteins

transcribed from genes X, Y and Z as functions of time for inducer pulses of two

different durations. We see that the circuit behaves as expected. It distinguishes
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Figure 7-20: Measured transient response of the coherent FFL circuit to a pulse of
inducer concentration. Plots are shown for a brief pulse (top) and a longer pulse
(bottom).
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between short pulses (which do not activate Z) and long pulses (which do activate

Z). We also note the presence of sign-sensitive delay: the activation of Z is delayed

at rising, but not falling, edges of inducer pulses.

The measurements in Figure 7-20 were made in the noiseless case, i.e., with the

SNR adjustment circuits of all genes disabled. These circuits are disabled by setting

EN = 0 within the transcription filters, as shown in Figure 7-11. We also simulated

the FFL in the presence of noise in mRNA concentrations, i.e., with the SNR adjust-

ment circuits turned on. We noticed that random fluctuations in X can turn on Y

and Z in the absence of SX when the SNR is set to low values. Similar behavior has

been observed in living cells.

The second network motif that we built using our chip was a ring oscillator. This

system was first synthesized in living E. coli cells by Elowitz and Leibler in 2000,

and named the reprissilator [63]. It contained three genes, which we denote by X, Y

and Z. The protein produced by gene X represses gene Y . Similarly, Y represses Z,

and Z in turn represses X. Thus each gene can be modeled as a repressor, or signal

inverter. The three inverters within the motif are arranged in a feedback loop.

We replaced one of the repressors, X in this case, by a gene with a two-input

XNOR input function. The other input of the XNOR was connected to an external

signal SI , as shown in Figure 7-19(b). In other words, X is activated when SI and

Z are both active, or when they are both inactive. Thus the signal SI acts as an

inhibitor. When SI is inactive (low) the XNOR acts as an inverter, and the system

behaves like the original reprissilator. When SI is active (high) the XNOR acts as a

non-inverting buffer, changing the sign of the feedback loop and making the system

act as a bistable element, or latch.

Figure 7-21 shows measured waveforms (protein concentrations) generated by the

ring oscillator circuit. We see that the circuit exhibits stable, undamped oscillations

with a period of approximately 700µs when SI has a low value. In addition, the

oscillations are inhibited when the concentration of SI is increased, as expected. The

oscillation period, as well as the shapes of individual waveforms within the oscillator,

can be tuned by adjusting the parameters of the genes X, Y and Z. In particular,
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oscillations only occur when the overall feedback loop gain is greater than unity. Loop

gain increases when the three genes have similar ‘on’ and ’off’ protein concentrations

and activation thresholds, and decreases when the genes are very different from each

other. In the latter case one or more genes will be saturated (permanently stuck in

‘on’ or ‘off’ positions) and provide no signal gain.
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Figure 7-21: Measured waveforms (protein concentrations) generated by the ring os-
cillator circuit. Waveforms are shown for two different concentrations of the inhibitor
SI .

7.4 Appendix A: Software and Data Acquisition

The software required to test the gene network chip was similar to that required for the

chemical network chip. The program, named gene ui, contains a hardware driver and

a simple user interface. The driver provides an API with similar functionality as the

protein ui API described in the previous chapter. The help file of the program, which

includes names and brief descriptions of the functions within the API, is reproduced

below for reference.

• gene ui help file (version 0.3, 03/13/09)
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---------------------------------------

1. Utility functions:

help: display this help file

bye/done/exit: finished, exit to MATLAB

---------------------------------------

2. Write functions:

chip_reset: delete all genes

add_gene: add a new gene

modify_gene: modify properties of a gene

delete_gene: delete an existing gene

set_input: input constant current

---------------------------------------

3. List functions:

view_gene: view properties of a gene

list_genes: list status of all genes

---------------------------------------

4. Read functions:

set_scope: change oscilloscope settings

simulate: input arbitrary waveform, grab data

simulate_repeat: simulate several times

param_sweep: run simulations over a range of parameter values

plot_data: plot data from past simulations

---------------------------------------

Figure 7-22 shows the experimental setup used for testing both the gene and

protein network chips. The chips can be interfaced simultaneously to the same com-

puter. They both accept inputs that are currents or log-compressed voltages, and

generate buffered, log-compressed voltage outputs. Input and output voltages are

always referenced to a common ground terminal. As a result, the two chips can easily

communicate with each other: one chip’s outputs, in the form of protein or mRNA
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concentrations, can be directly hooked up to the other’s inputs.

MATLAB

ANALOG OUT

DIGITAL OUT

NI DAQPad

COMPUTER

USB

SCOPES

PROTEIN

NETWORK

CHIP

GENE

NETWORK

CHIP

GPIB

FUNCTION

GENERATORS

SOURCE

METERS

PROG

TRIG

Figure 7-22: Experimental setup used for testing the gene and protein network chips.

The analog outputs of a National Instrument DAQPad, hooked up to the com-

puter’s USB port, were used to generate the CLK and DATA signals required to

program each chip. The digital outputs of the DAQpad were used to generate EN-

ABLE and BEGIN signals. The ENABLE signals allow bits presented to the chip

on the DATA pin to be loaded into internal memory. BEGIN signals initiate compu-

tations on the chip, and also trigger function generators and oscilloscopes. Function

generators produce arbitrary time-varying chip inputs, while the oscilloscopes record

chip outputs. Keithley source meters are used to generate chip inputs that don’t

need to vary during a given simulation. All these instruments are interfaced to the

computer via a common GPIB bus. The MATLAB programs protein ui and gene ui

handle data transfer on the USB and GPIB buses, provide the user interface and

allow further processing of data acquired from the chips.

Oscilloscopes were used for data acquisition because no other equipment could

sample the chip outputs fast enough. However, oscilloscopes have limited sampling

resolution, which results in large amounts of quantization noise. For example, our

Tektronix TDS3014 oscilloscopes had 9 bits of resolution, i.e., quantized the signal

to one of 29 = 512 levels. The full-scale voltage of the oscilloscope’s ADC is 10 times

the vertical scale VY . For example, it is ±0.25V when VY = 50mV/division. Thus
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the quantization step size is given by

∆VQ =
10VY

29
≈ VY

50
(7.56)

We make the usual approximation that the quantization noise is uniformly dis-

tributed between ±∆VQ/2. It is easy to show that in this case the variance is

given by σ2
Q = (∆VQ)2 /12. The total variance of the detected voltage is given by

σ2
OUT = σ2

S + σ2
Q, where σS is the standard deviation of the original voltage being

sensed. In order to make accurate measurements the quantization noise should be

neglible compared to σS, i.e., we need σQ � σS. Other sources of noise, such as

electromagnetic pickup, may also be important.

Equation (7.56) shows that we can reduce σQ by using a smaller vertical scale

VY . Unfortunately this is not an option when the signal has a large DC component,

because we would exceed the linear range of the ADC and saturate. The outputs

from our chips are of this form. We cannot use reject the DC component by AC

coupling, because the value of this component is also of interest. Instead, we used the

oscilloscope’s ‘offset’ feature to subtract a known, fixed voltage from each channel.

We adjust this offset voltage until most of the DC component has been canceled,

which allows us to decrease VY and σQ. The subtracted voltage is eventually added

back using software. Finally, the detected voltage VOUT is exponentiated in software

to generate the actual output of the chip, namely the current IOUT . Thus we perform

the operation exp (VOUT/VL), where VL = φT/κ is the linear range. The SNR of IOUT

is then given by

SNROUT =

(
VL
σOUT

)2

(7.57)

The value of σQ can be reduced by acquiring the same output several times and

averaging the results in the time-domain, i.e., sample by sample. This technique is

known as synchronous averaging. Averaging N traces decreases the standard devia-

tion of a stationary signal by a factor of 1/
√
N , as one might expect. However, this

technique cannot distinguish between noise due to quantization and due to the chip.
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One can also run a moving-average or other low-pass filter on a single oscilloscope

trace to reduce its noise level. This technique can preferentially renove quantization

noise if it has wider bandwidth than the signal itself, which is usually the case. Fig-

ure 7-23 shows measured values of σOUT of one of the output voltages from the protein

network chip as a function of VY . We see that σOUT increases with VY , indicating the

presence of quantization noise. The figure also shows the results of low-pass filtering

the waveform with moving-average filters of various lengths.
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Figure 7-23: Measured standard deviation σOUT of one of the output voltages of the
protein network chip after sampling and acquisition by one of our oscilloscopes at
various vertical gain settings. The data was later averaged by a moving-average filter
of length Nav to reduce quantization noise.

We also tried various other techniques for reducing the amount of noise. These

techniques included capacitively bypassing all bias nodes, separating the core and I/O

power supplies used by the chip, running the chip off batteries, and reducing the input

bandwidth of the oscilloscope channels to 20MHz. All our techniques helped to some

extent. Lowering the oscilloscope bandwidth was particularly effective, reducing the

displayed noise level by approximately a factor of 6. All our efforts, however, only

managed to reduce σOUT to approximately 0.8mV, which limits SNROUT to 33dB
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without averaging. As a result, we were unable to accurately measure the actual

SNR of the chemical simulator chip. However, the SNR of the gene simulator chip,

with the SNR adjustment circuits enabled, was low enough to be easily measurable.

7.5 Appendix B: Linear-Feedback Shift Registers

Linear-feedback shift registers (LFSRs) have been extensively used in communication

systems. They have also been used to generate pseudo-random noise for hybrid and

digital simulations of random processes [143]. LFSRs are synchronous circuits, i.e.,

they only change states at discrete intervals determined by a clock. There are two

basic classes of LFSRs, Fibonacci and Galois, which are mathematically equivalent

and produce the same sequences. In either case the next state of a shift register of

length r is formed by feeding back a linear function of its current state. In modulo-2

arithmetic5 a function is considered ‘linear’ if it consists only of modulo-2 additions,

i.e., XOR or XNOR operations. Thus the LFSR feedback function is formed by XOR-

ing the states of two or more stages. In Fibonacci, or external LFSRs the feedback

function has a single output that feeds the input, or first stage of the shift register.

In Galois, or internal LFSRs the feedback function has multiple outputs which feed

both the first and one or more intermediate stages. We will analyze Fibonacci-type

LFSRs, since we implemented one on-chip.

Mathematically, an LFSR is described by its generator polynomial, defined as

P (x) = 1 +
r∑
i=1

cix
r (7.58)

where the input is defined as state 0, and xi is the i-th stage after the input. Also,

ci = 1 if the i-th stage is part of the feedback function, and 0 if it is not. The output

of any LFSR stage as a function of time is known as the sequence generated by it.

Sequences from different stages are simply time-shifted versions of each other. Each

stage in the shift register has 2 possible states (0 or 1), and so the LFSR as a whole

5Also known as GF(2), the finite, or Galois field of the two elements 0 and 1.
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has 2r states. Since this is a finite number the system is necessarily periodic, with a

maximum sequence length N of 2r. It is remarkable that feedback functions can be

found that result in sequences nearly as long, i.e., N = 2r − 1. Such sequences are

known as Maximum-length (ML) sequences. ML sequences are useful for generating

psedo-random waveforms. In particular, they possess three key “pseudo-randomness”

properties:

1. Balance: In each period the shift-register assumes every one of its 2r states,

except for the all-zero state6. The sequence is nearly balanced: it contains 2r−1

1’s and (2r−1 − 1) 0’s.

2. Run length: The probability of a run, or continuous series, of 1’s or 0’s de-

creases exponentially with the length of the run. The probability a run of length

n, consisting either of 0’s or 1’s, is Pn = 1/2n+2 [187]. Run length is analogous

to the time between successive events. konwn as the inter-arrival time, of a

continuous time random process. Thus, the inter-arrival time distribution of an

ML sequence is similar to that of a Poisson process.

3. Auto-correlation: The periodic, or discrete-time auto-correlation function of

an ML-sequence is noise-like and only takes two values:

Rn(k) =

 1 if k = iN

−1/N otherwise
(7.59)

where i is an integer and N = 2r − 1 is the length of the sequence.

We would like to know how to pick the set of coefficients {ci} in order to gen-

erate ML sequences. Clearly cr = 1, i.e. the coefficient of the highest term must

be non-zero, because otherwise succeeding stages will not be part of the feedback

loop, shortening the effective length of the shift register. There are only two other

conditions that P (x) must satisfy to produce ML sequences:

• P (x) cannot be factored into lower-order polynomials.

6This state must be avoided during startup, since it is stable.
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• P (x) is a factor of xN + 1, where N = 2r − 1 is the length of the sequence.

Polynomials which satisfy these properties are known as primitive polynomials.

There are many primitive polynomials for a given value of r, but they all produce

time-shifted versions of the same ML sequence.

LFSR sequences are typically mapped to real signals x(t) by assigning voltages

±A to states 1 and 0, or vice-versa. State transitions occur at integer multiples of the

clock period Tclk, and the sequence is periodic with a period NTclk. Periodicity results

in LFSR sequences having densely-packed line spectra, where individual spectral lines

are separated by ∆f = 1/ (NTclk). Individual states look like rectangular pulses in

the time domain when transitions between them are rapid compared to Tclk. In this

case the lines in the power spectrum have a sinc function envelope given by [143]:

Sxx(ω) = A2Tclksinc2 (ωTclk/2) (7.60)

The power spectral envelope shown in (7.60) is approximately flat (to within

0.1dB) for ω < 1/ (2Tclk). On timescales shorter than the period NTclk the individual

spectral lines cannot be distinguished, and the spectrum appears continuous. Thus,

over the frequency range 1/ (NTclk) < ω < 1/ (2Tclk) the spectrum resembles that of

white noise. The continuous-time autocorrelation function Rxx (τ) of an ML sequence

is also periodic. It consists of two parts. Firstly, correlations within the same state

result in triangular pulses of peak height A2 and width ±Tclk centered around τ =

iNTclk, where i is an integer. For values of τ outside these regions Rxx (τ) = A2/N ≈ 0

for large values of r. Thus, as r increases Rxx (τ) looks more and more noise-like.

We used r = 23-bit long shift registers with the generator polynomials x23 +x18 +1

and x23 + x14 + 1, both of which produce maximum-length sequences, i.e., sequences

of length N = 223 − 1 = 6.39× 106. In addition, at a typical value of ImRNA = 10nA

and with βsnr = 1 we get fCCO = βsnrf0 = 6.8kHz, resulting in a repetition period

of 196.3 seconds. Thus, the LFSR sequence will not repeat on the time scale of our

simulations (typically no longer than 1ms), making its spectrum look continuous.

Finally, it is interesting to compare ML sequences to the random telegraph (RT)
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signals they seek to emulate. RT signals have two states, again denoted by ±A. State

transitions are uncorrelated and can be described by a Poisson process with mean rate

λ. The power spectra and autocorrelation functions are given by

Sxx(ω) = 2A2

(
T

1 + (ωT )2

)
Rxx(τ) = A2e−|τ |/T (7.61)

where T ≡ 1/λ. Thus, the power spectrum of the RT signal is a Lorentzian, and the

autocorrelation function decays exponentially with τ . The corresponding functions

for ML sequences look similar, being sinc2 and triangular, respectively. In both cases

Sxx(ω) looks flat at low frequencies, with values that are equal to each other if

Tclk = 2T ⇒ fclk = λ/2 (7.62)

Thus, an LFSR sequence with clock frequency fclk has statistical properties that

are similar to an RT signal with mean event rate λ = 2fclk. Intuitively, every state

transition in the RT signal constitutes an event, while only active clock edges (rising

or falling), can change the state of the LFSR. As a result, the RT signal has double

the event rate.
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Chapter 8

Conclusion

Behold, I am insignificant; what can I reply to You?

I lay my hand on my mouth.

Once I have spoken, and I will not answer;

Even twice, and I will add nothing more.

– Book of Job, Chapter 40, The Bible (New American Standard Version)

In this chapter, we summarize the work described in this thesis, and suggest

directions for future research.

8.1 Summary

The shortest possible summary of our work is provided by Figure 8-1, which shows

all the printed circuit boards that were used to test the integrated circuits described

in this thesis. A slightly more detailed summary is provided below.

8.1.1 Chapter 1: Introduction

We began this thesis by placing the modeling and simulation of dynamical systems

within a historical context. We went on to review the physics and theory of computa-

tion. We paid particular attention to computations performed by analog dynamical

503



Figure 8-1: The printed circuit boards used to test the integrated circuits described
in this thesis.

systems, such as partial differential equations. Finally, we provided a brief overview

of other chapters and appendices in the thesis.

8.1.2 Chapter 2: The Bidirectional RF Cochlea

In this chapter we described the design and on-chip implementation of a bidirectional

transmission-line model of the biological cochlea at radio frequencies (RF). We be-

gan by describing the biological cochlea, and summarizing its basic characteristics.

Functionally the cochlea performs real-time, broadband spectrum analysis, which is

of importance in many scientific and commercial applications. In fact, we concluded,

after studying several common spectrum analyzer architectures, that the cochlear

algorithm provides the best trade-off between analysis time and hardware cost.

We began the design of an integrated spectrum analyzer based on the cochlear

algorithm by developing a simple rational model for the impedance of the basilar

membrane. We then described a network synthesis procedure that allowed us to

implement this impedance using two coupled RLC resonators. Finally, we performed

a theoretical analysis of the frequency resolution, sensitivity and dynamic range of

our spectrum analyzer.
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We concluded this chapter by describing the circuits that were used to imple-

ment the bidirectional RF cochlea in a 0.13µm CMOS technology, and presenting

experimental results. Developing an automated design flow for optimized on-chip

inductors and transformers was important for the overall success of the design. We

demonstrated cochlear operation between 1GHz and 8GHz with 50 output channels

(frequency bins) and a dynamic range of 70dB for single input tones.

8.1.3 Chapter 3: The Unidirectional RF Cochlea

We began this chapter by describing a formal prodcedure for approximating the be-

havior of the bidirectional cochlear model described in the previous chapter by a

cascade of exponentially-scaled, unidirectional filters. We performed a theoretical

analysis of the frequency resolution, sensitivity and dynamic range of a spectrum an-

alyzer implemented using these novel filters. We found that our procedure yields filter

transfer functions that generate cochlear outputs with improved frequency selectivity

and lower group delay.

In the next part of this chapter we described a network synthesis procedure that

allowed us to implement our improved cochlear filters using two coupled RLC res-

onators and a single transistor. We also described other circuits that were needed to

implement our improved unidirectional RF cochlea in a 0.13µm CMOS technology.

For example, we designed feedback loops for automatically calibrating the peak and

low-frequency gains of the cochlear transfer functions. Finally, we described exper-

imental results, which demonstrate cochlear operation between 600MHz and 6GHz

with 51 output channels (frequency bins) and a dynamic range of 70dB for single

input tones.

8.1.4 Chapter 4: The RF Cochlea: Enhancements and Ap-

plications

In the first part of this chapter we described the design and implementation of a broad-

band log-periodic dipole antenna that can be interfaced to our RF cochlea chips. In
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the next part we briefly considered strategies that enhance the performance of the

RF cochlea by exploiting timing information present in its outputs. In particular, we

showed that correlations between outputs can be used for nonlinear spectral sharp-

ening, which increases the frequency resolution without degrading timing precision.

In the final part of this chapter we described interesting analogies between fre-

quency estimators and analog-to-digital converters. These analogies yield several

novel classes of frequency estimators. For example, we developed a successive ap-

proximation architecture that used cascaded RF cochleas and a decision network, or

state machine, to estimate multiple input frequencies in parallel. We also showed

simulation results, and discussed the use of our architectures within ultra-wideband,

cognitive, or universal radio receivers.

8.1.5 Chapter 5: A Detailed Discussion of Noise

In this chapter we took a detailed look at the physical basis of noise, which limits

the precision of all practical computations. We began by considering a lumped resis-

tor, and went on to consider diodes and MOSFETs in detail. Next, we reviewed the

fundamental fluctuation-dissipation theorem that links fluctuations in thermal equi-

librium to disspation (loss) outside equilibrium. We concluded that thermal noise

formulas can always be derived as special cases of shot noise formulas by applying a

version of the fluctuation-dissipation theorem.

In the next part of this chapter we reviewed the basics of noise in quantum systems,

and found that they possess complex autocorrelation functions and consequently, non-

symmetric power spectra. We went on to describe 1/f , or flicker noise in MOSFETs

in some detail. Experimental measurements showed that the power spectrum of an

integrated NMOS transistor retained a 1/f dependence down to at least 0.5µHz.

We concluded the chapter by discussing noise in several other systems: antennas,

oscillators, chemical reactions, and biology.
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8.1.6 Chapter 6: Circuit Models of Chemical Reactions

In this chapter we described scalable integrated circuit models of chemical reaction

networks. We began by discovering detailed similarities between fluxes in chemical

reactions and the flow of electrons in transistors. These similarities allowed us to

develop simple translinear circuits that were dynamically equivalent to mass-action

chemical kinetics. We then analyzed the effects of device mismatches and noise on

these circuits. We concluded that mismatches created unwanted extra reactions, and

must be minimized. However, we found that our circuits had noise properties similar

to chemistry, allowing them to be used for stochastic simulations.

In the next part of the chapter we described a 0.18µm CMOS chip designed for par-

allel simulations of chemical reaction networks. The topology and parameter values

of the simulated network are completely programmable by the user through custom

driver software. The chip contained 32 state variables, 160 reaction circuits, accepted

8 inputs and generated 16 outputs. We concluded by presenting experimental results

for simple reaction networks, and demonstrated a 30x speedup in simulation time

over a quad-core desktop computer.

8.1.7 Chapter 7: Circuit Models of Genetic Networks

In this chapter we described scalable integrated circuit models of gene regulation net-

works. We bagan by developing a simplified model for induction, transcription factor

binding, activation, transcription and translation. We then described circuits that

implement the model, including programmable logic for multi-dimensional activation

functions and translinear filters for transcription and translation. We also described

a circuit that can adjust the SNR of mRNA or protein concentrations to any value,

allowing us to perform stochastic simulations.

In the next part of the chapter we described a 0.18µm CMOS chip designed for

parallel simulation of gene regulation networks. The topology and parameter values

of the simulated network are completely programmable by the user through custom

driver software. The chip accepted 16 inputs, and contained 6 independent genes with
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8-dimensional input functions. We concluded by presenting experimental results for

single genes and simple gene circuits, such as a coherent FFL and a ring oscillator.

8.2 Future Work

8.2.1 The RF Cochlea

Circuit Enhancements

The bidirectional RF cochlea chip had a substantial amount of low-frequency line loss.

Reducing this loss constitutes an important topic for future research. We would also

like to predict the effects of nonlinearities, particularly in the active negative resistors,

on wave propagation at large amplitudes. The large body of existing research on

nonlinear transmission lines [241, 245] may be of assistance in this regard. Other

useful improvements could include independent gain calibration circuits for each stage,

a larger chip area (which would allow to increase the number of stages), more sensitive

detectors (such as coherent detectors), and on-chip digitzation of the outputs. We

would also like explore the use of adaptive gain control for improving dynamic range,

including schemes for automatically notching out large interferers.

Most of the same improvements that were described in the previous paragraph

also apply to the unidirectional cochlea chip. In addition, we would like to modify the

low-frequency gain calibration loop so that it can both increase and decrease gain,

and implement a more sophisticated peak gain control circuit for each stage.

Larger Systems

We would like to build novel ‘universal’ receivers that detect multiple RF bands in

parallel by using the RF cochlea as a building block. In particular, we would like to

implement the cascaded cochleas architecture, which allows us to adaptively ‘zoom’

into spectral features of interest. We would also like to explore the use of temporal,

or phase, information present in the cochlear outputs for rejecting noise, detecting

transients, and improving the frequency resolution of such receivers. The biological
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cochlear nucleus contains several types of cells that perform analogous functions, and

may prove to be a fruitful source of inspiration.

8.2.2 Circuit Models of Chemical and Genetic Networks

Circuit Enhancements

There are many ways in which the prototype chemical network simulation chip could

be improved. In order to reduce device mismatches, which generate unwanted extra

reactions, we can lay out reversible reactions as single blocks that are laid out to

match. Currently such reactions are produced by connecting two different reaction

circuits, which can be physically far apart, to the same set of state variables. We can

also develop a scheme for auto-zeroing out the mismatches before each simulation

run. The output buffers can also be auto-zeroed to remove their offsets. The use of

fully-differential circuits will reduce mismatches and, potentially, the effects of leakage

currents, and should also be explored.

The ratio r, defined as the the total number of reactions to the total number

of state variables, appears to be between 2 and 3 for many reaction systems within

cells. The value of r in the current chemical simulator chip was approximately 5,

which often led to state variables being in short supply while implementing complex

models. We plan to decrease r to approximately 2.5 in future iterations of our chips

in order to solve this problem.

Similar design improvements can also be made to the genetic network simulation

chip. In addition. we would like to explore the use of non-abrupt activation functions

(Hill functions of low order), because they are more biologically realistic. We would

like to add an SNR adjustment circuit for the protein concentration, as well as mod-

ifying the circuit itself, as described earlier. Stochastic switching of the activation

function may be important for modeling eukaryotic genes, and can be modeled with

a variant of the same circuit. Such circuits can be used to adjust the noise of any

chemical species, and may be included in future versions of the chemical network chip

as well. Finally, both chips had some simple design errors, such as an initial condition
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setting bug in the chemical simulator and a faulty truth table for the PLA in the gene

simulator, which will be fixed in future design iterations.

Larger Systems

We would like to use improved versions of our chemical and genetic network simulation

chips as the basis for a high-performance co-processing system that can be used by

biologists. The two chips will be combined into a single hybrid system, as shown in

Figure 8-2. The combined system will allow the two parts to interact closely with each

other. Thus, the chemical simulator will accept translated proteins as inputs, while

its outputs will be fed into the genetic simulator, where they can act as transcription

factors.

We would like to interface our co-processing system to standard desktop com-

puters by implementing a universal serial bus (USB) interface. In addition to our

custom chips and the USB transceiver, the system will also contain analog-to-digital

converters, flash memory and a micro-controller. The micro-controller will act as the

interface between our chips and the computer. It will handle all low-level communica-

tions with our chips, including programming and data acquisition. For example, it will

allow the user to perform multiple simulation runs, store the results in the on-board

flash memory, perform simple analyses, and extract meaningful information, without

transferring large amounts of raw data to the computer. Thus, the microcontroller

will alleviate the input/output bandwidth bottleneck that plagues high-performance

computing.

Random Number Generation

Finally, we would like to explore techniques for generating random numbers in hard-

ware. Such numbers are important for a variety of applications where the lower power

and/or higher speed of specialized hardware would prove beneficial. The statistical

properties of the numbers should be reliable and easily controlled. We have already

developed some techniques for this purpose. For example, an on-chip transcription

delay with controllable signal-to-noise ratio (SNR) was produced by using an oscilla-
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Figure 8-2: A conceptual view of how the chemical reaction network and gene network
chips can be combined to create a single hybrid dynamical system.

tor to sample the rising edge of an activation signal, and a shift register to delay it1.

We would like to extend these techniques into the development of application-specific

random number generation circuits. Such circuits will specialize in generating ran-

dom numbers for specific purposes. For instance, the randomness requirements for

cryptography are much more stringent than for stochastic simulations, and demand

more sophisticated circuits.

1Conceptually, this technique is related to oscillator sampling, which is a well-known random
number generation method [225]. In this method a freely-running oscillator is used to sample the
output of another freely-running oscillator.
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Appendix A

Power-Efficient

Impedance-Modulation Wireless

Data Links for Biomedical

Implants

In this chapter we analyze the performance of wireless data telemetry links for im-

planted biomedical systems. An experimental realization of a bidirectional half-duplex

link that uses near-field inductive coupling between the implanted system and an ex-

ternal transceiver is described. Our system minimizes power consumption in the

implanted system by using impedance modulation to transmit high-bandwidth in-

formation in the uplink direction, i.e. from the implanted to the external system.

We measured a data rate of 2.8Mbps at a bit error rate (BER) of < 10−6 (we could

not measure error rates below 10−6) and a data rate of 4.0Mbps at a BER of 10−3.

Experimental results also demonstrate data transfer rates up to 300kbps in the op-

posite, i.e. downlink direction. We also perform a theoretical analysis of the bit error

rate performance. An important effect regarding the asymmetry of rising and falling

edges that is inherent to impedance modulation is predicted by theory and confirmed

by experiment. The link dissipates 2.5mW in the external system and only 100µW in
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the implanted system, making it among the most power-efficient inductive data links

reported. Our link is compatible with FCC regulations on radiated emissions.

A.1 Introduction

Inductively-coupled near-field wireless links have been extensively used in various

implanted medical devices [81, 89, 121, 165, 205, 278, 288]. Some far-field links have

also been reported [109]. Many of these links have been used to transmit power

to the implanted device in addition to carrying unidirectional or bidirectional data

signals. The system described in this paper was designed for use in an implanted

neural prosthesis with multiple recording electrodes [262]. The prosthesis requires a

wireless transcutaneous link to transmit data between the implanted sub-system and

an external unit (see Figure A-1).

SKIN

SKULL

wireless link
DOWNLINKUPLINK
(control signals)(multiplexed

neural data)

EXTERNAL UNIT

INTERNAL UNIT

BRAIN electrode array

Figure A-1: Simplified view of the neural prosthesis system described in [262].

It is generally advantageous to separate the power and data transfer functions

of a wireless link [87, 287]. Power signals carry no information, and power transfer

efficiency is maximized for narrowband (high-Q) links that operate at low frequencies

to minimize losses in body tissue. On the other hand, data signals carry information

and therefore require larger link bandwidths, which are more easily obtained at higher

operating frequencies. Separating the two functions therefore allows them to be in-

dependently optimized, improving overall performance. In this paper, we therefore

assume an independent power link is already present, and focus only on the data link.

A detailed discussion of RF power link design may be found in [9].

Wireless power transfer may or may not be continuous. Continuous transfer uses

an implanted rectifier, and may be avoided by incorporating a sealed rechargeable

battery into the implant. In either case, the power dissipated by the implanted
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system should be minimized. Excess heat dissipated within the body results in tissue

damage. In addition, the number of useful battery recharges is limited (typically to

about 103), so reducing implant power also prolongs battery life.

In implanted systems with many neural recording electrodes [118], the data rate

from the implanted system to an external unit can be quite high since each electrode

typically requires at least 5kHz of bandwidth. We term this the uplink. Sending

high-bandwidth data on the uplink is expensive in power. In this paper, we describe

a wireless data link that solves this problem by pushing as much of the power and

complexity to the external unit as possible. The power consumption of the exter-

nal unit is less critical since its batteries may be easily changed. We also need a

low-bandwidth data link from the external unit to the implanted unit for control,

programming and feedback information. We term this data link the downlink. Our

system minimizes implanted power in the downlink as well.

A brief version of this paper with preliminary results and no analysis was presented

at a conference [185]. The current paper is organized as follows. A theoretical analysis

of impedance modulation is carried out in Section A.2. The external and internal

transceiver chips are described in Sections A.3 and A.4, respectively. The performance

of the communication system is analyzed in Section A.5, while experimental results

are presented in Section A.6. Finally, Section A.7 concludes our discussion.

A.2 Theoretical Analysis of Impedance Modula-

tion

Our data link is designed to be half-duplex, i.e., either uplink or downlink data (but

not both) can be transmitted at any given time. We use impedance modulation

to transmit uplink data, while downlink data is transmitted via inductive coupling

(transformer action). Impedance modulation, also known as load modulation, ab-

sorption modulation or backscattering, is a well-known technique used in RFID tags,

low-power wireless sensors and biomedical implants [37, 52, 82, 88, 106, 122, 136, 165,
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186,214,273,285,326]. One side (the source) of a coupled pair of resonators is driven

with a sinusoidal source. The impedance of the other, load resonator is switched be-

tween two or more discrete states to transmit data. The resultant amplitude and/or

phase modulation of the source waveform is detected to receive the data. The cou-

pling between the resonators can be near-field (inductive) or far-field (radiative) in

nature. In this section we theoretically analyze the performance of such communica-

tion systems. Our analysis simplifies and generalizes previous work, for example that

in [37,88,285].

A.2.1 General Considerations

Assume a voltage source vG with an output impedance ZG is coupled to a load ZL via

a linear, reciprocal two-port network. The situation is shown in Figure A-2, where

Z11 and Z22 are the input impedances at the source and load terminals, respectively,

with the other side open-circuited. In addition Z12 is known as the transfer impedance

between the source and load. It can be shown that the input impedances seen at the

source and load terminals, denoted by ZT and ZR, are given by

ZT = Z11 −
Z2

12

Z22 + ZL

ZR = Z22 −
Z2

12

Z11 + ZG
(A.1)

where the second term on the right-hand-side of each equation is known as the reflected

impedance and is the net effect of the coupling network [9]. Equation (A.1) reveals

that the transfer impedance of the coupling network acts as an impedance inverter

(gyrator). The circuit shown in Figure A-2 is generic and can represent both near-

field (reactive) and far-field (radiative) coupling between the source and load. For

near-field coupling between two inductors L1 and L2, we have
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Z12

Figure A-2: Generic circuit representation of coupling between a source (driven net-
work) and a load (passive network) via a linear, reciprocal two-port.

Z11 = ωL1 +R1

Z12 = ωM (A.2)

Z22 = ωL2 +R2 (A.3)

Here M is the mutual inductance between L1 and L2, while R1 and R2 are their

series resistances. Notice that Z12 is purely imaginary since the coupling was assumed

to be purely reactive, with no energy lost due to radiation. In general the medium

separating the coils has finite impedance Zm = Rm + Xm, which will modify Z11,

Z12 and Z22 to new values Z ′11, Z ′12 and Z ′22. If the medium, such as biological

tissue, has non-zero conductivity, i.e., Rm 6= 0, Z ′12 will contain a real component

even in the absence of radiation. In addition, the reactance of the medium, Xm,

will introduce capacitive coupling between the resonators. We shall ignore the effects

of Zm to simplify our analysis. These assumptions are a good approximation for

transcutaneous links unless the coils are designed to have very high values of Q or

the operating frequency is higher than 30-40MHz.

We can also model the far-field case, in which case the coupling occurs via an-

tennas. Assuming that both antennas are impedance-matched, i.e., ZG = Z∗T and

ZL = Z∗R, and that the coupling medium is free space, it can be shown that
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Z11 = R1 + X1

Z11 = R2 + X2 (A.4)

Z12 =
√
G1G2R1R2

(
λ

2πr

)
(A.5)

Here the antennas have input (terminal) impedances Z11 = R1 + X1 and Z22 =

R1 + X1, gains G1 and G2 and are separated by a distance r. The operating wave-

length is λ. Notice that in this case Z12 is entirely real because power transfer is

assumed to occur only via radiation.

A.2.2 Impedance Modulation

Consider a near-field inductive link. The canonical example of this system is shown

in Figure A-3(a), along with an equivalent representation in Figure A-3(b). For sim-

plicity, we have ignored the impedance of the medium separating the coils. Consider

this system in sinusoidal steady state. The source network is driven by a sinusoidal

current source iin = Iin sin (ω0t). However, Figure A-3(b) is identical to Figure A-2 if

we use the relationships in (A.2) and also identify ZG = 1/ (sC1) and ZL = 1/ (sC2).

We can therefore immediately use (A.1) to write

Zin =
v1

iin
= ZG + ZT = ZG + Z11 −

Z2
12

Z22 + ZL
(A.6)

=
1

ωC1

+ (ωL1 +R1) +

(
ω2M2

ωL2 +R2 + 1
ωC2

)

The system is usually operated around a frequency ω0 where both the source

and load networks resonate, i.e., ω0 = 1/
√
L1C1 = 1/

√
L2C2. Let us define Q1 =√

L1/C1/R1 and Q2 =
√
L2/C2/R2 to be the quality factors of the source and load

networks, respectively. At the resonance frequency ω0, we can simplify (A.6) to
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Figure A-3: The basic near-field inductive link, represented in two equivalent ways.

Zin = R1

(
1 + k2Q1Q2

)
≡ R1 (1 +m) (A.7)

where the coupling coefficient between the inductors is denoted by k, defined as

k = M/
√
L1L2 where 0 < k < 1, and is a function of coil geometry and separation.

In addition, m = k2Q1Q2 is known as the modulation index. In impedance modula-

tion, the data to be transmitted changes the quality factor Q2 of the load network,

thereby modulating the voltage across the source network via the change in reflected

impedance. The amount of modulation is maximized by changing Q2 to a low value

Q′2 in one state, say when a ‘1’ is to be transmitted, and keeping Q2 � 1 in the other

state (when a ‘0’ is transmitted). The easiest way to implement this scheme is by

closing a switch to short-circuit the load network whenever a ‘1’ bit is to be transmit-

ted, making Q′2 = 1, and opening the switch whenever a ‘0’ bit is to be transmitted.

Intuitively, Q′2 = 1 because all the energy stored inside the inductor L2 during a

single RF cycle must be dissipated inside its parasitic series resistance R2. None of

that energy can be stored in the capacitor C2, because it is shorted out. Therefore

the ratio of energy stored to energy dissipated per cycle is unity, i.e., Q′2 = 11.

The resultant values of v1 are then given by

1For similar reasons, the effective quality factor of inductorless (ring and relaxation) oscillators
for phase noise calculations is also unity.
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v1|BIT=0 = iinR1 (1 +m/Q2) (A.8)

v1|BIT=1 = iinR1 (1 +m)

We see that impedance modulation causes amplitude shift-keying (ASK) of the

source voltage v1. Since Zin remains purely real in either state, phase modulation

is absent. For simplicity, we shall assume that data bits are encoded as rectangular

pulses.

The coupling coefficient k typically decreases as d−3, where d is the separation

between the coils. The strong dependence of m on k therefore makes impedance

modulation unsuitable for long-range links. For short-range links, however, it pos-

sesses the great advantage of dissipating almost no power on the transmitting (load)

side of the link. This advantage allows an implanted system to transmit data while

keeping its power consumption to a minimum; most of the power is dissipated by the

external unit.

A.2.3 An Alternative Topology

A practical problem with low-power implementations of the system shown in Figure A-

3 is that Zin is on the order of R1, which is usually just the series loss in the inductor

L1, and is quite small (on the order of a few Ω). With any reasonable level of input

current iin, the result is extremely small voltage amplitudes v1 across the source

network. This low impedance level may not be a problem when the inductive link is

used to transfer power, but it is undesirable for data links. A simple way to increase

the impedance across which v1 is expressed is to convert the series resonant circuit

shown in Figure A-3 into a parallel one, as shown in Figure A-4. The input current

source iin is created by driving the gate of a transistor (which has transconductance

gm) with a sinusoidal voltage vin sin (ω0t). Again, assuming that ω0 = 1/
√
L1C1 =

1/
√
L2C2, we find that
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Figure A-4: Simplified schematic of the impedance-modulated wireless data link de-
scribed in this paper.

Zin =
v1

iin
≈ R1 (1 +m)

(
Q1

1 +m

)2

=
R1Q

2
1

1 +m
(A.9)

with the approximation being valid if 1 + k2Q1Q2 � Q1, and we have used a

series-to-parallel impedance transformation to derive the result. Since Q1 � 1, this

condition reduces to k � 1/
√
Q2. It is instructive to rewrite (A.9) as follows:

Zin =
(R1Q1)2

R1 (1 +m)
=

Z2
0

R1 (1 +m)
(A.10)

Here Z0 = R1Q1 =
√
L1/C1 and m = k2Q1Q2, as before. We see that going

from a series to a parallel resonant circuit has resulted in an impedance inversion

(gyration) of the form Zin → Z2
0/Zin. The effective modulation depth meff is now

given by

meff =
1/ (1 +m/Q2)− 1/ (1 +m)

1/ (1 +m/Q2)
=
m (1− 1/Q2)

1 +m
(A.11)

and is approximately equal to m if m � 1 and Q2 � 1. The external resonator

voltage amplitude switches between v1/ (1 +m/Q2) and v1/(1+m) based on whether

a ‘1’ or ‘0’, respectively, is being transmitted from the implanted unit. Equivalently,
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coupling to the internal resonator lowers the external resonator’s quality factor from

Q1 to Q1/
√

1 +m/Q2 or Q1/
√

1 +m, depending on whether the internal resonator

is shorted or not.

A.2.4 Downlink

During the downlink phase, the switch across the internal resonator is kept open. The

amplitude of the RF voltage across the external resonator is modulated by the data;

some of this amplitude variation is coupled to the internal resonator via the mutual

inductance between L1 and L2. The voltage transfer function between the external

resonator voltage v1 and the internal resonator voltage v2 is given by

md ≡
v2

v1

= kQ2

√
L2

L1

(A.12)

If we assume that the two coils are matched, so that L1 = L2 and Q1 = Q2, we

see that md =
√
m. The amplitude of the received data signal is given by mdv1 for

the downlink and meffv1 for the uplink. The weaker dependence of md on k means

that it falls off less rapidly with distance than m.

A.3 External Transceiver Implementation

We now describe the circuits used in our wireless data link. Separate internal and

external transceiver chips have been designed and built. In this section we describe

the transceiver designed for the external unit.

A.3.1 Front-end Circuits

A simplified schematic of the external transceiver is shown in Figure A-5. All analog

circuits on the chip are biased using an on-chip 2µA supply-independent CMOS cur-

rent reference. The current reference is cascoded to improve its output impedance;

it also uses a startup circuit that operates off the power supply turn-on transient

and consumes no static power [184]. A power-on-reset circuit is used to ensure that
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all digital registers and latches initialize to a known state when the power supply is

first turned on. The power-on-reset consists of a C −R circuit that differentiates the

power supply turn-on ramp to produce a spike. This spike is converted to a logic-level

global reset pulse by a Schmitt trigger.

The source resonator is incorporated into an RF oscillator, described later and

shown in Figure A-8, that runs continuously when the transceiver is receiving data

(TX is low). This arrangement saves power by combining the functions of the local

oscillator and power amplifier into a single circuit. The internal transceiver uses

a switch to short out or open-circuit its resonator (the load), thus modulating the

envelope of the RF oscillator. Two envelope detectors, each using an MOS diode as

the nonlinear element, individually track the positive and negative sides of the RF

envelope (which move differentially). Each envelope detector (ED) leak current IED

and load capacitor CED is set to 2µA and 2.6pF, respectively. These values are chosen

so that the ED time constant τED is slow enough to filter out most of the RF carrier

but fast enough not to significantly attenuate the data signal. The ED time constant

is given by

τED =
CED
gm,diode

=
CEDφT
IED

(A.13)

The difference between the two ED outputs is amplified by an AC-coupled dif-

ferential amplifier and fed into a comparator. The op-amps in this preamplifier are

standard two-stage CMOS designs that consume 45µA each. The values of the resis-

tors R1 and R2 are 20kΩ and 100kΩ, respectively; this choice makes the nominal gain

of the preamplifier equal to GA = 1 + R2/R1 = 6. The AC-coupling network uses

C3 = 10pF and R3 = 1MΩ. We want to make the R3C3 time constant as large as

possible to avoid signal attenuation during long runs of ‘0’s or ‘1’s, especially when

the data rate is low. We use an asynchronous comparator that consists of a wide-

output-swing operational transconductance amplifier (OTA) biased at a total current

of 37.5µA. The output current when the comparator is slewing is 30µA.

Figure A-6 shows experimentally measured comparator inputs and output at a
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data rate of 2Mbps. Feeding the two amplified envelopes differentially into the com-

parator increases our received signal-to-noise power ratio by a factor of 2 (3dB) com-

pared to a single-ended scheme that tracks only one side of the modulated RF signal.
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Figure A-5: Simplified schematic of the external transceiver. The output of the hold
timer is fed into a PLL (not shown in this figure).

The output of the comparator is passed into a hold timer circuit, shown in Fig-

ure A-7. The hold timer eliminates pulses that are shorter than a certain fixed

duration. This strategy eliminates multiple transitions along data edges because of

noise. The dead zones on the low-high and high-low input transitions are denoted by

tLH and tHL respectively, and are given by

tLH =
CL (VDDH − VTL)

IN

tHL =
CLVTH
IP

(A.14)

where VTL and VTH are, respectively, the low and high trip-points of the Schmitt

trigger. The overall effect of the hold timer is similar to using a hysteretic comparator.

The hold time for both low and high transitions was set to 100ns. Its output is fed
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Figure A-6: Experimentally measured comparator inputs (top), and output (bottom).
The data rate was 2.5Mbps and the coils were placed 3.5cm apart.

into a phase-locked loop (PLL) for clock and data recovery (CDR).
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IP

IN CL

VDDH

Figure A-7: Schematic of the hold timer circuit.

A.3.2 The RF Oscillator

Figure A-8 shows the RF oscillator. All components except L1 are on-chip. The

oscillator uses the resonant tank formed by L1 and C1 as the main frequency-selective

element. A CMOS inverter in its high-gain region is used to provide enough loop gain
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to induce oscillations. Operation in this region is ensured by setting VDDL ≈ VDDH/2,

where VDDH is the power supply for the inverter and the rest of the chip. The voltages

VDDL and VDDH can be created by connecting two identical batteries in series. The

amplitude of the oscillation, V1 (and power consumption) increases with the aspect

ratio of the transistor in parallel with L1 and C1. The high-pass filter formed by R2

and C2 acts as a negative delay element (predictor) that cancels out the inverter delay

tinv [202].

If the inverter delay has been completely canceled, the oscillation frequency is

simply given by ω0 = 1/
√
L1C1. By using an identical L and C as the internal

resonator, we can now guarantee operation at the resonant frequency of both res-

onators. Since inductor and capacitor values match well, the need for any additional

frequency-tuning is eliminated. It can be shown that, in order for the inverter delay

to be completely canceled, we must have

R2C2 =
1

ω0 tan (ω0tinv)
(A.15)

DATA

v1 (OUT)

L1

C1

C2R2

VDDL

VDDL

VDDH

VDDH

ON-CHIP

OFF-CHIP
COUPLING TO
INTERNAL UNIT

vg

M1

Figure A-8: The source-side (external) RF oscillator.

Increasing the oscillation frequency fosc increases the quality factors of the induc-

tors, which increases meff , allowing smaller oscillation amplitudes to be used and

thereby lowering power consumption. However, at very high frequencies the coils
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eventually self-resonate and losses due to body tissues also increase, effectively lower-

ing Q. In our case a good compromise between these competing factors was obtained

around 25MHz, which is where we operate.

A.3.3 The Phase-Locked Loop

The PLL, shown in Figure A-9, allows the uplink to use non-return (NR) data en-

coding, which maximizes data rate for a given link bandwidth. It uses a Hogge-type

phase detector (PD) [158], shown in Figure A-10, a cascoded charge pump and a

passive, third-order loop filter. The charge pump uses differential switching to reduce

charge injection errors (see Figure A-11). The loop filter contains two additional

high-frequency poles (indicated in the figure) that are placed beyond the crossover

frequency of the loop transmission. These poles filter out high-frequency ripple on

VOUT , thereby reducing jitter in the output clock while only minimally degrading the

phase margin of the loop. The reference voltage VREF is normally set to VDDL, which

is a convenient value midway between the rails.

−

+

FREQUENCY

PHASE
DETECTOR

CHARGE
PUMP

LOOP
FILTER

CURRENT
CONTROLLED
OSCILLATOR

LOCKED
LOOP

TIMER

SEL

DATA

CLK

IBIAS

RESET SEL

Gm

VREF

Figure A-9: Block diagram of the phase-locked loop (PLL). The timer enables an
auxiliary frequency-locked loop after a system reset occurs.

The output of the loop filter, VOUT , is converted to a current by a wide-linear-

range transconductor (WLR) [258] that combines a well-input differential pair and

other linearization techniques to achieve over 1.5V of input linear range. The output

current of the WLR, ICCO, is fed into a current-starved ring oscillator (CCO). The
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Figure A-10: The Hogge phase detector used in the CDR PLL.

loop bandwidth is set to 20KHz (about 1% of the nominal data rate, which is 2Mbps).

This value is low enough to ensure that the loop remains locked even when long ’runs’

of consecutive ‘1’s or ‘0’s occur in the input data stream. The loop locks when the

CCO frequency is twice the data rate (a result of using the Hogge PD, which also

outputs re-timed data with edges synchronized to the recovered clock).

VCN

VCN

VCP

VCP

ICP

UU

DD

+
− VREF

VOUTR1
R3

C3C2C1

Dominant pole and

Additional poles beyond
crossover

VDDH

VDDH

loop-stabilizing zero

Figure A-11: Schematic of the charge pump and loop filter used within the PLL.

True phase detectors, such as the Hogge, do not provide much frequency error

information. This property enables a CDR PLL to remain locked when missing edges

appear in the input data stream, but reduces its capture range. As a result, CDR

PLL’s usually need additional circuitry to aid acquisition of lock. We have designed

a frequency-locked loop (FLL) for this purpose. The FLL is shown in Figure A-12. A
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timer activates it for a fixed number of clock cycles after a system reset (see Figure A-

9). During this period, the main PLL is disabled and the internal unit transmits a

synchronization sequence consisting of alternating ‘0’ and ‘1’ bits. The FLL is a first-

order loop that counts clock and data edges and sets the bias current of the CCO

so that their rates are equal. It does this by using a digital accumulator (which acts

as the loop filter) and current DAC. Each data edge (rising or falling) increments

the accumulator, while the divide-by-2 circuit ensures that only rising clock edges

decrement it. Therefore the FLL, like the PLL itself, is locked when the clock runs at

double the data rate. When the timer disables the FLL the CCO is already running

close to the right frequency, so the PLL locks more easily. In our implementation,

the accumulator and DAC have five bits each, which limits the initial frequency error

that must be handled by the PLL to less than 1/25 ≈ 3% of the data rate.

Figure A-13 shows experimentally measured oscillator output (i.e., clock) fre-

quencies as a function of the loop filter output voltage for two different power supply

voltages. The loop filter output voltage is fed into the WLR transconductor to gen-

erate the CCO control current ICCO. The measured curves are fairly linear, but the

slope changes noticeably when VDDH is changed from 2.8V to 3.3V, indicating that

the tuning gain of the CCO changes with VDDH . This change occurs because tdel,

the delay of each current-starved inverter forming the CCO, increases with VDDH . In

fact, if the PMOS and NMOS sides are ratioed such that the inverters are balanced,

the threshold voltage must be approximately VDD/2. Therefore, to first order we have

tdel ≈ CLVDD/ (2Icco).

A.3.4 Downlink

During the transmit phase (TX is high in Figure A-5) data is sent to the implanted

system via on-off keying (OOK). In this phase the data signal turns the oscillator

on and off (see Figure A-8), thus changing the amplitude of the voltage across the

source resonator from v1 to 0. This change v1 is coupled to the load resonator (in

the implanted unit) by transformer action between L1 and L2. The amplitude of the

voltage across it varies between v2 to 0, where v2/v1 = md and md is given by (A.12).
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Figure A-12: Block diagram of the frequency-locked loop.

To save power, all receiver circuits in the external unit are turned off during this

phase.

It is interesting to compare the relative amounts of amplitude modulation obtained

for the uplink (which uses impedance modulation) and the downlink (which uses

inductive coupling) for the same RF carrier voltage v1. The ratio of signal amplitudes

obtained in the two cases is given by

muplink

mdownlink

≡ meff

md

≈ k2Q1Q2

kQ2

√
L2/L1

= kQ1

√
L1

L2

, (A.16)

where we have assumed that muplink � 1. We see that muplink > mdownlink for

large values of k. However, the situation is reversed as k decreases.

Downlink data is encoded using 25 / 75% pulse-width modulation (PWM) be-

fore transmission using a counter-based on-chip modulator. Pulse-width modulation,

pulse-position modulation and other return-to-zero (RZ) encoding schemes are spec-

trally inefficient. However, it makes sense to use an RZ scheme for the downlink since

the data rate is low in this direction. Every bit period in RZ data contains at least

one level transition that can be used as a clock edge. Therefore, a PLL is not needed

for CDR in the implanted system, minimizing its complexity and power consumption.
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Figure A-13: Experimentally measured VCO tuning curves for two different values
of VDDH .

A.4 Internal Transceiver Implementation

A simplified block diagram of the internal transceiver is shown in Figure A-14. All

analog circuits on the chip are biased using an on-chip 0.2µA CMOS current refer-

ence. During the transmit phase (TX is high in Figure A-14), the data stream to

be transmitted turns the impedance-modulation switch M2 in parallel with the load

resonator on and off. To save power, all receiver circuits in the internal unit are

turned off during this phase.

During the receive phase (TX is low) the impedance-modulation switch is turned

off and an envelope detector is used to track the voltage on the load resonator. This

voltage follows the PWM-encoded OOK bitstream transmitted from the external

transceiver. The output of the envelope detector is compared with a reference voltage

Vref that is implicitly generated by making the MOS diode connected to the negative

input terminal of the comparator 16 times wider than that connected to the positive

terminal. Since the two diodes carry the same current, in the absence of any coupled

signal the voltage on the negative terminal exceeds that on the positive terminal by
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Vref = (φT/κ) ln(16) ≈ 96mV, and the comparator output is low (here κ ≈ 0.75 is

the subthreshold constant). It goes high only when enough signal is coupled into L2

for the voltage at the positive terminal to increase by an amount greater than Vref .

The value of Vref is chosen to be large enough to comfortably exceed the unknown

input-referred offset voltage of the comparator, which is usually in the range of 10-

20mV.

The envelope detector time constant is τED = REDCED, where RED = 500kΩ

and CED = 5.2pF. The comparator is a wide-output-swing OTA biased at a total

current of 0.5µA. A hold timer, similar to the one in the external transceiver, is

used to remove spurious transitions in the comparator output waveform due to noise.

The hold time for both low and high transitions was set to 1µs. The diode D2 is a

parasitic p-n junction diode present between the source/drain and well terminals of

M2. It clamps the voltage across the internal resonator if its amplitude exceeds one

diode drop (about 0.6V).
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Figure A-14: Simplified block diagram of the internal transceiver.

The output of the hold timer is fed into a pulse-width demodulator circuit that

regenerates the downlink data stream from the PWM waveform. The demodulation

circuit, shown in Figure A-15, uses two capacitors, of value CA and CB, and charges

them using the currents IA and IB when the PWM waveform is high and low, respec-

tively. At the end of a bit period, the voltages across the capacitors, VA and VB, are
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compared to determine if the bit transmitted was a ‘0’ or a ‘1’. The capacitors are

then reset and the process starts again for the next bit. The reset pulses R1 and R2

are obtained by digitally differentiating VPWM .

A reasonable way to optimize the circuit is to require that ∆V0 = −∆V1, where

V0 (V1) is the difference between VA and VB at the end of a ‘0’ (‘1’) bit. Assuming

that ‘0’ and ‘1’ bits are equally likely, this condition minimizes the bit error ratio f

or a given signal-to-noise ratio. It can be shown that, in this optimal situation, we

must have

(IA/CA)

(IB/CB)
=

(
2

α0 + α1

− 1

)
(A.17)

where 0 < α0 < 1 and 0 < α1 < 1 are the pulse widths (normalized by the bit period)

used to signal ‘0’ and ‘1’, respectively. In our case α0 = 0.25 (high pulse = 25% of

bit period) and α1 = 0.75 (high pulse = 75% of bit period). From (A.17) we should

use (IA/CA) / (IB/CB) = 1. To simplify layout, we make IA = IB and CA = CB.

A.5 Performance Analysis

In this section we theoretically analyze the performance of our communication system.

This analysis will be important later for showing that the experimental performance

of our system matches that predicted by theory.

A.5.1 Pulse Width Distortion Mechanism

The voltage across the implanted resonator has asymmetric rising and falling edges

because its quality factor Q2 is different in the two states (switch OFF and ON,

respectively). When the switch is turned off, the voltage gradually increases (with

an exponential envelope) since Q2 is high. On the other hand, when the switch is

turned on, the voltage quickly dies away since Q2 is now approximately zero (see

Figure A-16).

The envelope of the external resonator voltage is a low-pass filtered version of
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Figure A-15: The pulse-width demodulator circuit, and relevant waveforms.

that on the implanted resonator, since the external resonator behaves like a low-pass

filter centered around the carrier frequency. The corner frequency of the low-pass

filter formed by the external resonator is constant since its quality factor Q1 remains

almost constant. To first order, filtering provided by the external resonator adds an

equal amount of delay to rising and falling edges. As a result, the detected external

envelope continues to have rising data edges that are delayed relative to the falling

edges. Hence, 0 → 1 transitions are delayed compared with 1 → 0 transitions,

as shown in Figure A-16. Therefore, the length of the first ‘1’ bit in a continuous

sequence of ‘1’ bits is shortened. Figure A-6 illustrates that isolated ‘1’ bits have a

shorter pulse-width compared to isolated ‘0’ bits, another manifestation of this effect.

An additional complication, also illustrated in Figure A-16, is that diode clamping

occurs when the peak internal voltage V2 exceeds about 0.6V. Under these conditions,

the parasitic source/drain junction diode D2 associated with the switch M2 (see Fig-
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Figure A-16: Waveforms that show how asymmetric rise and fall times at the com-
parator inputs delay rising edges, thus shortening the width of high pulses (‘1’ bits).
The shortening is reduced when the internal resonator voltage amplitude is diode
clamped to lie between ±VD.

ure A-14) turns on, clamping v2 and preventing it from increasing further. This effect

only occurs when V2 = mdV1 exceeds VD, where md is the voltage transfer function

between the internal and external resonator voltages (given by (A.12)), V1 is the am-

plitude of the external resonator voltage (set by the RF oscillator), and VD ≈ 0.6V

is the turn-on voltage of diode D2, which we assume to be approximately constant.

Although diode clamping in Figure A-14 occurs only when v2 is larger than VDD by

VD, the bandpass nature of the L2C2 circuit transforms asymmetric clamping to sym-

metric clamping in v2 : The inductor L2 and capacitor C2 in Figure A-14 together

form a high-Q filter centered around the carrier frequency when the switch M2 is

open, thus ensuring that the positive and negative envelopes of the voltage across the

internal resonator are both be equal to VD (as shown in Figure A-16).

The comparator in the external transceiver compares the positive and negative

envelopes of the RF oscillator. These envelopes are differential signals (see Figure A-

5). Therefore the comparator output switches state when the envelope voltages reach

their average (DC) value. It is conceptually easy (but algebraically tedious; for details,
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please see the Appendix) to show that tdr, the mean delay of rising data edges, is

tdr = τ2 ln(2)− τ2 ln (2− α) , mdV1 < VD

= τ2 ln(2)− τ2 ln

(
2− αVD

mdV1

)
, mdV1 ≥ VD (A.18)

where τ1 = 2Q1/ω0 and τ2 = 2Q2/ω0 are the time constants of the external and

internal resonator voltage envelopes, respectively. The parameter α is the mean

(DC) voltage of the envelope waveform normalized to its ideal value, which is half

the peak voltage. Since we get high pulses that have less area than low pulses,

α < 1. Equation (A.18) captures two physical effects. Firstly, diode clamping serves

to “speed up” time constants because RC waveforms start to look more like square

waves. Secondly, a non-symmetric duty cycle in the envelope waveforms (α < 1)

causes zero crossings to occur before the halfway point between the ’low’ and ’high’

levels is reached, again reducing delay.

The exact value of α depends on statistical properties of the data stream that

establish its mean (DC) value. We see from equation (A.18) that tdr remains constant

with md when md is small, and then gradually decreases. Since md ∝ k, we expect

tdr to remain constant with coil separation when the coils are far apart, and then

gradually decrease, following (A.18), as they are brought together.

It is important to note that only asymmetries between rising and falling edges

distort pulse widths at the PLL input. Comparator delay, for example, does not

distort pulse widths as long as it is the same for both edges. However, any comparator

offset Voff , since it delays the comparator trip point in one direction but advances it

in the other, does affect pulse widths. However, we found that in our case comparator

voltage offset was not a significant source of pulse-width distortion.

A.5.2 Bit Error Mechanism

Bit errors occur when the PLL samples the wrong value for the input bit. As long as

both ‘0’ and ‘1’ data bits have the same length (i.e., there is no duty cycle distortion
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in the input) and the PLL is locked, rising clock edges are aligned with input data

transitions. As a result, the Hogge phase detector samples the input data stream in

the middle of each input bit. This fact may be seen from the circuit diagram shown

in Figure A-10. When the recovered clock from the VCO goes low, the current value

of the input data stream is sampled by the D-register R1. This value appears at the

output of the D-latch L1 (as the re-timed data bit) half a bit period later, when the

clock goes high. It is easy to see that an error will occur if the rising data edge is

delayed by more than half a bit period with respect to the negative edge of the clock,

or the falling edge advanced by the same amount. In either case, the clock samples

the wrong data value, i.e. ‘0’, rather than its correct value, i.e., ‘1’.

σtw

DATA

CLOCK

JITTER

tw tw

tdr/2 tdr/2

Figure A-17: Typical PLL input and output waveforms. Delay and jitter reduce the
time window tw, thereby increasing the bit error rate.

We call the mean value of the time between data transitions and negative clock

edges the time window tw. It is easy to see that, when no duty-cycle distortion is

present, tw = T/2, where T is the bit period.

For simplicity, consider a PLL with no timing offset and 50% duty cycle in the

recovered clock. In the presence of duty cycle distortion in the input data stream,

rising clock edges can no longer remain aligned with both rising and falling data

transitions since this would make the clock non-periodic. The PLL resolves this

situation as shown in Figure A-17: it shifts the phase of the clock such that there

is equal but opposite timing error at both types of data transitions. In other words,

the PLL ensures that the delay between rising clock and rising data edges is equal

to that between falling data and rising clock edges. Since the two timing errors are
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equal, equal-width ’UP’ and ’DN’ signals are generated by the Hogge phase detector

whenever a data transition occurs. As a result, the average charge being fed into the

loop filter remains zero, i.e., the PLL remains locked.

Asymmetric rising and falling waveforms in the internal resonator cause duty-cycle

distortion: rising data edges are delayed relative to falling edges by an amount equal

to tdr, thereby making ‘1’ bits shorter than ‘0’ bits. At lock, the PLL will divide any

timing error equally between rising and falling data edges. Therefore the timing error

at each data transition becomes tdr/2. Thus errors at rising and falling transitions

occur with equal probability: either the first or the last ‘1’ in a run of several ‘1’ bits

can be sampled incorrectly, resulting in bit errors. The time window tw we have for

sampling the data correctly is now given by

tw =
T

2
− tdr

2
(A.19)

Both the input to the PLL and the clock contain random timing jitter. Jitter

in the input data stream is caused by voltage noise that is present at the output of

the comparator while it is changing state. Such noise is generated by the envelope

detectors, the differential amplifiers and the comparator itself. Some of the jitter in

the synthesized clock is caused by input jitter that has been low-pass filtered by the

PLL, while the rest is introduced by the VCO. The presence of timing jitter makes

tw a random variable (see Figure A-17); its variance is given by

σ2
tw = σ2

data + σ2
clk (A.20)

where we have assumed that σdata and σclk, the timing jitters of the input data and

synthesized clock, respectively, are uncorrelated with each other and equal for positive

and negative transitions in both waveforms. Assuming Gaussian (normal) probabil-

ity distributions for both these quantities, the probability that the PLL samples an

incorrect value is given by

Pe =
1

2
erfc

(
tw√
2σtw

)
(A.21)
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A.5.3 BER Calculation

We used a maximal-length pseudo-noise (PN) sequence of length 2N − 1, generated

on-chip by the internal transceiver, to test the uplink. Since most of the bit errors

happen because of timing error at data transitions, the bit error ratio (BER) of

the system is dominated by errors where the first or last bit in a run (consecutive

sequence) of ‘1’ bits is misread as a ‘0’. The BER is thus given by

BER = Pe ×

(
P1,1 +

N∑
n=2

2P1,n

)
(A.22)

where Pe is given by (A.21), P1,n is the probability that a run of n ‘1’s occurs, and the

longest runs are N bits long. This equation expresses the fact that we can get two,

and only two, bit errors whenever we have runs of two or more ‘1’s. For maximal-

length PN sequences, it can be shown that P1,n decreases exponentially with n [210],

i.e.,

P1,n+1 =
P1,n

2
, (N − 1) ≥ n ≥ 1 (A.23)

Maximal-length PN sequences are almost balanced: the number of ‘1’s is only

one more than the number of zeros. Therefore the probability of a given bit being a

‘1’ approaches 1/2 for large values of N , i.e.,
∑∞

n=1 nP1,n = 1/2. We can solve this

equation by using (A.23). The result is

P1,n =
1

2n+2
(A.24)

By substituting (A.24) into (A.22) and approximating the sum as an infinite series

(i.e., assuming that N → ∞), we find that BER ≈ 3Pe/8. Therefore, from (A.21),

our overall BER is given by

BER ≈ 3

16
erfc

(
tw√

2 (σ2
data + σ2

clk)

)
(A.25)
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Since the run-length statistics of PN sequences are known (see (A.24)), we can

also calculate the value of α, the normalized mean voltage of the external resonator

envelope waveform. Using (A.18), we can then analytically find the time delay tdr.

We find that, to a very good approximation,

α = 1− τ2

T

(
1− e−T/τ2

)
(2− e−T/τ2)

, β < 1

= 1− τ2

2T

[
1 + (β − 1) ln

(
1− 1

β

)]
, β ≥ 1, (A.26)

where the parameter β = mdV1/VD. For a detailed derivation of this equation, please

see the Appendix.

A.5.4 Downlink

During the downlink, the voltage across the internal resonator is modulated by turning

the external oscillator ON and OFF. The internal resonator is always in a high-Q state.

Therefore, to first order, rise and fall times are equal and no pulse-width distortion

occurs. In addition, the data rate is much lower for the downlink, reducing sensitivity

to any residual duty cycle distortion mechanism. As a result, uplink limitations

dominate the performance of our system. Therefore we do not further analyze the

downlink.

A.6 Experimental Results

Separate external and internal transceiver chips, each 1.5mm × 1.5mm in size, were

fabricated in the AMI 0.5µm CMOS process. Figure A-18 shows die photographs of

both chips. About 40% of the core area of the external transceiver chip (shown on the

right) is occupied by the resistors and capacitors in the PLL loop filter. The internal

transceiver chip is shown on the left.

Figure A-19 shows the two printed circuit boards that were used to test the wireless

link. Identical transmit and receive coils were printed on the boards. Each coil was
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Figure A-18: Internal (left) and external (right) transceiver chip photographs. Each
die measures 1.5mm × 1.5mm in size.

square, 3.5cm on a side and had two turns. The designed inductance was 500nH with

a simulated quality factor of 30 at 25MHz. Packaged chips were surface mounted

on the boards and they were aligned parallel to each other at various separations

for testing. No external components were needed apart from the coils, decoupling

capacitors and power supplies.

3.5 cm 3.5 cm

Figure A-19: Test boards used for making experimental measurements.

Implanted coils for neural recording are typically < 2cm on a side and operate at

link distances between 0.3cm and 1cm. However, our coils are somewhat larger than

average (3.5cm on a side). To reduce the coupling constant k to more typical values,

and allow for possible coil misalignment, we tested our link over larger distances

(between 1.5cm and 5cm). Figure A-20 shows the measured value of the effective

modulation depth for the uplink as a function of r, the separation between the coils.

We expect the coupling between the coils to vary approximately as k ∝ (a2 + r2)−3/2,
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where a = 2cm is the radius of a circular coil with the same area as our square coils.

We get a good fit to the measured data using this model for k when we assume that

the internal voltage is clamped to a maximum of VD = 0.6V, Q1 = 10 and Q2 = 25.

The fit is relatively insensitive to the exact value of a and VD. The value of Q1 is

significantly lower than the predicted quality factor of the unloaded coil (about 30)

because of the finite output impedance of the transistorM1 in Figure A-8. Figure A-20

also shows that ignoring the diode clamp predicts much higher values of modulation

index than are actually observed.
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Figure A-20: Measured uplink modulation depth meff as a function of link distance,
compared to predictions made by analytical models with or without a diode clamp
on the internal resonator.

Figure A-21 shows transmitted and received data and recovered clock waveforms

measured for the uplink at 5.8Mbps with the coils 2cm apart. The PLL synchronizes

rising edges of the recovered clock to data transitions. Falling edges of the clock

therefore appear in the middle of each bit and are used to sample the data stream.

At this separation, the PLL was observed to lock over data rates varying between

1Mbps and 5.8Mbps. The upper end of the lock range is set by the loop filter,

which runs out of linear range and hits VDDH . At low data rates the loop filter
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voltage becomes low enough to turn on the well-source diode present at the input

of the wide-linear-range transconductor [258], thus setting the lower end of the lock

range. Notice that isolated ‘1’ bits at the output of the comparator are significantly

narrower than isolated ‘0’ bits . This effect, which is also visible in Figure A-6, is

a manifestation of the pulse-width distortion mechanism discussed in the previous

section.
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Figure A-21: Uplink data transmission at 5.8Mbps with the coils 2cm apart.

The top plot in Figure A-22 shows typical experimentally measured transitions in

the comparator output. Many transitions have been overlaid on top of each other to

evaluate the statistics of the threshold-crossing instant. The probability distribution

function (pdf) of this random variable is shown in the lower plot. We see that the

pdf shows two distinct peaks. The first peak is produced by falling edges, while rising

edges produce the second peak. The pdf is fit to a model consisting of a weighted sum

of two Gaussian distributions. The results of the fit are also shown on the lower plot.

The difference between the means of the two Gaussian distributions constitutes the

amount of pulse-width narrowing tdr measured under these conditions. The standard

deviations of the two Gaussian curves are approximately equal, confirming one of our
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earlier assumptions. This measured quantity is σdata, the rms jitter of rising data

edges.

−150 −100 −50 0 50 100 150 200 250

0

1

2

3

V
o
lt
a
g
e
 (

V
)

−150 −100 −50 0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

Time (ns)

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y
 (

P
D

F
)

 

 

Measured

Gaussian model fit

Threshold

t
d

Figure A-22: Measured comparator output at a data rate of 2.5Mbps and 3cm link
distance: (top) level transitions, showing the delay between falling and rising edges,
and (bottom) probability distribution of threshold-crossing times and fit to a Gaussian
mixture model.

The measurements shown in Figure A-22 were repeated for various data rates

and link distances. Similar time-domain measurement techniques were used to also

find σclk, the rms jitter of the clock produced by the PLL. The results were found to

depend weakly on data rate but strongly on link distance. To reduce measurement

errors, td, σdata and σclk were therefore averaged over the data rate. The resultant

values are plotted in Figures A-23(a) and A-23(b) as a function of the link distance.

The rms clock jitter σclk remains almost constant with link distance. Its average value

is 7.2ns.

The measured delay was also fitted to the value predicted by theory, i.e. equation

(A.18), with α given by (A.26). An excellent fit was obtained, as shown in Figure A-

23(a).

Figure A-24 shows experimentally measured BER for the wireless uplink when
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the coils were placed 2, 3 and 4cm apart. Error rates less than 10−6 could not be

measured with our experimental setup in a reasonable amount of time. Experimen-

tally measured values of tw, σdata and σclk were also plugged into equation (A.25) to

draw predicted BER curves. The experimentally measured BER values match well

with those predicted theoretically for the 2cm case. The predicted values are signifi-

cantly lower than the experimental values for the two other link distances, implying

the existence of an additional error mechanism. Experimental evidence indicates that

transient loss of lock (so-called cycle-slipping) becomes increasingly common as the

link distance increases and the received signal-to-noise ratio decreases. This process

may account for the increased number of bit errors at large link distances. Our hy-

pothesis is supported by the fact that the lock range of the PLL (which limits the

range of data rates for which we could measure BER) decreases as the link distance

increases.

Figure A-25 shows transmitted and received data waveforms (before and after

pulse-width demodulation) measured for the downlink at 200kbps with the coils 2cm

apart. Recovered data transitions are aligned with rising edges of the pulse-width

modulated signal. Falling edges of this signal can therefore be used to sample the

data stream. The downlink was observed to operate over data rates varying between

15kbps and 300kbps. When the data rate is less than 15kbps the capacitor voltages

VA and VB in the PWM demodulator (see Figure A-15) hit VDD before the bit period

T is complete, resulting in demodulation errors. When the data rate is greater than

300kbps the bit period becomes smaller than the minimum allowable pulse width in

the data waveform (set to 1µs by the hold timer). The hold timer starts ignoring

data transitions separated by a single bit period, again resulting in errors.

We have also measured the BER for the downlink. No bit errors were observed

when the coils were placed 2cm apart and approximately 2×105 bits were transmitted

at data rates varying between 15kbps and 300kbps. Assuming bit errors follow Poisson

arrival statistics, we can therefore say, with approximately 85% confidence, that the

downlink BER is less than 10−5 over the tested range of data rates.

We tested two sets of chips and boards. No major differences in performance
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were noted between them. We also inserted a 2cm thick layer of 0.9% saline solution

between the coils and repeated some of our tests. As in prior reports, for example

[205], the goal was to verify that the wireless link would operate normally in the

presence of body tissue. No significant differences in performance were noted. We

have also estimated the amount of power radiated by our system (see Appendix).

The calculation shows that our current design meets regulatory requirements in the

United States for unlicensed, low-power wireless devices.

A.7 Conclusions

We have presented a low-power bidirectional wireless link for neural prostheses and

analyzed its performance. Table A.1 summarizes the measured performance of our

bidirectional wireless link. A useful figure of merit that characterizes the power-

efficiency of any communication system is the energy consumed per bit Ebit, which is

defined as

Ebit =
Pdiss
R

(A.27)

where Pdiss is the total power dissipation and R = 1/T is the data rate. Significant

power optimization can be carried out on our current design. For example, the RF

oscillator’s power consumption can be considerably reduced by adapting its power

supply voltage VDDL based on the value of k. Nevertheless, we get Ebit = 0.96nJ/bit

for a bit error rate of < 10−6 and 2cm coil separation. We were unable to measure

bit error rates below 10−6 in reasonable amounts of time so this bit-error rate should

only be viewed as an upper bound.

Table A.2 compares our uplink to wireless data links for biomedical implants that

have recently been reported in the literature. The link described in [109] is a far-field

link, while the others are inductive near-field links. Ideally it should be possible to

compare the efficiencies of these designs by using energy consumed per bit as the

metric. However, in each case what is available is not the power consumed by the the

entire communication system, but by the receiver or transmitter alone. The absence

546



of total power consumption data makes quantitative system efficiency comparisons

difficult. However, attractive features of our design include high data rate, low bit

error rate and extremely low power consumption in the internal unit.

Table A.1: Data link: Performance summary
Parameter Value
Link distance tested up to 5cm
Center frequency 25MHz
Uplink data rate 1Mbps - 5.8Mbps (at 2cm)
Uplink encoding Non-return (NR)
Downlink data rate 15kbps - 300kbps (at 2cm)
Downlink encoding Pulse-width modulation (PWM)
Power supply voltages VDDH = 2.8V / VDDL = 1.4V
External power consumption 2.5mW (uplink) / 1.5mW (downlink)
Internal power consumption 100µW (uplink) / 140µW (downlink)
Fabrication process AMI 0.5µm CMOS
Chip size 1.5mm×1.5mm (each transceiver)

Table A.2: Data link: Performance comparison
Reference Coil diameter (Tx/Rx) Link distance Carrier frequency
[89] 2cm/1.2cm 0.5cm 5MHz/10MHz
[121] 3.5cm/2.7cm 1.5cm 10MHz
[109] 0.47mm/35cm (antenna) 13cm 433MHz
This work 3.5cm/3.5cm 2cm 25MHz
Reference Data rate BER Power consumption
[89] 2.5Mbps 10−5 0.38mW (Rx only)
[121] 1.12Mbps 10−5 0.61mW (Rx only)
[109] 330kbps 3× 10−3 1.81mW (Tx only)
This work 2.8Mbps < 10−6 0.1mW (Tx)/2.5mW (Rx)

We conclude by discussing two techniques for further improving the performance

of our wireless link. We have simulated these techniques and plan to implement them

on a future design iteration.

A.7.1 Resonator Amplitude Control

The RF amplitude across the external resonator can be reduced to save power when

the modulation depth meff is high enough. There are three main parameters of the
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current design that can be varied to control this amplitude: the power supply voltage

VDDL, the aspect ratio of the transistor M1 that drives the external resonator and,

finally, the conduction angle θ, i.e. the fraction of the oscillation period during which

M1 conducts current. Alternatively, a more easily controllable oscillator topology

can be used. For example, in a Colpitts oscillator amplitude can be conveniently

controlled using bias current.

A.7.2 Soft Switch Turn-On

As discussed in this paper, the main cause of uplink bit errors is pulse-width distortion

caused by asymmetric rising and falling waveforms in the internal resonator. A simple

technique that substantially reduces this effect is to turn on the switch M2 (shown in

Figure A-14) in a ”soft”, i.e. gradual way. By slowing down the falling edges of the

resonator voltage waveform, this technique decreases tdr, the amount of pulse-width

narrowing caused by the resonators. A basic circuit implementation of this idea uses

an inverter that is current starved on the pull-down, i.e. NMOS side to drive M2.

The value of the maximum pull-down current is set using feed-forward or feedback to

ensure equal delay on rising and falling edges.
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Appendix

Derivation of Equation (A.18)

Consider the envelope of the voltage on the secondary resonator. In the absence of

diode clamping, i.e., mdV1 < VD or β < 1, the voltage increases like an RC circuit
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with time constant τ2 from zero towards its peak value mdV1. However, as shown in

Figure A-26, it falls abruptly to zero. The delay tdr is equal to the length of time

taken by the voltage to rise to the average value of the waveform, which by definition

is α×mdV1/2. Therefore we have

mdV1

(
1− e−tdr/τ2

)
=

αmdV1

2

⇒ tdr = τ2 ln (2)− τ2 ln (2− α) (A.28)

When diode clamping occurs, i.e., mdV1 ≥ VD or β ≥ 1, the peak value of the

envelope voltage is limited to VD. Therefore its average value is given by α × VD/2.

The delay is still given by the time it takes for the voltage to reach this value, so we

have

mdV1

(
1− e−tdr/τ2

)
=

αVD
2

⇒ tdr = τ2 ln (2)− τ2 ln

(
2− αVD

mdV1

)
= τ2 ln (2)− τ2 ln

(
2− α

β

)
(A.29)

Derivation of Equation (A.26)

We want to calculate the normalized mean, i.e., α, of the input to each envelope

detector in the external unit. For mathematical convenience, we instead calculate the

normalized mean voltage envelope across the internal resonator. The two quantities

are equal since they are related to each other by the transfer function of the external

resonator, which is that of a linear low-pass filter with respect to the envelope.

The internal resonator waveform, as shown in Figure A-26, has slow rising edges

but fast falling edges. Therefore it is zero everywhere within ‘0’ bit periods. In

other words, ‘0’ bits do not contribute to the mean value. To find the mean we

therefore start by decomposing the ‘1’ bits into runs of 1,2,3...n consecutive ‘1’s and
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finding v2(1), v2(2)...v2(n), the mean value in each case. The mean value of the entire

waveform, v2, can now be obtained by summing up, with appropriate probability

weighting factors, v2(n) for different values of n. The n-th term in the summation

must be weighted by the product of two terms. The first is the probability that a run

of n ‘1’ bits occurs, i.e., from (A.24), P1,n = 1/2n+2 . The second term is the number

of ‘1’ bits, which is simply n.

For mathematical convenience, we consider very long sequences, i.e. N → ∞.

The exponential decrease in P1,n with n makes the resultant infinite sum a very

good approximation to the actual mean voltage even for relatively small values of

N (for example, our on-chip implementation used N = 17). Therefore, v2 is well

approximated by

v2 =
∞∑
n=1

nP1,nv2(n) =
∞∑
n=1

n

2n+2
v2(n) (A.30)

The parameter α is defined as the normalized mean voltage and is therefore given

by

α =
v2

mdV1/2
, β < 1

=
v2

VD/2
, β ≥ 1 (A.31)

Now we just need to find v2(n) for two different cases: with and without diode

clamping. As shown in Figure A-26(a), when diode clamping is absent, i.e., β < 1,

v2(n) is given by

v2(n) =
1

nT

∫ nT

0

mdV1

(
1− e−t/τ2

)
dt

= mdV1

[
1− τ2

nT

(
1− e−nT/τ2

)]
, (A.32)

where T is the bit period. When diode clamping is present (as shown in Figure A-
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26(b)), i.e., β ≥ 1, the mean is given by

v2(n) =
1

nT

∫ td

0

mdV1

(
1− e−t/τ2

)
dt+ VD

(nT − td)
nT

= VD

[
1− td

nT
(1− β)− βτ2

nT

(
1− e−td/τ2

)]
, (A.33)

where td is the time taken by the envelope to reach the clamp voltage VD. Its value

can be calculated using

mdV1

(
1− e−td/τ2

)
= VD (A.34)

Substituting equation (A.34) in equation (A.33) and simplifying, we get

v2(n) = VD

[
1− τ2

nT
(1 + (β − 1) ln (1− 1/β))

]
(A.35)

Evaluating the sum in equation (A.30) for both cases (β < 1 and β ≥ 1, respec-

tively) and using the definition of α as given by equation (A.31) gives us equation

(A.26).

Radiated Emissions

Regulatory issues are a concern for any implanted medical devices. Unfortunately,

none of the unlicensed ISM frequency bands below 433MHz have enough bandwidth

to support uplink data rates larger than a few hundred kbits/sec (the widest band,

centered around 27.12MHz, is only 670KHz wide). Therefore high-data-rate systems

like our uplink cannot hope to fit within an ISM band. Permissible radiation limits

in the United States for unlicensed, low-power wireless devices operating outside ISM

bands are set forth in Part 15 of the F.C.C. rules (Title 47 of the Code of Federal

Regulations). According to the code, radiated emissions between 1.705 and 30.0MHz

(with the exception of certain restricted frequency bands) must not exceed 30µV/m

at a distance of 30m from the device.
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We now perform a simple analysis to see whether F.C.C. regulations on radiated

emissions are likely to be a concern for our system. A formula that predicts the

radiation resistance Rrad of a small (much smaller than the wavelength λ) circular

loop of N turns is (see, for example, [11]):

Rrad ≈ 3.1171× 104N2

(
S2

λ4

)
Ω (A.36)

where S is the area of the coil. Approximating our square external coil, which

is 3.5cm on a side and has N = 2 turns, as a circular coil with the same area and

number of turns, we get Rrad = 9.0µΩ for λ = 12m (25MHz). The radiated power

is given by Prad = I2Rrad, where I is the amplitude of the AC current in the coil.

With I = 1mA, a typical value for our design, we get Prad = 9.0pW. The maximum

radiated power density (W/m2) at a distance R from the coil is

Pdens =
D0Prad
4πR2

(A.37)

where D0 = 1.5 is the maximum gain produced by a small loop antenna. We

also have Pdens = E2
rad/Z0, where Erad is the radiated electric field and Z0 = 120π

Ω is the impedance of free space. Plugging numbers into (A.37) for R = 30m gives

us Erad = 0.67µV/m, which is well below the F.C.C. specification. However, going

to higher center frequencies with the current coil design is inadvisable since λ would

decrease, increasing Rrad. Similarly, using a bigger coil, or one with more turns,

would also cause Rrad to increase. In addition, keeping a safety margin is advisable.

Increased radiation from the corners makes the actual radiation resistance of square

coils larger than predicted by A.36.

A.8 Performance Limits of Impedance-Modulation

Communication Systems

In this section we theoretically analyze the performance of near-field communication

systems that use impedance-modulation.
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A.8.1 Coupled Resonators

In this section we analyze inductively-coupled resonators in more detail. Consider

the circuit shown in Figure A-27, where, as is usually the case in practice, losses are

dominated by the series resistances of the inductors. In addition, G3 represents the

series resistance of the switch that is used for impedance modulation2. Assuming

that L1C1 = L2C2 and defining m = k2Q1Q2 as usual, it can be shown that the exact

expression for the driving-point impedance of the primary at the resonance freqency,

i.e., ω0 = 1/
√
L1C1 = 1/

√
L2C2, is given by

Z1o (ω0) = R1Q
2
1

[
1

1 +m
− j

Q1

]
(A.38)

when G3 = 0 and

Z1s (ω0) = R1Q
2
1

[
1

1 +m/Q2

− j

Q1

]
(A.39)

when G3 � ω0C2, i.e., the secondary resonator is shorted out. All the quality factors

are defined at the resonant frequency ω0. The amplitude modulation in primary

voltage v1 produced by shorting and open-circuiting the secondary resonator is given

by

∆v1 = iin (|Z1s| − |Z1o|) (A.40)

When 1 + m � Q1, i.e., k � 1/
√
Q2, we can ignore the imaginary parts of Z1o

and Z1s, because they will be much smaller than the real parts. In that case the

effective modulation depth, defined as meff = (|Z1s| − |Z1o|) / |Z1s|, simplifies to our

earlier approximate result, i.e.,

meff =
m (1− 1/Q2)

1 +m
(A.41)

At ω0. the transfer function between v2 and v1 (assuming G3 = 0) is given by

2For power links, G3 will also include any effective load impedance being driven by the secondary.
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v2

v1

∣∣∣∣
ω0

= kQ1Q2

√
L2

L1

[
1

Q2
1/(1 +m) + jQ1

− j

Q1

]
≈ −jkQ2

√
L2

L1

(A.42)

where the approximation is again valid when 1+m� Q1, i.e., k � 1/
√
Q2. Thus, for

weak coupling between the resonators, v2 and v1 are 90◦ out of phase at resonance. In

fact, the transfer function v2/v1 for weak coupling between the resonators is that of a

resonant low-pass filter, with DC gain k
√
L2/L1, peak gain kQ2

√
L2/L1 and quality

factor Q2. Since inductance L is ideally proportional to the square of the number

of turns N , we get v2/v1 ∝ k (N2/N1), the usual transformer relationship. Using a

resonant transformer increases the voltage gain by a factor of Q2, but only over a

limited bandwidth ≈ ω0/Q2.

Analysis of the system shown in Figure A-27 at frequencies other than ω0 is

too complicated to perform by hand. Instead, we wrote KCL equations and used

Mathematica to analytically solve for the various transfer functions and driving point

impedances. To be completely general, we allowed for the possibility that L1C1 6=

L2C2. Values of all components were normalized by the mean resonant frequency,

defined as ω0 = 1/ (L1C1L2C2)1/4, and mean characteristic impedance, defined as

Z0 = (L1L2/C1C2)1/4.

Figure A-28 shows calculated driving-point impedances Z1o for identical resonators

and various values of k, the coupling constant. We see that the resonant peaks split

into two as k increases. The presence of two well-defined peaks defines the strongly

coupled regime. Similarly, Figure A-29 shows calculated values of Z1s. In this case we

see that there is always a single resonant peak, but that it shifts to higher frequencies

as k increases. In fact, (A.38) and (A.39) predict that both Z1o and Z1s at ω0

saturate to −jR1Q1, which is independent of k, as k → 1. This behavior can be seen

in Figures A-28 and A-29, but they also illustrate the limitations of single-frequency

analysis for understanding the strongly-coupled regime.

Figure A-30 shows how impedance modulation changes Z1 between Z1o and Z1s in
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the weakly and strongly-coupled regimes. Note that the effective modulation depth

can be greatly increased in the strongly-coupled case by changing the operating fre-

quency from ω0 to the new, higher frequency where Z1o is minimized and Z1s maxi-

mized.

Figure A-31 shows the transfer impedance v2/iin for identical resonators and var-

ious values of k in the open-circuit case. We see that the transfer impedance also

develops two resonant peaks as k increases, though the “notch” between them is less

pronounced than for the driving-point impedance. Finally, Figure A-32 shows the

voltage transfer function v2/v1 in the open-circuit case. In contrast to the transfer

impedance, the voltage transfer function, which is a resonant low-pass function as

expected, has a single peak for all values of k. However, this peak shifts to higher

frequencies as k increases.

A.8.2 Synchronous Demodulation

Power Amplifier Analysis

In the sections that follow we shall analyze the receiver architecture shown in Fig-

ure A-33. We shall assume throughout that we are in the weakly-coupled regime,

i.e., k � 1/
√
Q2. There are two reasons for this assumption: firstly, it makes the

problem analytically tractable, since the driving-point impedance still looks similar

to that of a single resonator with some effective quality factor. Secondly, practical

transcutaneous data links are usually not strongly coupled. Extending our analysis

to the strongly-coupled case is a work in progress.

Figure A-33 shows a simple zero-IF receiver that uses a Gilbert mixer to syn-

chronously demodulate the amplitude-modulated waveform on the external resonator.

By using a series-to-parallel transformation it is easy to show that the total AC power

dissipated in the source and load resonators (assuming that Q2
1 is much greater than

(1 +m)) is given by
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Ptot,1 =
(v1/(1 +m))2

2R1 (Q2
1/(1 +m) + 1)

≈ v2
1

2R1Q2
1 (1 +m)

Ptot,0 =
v2

1

2R1Q2
1

(A.43)

where Ptot,1(Ptot,0) is the power dissipated when a ‘1’(‘0’) is transmitted. The voltage

transfer function between the source and load (with the source being the driven side)

is given by

v2

v1

= kQ2

√
L2

L1

(A.44)

Assuming that Q2
2 is much greater than (1 + m) when a ‘1’ is transmitted and

Q2 = 1 when a ‘0’ is transmitted, the power dissipated in the secondary resonator

alone is

Psec,1 =
v2

2,1 (1 +m)

2R2Q2
2

= meffPtot

Psec,0 ≈ 0 (A.45)

where Psec,1(Psec,0) is the power dissipated when a ‘1’(‘0’) is transmitted. We see that

the power consumed by the load resonator when it is not shorted out is m times that

consumed by the source resonator. The average total power consumption is

Ptot = P1Ptot,1 + (1− P1)Ptot,0

=
v2

1

(
(1− P1) + P1

1+m

)
2R1Q2

1

(A.46)

where 0 < P1 < 1 is the probability that the bit being transmitted is ‘1’.

We shall assume that the current source iin is produced by a transistor M1 with

transconductance gmp = IBp/VLp, where IBp is the DC bias current and VLp is the

linear range of the transistor. The gate of M1 is driven a sinusoidal voltage of
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amplitude v1 and frequency ω0. The voltage across the source resonator is given by

v1 = gmpvin ×R1Q
2
1 ⇒ IBp =

(
v1VLp
vin

)
1

R1Q2
1

(A.47)

The power consumption of this power amplifier (PA) is

PPA = IBpVDDp ≡
Ptot
η

(A.48)

where Ptot is the total AC power delivered to the two resonators, VDDp is the PA’s

power supply voltage and η is its efficiency. Some algebra allows us to write

η =

(
(1− P1) +

P1

1 +m

)(
vinv1

2VDDpVLp

)
(A.49)

To minimize power consumption we want to set vin = VLp so that the AC signal

covers the entire linear range of the amplifier. If vin > VLp the gain will drop over some

portion of the signal swing, causing clipping and distortion. Similarly if vin < VLp,

VLp can be lowered to decrease IBp (and thus the power consumption) while keeping

gm (and thus the gain) constant. By using (A.49), we get

η =

(
(1− P1) +

P1

1 +m

)(
v1

2VDDp

)
(A.50)

Since v1 cannot swing below ground, it can only be as large as VDDp. Therefore

η ≤ 50%, which is exactly what we expect with a Class-A biasing strategy like the

one described. Higher efficiencies can be achieved by using Class B or C biasing, at

the cost of decreased power-handling capability and increased harmonic distortion.

In any case the efficiency will always be less than 100%, so we may write

η =

(
(1− P1) +

P1

1 +m

)(
ηrv1

VDDp

)
(A.51)

where 0 < ηr < 1 is a dimensionless efficiency parameter. In terms of this parameter,

therefore, the PA power consumption is
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PPA =
v1VDDp

2ηrR1Q2
1

(A.52)

Mixer Analysis

The modulation of the source resonator amplitude is detected by removing the large

carrier component at ω0 using a synchronous scheme (such as a mixer) or an asyn-

chronous scheme (such as a diode or other non-linear device used to build an envelope

detector (ED)).

Since the source itself generates the RF signal, the carrier phase at the receiver is

known. Thus a synchronous demodulation scheme can be used. Let’s assume that we

use a double-balanced Gilbert mixer to multiply v1, the RF signal, with an amplified

version of vin, the input to the PA. This signal acts as the local oscillator (LO). For

simplicity, let’s also assume that the single-ended to differential converter (balun)

required to drive the RF inputs of the mixer with vin is noiseless and requires no

power. A center-tapped transformer can be used for this purpose.

As shown in Figure A-33), the total bias current of the mixer is 2IBm. The lower

differential pair has transconductance gm2 = IBm/VLm and is assumed to remain

linear, while the LO is assumed to be a large-amplitude square wave that switches

the upper differential pairs completely and instantaneously. The baseband output

is produced across a resistive load RL, while the capacitor CL ensures that higher

harmonics are filtered out. The output voltages are fed into a matched-filter receiver

(not shown in Figure A-33) which recovers the transmitted bits.

Because the fundamental component of a square wave is 4/π times its amplitude

and only half the energy goes to the difference frequency component, the conversion

gain of the mixer is Gc = 2gm2RL/π = 2IBmRL/ (πVLm). Typically, Gc is made large

enough to make the noise of any succeeding stages in the receiver irrelevant for its

overall noise figure. The power consumption of the mixer is
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Pmixer = 2IBmVDDm =

(
πVLGc

RL

)
VDDm

⇒ Gc =
RLPmixer
πVLmVDDm

(A.53)

Using similar reasoning as for the PA, the optimal class-A biasing strategy is make

the AC signal cover the entire linear range of the transconductor (in this case, the

RF differential pair). Since each transistor in the differential pair sees an AC signal

of amplitude vin/2, we should make vin/2 = VLm, i.e., vin = 2VLm.

Noise Analysis

In this section we analyze the noise present within our model. We shall assume that

we are dominated by thermal noise, i.e., that flicker (1/f) noise contributions are

negligible. We first calculate the noise voltage present across the source resonator.

There are three noise sources: the source-side resistance R1, the transistor M1 and

the load-side resistance R2. The power spectral density (PSD) of the noise produced

by R1 and M1 is given by

v2
n1 = 4kBTR

2
1,eff

(
1

R1,eff

+ γpgd0

)
≈ 4kBT

R1Q
2
1

(1 +m)

(
1 +

1

1 +m

(
γpv1

VLp

))
(A.54)

Here gd0 ≈ gm is the drain-source conductance gds when VDS = 0. Also, γp is

the excess noise factor of the transistor and is always greater than 2/3, its value

for a long-channel MOSFET. The PSD at the load resonator due to R2 is simply

4kBTR2,eff ≈ 4kBTR2Q
2
2/(1 +m). The voltage transfer function between the source

and load resonators, with the load being the driven side, is given by
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v1

v2

=

√
L1

L2

(
kQ1

1 + k2 (Q1 − 1)

)
≈ kQ1

√
L1

L2

(A.55)

Therefore the source-side noise PSD due to R2 is given by

v2
n2 = 4kBT

R2Q
2
2

(1 +m)
(kQ1)2

(
L1

L2

)
(A.56)

Thus the total noise PSD across the source resonator is given by

v2
n = v2

n1 + v2
n2

= 4kBT
R1Q

2
1

(1 +m)

(
1 +

1

1 +m

(
γpv1

VLp

)
+ k2Q1Q2

)
= 4kBTR1Q

2
1

(
1 +

1

(1 +m)2

(
γpv1

VLp

))
(A.57)

Assuming that the LO switches the upper differential pair transistors instanta-

neously, the output noise PSD of the mixer due to the mixer itself is given by

v2
m = 8kBTRL

(
1 + γmgd0,1RL

(
gds2

gds2 + gm1 + gds1

)2

+γmgd0,2RL

(
1 +

gds2
gm1 + gds1

)2
)

≈ 8kBTRL (1 + γmgm,2RL)

= 4kBTRL (2 + γmπGc) (A.58)

where gm1 and gds1 refer to the LO transistors and gm2 and gds2 refer to the RF

transistors. We have assumed the LO transistors act as switches while the RF ones

remain saturated, so gm1 � gm2 and gds1 � gds2. The total output noise of the mixer

is given by
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v2
m,out = BinG

2
cv

2
n +Boutv2

m (A.59)

where v2
n is the noise PSD at the mixer RF input (the LO, being a square wave,

is assumed to be noiseless), v2
m is given by (A.58) and Bin and Bout are the input

and output bandwidths, respectively. Substituting for v2
m, assuming Gc � 1 and

simplifying using (A.53), we get

v2
m,out

G2
c

= Binv2
n +

4kBTBoutRL (2 + γmπGc)

G2
c

≈ Binv2
n + 4kBTBout

(
γmπ

2VLmVDDm
Pmixer

)
(A.60)

Calculating the SNR

Since we measure the difference between two amplitude levels to get our signal, the

noise power present at each level will add (assuming they are uncorrelated) in our

decision variable. Therefore the noise power in our decision variable is

v2
m,out = v2

m,out,0 + v2
m,out,1 (A.61)

where v2
m,out,0 and v2

m,out,1 are the noise power present during transmission of a ‘0’ and

‘1’, respectively, and are given by (A.60). The noise produced by the mixer remains

unchanged in both cases, but the noise at v1 varies since both the PSD v2
n and the

bandwidth Bin are functions of m. The PSD is given by (A.57), and Bin by

Bin ≈
π

2
× f0(

Q1/
√

1 +m
) =

ω0

√
1 +m

4Q1

(A.62)

where the factor of π/2 converts between the actual channel bandwidth
√

1 +mB,

where B = f0/Q1, and the noise bandwidth Bin. It arises because of the first-

order (20dB/dec) roll-off of the impedance at v1 on either side of ω0. Assuming the

conversion gain Gc of the mixer is large enough that succeeding stages to not degrade

the SNR significantly, the output SNR that is used to make bit decisions is given by
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SNRout ≈
(Gcv1 −Gcv1/(1 +m))2

v2
m,out,0 + v2

m,out,1

=
(meffv1)2(

v2
m,out,0 + v2

m,out,1

)
/G2

c

(A.63)

The ratio of the energy per bit Eb to the noise PSD N0 is a dimensionless quantity

that is used to calculate the bit error rate (BER) of a digital communication system.

It may be viewed as a ratio of power spectral densities (PSDs): that of the signal

divided by that of the noise. When the noise PSD is uniform (white), this ratio is

given by

Eb
N0

=

(
Eb ×R
N0 ×B

)
B

R
=

SNR

(R/B)
(A.64)

where B is the bandwidth of the channel in Hz and R is the data rate in bits/sec.

The dimensionless ratio R/B is known as the link spectral efficiency. To convert

SNR to Eb/N0, we replace the bandwidth B in an SNR formula with the data rate

R. In our case, the relevant bandwidth is the output bandwidth Bout of the mixer.

Therefore we set Bout = R in (A.63) to get Eb/N0.

By substituting for v1 from (A.52) and using (A.57) and (A.62), we can now

rewrite (A.63) as

P 2
PA(

PPA + a+ b
Pmixer

) = c (A.65)

where the quantities a, b and c are given by

a =

(
VDDpVLp
R1Q2

1

)(√
1 +m+ 1

2ηrγp

)
(1 +m)2

√
1 +m+ (1 +m)2

b = a

(
VDDmVLm
R1Q2

1

)(
4πγm√

1 +m+ 1

)
R

B
(A.66)

c =
Eb
N0

(kBTB)

(√
1 +m+ (1 +m)2)

m2

(
πγpVDDp
ηrVLp

)
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Optimum Power Consumption

We shall now calculate the minimum possible power consumption of the system given

some BER requirement. We know that the BER, i.e. the probability of bit errors Pe,

is a unique function of Eb/N0, so we can invert the relationship and write Eb/N0 =

f (Pe). This allows us to write our optimization problem as follows. Minimize the

total power consumption

Ptot = PPA + Pmixer

= PPA +
bc

(P 2
PA − cPPA − ac)

(A.67)

where a, b and c are given by (A.66). In the general case minimizing Ptot by

differentiating (A.67) w.r.t. PPA and looking for stationary points leads to a fourth-

order (quartic) equation. Quartic equations can be solved analytically but they are

algebraically messy and do not provide much insight.

However, it is easy to solve the optimization problem analytically when b/ (PPAPmixer)

is much larger than the other two terms in the denominator of Equation (A.65). In

this case (A.65) simplifies to

P 2
PAPmixer = bc (A.68)

and the total power consumption is minimized when

PPA
Pmixer

= 2 (A.69)

Pmin = (bc)1/3
(
21/3 + 2−2/3

)
= 1.89× (bc)1/3

We can rewrite bc as

bc = f (Pe)
kBTR

m2
eff

(
2π2γmVLmV

2
DDpVDDm

η2
rk

4R2
1Q

4
1

)
(A.70)
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Since meff = k2Q1Q2/ (1 + k2Q1Q2), Equation (A.70) allows us to draw several

conclusions. Since the total power consumption is Pmin = 1.89× (bc)1/3, when m� 1

and VDDp = VDDm = VDD we get Pmin ∝ VDDk
−4/3R

−2/3
1 Q−2

1 Q
−2/3
2 . However, k

is usually fixed by the link geometry. We conclude that in order to lower power

consumption, we should lower the power supply voltage, increase the quality factors

of the coils and lower the series resistance of the external (source) coil. However, it

is much more important to increase the Q of the external coil since Pmin is a much

stronger function of Q1 than Q2. Finally, because k is based on near-field coupling

between magnetic dipole fields, it decreases as d−3, where d is the separation between

the coils. Therefore Pmin ∝ d4. This strong dependence on d explains why impedance

modulation is only a viable technique for short-range links. In addition, notice that γp

and VLp are not present in the expression for bc. When Pmix and PPA are both small,

k must be relatively large; in this case the power amplifier’s noise is insignificant and

system performance is dominated by the noise of the mixer.

The other case that is analytically tractable occurs when both a/PPA and b/ (PPAPmixer)

are both much smaller than 1. In this case (A.65) simplifies to

PPA ≈ c (A.71)

In this case, which occurs when k is small, PPA ∝ m−2
eff , i.e. PPA ∝ k−4 if

meff � 1. In this regime the PA has to make v1 large in order to get any signal

out. This increases its output noise, making the noise and power consumption of the

mixer largely irrelevant.

Inter-Symbol Interference

We shall assume that all the noise in the system is additive and Gaussian and that a

sampling clock waveform can be recovered from the data. If there is no inter-symbol

interference (ISI), the probability of bit errors Pe (i.e., the BER) is that expected

from a synchronous matched-filter receiver using binary orthogonal signaling and is

equal to [229]:
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Pe =
1

2
erfc

(√
Eb

2N0

)
⇒ Eb

N0

= 2×
(
erfc−1 (2Pe)

)2
(A.72)

where erfc(x) is the complementary error function. This expression is valid when the

data rate is much smaller than the channel bandwidth, i.e., R� B. We refer to this as

power-limited communication. When the data rate becomes comparable to or exceeds

the channel bandwidth, we are bandwidth-limited and ISI increases the probability

of bit errors. Physically, the finite channel bandwidth results in finite rise and fall

times in the bit stream, thereby reducing the effective energy per bit. To increase the

link spectral efficiency, we use non-return-to-zero (NRZ) data encoding. In NRZ data

streams, transitions only occur when the value of the bit being transmitted changes.

For simplicity, let us assume that the rise and fall times are smaller than one bit

period T = 1/R. This assumption means that ISI only occurs between adjacent bits.

The BER is given by

Pe =
1∑
i=0

1∑
j=0

αijPij (A.73)

where αij is the probability of a i→ j bit transition, and Pij is the error probability

associated with that transition. With NRZ encoding, the two Pii terms are much

smaller than the others since no transition occurs in the data stream if the value of

the bit does not change from one bit period to the next. In the simplest case all bit

transitions are equally likely, so αij = 1/4, and error probabilities are symmetric, so

P01 = P10. Therefore we have

Pe ≈
P01

2
(A.74)

We can calculate P01 by recalling that the step-response of an under-damped

second-order LTI system decays with an envelope proportional to exp (−ω0t/ (2Q)) =

exp (−πf0/Q), where ω0 = 2πf0 is its natural frequency and Q its quality factor.

When transitions occur in the data waveform s(t), the energy per bit is reduced by

this finite decay time (see Figure A-34) and is given by
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Eb =

∫ T

0

s2(t)dt

=
Eb0
T

∫ T

0

[1− exp (−πBt)]2 dt

= Eb0

[
1− (2− exp (−πBT ))2 − 1

2πBT

]
(A.75)

where B is the channel bandwidth, given by f0/
(
Q1/
√

1 +m
)

and Eb → Eb0 as

BT →∞, i.e., R/B → 0 so that we are not bandwidth-limited. Therefore the effect

of finite channel bandwidth is to reduce the signal energy per bit from Eb0 to Eb,

where Eb is given by (A.75).

Combining (A.72), (A.74) and (A.75), we can write Eb0/N0 as a function of Pe.

The result is

Pe =
1

4
erfc

(√
Eb

2N0

)

⇒ Eb0
N0

≡ f (Pe) =
2
(
erfc−1 (4Pe)

)2(
1− (2−exp(−πB/R))2−1

2πB/R

) (A.76)

This relationship can now be substituted into (A.70)3. Therefore we have solved

our optimization problem. Given the center frequency, data rate and BER required,

we can write down the minimum possible power consumption as a function of the

coupling factor k, the power supply voltage and other constants. Even in the presence

of ISI, power consumption is minimized when the quality factors Q1 and Q2 are

maximized. This is because the increase in SNR at high Q more than compensates

for the loss in SNR due to reduction in channel bandwidth and consequent ISI. Finally,

it should be noted that it is possible to reduce the amount of Eb reduction due to

ISI for a given R/B ratio by using non-rectangular pulses, such as raised cosines, for

3Since ISI was implicitly ignored while deriving (A.70), the Eb used in that formula is actually
Eb0.
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signaling.

Results and Discussion

The formulas derived in the previous section can now be examined further and plotted.

Several features of the formulas are of interest. For example, we want to eliminate

R1, the series resistance of inductor L1, since it is typically a parasitic component

whose value is hard to predict. The simplest way to do this is to assume that the

effect of inter-turn capacitances in L1 is negligible and to use the well-known formula

Q1 =
ω0L1

R1

(A.77)

We see that bigger coupling inductances are desirable since they result in larger

values of Q at a given operating frequency. Practically, the largest value of L1 that

can be used decreases with f0: parasitic capacitances cause larger inductors to self-

resonate at lower frequencies. An useful metric that we shall use to characterize the

power-efficiency of our communication system is the energy consumed per bit Ebit,

which is defined as

Ebit =
Pmin
R

(A.78)

There are two additional constraints on our design. Both are nonlinear saturation

mechanisms. The primary resonator amplitude v1 cannot exceed either VDDp or the

linear range 2VLm of the mixer. In order to make these two saturation events occur

simultaneously, we set VDDp = 2VLm. As a result, we have

v1,max = 2VLm (A.79)

v1 ≤ 2VLm ⇒ PPA ≤
2V 2

Lm

ηrR1Q2
1

(A.80)

The minimum possible mixer and PA power consumption and energy per bit pre-

dicted by (A.63) and (A.78) are shown in Figures A-35(a) and A-35(b), respectively as
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a function of k for various data rates R. The maximum possible PA power consump-

tion, PPA,max is also shown. The receiver can only be used when k > kmin, where kmin

is the value of k at which the PPA curve intersects the PPA,max line. The following

parameter values were assumed: VDDm = 2.0V, VDDp = 2VLm = 0.4V, VLp = 35mV,

γp = γm = 1, ηr = 0.35, Pe = 10−4, L1 = 0.5µH, f0 = 25MHz and Q1 = Q2 = 25.

The curves saturate at high values of k since meff , unlike m, cannot exceed 1.

Interestingly, Ebit increases with R for low values of k. However, when k is large

it slowly decreases with R, eventually saturating at a fixed value.

A.8.3 Asynchronous Demodulation

The receiver architecture described so far (shown in Figure A-33) places severe de-

mands on the linearity of the mixer, since its input is the large RF voltage v1 present

on the source resonator. This limits the usability of this receiver to relatively large

values of k. An alternative receiver architecture is shown in Figure A-36. In this

receiver the envelope of the RF voltage v1 is extracted before any further processing.

The extracted envelope is then fed into a low-noise amplifier (LNA). The LNA is as-

sumed to have enough gain for the noise of succeeding stages to have minimal effects

on the received SNR. Since the LNA only sees the small modulated signal meffv1, its

linear range requirements are considerably reduced.

We immediately notice that the dead zone of the envelope detectors (EDs) will

limit the performance of this architecture when v1 is small, i.e. k is large. In a sense

the two architectures are complementary: asynchronous (synchronous) demodulation

is preferable when k is small (large). The analysis of this receiver architecture is

similar to that described in Section A.8.2.

Envelope Detector Analysis

We consider the simple transistor-based envelope detector (ED) shown in Figure A-

36. The circuit is an emitter follower. In the absence of a RF input signal, the current

through the transistor is given by
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IED = Is exp

(
VIN − VREF

φT/κ

)
(A.81)

where VREF is the DC voltage at the output of the ED when no RF signal is present.

The average current through the transistor must still be IED with an RF signal vRF

present at the input, since in periodic-steady-state operation the capacitor CL cannot

charge or discharge on average. Therefore we may write

IED = Is exp

(
(VIN + vRF )− (vOUT + VREF )

φT/κ

)
(A.82)

= Is exp

(
VIN − VREF

φT/κ

)
exp

(
vRF − vOUT

φT/κ

)

where the averaging is carried out over one RF cycle. By combining (A.81) and

(A.82), we get

1 = exp

(
vRF − vOUT

φT/κ

)
(A.83)

Let us assume that the AC signal at the output (“the ripple”, i.e. vout) is much

smaller than φT/κ. In that case we can bring the vOUT term outside the averag-

ing operation, since exp
(
κvOUT/φT

)
≈ exp

(
κvOUT/φT

)
= exp (κVOUT/φT ), where

VOUT +VREF is the steady-state (DC) value of the output voltage. Therefore we may

write the ED’s steady-state input-output relation as

VOUT =
φT
κ

ln

(
exp

(
vRF
φT/κ

))
(A.84)

The average in (A.84) cannot be found analytically when the RF signal is sinu-

soidal, i.e. vRF = VRF sin (ω0t). However, it is easily solvable if the input is a square

wave. Suppose vRF switches between +VRF and −VRF with 50% duty cycle. In this

case
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VOUT =
φT
κ

ln

(
1

2
exp

(
VRF
φT/κ

)
+

1

2
exp

(
−VRF
φT/κ

))
≈ VRF −

φT ln(2)

κ
(A.85)

where we have assumed that VRF � φT/κ. When VRF < φT ln(2)/κ, (A.85) predicts

that VOUT ≈ 0. Therefore the dead zone of the ED is approximately φT ln(2)/κ. For

sinusoidal inputs the dead zone can be found numerically; it is approximately 1.5φT/κ.

In reality, however, the output of the ED is not quite zero for signals smaller than

its dead zone, i.e., when VRF < φT/κ. In this case we can expand the exponential in

(A.84) as a convergent series:

VOUT =
φT
κ

ln

(
exp

(
vRF
φT/κ

))

=
φT
κ

ln

(
1 +

(
vRF
φT/κ

)
+

1

2

(
vRF
φT/κ

)2

+ ...

)

≈ V 2
RF

(4φT/κ)
(A.86)

where several mathematical steps have been compressed into the last line. Firstly,

we ignore terms higher than the second order. Secondly, we note that vRF = 0,

which gets rid of the first-order (linear) term. Thirdly, we expand the logarithm by

using the identity ln(1 + x) ≈ x, which is valid when |x| � 1. Finally, we note that

v2
RF = VRF/2 when vRF is a sinusoid. Thus, for input signals smaller than φT/κ, the

ED produces an output that is proportional to the square of the input signal. In this

region the ED is known as a square-law or energy detector.

We have shown that the ED output is approximately VRF −1.5φT/κ when VRF �

φT/κ. Thus the ED output will follow small changes in VRF one-for-one, i.e., when

m� 1 the ED has a gain of 1 to both the amplitude-modulated data signal and the

input noise. However, it also adds noise of its own to the output. The two sources

570



of noise are the transistor and the DC current source, both of which are assumed to

generate shot noise with a PSD of 2qIED. The output noise voltage PSD due to the

ED

v2
n,ED = (2qIED + 2qIED)

1

g2
s

= 4kT

(
φT
IED

)
(A.87)

where gs = IED/φT is the average source conductance of the transistor. The total

output noise voltage is

v2
n,tot = v2

nBin + v2
n,EDBout (A.88)

where v2
n and Bin are the noise PSD and bandwidth of the primary resonator (un-

changed from the values calculated in the previous section), and Bout is the final noise

bandwidth. Also, the power consumption of the ED is PED = VDDeIED, where VDDe

is its power supply voltage.

Low Noise Amplifier Analysis

The output of the ED is fed into a low-noise amplifier (LNA). The gain of the LNA,

GL, is assumed to be high enough that the noise of succeeding stages has negligible im-

pact on the noise figure of the receiver. We consider the LNA to be a single-transistor

common-source amplifier with resistive load RL. Its gain is given by GLNA = gmRL,

where gm = ILNA/VLl is the transconductance of the transistor, ILNA the DC bias

current and VLl the linear range. Remembering that the power consumption of the

LNA is PED = VDDlILNA, where VDDl is its power supply voltage, we can write

GLNA

RL

=
PLNA
VDDlVLl

(A.89)

The output noise voltage PSD produced by the LNA is given by
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v2
n,LNA =

(
4kT

RL

+ 4kTγlgm

)
×R2

L

= 4kTRL (1 + γlGLNA) (A.90)

The total noise voltage present at the output of the LNA is the sum of the noise

contributions of the input, the ED and the LNA and is given by

v2
l,out = BinG

2
LNAv

2
n +Bout

(
G2
LNAv

2
n,ED + v2

n,LNA

)
(A.91)

Calculating the SNR

The output SNR used to make bit decisions is given by

SNRout ≈
(GLNAv1 −GLNAv1/(1 +m))2

v2
l,out,0 + v2

l,out,1

≈ (meffv1)2

2v2
l,out/G

2
LNA

(A.92)

where we have assumed (for simplicity) that m � 1, so that v2
l,out,0 and v2

l,out,1, the

output noise during the transmission of ‘0’ and ‘1’, respectively, are approximately

equal. Notice the similarity of this equation to (A.63). As before, we can set Bout = R

to convert the left-hand side of this equation into Eb/N0. By substituting for v1 from

(A.52), assuming GLNA � 1 and using (A.91) and (A.62), we can now rewrite (A.92)

as

P 2
PA(

PPA + a+ b
PLNA

+ d
PED

) = c (A.93)

where the quantities a, b, c and d are given by
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a =

(
VDDpVLp
R1Q2

1

)(
1

2ηrγp

)
b = a

(
γlVDDlVLl
R1Q2

1

)
2R

πB
(A.94)

d = a

(
VDDeφT
R1Q2

1

)
2R

πB

c =
Eb
N0

(kBTB)
2

m2
eff

(
πγpVDDp
ηrVLp

)

Optimum Power Consumption

We want to minimize the total power consumption, i.e. Ptot = PPA + PED + PLNA,

subject to the constraint imposed by (A.94). Unlike in the previous section, this

optimization problem is under-constrained since we have three unknowns (PPA, PED

and PLNA) and only one constraint relating them. It can be solved numerically if the

various parameter values are specified.

A heuristic that simplifies the optimization considerably can be obtained by rec-

ognizing that PLNA and PED occur in a symmetric fashion in (A.94). Let us keep PPA

fixed for now, and minimize the sum PLNA + PED while keeping (b/PLNA + d/PED)

constant. The result is

PLNA
PED

=

√
b

d
=

√
γlVDDlVLl
VDDeφT

(A.95)

In practice this ratio is likely to be close to 1, since typically we have VDDl = VDDe

and VLl ≈ φT/κ. Our optimization problem then simplifies to the following: minimize

Ptot = PPA +
(

1 +
√
d/b
)
PLNA (A.96)

subject to the constraint that

P 2
PA(

PPA + a+ b+
√
bd

PLNA

) = c (A.97)
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This problem is very similar to the one we solved for the synchronous demodulation

receiver, and can be solved in a similar way. We get the same limiting behavior as

before: if PLNA is small, so that the
(
b+
√
bd
)
/PLNA term is much larger than both

a and PPA, we have

P 2
PAPLNA =

(
b+
√
bd
)
c (A.98)

Similarly, when PPA is much larger than both a and
(
b+
√
bd
)
/PLNA, we have

PPA ≈ c (A.99)

Results and Discussion

The effects of ISI on this system can be modeled exactly as before, leading to the same

expression, i.e. (A.76). The additional constraints on the receiver are that v1 cannot

exceed VDDp, or be smaller than Vdead, the dead zone of the ED (Vdead ≈ 1.5φT/κ in

our case). Therefore we have

Vdead ≤ v1 ≤ VDDp (A.100)

As a result

VDDpVdead
ηrR1Q2

1

≤ PPA ≤
V 2
DDp

ηrR1Q2
1

(A.101)

In other words the ratio of the maximum and minimum values of PPA is VDDp/Vdead.

The minimum possible mixer and PA power consumption and energy per bit

predicted by (A.97) are shown in Figures A-37(a) and A-37(b), respectively as a

function of k for various data rates R. The maximum and minimum possible PA

power consumption, PPA,max and PPA,min, are also shown. The receiver can only be

used when kmin < k < kmax, where kmin(kmax) is the value of k at which the PPA curve

intersects the PPA,min(PPA,max) line. The following parameter values were assumed:

VDDl = VDDe = VDDp = 2.0V, VLp = VLl = 35mV, Vdead = 50mV, γp = γl = 1,
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ηr = 0.35, Pe = 10−4, L1 = 0.5µH, f0 = 25MHz and Q1 = Q2 = 25. The curves

saturate at high values of k since meff , unlike m, cannot exceed 1.
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Figure A-23: Measured delay time of rising data edges (tdr), rms data jitter (σdata)
and rms clock jitter (σclk) as a function of the link distance. Fits to a theoretical
model of tdr are also shown.
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Figure A-24: Measured bit error rate (BER) for the uplink with the coils 2, 3 and
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Figure A-25: Downlink data transmission at 200kbps with the coils 2cm apart.
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Figure A-26: Envelopes of the voltage across the internal resonator, (a) without the
diode clamp and (b) with the diode clamp.
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Figure A-27: Model of inductively-coupled resonators used for analysis.
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Figure A-28: Driving-point impedance of the coupled-resonator network with identi-
cal primary and secondary resonators, Q1 = Q2 = 10 and G3 = 0 for logarithmically-
spaced values of k between 0.01 and 0.5.
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Figure A-29: Driving-point impedance of the coupled-resonator network with iden-
tical primary and secondary resonators, Q1 = Q2 = 10 and G3 = 10 (effectively a
short) for logarithmically-spaced values of k between 0.01 and 1.
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Figure A-30: Driving-point impedance of the coupled-resonator network with iden-
tical primary and secondary resonators, Q1 = Q2 = 10 as G3 is switched between 0
(open, blue) and 10 (effectively a short, red) for k = 0.05 (left) and 0.5 (right).
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Figure A-31: Transfer impedance of the coupled-resonator network with identical
primary and secondary resonators, Q1 = Q2 = 10 and G3 = 0 for logarithmically-
spaced values of k between 0.01 and 1.
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Figure A-32: Voltage gain of the coupled-resonator network with identical primary
and secondary resonators, Q1 = Q2 = 10 and G3 = 0 for logarithmically-spaced
values of k between 0.01 and 1.
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constant k for various data rates R.
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Figure A-37: Theoretically predicted minimum (a) power consumption and (b) energy
dissipated per bit for the asynchronous receiver, plotted as a function of the coupling
constant k for various data rates R.
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Appendix B

A Programmable Event Processor

for Body Sensor Networks

In this chapter we describe a low-power integrated circuit for use in wearable patient-

monitoring systems. The chip contains four independent programmable channels

that can be used to create events from biomedical signals and/or actuate outputs.

Channel gain, event threshold, event duration and event hold time are programmable

and channel outputs can be combined using a programmable logic array (PLA). Ex-

perimental results with phono-cardiogram (PCG) and photo-plethysmogram (PPG)

signals are presented along with a scheme for patient localization using audio in the

case of an alarm. This chapter was based on work performed in collaboration with

Lorenzo Turicchia.

B.1 Introduction

With the world population ageing rapidly, providing care for the elderly is becoming

an increasingly important problem. For instance, more than 5,000 people experience

Sudden Cardiac Arrest (SCA) every week in the United States alone. The only defini-

tive treatment for SCA is early defibrillation: no more than 6 minutes from arrest to

first shock. The chance for survival drops 10% per minute without defibrillation, and

today, over 95% of SCA victims die. Since automatic defibrillators are increasingly
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available, pervasive monitoring of those at risk can save many lives [53]. Infants con-

stitute another segment of the population where pervasive monitoring could enable

rapid responses to life-threatening situations. In the United States alone, approxi-

mately 2,000 infants die each year from Sudden Infant Death Syndrome (SIDS). Since

slow heart-rate (bradycardia) is an important indicator of SIDS [200], early detection

of bradycardia in infants may save many lives each year.

Wireless networks of context-aware body-mounted sensors have come into promi-

nence recently for pervasive patient monitoring [126, 320]. However, to be effective,

monitoring systems should be unobtrusive, robust, and low-cost. One way to lower

the size, weight and cost of the system is to eliminate batteries and rely entirely on

harvested ambient energy, in this case RF. This is the approach adopted by passive

radio-frequency identification (RFID) tags [72], which face similar size and cost con-

straints. We describe progress on a low-cost wearable tag that can be attached to the

skin and used for such applications. The tag monitors multiple biomedical signals and

allows the patient to be localized if necessary. The signals that we want to monitor

include heart sounds (PCG), electrical heart signals (EKG), blood oxygen saturation

(PPG), respiratory sounds [208], blood pressure, and body temperature. However,

maintaining reliable and robust operation is challenging for any biomedical device,

but particularly problematic when a reliable local energy source, such as a battery, is

absent. We describe algorithms that detect malfunctioning tags, thereby improving

the reliability of our results.

Mechanical coupling causes the skin to vibrate in synchrony with motions of the

heart. Such vibrations generate acoustic pressure waves, referred to as heart sounds,

that can be picked by microphones or by trained human ears using stethoscopes.

Such sounds provide important information about cardiac health. For example, con-

sider the characteristic lub/dub rhythm present within each heart beat, referred to as

the first heart sound (S1) and second heart sound (S2), respectively. These sounds

are produced by the turbulent flow of blood against the closed atrioventricular and

semilunar valves, respectively, and are thus sensitive to the condition of these valves.

The resting value and short-term variability of the heart rate, which are both of clin-
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ical importance [42], can also be measured from such acoustical recordings, known as

phono-cardiograms (PCGs).

Continuous monitoring and analysis of heart sounds is likely to provide important

health benefits because these sounds contain large amounts of useful information. In

this instantiation, we only use sounds, not electrical signals, for heart monitoring (i.e.,

the PCG instead of the EKG). The PCG has three advantages over the EKG: Firstly,

it does not require any electrical contact with the body - something which is often

difficult to obtain with dry skin. Secondly, it can be implemented in a very low-power

fashion with a low-cost microphone since the heart is easy to sense acoustically as it

is the loudest organ in the body. Reducing power consumption becomes extremely

important for systems such as ours that rely on energy-harvesting, since the available

ambient energy density is usually orders of magnitude lower than that present within

a battery. Thirdly, it requires little maintenance, unlike the EKG.

Our tag uses multiple sensors to generate three types of alarm: disconnection from

the body, device malfunction, and patient emergency. For example, the simplified

version shown in Figure B-1 has two microphones, one facing up (away from the

body) and the other facing down. The downward-facing microphone monitors heart

sounds, while the upward-facing one is usually switched off to save power. It is turned

on only when the downward-facing microphone does not detect any heart sounds and

a disconnection or patient emergency is suspected. If both microphones now pick up

similar environmental sounds, a ’disconnection alarm’ is generated since it is probable

that the tag is no longer in proximity to the skin. A ’patient emergency alarm’ is

generated if the downward-facing microphone does not pick up environmental sounds,

but the upward-facing one does, since in this case it is likely that the tag is still

attached and the heart has stopped. If neither microphone picks up any sounds, the

tag is probably malfunctioning; therefore a ’device malfunction alarm’ is generated.

Each tag contains a unique identification code and powers up using harvested RF

power [275]. A fixed base station communicates with multiple tags and decides, based

on transmitted patient data, if an alarm should be triggered. Such a system will be

useful for hospitals, facilities that care for infants and the elderly, and also ordinary
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CIRCUIT
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(FACE DOWN)

MICROPHONE
(FACE UP)

Figure B-1: A simplified version of our system with two microphones and an antenna
attached to a flexible, adhesive surface. Conceptual view, attached to a flexible,
adhesive surface (top), and photograph of the actual experimental 800MHz prototype
that was tested (bottom). We estimate that the area of the prototype can easily be
halved by using a smaller package for the chip and a more optimized antenna. In
addition, the pins at the bottom of the prototype were for testing purposes and are
not necessary for a final commercial system.

homes. In order to quickly cover a large fraction of the population at risk we need

to keep the tag low-cost (ideally, less than $2 each when manufactured in volume),

disposable, small and easy to use. In this article we describe the low-power custom

integrated circuit that forms the central component of the patient-monitoring tag

and demonstrate its power harvesting, sensing and actuation capabilities. We do not

describe system-level issues like polling of multiple tags, software and deployment.

In this paper we describe a low-power chip designed for use in pervasive medical

monitoring applications. Section B.2 describes the design of the system in detail, Sec-
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tion B.3 presents experimental results, and Section B.4 summarizes our conclusions.

B.2 System Design

A block diagram of the overall chip is shown in Fig. B-2. It was designed to be

extremely low power by incorporating only minimally acceptable amounts of compu-

tation and signal processing; most complexity is transferred to the fixed base station.

The chip can harvest radiated RF power, making a low-cost battery-free tag possible.

An efficient two-stage CMOS rectifier [186] is connected to an external loop antenna.

The input capacitance of the chip, CL resonates with the inductive input reactance of

the antenna at the operating frequency. The resultant L-type impedance match pro-

vides passive voltage gain that reduces the amount of RF power needed to overcome

the dead-zone of the rectifier, thereby increasing operating range. The first rectifier

stage is designed to have low output impedance since it powers up external sensors,

which typically consume much more power than the chip itself. The second stage,

which provides a higher-impedance output, is used to power up the chip. Over-voltage

protection circuits at the power supply and RF input nodes prevent damage due to

large RF amplitudes.
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Figure B-2: Block diagram of the low-power patient-monitoring chip.

Path loss models predict the fall-off of radiated power density Pr (in W/m2) with
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distance D from the transmitter. A simple version commonly used for modeling

indoor environments recognizes two zones: Pr ∝ D−n1 for D ≤ D0, and Pr ∝ D−n2

for D > D0, where D0, n1 and n2 are constants [161]. Typically n1 ≈ 2, the free-

space value, and n2 varies between 2.5 and 4. The value of n2 exceeds 2 because

of absorption and reflection of the RF by environmental obstacles, such as furniture

and people. We used the following conservative values: D0 = 5m, n1 = 2, n2 = 3.5.

Combining the predicted path loss with the rectifier model proposed in [186] gives us

Figure B-3, where PA is the RF power that can be harvested at different distances

from the transmitter.
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Figure B-3: Harvested RF power available as a function of distance from the trans-
mitter for different load resistances at 900MHz and 2.4GHz.

Figure B-3 assumes that the equivalent isotropic radiated power (EIRP) is 4W,

which is the maximum allowed in the United States for radio-frequency identification

(RFID) applications. It shows PA as a function of D at two popular RFID frequencies:

900MHz and 2.4GHz. The main reason for going to higher operating frequencies is to

reduce the physical size of the antenna. Loop antennas are normally operated at their

first resonant frequency. At this frequency the circumference of the loop is half the
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wavelength. Therefore a single-turn circular loop has a diameter of 5.3cm at 900MHz

and 2.0cm at 2.4GHz. Multiple-turn loops can be used to reduce antenna size at the

cost of increased fabrication complexity.

The various curves in Figure B-3 correspond to different load resistances RL driven

by the rectifier. They decrease rapidly at large distances because the received RF am-

plitude becomes smaller than the rectifier’s dead zone. The load resistance is usually

dominated by the power consumed by off-chip sensors and not the chip itself. For

example, a microphone biased at 30µA and 0.5V (typical values used in our experi-

ments) dissipates 15µW, corresponding to an effective load driven by the rectifier of

RL = 16.7kΩ [186]. Figure B-3 then predicts an operating range of approximately

12m at 900MHz and 3m at 2.4GHz. In practice the reliable operating range will

be somewhat smaller because some tags will be mistuned by their proximity to con-

ductive and dielectric surfaces. In addition, we have to allow for transient drops in

received RF power level (fades), which are ubiquitous in indoor environments because

the received signal is the superposition of multiple waves with time-varying amplitude

and phase. Nevertheless, a single base-station operating at 900MHz is sufficient for a

moderately-sized room.

Our chip contains four independent channels, that can be used to interface to

various types of sensors. A block diagram of a single channel is shown in Fig. B-4.

The outputs of each channel are digital spikes, i.e., ’event’ signals. These signals

can be combined in a flexible way using a Programmable Logic Array (PLA) that

can implement a variety of Boolean logic functions. Our PLA is a four-input four-

output design with a 8 × 8 AND plane and a 4 × 8 OR plane implemented using

static logic gates. The PLA allows us to implement any of the 224
possible logic

functions of four inputs for any of its four outputs in a programmable fashion. These

outputs can be monitored individually, allowing us to implement rudimentary sensor-

fusion algorithms that combine the outputs of multiple channels. Programmable

output selection logic multiplexes the four PLA outputs into a single signal that is

transmitted to the base station as “event packets” containing the chip identification

code and time stamps. Data is transmitted using backscatter modulation [72]: a
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100fF capacitor is added and subtracted from CL to change the amount of RF power

scattered by the tag. Backscatter modulation is popular in passive RFID systems

because all the complexity and power consumption is pushed to the base station;

the tag remains simple and low-power. An incoherent on-off keying (OOK) receiver

will be added to later versions of the chip to allow wireless reprogramming of chip

parameters.
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Figure B-4: A single signal processing channel.
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Figure B-5: Pseudo-differential programmable gain preamplifier with DC offset rejec-
tion.

The preamplifier, shown in Fig. B-5, consists of a common source stage with

capacitive feedback that can be varied to set the gain. The feedback capacitor can be

varied from C0 to 16C0 using a binary-weighted array. PMOS input transistors are

used because they have lower 1/f noise. A PMOS adaptive element [55] that acts as
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an extremely large resistor Rf for small input signals is also connected in feedback to

set the DC voltage at the input equal to that at the output, resulting in DC rejection,

i.e., a band-pass transfer function with a very low cut-in frequency (typically <1Hz),

given by

A(D) =
vout
vin

= − 2N

D + 1

(
sτ1

sτ1 + 1

)(
1

1 + sτ2

)
(B.1)

where in this case, N = 4, D, the digital code used to program the gain, varies from

0 to 15, τ1 = DC0Rf and τ2 =
(D+2N)C0

gm
, with gm being the transconductance of the

input transistor. Our design uses a nominal bias current of 10nA and C0 = 0.5pF,

resulting in a bandwidth that decreases from 12KHz to 6KHz as the gain increases

from 1 to 16. Preamplifiers from different channels can be cascaded together if more

gain is needed. A matched copy of the amplifier (minus the capacitors) is used to

determine the quiescent operating point VOUT2. The resultant pseudo-differential

output voltage VOUT1 − VOUT2 is fed into the comparator.

The comparator generates events whenever the output voltage of the amplifier

differs from its quiescent value by more than a fixed threshold voltage Vth, i.e.

|VOUT1 − VOUT2| > Vth. There are two types of events: positive-going, when VOUT1 >

VOUT2, and negative-going, when VOUT1 < VOUT2. Our comparator operates in con-

tinuous time and consists of two high-gain differential amplifiers. The two input

terminals of each amplifier are reversed relative to each other so that one produces

positive-going, and the other, negative-going, events. Each amplifier consists of a

differential first stage with built-in offset to create Vth, and a common source second

stage. The offset is created by making the W/L ratio of one of the input differential

pair transistors S times larger than the other. Assuming subthreshold operation [199],

this results in a threshold voltage of Vth = (φT/κ) ln(S), where φT is the thermal volt-

age and κ is the subthreshold exponential constant. In our case, S = 10 and κ ≈ 0.75,

giving Vth ≈ 80mV. The input-referred threshold for detecting an event thus decreases

from 80mV to 5mV as the preamplifier gain increases from 1 to 16. The well terminals

of the input PMOS differential pair transistors were forward biased by 0.3V using a
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level-shifter to increase the input common-mode range (ICMR) of the comparator

at low supply voltages. This strategy lowers the PMOS threshold voltage by about

100mV, increasing the ICMR by a similar amount.

Spike selection logic is connected to the comparator output in each channel and

allows only positive or negative-going spikes, both, or neither to be detected. This

combinational block is followed by a pulse-stretcher circuit that adds hysteresis in the

time domain to prevent multiple comparator transitions due to noise when an event

is detected. It also ensures that output spikes always last long enough for at least one

complete data packet to be broadcast during every spike. The pulse-stretcher circuit

is a digitally-timed one-shot: It allows an incoming event edge to set its output high,

and a delayed version of this edge to reset it low.
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Figure B-6: Programmable hold timer circuit.

The pulse-stretcher is followed by a programmable hold timer circuit. This circuit,

shown in Fig. B-6, prevents a single channel from firing too rapidly by imposing a

variable dead time Thold after each event is detected. No new events can occur during

this dead time period. Adding the hold timer places an upper bound of 1/Thold on

the event rate that a single tag, reducing greatly the chances of events from different

tags colliding in time when a single base station is being used to read them. The hold

time is varied by changing the reference clock frequency fref with a programmable

divide-by-N counter. Since events occur asynchronously with respect to this clock,

Thold varies between

N

fref
≤ Thold ≤

2N

fref
(B.2)

594



where fref = 16Hz, obtained by dividing down a 32KHz on-board clock reference, and

1 < N < 15. The average hold time can thus be varied between 94ms and 1.4s. Both

the pulse-stretcher and the hold timer in each channel can be bypassed if required.

Each channel contains its own clock reference, generated by a three-stage ring

oscillator. One of these oscillators also serves as the source for the event time stamp

that is transmitted inside each event packet. This locally-clocked strategy alleviates

the problem of clock distribution at the cost of some mismatch between the local clock

frequencies. Relatively large capacitive loads were placed at the outputs of each of the

ring oscillator stages to reduce this mismatch and also the phase noise. In addition,

each of the ring oscillator delay cells are simple CMOS inverters which are supplied a

fixed amount of current by a common high-impedance PMOS current source, which

is the only node in the circuit connected to VDD. This technique greatly improves the

power supply insensitivity of the oscillator.

A programmable bias current source was designed for every channel. This can

be used to power up external sensors, such as microphones, and consists of a 8-

bit binary-weighted current DAC that can supply between 0.5µA and 128µA. The

current source transistors are low-threshold voltage PMOS transistors to reduce the

saturation voltage VDS,sat at a given current level. Their well terminals are forward

biased by about 300mV to further reduce VT . These techniques reduce the worst-

case voltage compliance to 250mV, which reduces power consumption, while keeping

layout area relatively small.

A supply-independent PTAT current reference [184] was used to bias all the ana-

log circuits on the chip. The circuit is cascoded, contains no resistors, operates

normally down to supply voltages of 0.5V and contains circuitry that ensures fast

startup. It produces a nominal bias current of 10nA. The use of a PTAT reference

and subthreshold bias currents cancels out the temperature dependence of transistor

transconductances, thereby making our design robust to temperature fluctuations.

To reduce power consumption, the chip was designed to operate on power supply

voltages as low as 0.8V (core) and 0.5V (programmable current sources). Care was

also taken to maintain good power supply rejection in all analog circuits on the chip
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by bypassing the DC bias voltage and current lines.

The programming interface consists of a shift register that can be serially loaded

with the desired function by a single external input during a programming phase,

and latches to hold the programmed values during normal operation (see Fig. B-

7). A similar serial interface was also implemented for programming the analog

channel parameters (output bias current, preamplifier gain and hold time) and channel

selection logic. The serial interface also allows the chip’s identification code (16 bits

long) to be programmed if necessary. In addition, the channel control bits can be

directly programmed in parallel using analog current inputs that are quantized by low-

power on-chip analog-to-digital converters (ADC’s). Each control bit is multiplexed

from 2 sources: the serial programming interface described earlier, and the ADC’s,

which allow channel parameters to be programmed more quickly.
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Figure B-7: Programming strategy for the event processor.

A die micro-photograph of the chip is shown in Fig. B-8, and its performance is

summarized in Table B.1. The static power consumption with no external sensors

is only 1.0µW. The power consumption with sensors present depends on their bias

currents, which are application-dependent.
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Table B.1: Chip specifications
Parameter Value
Process UMC 0.18µm CMOS
Chip area 1.5mm × 1.5mm
Core power consumption 2.7µA @ VDD = 0.8V
Maximum sensor bias 128µA per channel
On-chip frequency reference 32KHz
On-chip current reference 10nA
Number of programmable bits 112

Figure B-8: Die photograph.
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B.3 System Testing

The chip was tested and found to be fully functional. In this section we describe some

of our experimental results. We tested our system in a cluttered laboratory with nu-

merous barriers to RF propagation, as shown in Figure B-9. Experimentally, we were

able to obtain 15µW of output power at a distance of 3.1m from an 800MHz RF

source broadcasting 800mW EIRP, which was the maximum allowed by our equip-

ment. This is enough power to run the chip and one microphone at a typical bias

current of 30µA and power supply voltage of 0.5V. Increasing the transmit power to

the allowed maximum of 4W should give us an operating range of 5-7m, depending

upon the multipath fading characteristics of the environment. A circularly-polarized

transmitter antenna can be used to make the power received by the tag less sensitive

to propagation barriers and its own spatial orientation.

We also note that the curves in Figure B-3 begin to drop off sharply with increasing

distance when the received RF voltage becomes smaller than the rectifier’s dead zone,

which causes its power conversion efficiency to decrease rapidly. If the load resistance

is such that the tag operates in this region, range can also be increased by using a

smaller, but more expensive chip package with lower parasitic input capacitance Cin.

Decreasing Cin increases the quality factor of the input matching network, increasing

the received RF voltage. Specifically, a given amount of available power is obtained

at a distance that scales as 1/
√
Cin. For example, the rectifier in [186] used a package

with approximately half the input capacitance, resulting in
√

2 ≈ 1.4 times more

range.

We noticed that the operation of the tag was largely unaffected by the presence of

the human body up to a distance of approximately 1cm from the skin. The received

power decreased sharply for smaller separations. The microphone must also be sep-

arated from the skin to operate normally. Both problems can be solved by backing

the tag with dielectric foam approximately 1cm thick. At 3m from the source, the

presence of another person directly between the source and the tag had almost no

effect on received power, presumably because of multipath effects. Finally, the tag

598



Figure B-9: Photograph of the environment within which the tag was tested.

continued to operate at 2m when the user’s back was facing the transmitter, or he

was lying, tag downwards, on the floor.

Figure B-10 shows measured waveforms produced by the chip in response to a

single event. The backscatter signal MOD consists of an 48-bit long event packet

that is repeated for the duration of the event. Each packet begins with a 16-bit

‘010101...’ sequence to aid synchronization (visible in the figure), followed by the

tag’s unique 15-bit identification code, a parity bit and a 16-bit time-stamp. In this

case we see that three complete packets were transmitted before the event ended.

We shall now focus on monitoring heart activity using different types of sensors

since the heart is among the most important organs in the body and is also relatively

easy to sense. For instance, a recording of the sounds produced by the heart consti-

tutes a phono-cardiogram (PCG). The PCG is important for diagnosis; in particular,

it contains information about the heart valves and rhythm (e.g., tachycardia and

bradycardia).

B.3.1 Microphone Interface

We used a microphone to detect heart sounds. Microphone responses are bandpass,

with typical lower (cut-in) frequencies between 20Hz and 100Hz and upper (cut-off)

frequencies between 16kHz and 20kHz. Commercial electret microphones contain
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Figure B-10: Experimentally-measured waveforms generated by the chip for a sin-
gle event. The figure shows (a) channel output, (b) PLA output, (c) backscatter
modulation signal MOD.

built-in low-noise JFETs for buffering [8]. There are two common configurations, as

shown in Figure B-11. In two-terminal microphones, shown on the left, the drain

of the n-type JFET, which is normally a depletion-mode device, acts as the output

terminal. It is usually connected to an an external resistive load, creating a common-

source amplifier. The gate voltage is internally tied to ground at DC with the large

resistor Rbig, while Cpar is a small, unwanted parasitic capacitance. The incoming

sound pressure wave creates the voltage source velec in series with the elecret capaci-

tance Celec. Three-terminal microphones, shown on the right, configure the JFET as

a source follower, and are typically more expensive.

We used a two-terminal microphone, but replaced the resistive load with a pro-

grammable current source Ibias running off a very low supply voltage, VDD,MIC to

save power. In this regime the JFET is unsaturated and acts as a voltage-controlled

resistor. Using the standard long-channel FET equation,
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Figure B-11: Circuit diagram of common electret microphones, two-terminal (left)
and three-terminal (right).

Ibias = β
[
(VGS − VT )VDS − V 2

DS/2
]

= β
[
VDSATVOUT − V 2

OUT/2
]

(B.3)

where VDSAT = (VGS − VT ), the saturation voltage, and β are fixed for a given mi-

crophone. Within the microphone passband the sound-generated source velec changes

VGS by an amount velecCelec/ (Celec + Cpar). Since the current through the JFET is

fixed at Ibias, vout decreases as vgs increases, and vice-versa. The transfer function

between velec and vout is given by

vout
velec

= − Celec
Celec + Cpar

(
VDS

VGS − VT − VDS

)
= − Celec

Celec + Cpar

(
η

1− η

)
(B.4)

where η is defined as VDS/VDSAT = VOUT/VDSAT , and varies between 0 and 1. We

see that the voltage gain increases as η increases, appearing to diverge as η → 1. In

reality the gain saturates at a high value because of the finite output impedances of

the saturated transistor and the current source.

Since VDSAT depends on Ibias, we can vary signal gain by using the on-chip DAC

to change the bias current Ibias. We find, after some algebra, that
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vout
velec

= − Celec
Celec + Cpar

[√
1

1− Ibias/ISAT
− 1

]
(B.5)

where ISAT = β (VGS − VTS)2 /2, the JFET current in saturation, is fixed for a given

microphone. We see that gain increases with Ibias, i.e., we can trade-off sensitivity with

power consumption. In practice we save considerable amounts of power because heart

sounds are relatively loud and do not require large amounts of gain. They occur in the

range 20-250Hz. We used a Panasonic omnidirectional electret condenser microphone

(WM-63PR) in a plastic enclosure. The WM-63PR, which has ISAT = 500µA, was

selected since it is a small, thin device (diameter = 6mm, thickness = 1.3mm) that

has a low cut-in frequency (20Hz) and is also low-cost. Similar microphones that are

even less expensive can also be used since sound quality is not important for this

application.

A picture of the microphone sensor is shown in Fig. B-12. It is normally attached

to the chest while monitoring heart activity. However, the membrane of the micro-

phone cannot vibrate freely if it is directly attached to the skin. Therefore we built

our microphone sensor with a very small cylindrical air chamber between the two.

The chamber has no vents, reducing the amount of ambient noise, but its diameter

and shape have little effect on sound pickup [145].

Figure B-12: Picture of microphone sensor used for measuring the PCG.
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B.3.2 Experimental Results

Microphones were biased using on-chip current sources operating on VDD,MIC = 0.5V

in all our experiments. In the first experiment, two microphones were connected to

channels on the chip and attached to the neck and wrist of an healthy adult subject.

Proximity to the carotid and radial arteries causes a strong pulse to be commonly

observed at these positions. Each microphone was biased at 30µA and the preamplifier

gain was set to 8. In other successful experiments (not shown) the sensor was placed

at its default position, the chest. In this position heart sounds are louder, enabling

the microphone bias current to be further reduced.

Measured waveforms are shown in Figure B-13. There are two reasons why high-

frequency components, such as the S1 and S2 sounds found in a conventional PCG

waveform, are almost completely absent in these recordings. Firstly, the coupling

between the skin and the microphone is a low-pass filter. Secondly, microphone

sensitivities were deliberately kept low by reducing their bias currents. This was

because we were mainly interested in heart rate information, which resides in the

loud, low-frequency components of the PCG (from 10 - 80Hz). Each large negative

event is caused by the pulse, i.e., systolic upsurge in blood pressure and consequent

dilation of the arteries. The pulse travels along arterial walls as a pressure wave, with

a velocity that ranges between 5 and 15m/s but is always significantly higher than

that of the blood itself. The waveform at the wrist is delayed relative to that at the

neck by about 95ms because of the finite velocity of this wave, i.e., because of the

time taken by the systolic pulse to propagate down the length of the arm. The delay

decreases as the artery walls get stiffer or blood pressure increases, and is therefore

diagnostic of atherosclerosis and hypertension [22,217].

In another experiment, we combined the wrist microphone (still biased at 30µA)

with an external pulse oximeter [310] connected to another channel. The oximeter,

which is used to measure oxygen saturation level in the blood, was attached to the

index finger of the subject. Pulse oximeters can also be used to measure the variation

in blood volume in the arteries as a function of time. Such a recording is known as a
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Figure B-13: Measured PCG waveforms at the neck (A) and wrist (B) of a single
subject. Preamplifier (top) and channel (bottom) outputs are shown.

photo-plethysmogram, or PPG. For simplicity, we used an off-the-shelf infra-red LED

light source and a Texas Instruments OPT101 photo-sensor. The OPT101 consists

of a photodiode and transimpedance amplifier integrated into a single package. Its

output is fed into our chip. Figure B-14 shows measured PCG and PPG waveforms.

The peaks in the PPG waveform line up with the negative spikes in the PCG because

we are now recording from adjacent locations, i.e., the pulse propagation delay from

the wrist to the finger is small. This PPG sensor will eventually be replaced by an

ultra-low-power version to create a wearable, battery-free solution.

Our system generates audio alarms during suspected patient emergencies. How-

ever, location-awareness can improve the response time to such alarms by guiding

care-givers directly to the patient [115]. In addition, patterns of patient movement

can be inferred by monitoring location versus time. Such additional information can

be used to improve the robustness and diagnostic capabilities of our system. We

now show that our tag can be localized within a room using acoustic time-of-flight

measurements [18, 266]. In this experiment we used a single microphone attached to
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Figure B-14: PCG (A) and PPG (B) waveforms measured at the wrist and fingertip,
respectively. Preamplifier (top) and channel (bottom) outputs are shown.

the chip and two speakers (L and R) placed a distance d apart. By measuring the

time delays t1 and t2 between when each speaker beeps and the chip starts generating

spikes, we can locate the position of the microphone in two dimensions.

The microphone was biased at 128µA and preamplifiers from two channels were

cascaded to give a total gain of 8 × 12 = 96. Small, cheap speakers were placed

d = 12ft apart and programmed to transmit 100ms tone bursts at 230Hz. The burst

frequency was kept as low as possible to minimize audibility and attenuation with

distance, but was limited by the poor low-frequency response of the small speakers

being used. The bursts were spaced 400ms apart to ensure that all echoes from the

first burst would die down before the second one arrived. The measured sound level

at the center of the room with either speaker on was 87dB SPL, which is loud enough

to serve as an alarm signal. The entire experiment was performed in a highly noisy

indoor environment (49dB SPL, a typical quiet room being 40dB SPL) that included

sound propagation barriers in the shape of furniture and people (see Figure B-9).

We estimated the propagation times t1 and t2 from the speaker to the microphone
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by using a simple threshold-based algorithm to measure the time between the onset of

each burst and the first spike detected by the chip. By using the first spike, we measure

the time delay corresponding to the shortest, i.e., line of sight path. The distances

of the microphone from each speaker are given by d1 = ct1 and d2 = ct2, where

c = 1130ft/s is the speed of sound in air. Assuming that the speakers are located

at (0,−d/2) and (0, d/2), a simple derivation shows that the estimated microphone

location (x̂, ŷ) is given by

(x̂, ŷ) =

d2
1 − d2

2

2d
,±

√
d2

1 −
(
x̂+

d

2

)2
 (B.6)

One of the two values of ŷ can always be rejected since it lies outside the room,

thereby giving us an unique solution. The measured microphone positions are shown

in Fig. B-15 for 9 different positions and 20 trials. The average standard deviation in

the measured positions was 1.4ft (0.43m), and the average error between the measured

and actual positions was 1.97ft (0.6m). This number includes error due to electronic

(signal detection) delay on the tag, which increases with distance from the speaker,

becoming approximately 1ft (0.3m) at the furthest postions.

The total measured delay includes two components: acoustic and electronic. We

denote T = 1/230Hz to be the time period of the sound signal, and c to be the speed of

sound in air. In the case that was tested (a single tag present in the room), electronic

delay is primarily caused by the time taken by the output of the preamplifier to

increase to the threshold value required to trigger an event (see Figure B-16). This

delay ranges from zero (if the peak value of the preamplifier output is much larger

than the threshold) to T/4 (if the peak value is just equal to the threshold). Since the

peak value of the preamplifier output depends on the distance of the microphone from

the speaker, so will the electronic delay. This effect causes an error of approximately

cT/4 ≈ 0.3m in measured position when the microphone is far away from the speaker

and an event is barely triggered. This error can be reduced by using a higher audio

frequency, i.e., lower value of T .

The current accuracy of our system already provides important information about
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the location of the patient. For example, we can distinguish between the bed, a chair

and the bathroom. Localization accuracy can be further increased if necessary by

using louder sounds or a higher transmission frequency to improve timing precision,

and extended to three dimensions by adding a third speaker. Finally, our tags can

also be localized to particular rooms by determining which RF transmitter powers

them up. This information allows localization accuracy to degrade gracefully in case

the audio scheme fails.
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Figure B-15: Localization in two dimensions using acoustic time delays. Measured
data points (∗), mean positions (◦) and standard deviation ellipses are shown for nine
cases. Actual positions (×) and the two speakers (•) are also marked.

The audio alarm and localization technique that we have described is quite gen-

eral and can be extended to other wireless sensor applications. For example, it can

form the basis for sensor-fusion algorithms where sensors such as video cameras that

provide high-bandwidth information can be activated by the audio alarm only when

abnormal events are detected. The amount of information that needs to be contin-

uously monitored by a human operator is thereby reduced. This mode of operation

also allows power-hungry sensors to be turned off most of the time.
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Figure B-16: Measured time-domain waveforms of the outputs of the left (L) and
right (R) speakers (top), the output of the preamplifier (middle) and the channel
(bottom). Echoes and significant differential time delay between the two propagation
paths are visible.

B.4 Conclusions

We have demonstrated a programmable, general-purpose low-power chip that can be

powered-up by harvesting radiated RF energy. The chip forms the basis for a low-

cost, battery-free sensor platform for medical monitoring and alarm generation. We

have also shown examples of how our chip can be used with PCG and PPG input

signals, and in the context of an audio localization scheme.
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Appendix C

Impedance Matching

C.1 Single-Element Matching

Consider matching an load impedance ZL = RL + XL to a real source impedance

Z0 = R0 by using a single reactive element XM = −XL and an ideal transformer

with a turns ratio equal to
√
RL/R0. This problem can always be exactly solved

at one frequency, say ω0. In other words, by picking an inductor or capacitor that

has a reactance equal to −XL at ω0, the reflection coefficient can be made zero, i.e.,

Γ (ω0) = 0. The ideal transformer can then transform RL, which is the remaining part

of the load, into R0. This transformation can be exact at all frequencies since both

RL and R0, being purely resistive, are independent of frequency1. However, dXL/dω

and dXM/dω must both be positive2. Since XM = −XL at ω0, XM +XL can only be

zero at that one frequency. Thus reactance cancelation is inexact everywhere apart

from ω0, making the reflection coefficient non-zero. Fortunately, because reactances

change only gradually with frequency the cancelation is approximately correct for

frequencies close to ω0. This allows us to define a fractional impedance matching

bandwidth B, as follows

1The alert reader may spot a problem with this argument. While R0, presumably a known
quantity, can be reasonably expected to be constant, can we really expect the same from RL? After
all, RL models the amount of loss present in the unknown load ZL. In fact this is a real problem
when ZL represents an antenna’s input (terminal) impedance. More on this later.

2This is known as Foster’s Reactance Theorem. It states that the slope of reactive (lossless,
purely imaginary) driving-point impedance functions versus frequency must be positive.
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B ≡ ωH − ωL√
ωHωL

≈ ωH − ωL(
ωH+ωL

2

) (C.1)

where ωH = ω0+∆ω1 and ωH = ω0−∆ω2 are the frequencies at which |Γ (ω)| = Γmax,

the maximum allowable value of the reflection coefficient, and (∆ω1,∆ω2) > 0. We

shall now assume that |Γ (ω)| increases monotonically from zero as we move away

from ω0 in either direction. We shall also assume that the increase is symmetric

about ω0. Both assumptions are usually correct if ∆ω1 and ∆ω2 are much smaller

than ω0, i.e., close to the perfectly matched frequency. As a result, we can define

∆ω ≡ ∆ω1 = ∆ω2. The fractional bandwidth B of our first-order matching network

is then

B ≈ 2∆ω

ω0

(C.2)

Let us expand XL(ω) and XM(ω) as a Taylor series about ω0. The total (residual)

reactance XL +XM at a frequency ω0 + ∆ω is

Xtotal (∆ω) = XL (ω0) +XM (ω0) +
dXL

dω

∣∣∣∣
ω0

∆ω +
dXM

dω

∣∣∣∣
ω0

∆ω (C.3)

=

(
dXL

dω

∣∣∣∣
ω0

+
dXM

dω

∣∣∣∣
ω0

)
∆ω (C.4)

The magnitude of the reflection coefficient at ω0 ± ∆ω is Γmax by definition.

Assuming the ideal transformer converts the source resistance R0 into RL over the

frequency range of interest, we get

Γ2
max =

∣∣∣∣ZL (∆ω) + XM (∆ω)−RL

ZL (∆ω) + XM (∆ω) +RL

∣∣∣∣2 =

∣∣∣∣ Xtotal (∆ω)

Xtotal (∆ω) + 2RL

∣∣∣∣2 (C.5)

Combining (C.2), (C.3) and (C.5) and performing some algebra, we get

Bω0

(
dXL
dω

∣∣
ω0

+ dXM
dω

∣∣
ω0

4RL

)
=

1√
1

Γ2
max
− 1

(C.6)
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The quality factor of the load is defined as

QL (ω0) =
ω0

(
dXL
dω

∣∣
ω0

+ dXM
dω

∣∣
ω0

)
2RL

(C.7)

For example, if XL = ωL and XM = −1/ (ωC) with ω0 = 1/
√
LC, we get

dXL/dω = dXM/dω = L. Therefore

QL (ω0) =
ω0L

RL

=
Im (ZL)

Re (ZL)
(C.8)

which is the more familiar expression for the quality factor of a passive impedance.

Intuitively we can see why we need the factor of 2 in the denominator of (C.7). At

resonance (ω = ω0) the magnitudes of the load and matching reactances are equal

and they carry the same current (since they are in series); therefore they should the

same amount of energy. As a result the quality factor of the load is obtained by

dividing the total energy stored in both reactances by twice the energy lost per cycle.

Substituting (C.7) in (C.6), we get

BQL (ω0) =
2√

1
Γ2
max
− 1

(C.9)

C.2 Higher-Order Matching Networks

The problem of matching an arbitrary load impedance to a source resistance by using

a passive, lossless network of arbitrary complexity was first considered by Fano [68],

building on earlier work by Bode [20]. Bode had considered the special case of a

parallel R-C load, and had proven that

∫ ∞
0

ln

(
1

|Γ (ω)|

)
dω ≤ π

RC
(C.10)

where Γ (ω) is the reflection coefficient. The goal of the matching network is to keep

|Γ (ω)| < Γmax, the maximum acceptable reflection coefficient, over the widest possible

bandwidth. An n-th order matching network uses n tuned circuits (i.e., 2n reactive
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elements) to achieve this goal. Since the minimum possible value of the integral

in (C.10) is fixed, it is most efficient to make |Γ (ω)| fixed at Γmax over the entire

matching bandwidth, and completely mismatched (|Γ (ω)| = 1) everywhere else. In

this way only frequencies within the matching bandwidth contribute to the integral;

the matching bandwidth is therefore as large as possible. The function Γ (ω) is now

a rectangular boxcar versus frequency. A matching network that produces it must

contain an infinite number of elements. This is reminiscent of the fact that a boxcar

filter with infinitely sharp roll-off also cannot be made without an infinite number of

elements. In fact, the synthesis of impedance matching networks and passive filters

are closely related subjects [133, 194]. Within the passband of a filter, most of the

power from the source is absorbed in the output load, so the input reflection coefficient

presented by the filter to the source is small. Conversely, in the stopband almost no

power makes it to the output; most of it is reflected back towards the source.

Bode’s criterion in (C.10) can be easily extended to both series and parallel R-C

and R-L loads if (C.10) is written in terms of QL, the quality factor of the load.

In addition, let us assume the existence of an infinite-order matching network that

synthesizes a boxcar reflection coefficient function that is equal to Γmax in magnitude

within a fractional bandwidth B∞ about ω0, and is unity everywhere else. Equation

(C.10) can then be rewritten as

B∞QL (ω0) =
π

ln
(

1
Γmax

) (C.11)

Fano investigated the maximum fractional bandwidth Bn that was achievable us-

ing a matching network containing a finite number of circuit elements [69,70]. As an

important example, consider matching a parallel R-C or series R-L load. In either

case the reflection coefficient function |Γ (ω)| is that of a low-pass filter, ideally a rect-

angular boxcar. Common basis functions used to approximate rectangular boxcars

are Chebyshev and elliptic polynomials. Using the former, the reflection coefficient

of a n-th order matching network is defined as
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|Γ (ω/ω0)|2 = 1− 1

(1 +K2) + ε2T 2
n (ω/ω0)

(C.12)

where ω0 is the center frequency, K and ε are arbitrary constants and Tn(x) =

cos (n cos−1(x)) is the n-th order Chebyshev polynomial. We now define a and b

such that

sinh2(na) =
1 +K2

ε2

sinh2(nb) =
K2

ε2
(C.13)

The quantities a and b control the location of the poles and zeros, respectively,

of the function |Γ (ω/ω0)|. Fano considered the problem of minimizing the maximum

in-band reflection coefficient Γmax for a given value of n. His solution was expressed

in the forms of the following simultaneous equations:

BnQL (ω0) =
2 sin

(
π
2n

)
sinh(a)− sinh(b)

Γmax =
cosh(nb)

cosh(na)

tanh(na)

cosh(a)
=

tanh(nb)

cosh(b)

where the third equation is derived by minimizing Γmax (as given by the second

equation) subject to the bandwidth constraint imposed by the first equation. These

equations can be solved analytically for n = 1 to give

B1QL (ω0) =
2(

1
Γmax

− Γmax

) (C.14)

Similarly, for n = 2, we get
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B2QL (ω0) =
2(

1√
Γmax

−
√

Γmax

) (C.15)

The analysis gets significantly harder for higher values of n, and is preferably

performed with the help of a computer. Standard network synthesis methods can be

used to find the element values of the matching network. An important case uses

a ladder structure with series and shunt tuned circuits (“tanks”) that alternate as

shown in Figure C-1. All the tanks resonate at the same frequency, and n of them

are required to realize a Chebyshev or elliptic function of the n-th order, i.e., an n-th

order matching network.

R0 RL
RL

TUNING (1)

TUNING (2)

TUNING (3)

LOADMATCHING NETWORK
TRANSFORMER

SOURCE IDEAL

Figure C-1: Impedance-matching to a resistive source impedance. A series R-C load
is shown, but other series and parallel R-C and R-L loads may be treated similarly.

We now want to quantify the loss in bandwidth that we suffer by using a finite

number of tuned circuits in the matching network. In order to do this we keep the

load fixed, which makes QL constant, and plot B∞/Bn. We refer to this quantity,

which must be greater than unity, as the bandwidth loss ratio. Note that our original

result for a first-order matching network, (C.10), was approximate because it was

based on a Taylor series expansion about ω0. However, we expect it to be close to the

value predicted by (C.14) (which is exact) for small values of Γmax. This is because

low reflection coefficient values occur close to ω0, which is where the expansion should

be valid. The results are shown in Figure C-2. We see that the approximate formula
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for n = 1 behaves as expected. Also, the minimum values of the other curves occur at

Γmax = 1 and are equal to π and π/2 (for n = 1 and 2, respectively). This behavior

is the basis of the following common claims [171]:

1. Increasing the order of the matching network from 1 to 2 increases bandwidth

by a factor of 2.

2. Further increases in matching network complexity produce diminishing returns.

The bandwidth improvement factor between n = 2 to n =∞ is only π/2.

We see that strictly speaking, these statements are only true if Γmax = 1. However,

it is clear that n = 2 is already much better than n = 1, especially for small values

of Γmax, i.e., in applications where only small amounts of reflected power can be

tolerated.
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Figure C-2: Bandwidth loss factor of first and second order impedance matching
networks.
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C.3 Impedance Matching of Antennas

We now consider the problem of matching the input, or terminal impedance of an

antenna, given by ZA = RA+ jXA. Most antennas (and other distributed structures)

support standing waves, and thus show behavior that is roughly periodic with fre-

quency3. For example, a simple dipole is resonant at frequencies where its length

l is an odd multiple of λ/2, and anti-resonant when l is an even multiple of λ/2

(here λ is the wavelength). At resonances, ZA looks like a series resonator (low

impedance, or voltage null), while at anti-resonances, it looks like a parallel resonator

(high impedance, or current null). This behavior is completely analogous to that of

other standing-wave systems, such as acoustic pipes.

Resistances and anti-resonances must alternate in any antenna. This behavior is

predicted by Foster’s reactance theorem, which states that the poles (anti-resonances)

and zeros (resonances) of any reactive impedance function must alternate4 However,

Foster’s theorem also predicts that the slope of the reactance XA versus frequency

must be positive. Antennas violate this prediction, fundamentally because radiation

looks like loss, making the antenna terminal impedance not purely reactive (RA 6= 0).

In other words, X ′A = dXA/dω can be negative in certain frequency ranges. These

frequency ranges become smaller as the quality factor of the antenna increases, i.e.

ZA begins to look like a pure reactance.

The most general definition of the quality factor Q of a tuned system is 2π times

the ratio of the time-averaged stored energy in the system to the energy dissipated

by the system per cycle. In the case of an antenna, dissipation includes radiation. If

the antenna contains no active or nonlinear materials and is impedance-matched to a

source (or load) at a frequency ω0 by using a reactance −jXA, the quality factor can

be found by adding up the power in the reactive and radiated fields. A comprehensive

recent review article [319] finds that the quality factor is given by

3Exceptions include frequency-independent antennas, which have geometries that can be specified
using angles alone, and log-periodic antennas, which behave periodically on a logarithmic frequency
scale.

4Reactive impedance functions are the driving-point impedances of networks of pure reactances.
Therefore they cannot contain a real component.
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QA (ω0) =
ω0 |Z ′A (ω0)|
RA (ω0)

(C.16)

where Z ′A = dZA/dω and ω0 is the tuned frequency. Note that the expression above

uses Z ′A instead of the more common X ′A to define the quality factor. This def-

inition makes QA valid in both resonant and anti-resonant frequency ranges. At

anti-resonances, R′A = dRA/dω can be large and make a non-negligible contribution

to the frequency dependence of ZA, thus affecting bandwidth. At resonances, R′A is

small and Z ′A can be replaced by X ′A.

Note that (C.16) was defined for an antenna that was impedance-matched with

a single matching element −jXA. Also, for frequencies near ω0, ZA looks either like

a series or parallel resonator (RLC) circuit. Therefore, if the quality factor of the

antenna is high enough for the behavior close to a single resonance or anti-resonance

to be relevant, we expect the impedance-matching bandwidth to be simply that of a

first-order network, and given by (C.9) or (C.14). Indeed, [319] derive the expression

BQA (ω0) =
2√

1
Γ2
max
− 1

(C.17)

which matches (C.9) and is only valid when Γmax ≤ 0.5. The analysis can now

be extended to higher-order matching networks in a similar way. The impedance-

matching properties of narrowband antennas is therefore identical to that of simple

RLC resonators. Broadband antennas that need to be impedance-matched over sev-

eral resonances and anti-resonances cannot be modeled as single resonators, making

them harder to analyze.

Since the bandwidth of an antenna is inversely proportional to its quality factor,

possible restrictions on achievable values of quality factor are of interest. Fundamental

limitations exist on the quality factor of electrically small antennas. Classical work by

Chu [41], later refined by McLean [196], predicts that the minimum possible quality

factor, QA,min for a linearly polarized antenna is given by
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QA,min =
1

k3a3
+

1

ka
(C.18)

where k is the wavenumber and a is the radius of the smallest sphere required to

completely enclose the antenna. In order to derive this expression it was assumed that

the antenna excited only a single wave mode (TE01 or TM01) and stored no energy

inside the enclosing sphere. All practical antennas have a quality factor greater than

QA,min because the second condition cannot really be met. A similar result can be

derived for elliptical and circularly polarized antennas. Also, in the electrically small

limit as a → 0, we note that QA,min becomes inversely proportional to the volume

of the enclosing sphere, i.e. QA,min ∝ 1/a3. This approximate result was originally

derived by Wheeler [313].
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Appendix D

Some Novel Circuit Architectures

D.1 An Adaptive Current-Mode PLL

This section describes some thoughts on building current-mode phase-locked loops

(PLLs) with adaptive loop bandwidth and the ability to operate on very low power

supply voltages. The ideas were developed over several years but never properly

followed up owing to lack of time.

D.1.1 Introduction

In this section we describe the design of a low-voltage self-biased current-mode phase-

locked loop (PLL) that can be used for clock and data recovery (CDR) on RFID tags

and other low-power systems. The basic idea behind self-biased PLLs [189] can be

understood from the linearized model of the system shown in Fig. D-1. The diagram

is drawn in the phase domain, with φref and φout representing the input and output

phases, respectively. Kp represents the linearized gain of the phase detector, and Kcco,

with units of Hz/A, is the gain of the current-controlled oscillator (CCO). Icco is the

control current for the CCO (i.e., fout = KccoIcco). The output of the CCO is divided

in frequency by a factor of N before being fed back to the phase detector, making

this structure an integer-N frequency synthesizer. Finally, Icp = αIcco converts the

output voltage of the phase detector into a current and feeds it into the (current-
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mode) loop filter H(s). In most implementations, Icp represents the bias current of

a charge pump. Fig. D-1 shows a self-biased topology; since Icp is set by Icco, no

external bias currents are required by the system.

1
N

Kp Icp H(s)
Kcco

s

α

Icco

φref φin

Figure D-1: Linear model of a self-biased phase-locked loop. H(s) represents the
s-domain transfer function of the loop filter.

The self-biased topology shown in Fig. D-1 possesses several features that make

it attractive for IC applications. These advantages are specially apparent at lower

operating frequencies. Firstly, the loop transmission is given by

L(s) =
KpKcco

N

H(s)

s
Icp (D.1)

If we now make the substitutions Icp = αIcco, fout = KccoIcco, and fref = fout/N (this

is true when the PLL is locked; fref refers to the input frequency), (D.1) becomes

L(s) = αKpfref
H(s)

s
(D.2)

Eqn. D.2 shows that L(s) is not a function of Kcco or N , and only depends on

α, Kp,fref and H(s). Of these parameters, α can be easily set with a current multi-

plication ratio (i.e., a current mirror) and Kp is characteristic of the phase detector

topology and is implementation-independent. fref is the input frequency and is set

by the user. This means that L(s) essentially depends only on the loop filter trans-

fer function H(s). The fact that Kcco does not appear in L(s) means that the loop

transmission does not depend on the CCO and its parasitic capacitances. The in-
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dependence of L(s) with N means that the system can synthesize a wide range of

output frequencies fout = Nfref by varying N without changing the phase margin or

other measures of loop stability.

The self-biased topology has other advantages. The first is that current-starved

ring oscillators, which are the simplest and commonest oscillators found inside IC

PLL’s, are naturally current controlled. The oscillation frequency of such circuits can

typically be controlled in an extremely linear way over 6 or more orders of magnitude

by varying a bias current. Using Icco to directly control the CCO thus results in a

highly linear loop. In addition, because H(s) now has current input and output, it

can be implemented using current-mode filter design techniques. This results in a

topology that is naturally amenable to low supply-voltage operation and is extremely

efficient: no extra I ↔ V conversions are required in the loop.

D.1.2 System level design

We started our PLL design procedure by defining the system requirements. The input

frequency range over which the loop remains well-behaved should be at least 100KHz-

500KHz to accommodate typical RFID data rates. Also, for most CDR applications,

Hogge’s phase detector is an excellent (and common) choice. We therefore decided to

use this type of phase detector. This choice results in Kp = 1/2π. Next, we assume a

second order loop, so that the loop filter is simply an integrator. Since no integrator is

ideal, let us assume that it has a first-order low pass filter characteristic, with the pole

at ωp and a finite DC gain β. The resultant unity gain frequency of the integrator is

approximately ωu ≈ βωp. As a result, the crossover frequency ωc of the loop is given

by

ωc ≈
√
αfrefωu

2π
(D.3)

We now want to place a zero to stabilize the loop and a third high-frequency pole

above crossover to reduce high frequency ripple on the CCO control line. As a first

guess, we place the zero at ωz = ωc/2 and the third pole at ω3 = 20ωc. However,
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as soon as they are placed, the crossover frequency itself changes. Thus the design

process becomes iterative. In practice, we have found that the placement locations

given above yield good performance in most situations. The problem is that fref may

vary based on the application. If the loop filter pole and zero locations are fixed,

loop stability becomes dependent on fref . This is evident from Fig. D-2, which plots

L(s) for values of fref varying from 10kHz to 1MHz and αβ = 500. We see that

the phase of L(s) is invariant with fref , even though ωc varies by about an order of

magnitude. This causes the phase margin of the loop to change significantly as fref

varies. Fig. D-2 shows that the phase margin increases as fref increases, reaches a

maximum at some value of fref and then decreases.
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Figure D-2: PLL loop transmission L(s) as a function of the input frequency fref .

There is an interesting way to solve this problem. A current-mode integrator with

a DC gain of β typically has a pole frequency ωp that is given by

ωp =
κI0

βΦTCL
(D.4)

where ΦT and κ have their usual meanings, CL is the load capacitance at the output
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of the integrator, and I0 is a DC bias current. Substituting (D.4) in (D.3), we get

ωc ≈
√

ακ

2πΦT

frefI0

CL
(D.5)

Eqn. D.5 suggests that we should have I0 ∝ 1/fref in order to have a loop crossover

frequency that is invariant with fref . Varying the bias current is much easier than

varying CL to get the same result. Since ωc is now approximately constant, the loop-

stabilizing zero and high frequency pole locations are also fixed. This means that

they can be implemented with fixed passive components (R’s and C’s). By allowing

a single pole location in H(s) to be variable and controlling it via a bias current,

loop stability has been made independent of the input frequency. The resultant PLL

architecture is shown in Fig. D-3. The input frequency fref is converted into a current

by using a f → I converter. The converter is represented as sKf in Fig. D-3, where s

converts from phase to frequency and Kf is a constant. The output is then inverted

and fed forward to create the bias current for the loop filter. There are several ways

to build the f → I converter. For example, a “leaky” integrator provides the right

characteristics. The 1/x block can be easily implemented using a translinear current

divider.

1
N

Kp Icp H(s)
Kcco

s

α

Icco

φref φin

sKf
1
x

I0

Figure D-3: Linear model of a self-biased phase-locked loop with feed-forward adjust-
ment of the loop filter integration time constant.
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Finally, it should be noted that the self-biased topology can easily be made

temperature-insensitive by deriving I0 from a proportional-to-absolute-temperature

(PTAT) current reference. Constant-gm references, for example, produce PTAT out-

puts. Since the temperature dependence of φT in the denominator has been canceled,

both ωp and ωc now become independent of temperature.

The results of implementing the architecture of Fig. D-3 are shown in Fig. D-4.

Fig. D-4 shows calculated loop transmissions for the PLL with fref varying from

10KHz to 1MHz. The value of I0 for the loop filter is varied ∝ 1/fref using the equa-

tion I0 = (I0,nomfref,nom) /fref , where I0,nom is selected to give good phase margin at

fref,nom = 300KHz.1 We see that, in contrast to Fig. D-2, L(s) is almost invariant

w.r.t. fref near crossover. As a result, the phase margin and stability of the loop are

invariant with fref . This property allows us to use this PLL for several interesting

CDR applications. One of these, which has particular relevance to RFID, is vari-

able data rate communications. Dynamically changing the data rate for reader-tag

communications requires a frequency-agile CDR circuit (such as the one we have just

described) but has several advantages over a constant data rate system. For example,

by varying the transmitted data rate based on received power at the tag, a constant

bit error rate (BER) can be maintained for tags scattered over a range of distances

from the reader.

D.1.3 Other Loop Compensation Techniques

There are at least two other obvious techniques to adaptively change the structure of

the loop so good performance is retained as fref varies over wide ranges. We describe

these techniques below.

The first technique consists of making I0 ∝
√
fref , so that the loop crossover

frequency ωc becomes roughly proportional to fref (instead of remaining constant

as before). In order to keep the phase margin constant as fref varies, we also have

to change the frequency of the loop-stabilizing zero ωz ∝ fref . Because the loop

bandwidth scales with the reference frequency fref , the loop will settle in a constant

1nom refers to nominal values for various parameters.
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Figure D-4: PLL loop transmission L(s) as a function of the input frequency fref
with feed-forward adjustment of H(s).

number of cycles of fref , which may be desirable in certain applications. Loop trans-

missions L(s) for various values of fref using these scheme are shown in Figure D-5.

As expected, the phase margin remains almost constant.

The second technique keeps I0 constant, so that the loop crossover frequency ωc

becomes roughly proportional to
√
fref . In order to keep the phase margin constant

as fref varies, we also have to change the frequency of the loop-stabilizing zero ωz ∝√
fref . Loop transmissions L(s) for various values of fref using this scheme are shown

in Figure D-6. As expected, this scheme also keeps the phase margin almost constant.

Either of these alternative techniques may be used, but the latter has a particularly

simple circuit implementation. The only loop parameter that needs to be varied in

this case is the frequency of the loop-stabilizing zero ωz ∝
√
fref . The value of ωz is

usually set by adding a resistor Rz in series with the load capacitor CL at the output

of the integrator:

ωz =
1

RzCL
(D.6)
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Figure D-5: PLL loop transmission L(s) as a function of the input frequency fref
when I0 is adjusted such that the loop bandwidth becomes proportional to fref .
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Figure D-6: PLL loop transmission L(s) as a function of the input frequency fref
when I0 is kept constant, which makes the loop bandwidth proportional to

√
fref .

626



The easiest way to get the desired behavior is to keep CL fixed and vary Rz ∝

1/
√
fref using the simple circuit shown in Figure D-7. The transistor in series with

CL acts as a linear resistor Rz since it carries no DC current, has zero VDS and is

therefore in the linear (triode) regime of operation. Assuming that both transistors

are identical and sized such that they are in strong inversion, we have

Iz =
β

2
(VGS − VT )2

Rz =
1

β (VGS − VT )
(D.7)

where β = µCoxW/L. Solving the two equations above, we get

Rz =
1√

2βIz
(D.8)

In order to make Rz ∝ 1/
√
fref as desired, we set Iz ∝ fref by using an f → I

converter.

Vdd

CL

RZ

IZ

Figure D-7: A simple circuit that adjusts the frequency of the loop-stabilizing zero
to maintain approximately constant phase margin as fref varies.

Finally, we should note that any adaptive scheme that feeds forward information

about the input frequency to adjust loop parameters must perform such adjustments

on a timescale much faster than the settling time of the loop to be effective. However,

all analog frequency estimation schemes (i.e., f → I converters) ultimately look like

low-pass filters. As a result, there is an obvious trade-off between estimation speed
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and the amount of steady-state ripple present in the output. Such ripple is undesirable

because some of it will appear in the CCO control voltage and get converted to clock

jitter.

Digital frequency estimation strategies are preferable in this case because it is easy

to get rid of steady-state ripple2. Imagine that we have access to a clock fslow that

is significantly slower than fref , but much faster than the loop bandwidth, which is

approximately ωc/(2π). To detect the value of fref , we count the number of fref edges

within one period of fslow. This number, N , is proportional to fref and can be used

to control a current DAC that sets loop parameters like I0 or Iz. However, because of

the fact that fslow will not in general be synchronous with fref , it is easy to see that

the count will fluctuate between N and N + 1 in steady state. This phenomenon is

an exact analog of the steady state ripple in an analog frequency estimator. We can,

however, easily eliminate the ripple in this case by using a little digital logic. A copy

of the count obtained during the previous fslow cycle is held in memory, and is only

updated if the current count differs from it by more than 1 in either direction. We

have implemented this strategy in circuit form using 5-bit counters and DACs.

D.1.4 Circuit design

In this section, we describe the circuit-level implementation of our PLL design. We

must first mention that we have not yet implemented the feed-forward adjustment

of loop-filter time constant that was described in the previous section and shown in

Fig. D-4. We plan to extend our work in this direction soon. For now, however, I0

represents a fixed external current source. The loop was found to operate normally

at a power supply voltage of only 0.6V when the ’typical’ process corner was used.

Digital circuits

The digital circuits in our design (the phase detector and clock divider) did not prove

to be limiting factors for low-voltage operation, and were thus fairly standard designs.

2One can of course imagine analog circuits that also eliminate ripple, but they usually end up
being quite complicated.
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Static logic was nevertheless used in both combinational and sequential circuits in

order to ensure robust operation at low VDD. Proper operation was also verified at

all process corners.

We have used Hogge’s phase detector and cascaded divide-by-2 cells, built using

D-registers, to form the clock divider. However, in our current design N , the divide

value, is fixed at 2. We want to eventually implement a programmable frequency

divider in the feedback path. This will allow our design to generate a variety of clock

frequencies from a single input signal.

Loop filter

Instead of the usual charge pump and passive loop filter that is commonly used in IC

PLL’s, we use an interesting exponential state space (log-domain or current-mode)

integrator circuit as the loop filter. The circuit is shown in Fig. D-8 and is based

on the log-domain integrator described in [231]. The circuit is surprisingly similar

to a normal differential amplifier. It accepts current inputs Ii1 and Ii2 that are log-

compressed into voltages Vi1 and Vi2 and fed into the differential pair. However, the

common source node Vs of the differential pair is low-impedance and an adjustable

level shifter has been added between Vout and Vs. The voltage Vout is exponentiated

by a transistor to produce the output current Iout. It should be noted that in order

for this circuit to operate properly, all transistors have to be below threshold (so that

they exhibit exponential I-V characteristics) and must be saturated. Assuming these

conditions are satisfied, the circuit equations are given by

CL
dVout
dt

= ID0 exp
(
−Vs
ΦT

) [
exp

(
κVi1
ΦT

)
− exp

(
κVi2
ΦT

)]
I0 = ID0 exp

(
κVout−Vs

ΦT

) (D.9)

where ID0 is a constant (the ’pre-exponential current’) and is the same for all NMOS

transistors in the circuit (i.e., we have assumed matched devices). Eliminating Vs

from (D.9) and substituting Ii1,2 = ID0 exp
(
κVi1,2

ΦT

)
and Iout = ID0 exp

(
κVout
ΦT

)
, we get

dIout
dt

=
κI0

CLΦT

(Ii1 − Ii2) (D.10)
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Vout

Vin2 Vin1

Iin2 Iin1

Iout

CL

Figure D-8: Current-mode (exponential state space) integrator used in the PLL loop
filter.
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The s-domain transfer function of the circuit is thus given by3

Iout
Ii1 − Ii2

=
κI0

CLΦT

1

s
(D.11)

Eqn. D.11 behaves as an ideal differential current mode integrator with infinite

DC gain. In practice the DC gain of the circuit is finite (it is set by the finite output

resistance of the transistors). This changes the transfer function of the circuit to

Iout
Ii1 − Ii2

=
A

1 + sτA
(D.12)

where A is the DC gain and τ = CLΦT
κI0

is a time constant. As A→∞, (D.12) reduces

to (D.11), as expected. In other words, like all real integrators, the circuit acts like

a low-pass filter with high DC gain, and not an ideal integrator. In our application,

Iin1,2 ∈ (0, IPD), where IPD is a constant current. Therefore, the differential input

current (controlled by the phase detector UP and DN outputs) is Iin1 − Iin2 ∈

(−IPD, IPD). Finally, we note that the circuit’s primary time constant Aτ can be

varied electronically by controlling I0. This property opens up interesting possibilities

for adaptive PLL architectures where the properties of the loop filter are dynamically

controllable.

A potential problem with the integrator as implemented is that its core works at

much lower currents than IPD. This can be seen from (D.9). The currents through the

NMOS differential pair are given by IPD exp (−Vs/ΦT ) � IPD if the corresponding

input current source is switched ON. Ideally, this does not affect the overall transfer

function, since the output transistor exponentiates Vout to the right output current.

However, in practice parasitic poles, particularly those contributed by the PMOS

current mirror, slow down and start affecting the circuit response if Vs increases. In

order to fix this problem, either IPD must be increased, or a source voltage offset

built into the diode-connected transistors that compress Ii1,2 to Vi1,2 to compensate

for the fact that Vs > 0.

3It is interesting to note that this is a large signal transfer function since it was not derived by
linearizing the exponential I-V characteristics of transistors about a DC operating point.
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In this section, we describe our current mode loop filter. The loop filter circuit

is shown in Fig. D-9. It uses the same basic exponential state-space integrator core

shown in Fig. D-8, but significant changes have been made to improve performance.

These changes are described below:

I0
Iout Iin1

Iin2

Vin1 Vin2

Vin2Vin1 Vin1

C1

3C1/2

C1

R1
R1C2

CS

CS

Vout

COMMON-MODE REPLICA BIAS CIRCUIT

STARTUP CIRCUIT STARTUP CIRCUIT

Vs1 Vs2

3C1/2

Figure D-9: Current-mode loop filter used in the PLL. Startup and common-mode
replica biasing circuits are shown, but well biasing details for the PMOS transistors
have been omitted.

• The NMOS and PMOS transistors in the core have been flipped. The circuit

now uses a PMOS differential pair and level shifter and an NMOS current

mirror. This means that all internal voltages are referenced to VDD and not to

ground. This increases rejection of power supply noise.

• The current mirrors carrying the input currents Iin1,2 have DC bias currents

added to them. This makes it possible for Iin1,2 to be negative. We don’t

actually need this feature in the PLL since Iin1,2 ∈ (αIcco, 0) and are thus always

positive. It does, however, make the circuit more general-purpose.

• Similarly, Iout also has a DC bias current added to it. This allows the circuit

to both source and sink current if required. Again, this is not important for us

because we always have Icco = βIout > 0 (β is a constant).

• A common-mode replica bias circuit (shown inside the box in Fig. D-8) has

been added. This circuit adjusts Vs2, the source terminal voltage of the input
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mirrors and the output transistor (that exponentiates Vout into Iout) so that it

is approximately equal to Vs1, the source voltage of the integrator core in the

quiescent state, i.e., when Vi1 = Vi2. This makes the core operate at similar

current levels to Iin1,2 and fixes one of the problems with our original integrator

design.

• The transfer function of the circuit has been modified by changing the passive

load at Vout from a single capacitor CL. The new load has a large capacitor

C1 in series with a resistor R1, and a smaller capacitor C2 in parallel. The

R1-C1 branch provides the loop-stabilizing zero, and C2 is responsible for the

high-frequency pole that we want to place beyond loop crossover. It can be

shown that the transfer function of the loop filter is given by

H(s) =
Iout

Iin,1 − Iin,2
≈ A (1 + sC1R1)

1 + sC1 (Reff +R1) + sC2Reff (1 + sC1R1)
(D.13)

where Reff = AΦT/ (κI0) is the effective resistance of the current-mode inte-

grator, and A is the DC gain of the circuit. Reff can be controlled by changing

the bias current I0.

• We have also addressed the start-up issues inherent in this circuit. Essentially,

Vout needs to be initialized to a reasonable value somewhere in the middle of the

rails when the power supply is switched on. This ensures that all transistors are

saturated and no internal nodes are stuck at VDD or ground. We ensure that

this happens by using a capacitively-coupled start-up circuit.

CS is a small capacitor that is initially uncharged. This makes the gate voltage

of the transistors in series with the capacitor labeled 1.5C1 high for a short time

after the power supply is switched on. While these transistors are on, Vout is

set by the capacitive divider formed by C1 and 1.5C1 connected between VDD

and ground. Vout is thus rapidly set to VDD ×C1/ (C1 + 1.5C1) = 0.4VDD while

the power supply ramps up. After a short time CS charges up, the switches
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in series with 1.5C1 switches off and the circuit functions normally. A similar

circuit is connected at the output of the common-mode replica bias circuit that

sets Vs2. These innovative start-up circuits work very well in practice. The only

disadvantage is that they add a large amount of extra capacitance to the loop

filter, thereby increasing its layout area.

• Finally, the range of currents the loop filter can handle is limited by two factors:

the power supply voltage and the onset of strong inversion. In practice, the first

issue dominates at low VDD: the maximum source-gate voltage VSG available on

the PMOS transistors that sink or source current, and thus the current itself, is

limited by the value of VDD. Larger values of VSG cause other transistors, such as

the NMOS mirrors, to come out of saturation (this causes the transfer function

of the circuit to change in undesirable ways). Since Icco has to be supplied by

the loop filter, this limits the maximum frequency that can be synthesized by

the loop at a given value of VDD.

We can improve the situation by lowering the threshold voltage Vth of the PMOS

transistors. This enables them to carry more current at the same value of VSG.

In order to do this, NMOS source followers carrying a fixed bias current (= I0

in this case) are used to forward bias the wells of each PMOS transistor in

the circuit by about 300mV. This reduces Vth by about 100mV and gives us

approximately an extra decade of available current range. Well-biasing details

have not been shown in Fig. D-9 for the sake of simplicity.

Fig. D-10 shows simulated small-signal (AC) transfer functions of the current-

mode loop filter for different values of I0. I0 was allowed to vary between 1.6nA

and 32nA. We used the following component values: C1 = 100pF, R1 = 300kΩ,

C2 = 2.5pF and CS = 2.5pF. As expected, changing I0 does not significantly affect

the DC gain A ≈ 45dB, but does change the primary time constant Aτ , since τ =

C1ΦT/ (κI0) ∝ 1/I0. As a result, the unity-gain frequency ωu of the filter is ∝ I0.

Fortunately, this is exactly the behavior we need for implementing the feed-forward

loop transmission adjustment scheme shown in Fig. D-4. We therefore plan to use
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the same loop filter circuit in our next design iteration (where this scheme shall

be implemented). Finally, the presence of both the loop-stabilizing zero and the

additional high-frequency pole can easily be seen from the transfer functions.
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Figure D-10: Simulated AC transfer functions of the current-mode loop filter for I0

varying between 1.6nA and 32nA.

Current-controlled oscillator

We want to design a ring oscillator that possesses the following qualities, which make

it desirable for PLL applications: power supply independence and rail-to-rail voltage

swings. An oscillator whose frequency of oscillation does not depend on VDD results

in the PLL having good power supply rejection, which is important for many applica-

tions. Rail-to-rail (0 to VDD) swings of the PLL maximize noise margins, reduce phase

noise and improve compatibility with digital circuits. Unfortunately the two require-

ments are contradictory. An oscillator that has an output amplitude equal to VDD

is charging and discharging capacitors through VDD, so its oscillation frequency will

depend on the value of VDD. Conversely, a supply-independent oscillator must have

635



an amplitude of operation that is independent of VDD, and thus cannot be VDD itself.

Having failed to reconcile these requirements, we therefore decided to implement two

separate CCO designs. Each circuit was designed to satisfy one of the properties

above; we plan to fabricate and test both of them so that their performances can be

compared.

The two current-controlled oscillator circuits are shown in Fig. D-11. The circuit

on the left, which we refer to as the CCO-I structure, uses a single current source Icco

that fixes the total amount of current drawn from the supply. The current source,

constructed in Fig. D-11(a) using a simple current mirror, can be cascoded for higher

output resistance. This source supplies current to a ring oscillator that uses standard

CMOS inverters as delay cells (a three-stage version is shown). The maximum possible

oscillation amplitude is limited to VS < VDD; in practice Vosc < VS and increases with

the oscillation frequency fcco. For a given value of fcco, Vosc increases with Ccco

(i.e. increased bias current Icco, since fcco is fixed). A bypass capacitor (not shown) is

usually added at VS to reduce coupling of power-supply noise. The power consumption

of this circuit is less than the CCO-II structure shown in Fig. D-11(b) for the same

oscillation frequency since Vosc is lower. However, this results in larger phase noise.

Also, an additional amplifier is required to amplify Vosc to logic levels (rail-to-rail

swings) before it can be fed into any digital circuits. This amplifier consumes extra

power and may negate any power savings in the CCO itself. In our PLL design we use

a capacitively-coupled common-source amplifier with resistive feedback at the output

of the CCO.

The second CCO circuit, shown in Fig. D-11(b), shall be referred to as the CCO-

II structure. A current Icco sets bias voltages VP and VN which limit the amount

of current that each delay cell can draw from the supply. Thus Icco controls the

propagation delay of each stage, and consequently the oscillation frequency. The

delay cells are four-transistor inverters similar to those used in C2MOS (clocked-

CMOS) logic. This oscillator usually swings rail-to-rail, i.e., Vosc ≈ VDD. Therefore,

no additional amplifiers are required. We have designed and simulated both circuits.

CCO-I usually takes longer to start up. If Icco or Ccco is too small, it may not start up
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at all. On the other hand, its frequency of oscillation is almost independent of VDD

for VDD > 0.6V , while CCO-II produces fosc ∝ 1/VDD when Icco is fixed. However, it

has never demonstrated start up problems. Finally, both oscillators have extremely

linear control characteristics, i.e., fcco ∝ Icco over several orders of magnitude.

Icco

Ccco CccoCcco

OUT

Ccco
Ccco Ccco

Icco

OUT

(a) (b)

VS

VP

VN

Figure D-11: Current-controlled oscillator (CCO) circuits, (a) CCO-I structure and
(b) CCO-II structure.

D.1.5 Simulated performance

Our PLL design was simulated at the transistor level using SPICE parameters avail-

able from UMC4 for their 0.18µm mixed-mode CMOS process. Performance was

verified at all the process corners and using both types of CCO. Fig. D-12 shows the

simulated transient response of Vout, the loop filter output voltage that is exponenti-

ated into Icco. The CCO-I circuit was being used. The input was a square wave with

a time period of 3µs, i.e., fref = 333kHz. The supply voltage was VDD = 0.6V and

the average power consumption was 420nW. The supply was ramped up from zero so

that the start-up behavior of the loop could be observed. The fast initial transient

in the response is due to the start-up circuits inside the loop filter. These circuits

rapidly pull up Vout to ≈ 0.4VDD = 250mV (as expected) and then shut off. The

control voltage then shows a long nonlinear transient, including several cycle slips,

before the loop eventually locks. The eventual linear response just before lock (around

1.5ms into the simulation) indicates a phase margin of about 50◦. This is somewhat

4United Microelectronics Corp., Taiwan.
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less than predicted by the linear loop model, but is hardly surprising considering the

sampled nature of the loop and the presence of unmodeled parasitic poles.

Figure D-12: Simulated transient response of the loop filter output voltage, showing
the PLL (using the first CCO design) coming into lock.

Fig. D-13 shows a similar transient response as Fig. D-12, but this time the loop

was using the CCO-II circuit. The input frequency was the same as before, and the

power consumption of the loop was 670nW (VDD = 0.6V ). The two waveforms look

very similar close to lock, indicating that the choice of CCO does not significantly

affect the linear dynamics of the loop. However, the nonlinear approach to lock takes

longer in this case. This cannot be predicted by the linear system model, and is

instead controlled by the slewing rate of Vout, the eventual operating point of the loop

in lock and other factors. The final operating point of Vout was further away from

0.4VDD than in the previous case, making approach to lock slower. There are also

indications of a long-tailed transient (usually associated with a pole-zero pair in the

loop transmission) in Vout after locking occurs around 3ms into the simulation. The

cause of this behavior is currently unknown; it is being investigated.

Fig. D-14 shows input fref , synthesized clock fout and recovered data RD wave-
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Figure D-13: Simulated transient response of the loop filter output voltage, showing
the PLL (using the second CCO design) coming into lock.

forms from the same transient simulation as Fig. D-13. The figure also shows the

loop filter output Vout. The loop was locked by this time, so Vout is constant except

for a small triangular ripple at the same frequency as fout. As expected, edges of the

recovered data waveform RD line up with the synthesized clock fout. Also, RD and

fref match (except for a constant phase shift), indicating that the transmitted data

has been successfully recovered. The loop, as designed, can thus be used for CDR

applications.

D.2 Improving Circuit Performance with Switch-

ing Control

Switching control is an example of variable-structure control. In such systems the

controller can switch at any instant between members of a set of continuous functions

of the state of the plant [294]. Variable structure systems can possess properties not

present in any of their constituents. For example, stable phase-plane trajectories, so
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Figure D-14: Simulated waveforms produced by the PLL while locked. From the top:
the loop filter output voltage Vout, input data fref , clock fout and recovered data RD.

called “sliding modes”, can emerge [54,322]. An important advantage of sliding mode

control is that the behavior of the system along sliding modes is robust, i.e., largely

independent of plant parameters and disturbance inputs. Instead of synthesizing a

sliding mode, we shall design a switching controller that stabilizes a system by placing

it on a trajectory that is already present in one of the constituent structures.

D.2.1 Switching Controller

Switching controllers were first studied in the context of control systems containing

relays and other nonlinear components. Santarelli considered a switching control

problem that was simple enough to treat analytically [252,253]: the plant was assumed

to be second-order, linear and time invariant (LTI), and a “supervisor” could choose

between two feedback laws based on the state of the plant. To further simplify the

problem, the two feedback laws were restricted to be constant gains K0 and K1. To

design the controller we need to specify the structure of the supervisor and the values

of K0 and K1.
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For the special case when the plant has no zeros in its transfer function (i.e.,

has relative degree two), Santarelli devised an algorithm for synthesizing optimal

switching controllers and proved that they were L2-gain stable5. The controllers are

optimal in the sense that they maximize the value of a parameter that measures the

rate at which state trajectories converge to the origin, i.e., they minimize settling

time.

We shall now design an optimal switching controller for plants that are well-

modeled as double integrators. Analog circuits that satisfy this criterion are common

and important, including two-stage operational amplifiers and second-order phase-

locked loops. A block diagram of the system is shown in Figure D-15. In order

for the plant to be considered “close” to a double integrator both stages must have

high DC gain, i.e., A1 � 1 and A2 � 1. Choosing feedback gains ∈ [−1, 1] simplifies

circuit implementation since we will not need variable amplifiers or attenuators inside

the feedback loop: a couple of switches will suffice. We therefore restrict ourselves to

the following values: K0 = 1, K1 = −1, i.e., s(t) ∈ [−1, 1].6.

A1

sA1τ1+1

A2

sA2τ2+1
u

x1 x2

s(t)

Supervisor

Figure D-15: Block diagram of the two-pole LTI plant and two-state switching con-
troller considered in this section.

Graphical tools such as root locus and phase-plane plots allow us to visualize

the behavior of the switching controller. The root-locus plot of a two-pole system

with two real open-loop poles, such as the plant shown in Figure D-15, is shown in

Figure D-16 for both possible values of s(t). When s(t) = −1 (positive feedback)

5Intuitively, L2-gain stability implies that a bounded-power input to the system will result in
bounded-power output.

6 The analysis that follows can be generalized to the case of asymmetric gains. Santarelli’s work
suggests that the symmetric gain case provides a lower bound to the performance of the switching
architecture, so the generalization is worth exploring.
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we end up with two real poles, one stable and the other unstable. When s(t) = +1

(negative feedback), two stable, complex poles are produced. As the DC gains A1

and A2 increase, the system approaches an ideal double integrator and the complex

poles become purely imaginary, i.e., approach the jω axis.

s(t) = -1
jω

σ

s(t) = +1

Figure D-16: Root locus of a two-pole system under positive and negative feedback
(s(t) = −1 and s(t) = +1, respectively).

We denote the two state variables as x1 and x2. Note that we have implicitly

assumed that the supervisor has access to the full state of the plant. Thus an observer

is not needed to estimate the value of the internal state variable x2. This is usually a

safe assumption when the plant is an integrated circuit. Since the double integrator

has presumably been put into feedback to track an input u(t) we now define the new

variables z2 = x2 − u = −e, where e(t) is the error signal fed into the multiplier, and

z1 = x1. The plane with z1 and z2 as axes is known as the phase plane. Under negative

feedback the two nearly imaginary poles result in a phase-plane trajectory that spirals

inward or outward from the origin. Under positive feedback the origin becomes a

saddle point, i.e., the intersection of the eigenvectors ws and wu corresponding to

the stable and unstable pole, respectively. The basic idea behind the control scheme

can now be explained. Initially we use negative feedback. The complex eigenvectors

cause us to spiral around the phase plane. We wait until the stable positive-feedback

eigenvector ws is reached, and then switch to positive feedback. Since the system
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is already on its stable eigenvector, it smoothly converges to the origin (equilibrium

state). A typical phase-plane trajectory in shown in blue in Figure D-17.

z2

z1
s(t) = -1s(t) = +1

θ

wswu

z(0)

z(T1)

Figure D-17: A phase plane portrait of the switching controller, showing the con-
trol regions (gray and white), eigenvectors in positive feedback (red) and a typical
trajectory during an input-tracking task (blue).

Figure D-17 shows that positive feedback is applied not only when the system is

actually on ws, but within the cone enclosed by ws and the line bifurcating the angle

between ws and wu, i.e., the z1 axis. Choosing one side of the cone as ws maximizes

rate of convergence to the origin. We can in fact stabilize the system if this side of

the cone was a line inclined at a smaller angle to the z2 axis than ws. It is easy

to show that phase trajectories under both signs of feedback will converge to such a

line, creating a sliding mode. However, Santarelli showed that the resulting rate of

convergence will be slower than in our case, where the switching line is chosen to be

precisely ws. The choice of the other side of the cone is not critical but provides some

robustness to switching delays.

“Chattering” is a well-known phenomenon in discontinuous control schemes like

switching and sliding mode control. Chattering is defined as high control activity

in steady-state. Fundamentally, it arises because of the finite speed at which any

real controller can switch, i.e., change state. As a result of finite switching speed

asymptotic convergence of the system trajectory cannot be guaranteed. However,

we can guarantee that the trajectory remains within an ε-bound of the asymptotic
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(ideal) solution [54]. In most cases, the system will reach a steady-state marked

by small periodic deviations from equilibrium, known as ripple. The amplitude of

the ripple decreases as the controller becomes faster, leading to a trade-off between

speed/power and precision. Various chattering-reduction or elimination schemes have

been proposed in the literature, including fuzzy control laws, fuzzy switching bound-

aries, higher-order sliding modes and systems with strictly continuous (non-switching)

control laws [318]. We have not implemented any of these schemes yet.

D.2.2 Comparison with Linear Controllers

In this section we compare the performance of the switching controller with the tradi-

tional linear technique used to stabilize two-pole amplifiers, namely Miller, split-pole

or minor-loop compensation. A small-signal model of a generic two-pole amplifier

with Miller compensation is shown in Figure D-18. Current fed back through the

compensation capacitor Cf connected across the second stage splits the poles. Be-

cause Cf is a bidirectional element, it also introduces a feed-forward right half-plane

zero. The resistor Rf in series with Cf cancels this zero, thereby increasing the phase

margin. Precise cancelation occurs when Rf = 1/gm2. We shall assume this value for

the remainder of this section.

-gm1

go1 C1

-gm2

go2 C2

vin
voutv1

Cf
Rf

Figure D-18: A small-signal model of a generic two-pole amplifier with Miller com-
pensation provided by Cf and Rf .

Circuit analysis aided by the symbolic capabilities of Mathematica tells us that

the transfer function of the circuit shown in Figure D-18 is given by

644



vout
vin

=
gm1g

2
m2

s3C1C2Cf + s2a2 + sa1 + gm2go1go2
(D.14)

where

a1 = [(gm2 + go2) (gm2 + go1)Cf + go2gm2C1 + go1gm2C2]

a2 = [(gm2 + go2)CfC1 + gm2C1C2 + (gm2 + go1)C2Cf ] (D.15)

Equation (D.14) can be simplified if the following assumptions are made:

• The frequency is low enough for the s3 term in the denominator to be neglected.

• The DC gain of the second stage is high, implying that gm2 � go1, gm2 � go2,

Cfgm2 � C1go2 and Cfgm2 � C2go1.

The simplified transfer function can be expressed in the standard form for a

second-order system:

vout
vin

=
A

s2τ 2 + sτ/Q+ 1
(D.16)

where

A =
gm1gm2

go1go2

τ =

√
CfC1 + C1C2 + C2Cf

go1go2

Q =

√
go1go2

gm2

√
CfC1 + C1C2 + C2Cf

C2
f

(D.17)

We see that increasing Cf will decrease Q, increasing the phase margin and damp-

ing of the closed-loop system. We have written a Mathematica program that uses

the original, un-simplified transfer function (D.14) to evaluate the step-response of

the compensated amplifier configured as a follower in unity feedback. Our goal is to
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find the settling time and peak overshoot as a function of amplifier parameters, par-

ticularly gm1, gm2 and Cf . Since we can always decrease the settling time by burning

more power, we impose a power-consumption constraint:

gm1 + gm2 = gm,tot (D.18)

where gm,tot is a constant. We also define the following parameters:

α =
gm2

gm1

β =
τ2

τ1

=
C2/gm2

C1/gm1

=
1

α

C2

C1

(D.19)

For convenience we shall assume from now on that all capacitances are in pF,

conductances in µS and times in µs. Simulated unit step responses as a function of

α are shown in Figure D-19 for C1 = 0.1, C2 = 1, Cf = 1.1 and gm,tot = 5. The

phase margin worsens as α decreases because the output pole becomes slower and

contributes negative phase before crossover. Interestingly, settling time appears to

be maximized for intermediate values of α. If α is low the system rises fast initially

but then rings for a long time before settling down. On the other hand, if α is high

the system is very stable and does not ring, but takes a long time to rise to its final

value. The same type of variation in settling time is observed for other values of Cf

and gm,tot.

We now calculate the settling time of the same two-pole amplifier when the Miller

compensation elements Cf and Rf are removed and switching control is used instead.

The system may be modeled by Figure D-15, where A1 = gm1/go1, A2 = gm1/go1, τ1 =

C1/gm1 and τ2 = C2/gm2. For simplicity, assume that A1 � 1 and A2 � 1, so that

the stages are well modeled as pure integrators with transfer functions 1/ (sτ1) and

1/ (sτ2), respectively. It is easy to show that the closed-loop poles are s = ±j/√τ1τ2

when s(t) = +1 (negative feedback) and s = ±1/
√
τ1τ2 when s(t) = −1 (positive

feedback). The dynamics of the system are given by:
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Figure D-19: Step responses of a Miller-compensated two-pole amplifier as a function
of α, the ratio of second and first-stage trans-conductance, when their sum is held
fixed.

647



 ẋ1

ẋ2

 =

 0 −s(t)/τ1

1/τ2 0

 x1

x2

+

 s(t)/τ1

0

u (D.20)

By defining z1 = x1 and z2 = x2 − u, as before, the equations above can be

simplified to

 ż1

ż2

 =

 0 −s(t)/τ1

1/τ2 0

 z1

z2

 (D.21)

The eigenvalues of the system are the solutions to the equation λ2 + s(t)/ (τ1τ2) =

0. When s(t) = −1 (positive feedback), they are given by λ = ±1/
√
τ1τ2. The

corresponding stable and unstable eigenvectors ws and wu are given by

ws =

 −√β
1

 , wu =

 +
√
β

1

 (D.22)

where β =
√
τ2/τ1, as before. The switching control law shown graphically in Fig-

ure D-17 can now be found explicitly. It is given by

s(t) =

 −1 if z2

(
z2 + z1/

√
β
)
≤ 0

+1 if z2

(
z2 + z1/

√
β
)
> 0

(D.23)

In order to calculate the settling time Ts for unit step inputs we note that the

system starts from the initial condition (z1(0), z2(0)) = (0,−1). The trajectory for

t > 0 can be divided into two parts. For t < T1 the system is in negative feedback

and follows a circular trajectory with oscillation period ωosc =
√
τ1τ2. This trajectory

is followed until it hits ws, i.e., an angle θ is covered, where tan(θ) =
√
β. Therefore

T1 is given by

T1 =
θ

ωosc
=
√
τ1τ2 tan−1

(√
β
)

(D.24)

For t > T1 the system is in positive feedback and converges to the origin along the

stable eigenvector ws, which corresponds to an eigenvalue of λs = −1/
√
τ1τ2. There-

fore both z1 and z2 decrease exponentially with time as exp(λst) = exp
(
−t/√τ1τ2

)
.
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In addition, since the trajectory for t < T1 is circular, we have

z2
1 (T1) + z2

2 (T1) = z2
1(0) + z2

2(0) = 1

Therefore z2(t) for t > T1 is given by

z2(t) =
1√

1 + β
exp (− (t− T1) /

√
τ1τ2) (D.25)

Note that, because λs is purely real, the system settles monotonically, i.e., with no

overshoot. This is an important advantage of the switching controller over the linear

one. The system is defined to have settled when |z2(t)| ≤ ε. Defining |z2 (Ts)| = ε,

we get

Ts − T1 =
√
τ1τ2 ln

(
1

ε
√

1 + β

)
(D.26)

Combining (D.24) and (D.26) we get

Ts =
√
τ1τ2

[
tan−1

(√
β
)

+ ln

(
1

ε
√

1 + β

)]
(D.27)

Figure D-20 compares the settling time predicted by (D.27) with that obtained

using Miller compensation. The figure plots Ts as a function of α for the switching

controller and various values of the Miller capacitor Cf . The other parameters were

ε = 0.01 (i.e., 1% settling), C1 = 0.1, C2 = 1 and gm,tot = 5. We see that the minimum

settling time with the switching controller is about a factor of four lower than with

any linear compensator. In addition, the settling time is almost constant with α, thus

increasing robustness.

Another advantage of the switching controller is its lack of overshoot. Overshoot

can be found from the peak (maximum) value of the output z2 during a unit step

response by subtracting the final value, i.e., unity. Figure D-21 shows calculated peak

output values for the amplifier using Miller compensation. We see that, as predicted

by (D.16), overshoot decreases as Cf is increased.
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Figure D-20: Calculated settling times of the two-pole amplifier considered in this
section using a) linear Miller compensation and b) the two-state switching controller.
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Figure D-21: Calculated peak values in the unit step response of the two-pole amplifier
considered in this section using linear Miller compensation. The two-state switching
controller has no overshoot, so its peak value is always unity.
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D.2.3 Circuit Implementation

In this section we describe a simple circuit implementation of a two-state switch-

ing controller for a double integrator connected as a voltage follower, i.e., in unity

feedback. We used the UMC 0.18µm CMOS process for our simulations. The cir-

cuit is shown in Figure D-22. The integrators in the feedback loop are single-stage

folded-cascode amplifiers. The network of switches connected to the input of the first

integrator switches the loop between negative and positive feedback based on s(t),

the output of the supervisor. The voltage VCM is a constant common-mode voltage

normally set to VDD/2 to maximize signal swing.

+

-
gm1 +

-
gm2

+
−

VCM

x1(t)

C1

C2

x2(t)

+
−

VCM

u(t)

+
- gm

+
-

βgmx1(t)
u(t)
x2(t)

VCM

+

-
gm

u(t)

x2(t)

s(t)

supervisor

s(t)

s(t)

Figure D-22: Circuit implementation of a two-state switching controller for a double
integrator connected as a voltage follower.

The supervisor must compute s(t) based on the control law given by (D.23). There

are two ways to calculate the sign of the product z2

(
z2 + z1/

√
β
)
. The first way is

to calculate the product using an analog multiplier and then determine its sign using

a comparator. The second is to find the sign of each term in the product using a

comparator and then use a one-bit multiplier, i.e., an XOR gate, to find the sign

of the product. We used the latter technique since it was easier to implement. We
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initially used operational amplifiers with resistive feedback to calculate the quantity

z2 + z1/
√
β = (x2 − u) + (x1 − VCM) /

√
β, but then realized that a simpler way to

carry out the addition was in the current domain.

Figure D-22 shows how the final version of the supervisor was implemented. Two

differential amplifiers, implemented as wide-swing OTAs, calculate the signs of z2 and

z2 + z1/
√
β. The latter has four input transistors that share one tail current source,

and acts as a differential difference amplifier. The outputs of the amplifiers are fed

into the XOR gate that generates the switching control signal s(t).

Figure D-23 shows a transient simulation of the circuit for β = 2 and a square

wave input. Both integrators were biased at 0.5µA, resulting in gm1 = gm2 = 7.1µA,

and the load capacitors were given by C1 = 10pF and C2 = 40pF. The output step

response in Figure D-23 shows no overshoot. The controller s(t) chatters in steady

state, resulting in ripple. A small amount of ripple is visible on x1 but, because of

the additional low-pass filtering provided by the second integrator, not on x2. The

1% settling time is about 25µs, which is about a factor of two higher than predicted

by (D.27). However, simulations for β = 1 result in a settling time of about 11µs, in

excellent agreement with the formula.

Other circuit parameters of interest were VDD = 1.8V, VCM = 1.1V and gm =

23µS. The latter quantity is the transconductance of the differential amplifiers in the

supervisor. As gm is reduced to save power or τ1 and τ2 in the amplifier decrease,

the supervisor becomes slower relative to the plant, increasing steady-state ripple.

Overshoot also appears in the step response if the ripple is big enough for the system

to overshoot the origin while on the stable eigenvector ws.

The linear range of the follower is limited in this implementation to the linear

range of the differential amplifiers in the supervisor. However, well-known techniques

exist for extending the linear range of differential amplifiers [258], so this is not a

serious limitation. A more important disadvantage of the switching controller is

chattering. Chattering slows down convergence and increases settling time because

the control signal is only active during part of the settling transient. The chattering

frequency should be much faster than the crossover frequency of the loop to keep
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Figure D-23: A transient simulation of the double integrator circuit using switching
control. Component values were given by gm1 = gm2 = 7.1µs, C1 = 10pF and
C2=40pF.

steady-state ripple small. The loop therefore “sees” a low-pass-filtered version of the

control signal, with an effective value equal to its duty cycle. The rate of convergence

is decreased because this effective value is always less than one. Another disadvantage

of high-frequency chattering is constant switching activity in the supervisor, which

burns power. The subject of chattering reduction therefore warrants further study.

653



654



Appendix E

The Multiplication Table Problem

A mathematician is a machine for turning coffee into theorems.

– Alfréd Rényi

The author gratefully acknowledges extensive and helpful discussions with Ben-

jamin Rapoport on this topic.

E.1 Introduction

This appendix deals with a mathematical problem that appears at first to be trivial,

but proves to be quite hard to solve. In fact, it turns out that generalized versions

of this problem remain an object of investigation for professional number theorists.

I am emphatically not a number theorist, not even an amateur one. However, an

elucidation of my attempts to investigate the problem may be of interest to some

readers.

I begin with a simplified statement of the problem, namely the one that first came

to my attention:

Problem Statement. Given positive integers i, j and n, how many unique ways

are there to write ij = n, where 1 ≤ (i, j) ≤ k and 1 ≤ n ≤ k2? In other words, how

many unique numbers exist in the multiplication table for k?

The motivation behind considering this problem is as follows. A simple way to con-

struct a high-precision digital-to-analog converter (DAC) is by multiplying together

655



the outputs of two lower-precision DACs. For simplicity, consider two identical N -bit

DACs whose outputs are multiplied together in an attempt to create a single DAC

with 2N -bit precision. The two lower-precision DACs are assumed to generate num-

bers between 1 and 2N . We notice that the largest and smallest required output

numbers are generated by this scheme, since 1×1 = 1, and 2N ×2N = 22N . However,

it is easy to see that, if N is sufficiently large, at least half the output numbers will

be skipped, since there are only 22N distinct input combinations and at least half of

them are equivalent because multiplication is commutative. In other words, ij = ji,

so the two input combinations (i, j) and (j, i) map to the same output1. The problem

is to determine exactly how many of the 22N output numbers are reachable via this

scheme as a function of N . The formal equivalence of this problem to the one stated

in the previous paragraph follows once one makes the identification N = log2(k).

E.2 Towards a Solution

Let us define the function M(k) to be the fraction of integers between 1 and k2 that

can be reached by the multiplication table. In other words,

M(k) =
(number of unique products)

k2
(E.1)

Based on our previous arguments, we must have 0 ≤ M(k) ≤ 1/2 as k → ∞. It

might be instructive to look at the case of real numbers first. If i, j and k are real

numbers instead of integers, we can use integration since M(k) becomes a continuous

function. It is easy to see that M(k) is given by

M(k) =

∫ k
0

∫ k
0
ijdidj∫ k2

0
ijd(ij)

=
k4/4

k4/2
=

1

2
(E.2)

In other words, deviations of M(k) from 1/2 are fundamentally related to the

1When N is small more than half the input combinations can be reached because of the diagonal
terms i = j in the table. If i is prime such terms map one-for-one to outputs, i.e. the mapping
between i and i2 is unique when i is prime. The effect of these terms becomes negligible as N
increases since their number scales at least as slowly as 2N , compared to 22N for the whole space of
input combinations.
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properties of integers. We used two algorithms to calculate the exact value of M(k)

for various values of k, as described below.

E.2.1 Brute force algorithm

This algorithm is extremely simple (and fast). A vector V of length k2 is initialized

with zeros. If a number i is present in the output the value of the i-th element in V

is changed to 1. A counter keeps track of M(k), i.e.
∑k2

i=1 V (i)/k2. A MATLAB code

listing is shown below:

% Calculate M(k) for k between 1 and kmax using a brute force method

% Begin by initializing values

M=zeros(1,kmax); numcodes=0;

V=zeros(1,kmax^2);

% Begin loop

for k=1:kmax

for i=1:k

if V(k*i)== 0

% Increment output counter

numcodes=numcodes+1;

V(k*i)=1;

end

end

% Calculate M(k)

M(k)=numcodes/(k*k);

end

E.2.2 Another exact algorithm

This algorithm is slower than the brute force method but is included to show another

way of approaching the problem. The main steps involved are:
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1. Begin by pre-computing the unique prime factorization of every integer between

1 and k2. This is typically the slowest step.

2. Exclude all numbers where the largest prime factor, mf exceeds k.

3. Temporarily exclude all numbers i where mf ≤ k, but a decomposition into two

parts, with mf being one part, is not possible since (i/mf ) > k.

4. Search for a possible decomposition by testing if mf/j and (i/mf )× j are both

integers < k for some integer j. If such a decomposition exists, reinstate i into

the list of valid outputs.

A MATLAB code listing of this algorithm is shown below:

% Calculate M(k) for k between 1 and kmax using another algorithm

% Begin by initializing values

M=zeros(1,kmax); mf=zeros(1,kmax^2); rem=mf;

% Pre-compute prime factorizations to increase speed

for i=3:kmax^2

f=factor(i);

% Find maximum prime factor mf and remainder rem=i/mf

mf(i)=max(f); rem(i)=i/mf(i);

end

% Begin loop

for k=2:kmax

numcodes=k^2;

for i=k+1:k^2

if mf(i)>k

% Exclude numbers with mf > k

numcodes=numcodes-1;

else

if rem(i)>k

% Temporarily exclude this number
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numcodes=numcodes-1; j=2;

% Try to create a feasible decomposition

while mf(i)*j<k+1

if rem(i)/j==floor(rem(i)/j) && rem(i)/j<k+1

% A decomposition exists, re-include the number

numcodes=numcodes+1;

break;

end

j=j+1;

end

end

end

end

% Calculate M(k)

M(k)=numcodes/(k*k);

end

E.2.3 Analytical Upper Bound

In addition to the algorithms described in the previous section for calculating M(k),

we can also derive an approximate upper bound for M(k) analytically. We shall

need the prime-counting function π(k). The prime-counting function is defined as

the number of primes less than or equal to k. The simplest form of the celebrated

prime number theorem states that π(k) ∼ k/ log(k), where the symbol ∼ denotes

asymptotic equality as k →∞. In other words

lim
k→∞

π(k)

k/ log(k)
= 1 (E.3)

We can calculate an upper bound by using an exclusion method, i.e., proving that

certain numbers between 1 and k2 cannot be formed by multiplying together numbers

between 1 and k. Prime numbers are a good place to start. Clearly primes between
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k2 and k2/2 cannot be formed. Similarly, primes between k2/2 and k2/3, and their

products with 2, cannot be formed. In general, primes between k2/i and k2/(i + 1),

and all their products with 1, 2, ...i, cannot be formed, as long as k2/(i+ 1) > k, i.e.

i < k − 1. We therefore have

M(k) < 1− 1

k2

k−1∑
i=1

i

[
π

(
k2

i

)
− π

(
k2

i+ 1

)]
(E.4)

The right-hand side of the equation above is only an upper bound since certain

unreachable numbers are not excluded by this technique. The most balanced decom-

position of such numbers still results in one factor that is larger than k. For example,

consider the number 952 for k = 32. Its most balanced decomposition is 34× 28, but

it will fall through our exclusion method since its prime factorization is 17× 7× 23.

Interestingly enough, one can use the prime number theorem to express the right-

hand side of (E.4) in closed form when k → ∞. Replacing π(k) with its asymptotic

form k/ log(k) gives us

lim
k→∞

M(k) < 1− 1

k2

k−1∑
i=1

i

[
k2/i

log (k2/i)
− k2/(i+ 1)

log (k2/(i+ 1))

]

< 1−
k−1∑
i=1

1

(i+ 1) log (k2/(i+ 1))

< 1−
∫ ∞

2

dx

x log (k2/x)

< 1− log

[
1 +

log(k/2)

log(k)

]
(E.5)

Finally, I have been unable to find a reasonably tight lower bound on M(k). A very

loose bound may be derived by recognizing that all numbers formed by multiplying

together pairs of primes between 1 and k are unique numbers between 1 and k2, and

therefore present in the output. There are π(k)[π(k) + 1]/2 such pairs, since each

prime is also allowed to multiply itself. We should also add the k numbers between

1 and k to the output list, giving us
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Figure E-1: Upper bounds of the multiplication table function M(k), compared with
its true value calculated using either algorithm described in the text.

M(k) >
k + π(k)[1 + π(k)]/2

k2
(E.6)

Combining the prime number theorem with the inequality above reveals that M(k)

must decay slower than 1/(log(k))2 as k →∞. Figure E-1 compares the upper bounds

for M(k) (equations (E.4) and (E.5)) with the function itself. Figure E-2 shows the

bounding error of these upper bounds, i.e. the gaps between the upper bounds and

the function.

In addition to computing M(k), which measures the fraction of numbers reached

by the multiplication, we may also be interested in the distribution of these numbers

in the space of possible values, i.e. 1 to k2. In order to visualize this distribution,

we bin the outputs produced by the multiplication table for k into k bins, each k

numbers wide. Thus the (k,m)-th bin contains numbers between 1 + (m − 1)k and

mk, where 1 ≤ m ≤ k. The output density d(k,m) is defined as
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Figure E-2: Bounding errors of the two upper bounds for M(k) described in the text.

d(k,m) =
number of numbers in the (k,m)-th bin

k
(E.7)

It is easy to see that 0 ≤ d(k,m) ≤ 1. Figure E-3 shows the computed output

density function for 2 ≤ k ≤ 100. We see that the density consistently decreases for

large bin numbers, i.e., outputs close to k2.

Our target application was N = 5, i.e., using two 5-bit DACs to create a 10-bit

DAC. We used this strategy to set reaction rate constants in the chemical kinetics

chip discussed earlier. Figure E-1 shows that for k = 25 = 32, we can reach 354 of

the 210 = 1024 possible output levels, i.e. M(32) = 0.346, corresponding to about 8.5

bits of (non-uniformly distributed) precision.

E.3 Status as a Mathematical Problem

An asymptotic formula for M(k) as k → ∞ is unknown and remains an unsolved

mathematical problem. The On-Line Encyclopedia of Integer Sequences lists k2M(k)
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as sequence A027424. Based on Figure E-1, one may suspect that M(k) converges

to some value around 0.25 as k increases. However, further investigation shows that

it goes below 0.25 somewhere around k = 850. In fact, in 1960 the great Paul Erdős

proved the surprising result that [6]:

lim
k→∞

M(k) = 0 (E.8)

This result is known as the “Erdős multiplication table theorem”. To be more

precise, Erdős showed that

lim
k→∞

M(k) =
1

(log(k))δ+o(1)
(E.9)

where the constant δ is defined as

δ = 1− 1 + log(log(2))

log(2)
= 0.086071... (E.10)

An intuitive explanation for Erdős’ result now follows. It is well-known that a pos-
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itive integer k has about ω(k) = log(log(k)) distinct prime factors (this theorem was

initially proven in 1917 by Hardy and Ramanujan). It is also known that the prob-

ability that two randomly picked integers are relatively prime is [ζ(2)]−1 = 6/π2 =

0.60792..., where ζ(z) is the Reimann zeta function2. Therefore most numbers in the

table will be the product of relatively prime numbers, and have about 2 log(log(k)) dis-

tinct prime factors. This is an abnormally large number of prime factors for a number

k2, which should normally have about log(log(k2)) = log(log(k))+log(2) ∼ log(log(k))

prime factors as k →∞. There are very few such abnormal numbers: Erdős and Kac

showed in 1939 that ω(k), the number of prime factors in a number k, follows a Gaus-

sian distribution, with the mean being log(log(k)) [65]. Therefore there are very few

unique products in the multiplication table.

A recent improvement to Erdős’ formula (E.9) has been made by Ford [73], who

considered a generalized version of the problem and showed as a corollary that

M(k) � 1

(log(k))δ (log(log(k)))3/2
(E.11)

where δ is defined as before and the symbol � means “asymptotically bound in both

directions”. In other words, M(k) as k →∞ must lie between two positive constant

multiples of the quantity on the right-hand side of (E.11)3.

2For more information about relatively prime numbers, see, for example, A059956 in the On-Line
Encyclopedia of Integer Sequences.

3The � symbol in this context is equivalent to the Θ function used in theoretical computer science
to simultaneously place upper and lower bounds on computational complexity.
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Appendix F

Radiation Resistance of Small

Antennas

In this appendix, I present simplified derivations of the radiation resistance of electri-

cally small dipole and loop antennas. The results are not new, and can be found in

standard antenna design textbooks, such as [11], but the presentation may interest

some readers.

F.1 Maxwell’s Equations

Consider a homogenous, lossless medium in sinusoidal steady-state. In this case the

permeability and permittivity are scalars, represented by µ and ε, respectively, and

Maxwell’s first two equations can be written in differential form as:

∇× E = −jωµH

∇×H = J + jωεE (F.1)

where ω is the frequency, E is the electric field, H is the magnetic field and J is the

current density vector. Now define the magnetic vector potential A to be the vector

whose curl produces the magnetic flux density µH, i.e.
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∇×A = µH (F.2)

Substituting (F.2) into the first equation in (F.1) gives us

∇× [E + jωA] = 0 (F.3)

Since the curl of the vector on the left hand side of the equation above is zero,

it is the gradient of some scalar potential. Let us denote this potential by φ (it is

commonly known as the electrostatic potential):

E + jωA = ∇φ (F.4)

Now take the curl of both sides of (F.2) and use the common vector identity

∇×∇×A = ∇(∇ ·A)−∇2A (F.5)

to give

∇(∇ ·A)−∇2A = µ (∇×H) (F.6)

By substituting the right-hand side of the equation above using the second Maxwell

equation in (F.1) and re-arranging some terms, we get

∇2A = ∇ (∇ ·A)− µJ− jωµεE (F.7)

Substituting for E using (F.4) and using the facts that µε = 1/c2 and ω/c = k,

the wave vector, gives us

∇2A + k2A = −µJ +∇ ·
[
∇ ·A +

jω

c2
φ

]
(F.8)

Since only the curl of A is used to define H, we are free to choose its divergence to

be whatever we want. This choice is known as a gauge. The usual choice is a Lorenz
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gauge, which maintains Lorentz invariance1, and is defined as

∇ ·A +
jω

c2
φ = 0 (F.9)

By substituting the Lorenz gauge condition defined above into (F.8) we get a wave

equation for A:

∇2A + k2A = −µJ (F.10)

Solutions to (F.10) in three dimensions at points that are distant from the source

J are radial waves proportional to exp(−jkr)/r and exp(+jkr)/r, where r is the

distance from the source. Since time increases as exp(jωt), the former solution corre-

sponds to waves that propagate outward. In other words, the phase of the wave, which

is j(ωt − kr), remains constant if r increases with time as r = ct, where c = ω/k.

Similarly, the latter solution corresponds to inward-propagating waves where con-

stant phase corresponds to r = −ct. We choose forward-propagating solutions and

assume that every point within the source volume launches vector potential waves.

Integrating over the source volume V ′ gives us the net vector potential:

A =
µ

4π

∫∫∫
V ′

J
e−jkr

r
dv′ (F.11)

If the source J is located at primed co-ordinates r′ = (x′, y′, z′) and the observer

at unprimed co-ordinates r = (x, y, z) the equation above can be rewritten as follows:

A =
µ

4π

∫∫∫
V ′

J(r′)
e−jk·(r−r′)

|r− r′|
dv′ (F.12)

If the source J is a produced by an infinitely thin wire, the volume integral above

is replaced by a line integral along C ′, the path of the wire:

A =
µ

4π

∫
C′

I(r′)
e−jk·(r−r′)

|r− r′|
dl′ (F.13)

1The two spellings of Lorenz are not a typo. They refer to two different scientists: Ludvig Lorenz
(1829-1891) and Hendrik Lorentz (1853-1928), respectively
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where I is the current in the wire. Equation (F.13) will form the basis for our sub-

sequent calculations of radiation resistance. In the far-field case, we can ignore any

terms in A that fall off faster than 1/r with distance, so A may be written in spherical

co-ordinates as

A = [ârAr (θ, φ) + âθAθ (θ, φ) + âφAφ (θ, φ)]
e−jkr

r
(F.14)

where âr, âθ and âφ are the unit vectors along the r, θ and φ directions, respectively.

In order to carry out our radiation resistance calculation we will need to find E and

H in terms of A. We have the following relations based on our definition of A and

the Lorenz gauge:

E = −jωA− jc2

ω
∇ (∇ ·A)

H =
1

µ
(∇×A) (F.15)

Using these relations and again throwing away any terms that decay faster than

1/r gives us

Er = 0

(Eθ, Eφ) = −jω (Aθ, Aφ) (F.16)

and

Hr = 0

(Hθ, Hφ) = −jω
η

(−Aφ, Aθ) (F.17)

where η =
√
µ/ε = 120πΩ is the characteristic impedance of free space. Intuitively,

H ∝ 1/η because the term that retains a 1/r dependence on taking the cross product
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involves differentiating the exponential exp(−jkr) w.r.t. r. This gives us a coefficient

of −jk/µ = −jω/ (cµ) = −jω/η in front. For θ and φ (not r, since both Er and Hr

are zero) equations (F.16) and (F.17) can be compactly written as

E = −jωA

H = −jω
η

(âr ×A) (F.18)

The time-averaged Poynting vector now gives us the average power density present

in the medium:

Wav =
1

2
Re [E×H∗] (F.19)

where H∗ is the complex conjugate of H. The factor of 1/2 is the usual ratio of rms to

peak power that arises when time-averaging a sinusoid. The total average power Prad

radiated by an antenna can be found by integrating Wav over any sphere S which

has the antenna at its center:

Prad =

∮
S

Wav · ds (F.20)

where ds is a differential area element vector that points in the radial direction, i.e.,

along âr, since S is a sphere.

We will also need matrices to convert between co-ordinate systems. For example,

between cartesian and cylindrical:


ax

ay

az

 =


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1



aρ

aφ

az

 (F.21)

and also between cartesian and spherical:
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ax

ay

az

 =


sin(θ) cos(φ) cos(θ) cos(φ) − sin(φ)

sin(θ) sin(φ) cos(θ) sin(φ) cos(φ)

cos(θ) − sin(θ) 0



ar

aθ

aφ

 (F.22)

F.2 Small Dipole

A dipole antenna may be considered “small” if it has a current distribution that is

nearly uniform. Let the dipole be much thinner than its length, oriented along the

z axis from −l/2 to +l/2, and fed from the origin. Therefore we can use (F.13) to

calculate the vector potential A, once we make the following identifications:

I (r′) = âzI0

|r− r′| ≈ r

dl′ = dz′ (F.23)

where I0 is the amplitude of the current in the antenna, and we have assumed far-field

operation, i.e. |r| � l. Substituting (F.23) in (F.13), we get

A = âz
µI0

4π

(
e−jkr

r

)∫ l/2

−l/2
dz′ = âz

µI0l

4π

(
e−jkr

r

)
(F.24)

Using (F.22), we can convert A to spherical co-ordinates, the result being

A(r) = (cos(θ)âr − sin(θ)âθ)
µI0l

4π

(
e−jkr

r

)
(F.25)

Using (F.18) and (F.19), the time-averaged Poynting vector is given by
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Wav =
1

2
Re [E×H∗]

=
ω2

2η
Re [A× (âr ×A)]

=
(
sin2(θ)âr + cos(θ) sin(θ)âθ

)(ωµI0l

4πr

)2
1

2η
(F.26)

We can now find the total power radiated by the antenna by integrating Wav over

a sphere of radius r, i.e., using (F.20), once we remember that the differential area

vector in spherical co-ordinates is given by ds = ârr
2 sin(θ)dθdφ:

Prad =
1

2η

(
ωµI0l

4πr

)2 ∫ 2π

0

∫ π

0

(
sin2(θ)âr + cos(θ) sin(θ)âθ

)
· ârr2 sin(θ)dθdφ

=
1

2η

(
ωµI0l

4π

)2 ∫ 2π

0

∫ π

0

sin3(θ)dθdφ

=
4π

3η

(
cµI0l

2λ

)2

=
π

3η
(cµ)2

(
l

λ

)2

I2
0

=
πη

3

(
l

λ

)2

I2
0 (F.27)

where we have used the facts that ω = ck = 2πc/λ and cµ = η. Finally, the radiation

resistance Rrad is defined as

Prad =
1

2
RradI

2
0 (F.28)

From (F.27) and (F.28), we get

Rrad =
2πη

3

(
l

λ

)2

= 80π2

(
l

λ

)2

(F.29)

We see that Rrad increases as the square of the electrical length l/λ of the dipole.

Intuitively, this is because of the uniform current distribution, which makes the mag-
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nitude of A proportional to l, and thus the magnitude of the Poynting vector Wav

proportional to l2.

F.3 Small Circular Loop

In this section we consider a small circular loop of very thin wire and radius a that is

located in the x−y plane with its center at the origin of the co-ordinate system. Like

the dipole, a loop is considered “small” if it has a nearly uniform current distribution.

We will use primed co-ordinates for the source, i.e. the loop, and non-primed co-

ordinates for the observer, assumed to be in the far field, i.e., r � a.

First we have to express the current vector in spherical co-ordinates. The most

natural representation is in cylindrical co-ordinates, where we may write I = âφI0,

where I0 is the amplitude of the current. We can convert this representation to

cartesian co-ordinates by using (F.21), the result being

I = [− sin (φ′) âx + cos (φ′) ây] I0 (F.30)

where φ′ goes from 0 to 2π around the loop. In order to convert this representation into

spherical co-ordinates, we can use (F.22). Because of the symmetry of the problem,

however, the fields and potentials should not depend on φ, the observer’s azimuthal

angle. We can therefore simplify our algebra by fixing φ at any value; let us choose

φ = 0. Using (F.22) we then get

I = [− sin(θ) sin (φ′) âr + cos(θ) sin (φ′) âθ + cos (φ′) âφ] I0 (F.31)

Next we need to calculate the distance between the source and the observer, i.e

|r− r′| =
√

(x− x′)2 + (y − y′)2 + (z − z′)2. By using the following relationships

x′ = a cos (φ′) x = r sin(θ) cos(φ) x2 + y2 + z2 = r2

y′ = a sin (φ′) y = r sin(θ) sin(φ) (x′)2 + (y′)2 + (z′)2 = a2

z = 0 z = r cos(θ)

(F.32)
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and setting φ = 0, we get

|r− r′| =
√
r2 + a2 − 2ar sin (θ) cos (φ′) (F.33)

By substituting (F.31) and (F.33) into (F.13), and remembering that dl′ = adφ′,

we get

A =
µa

4π

∫ 2π

0

I
e−jk
√
r2+a2−2ar sin(θ) cos(φ′)√

r2 + a2 − 2ar sin (θ) cos (φ′)
dφ′ (F.34)

We now perform a Taylor expansion of the function that multiplies I in this

integral. If we assume r � a, all terms that are second-order or higher in a/r can be

thrown away to yield

e−jk
√
r2+a2−2ar sin(θ) cos(φ′)√

r2 + a2 − 2ar sin (θ) cos (φ′)
≈ e−jkr

[
1

r
+ a sin (θ) cos (φ′)

(
jk

r
+

1

r2

)]
(F.35)

Substituting (F.31) and (F.35) into (F.34), we get

A =
µaI0

4π

∫ 2π

0

e−jkr
[

1

r
+ a sin (θ) cos (φ′)

(
jk

r
+

1

r2

)]
×

[− sin(θ) sin (φ′) âr + cos(θ) sin (φ′) âθ + cos (φ′) âφ] dφ′ (F.36)

The r and θ components in this integral involve integrals of sin (φ′) and sin (2φ′)

from 0 to 2π, and thus integrate to zero. Only the φ component remains; the result

is

A =
µaI0

4π
× π sin(θ)e−jkra

(
jk

r
+

1

r2

)
âφ

≈ âφ

(
jµka2I0

4

)
sin(θ)

e−jkr

r
(F.37)

We can now use (F.18) and (F.19) to find the time-averaged Poynting vector Wav:
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Wav =
1

2
Re [E×H∗]

=
ω2

2η
Re [A× (âr ×A)]

= âr
ω2

2η

(
µka2I0

4r

)2

sin2(θ)

= âr
η

2

(
k2a2I0

4r

)2

sin2(θ) (F.38)

where we have used the facts that ω = ck and cµ = η. We can now find the total

power radiated by the antenna by integrating Wav over a sphere of radius r, i.e., using

(F.20), once we remember that the differential area vector in spherical co-ordinates

is given by ds = ârr
2 sin(θ)dθdφ:

Prad =
η

2

(
k2a2I0

4r

)2 ∫ 2π

0

∫ π

0

sin2(θ)× r2 sin(θ)dθdφ

=
η

2

(
k2a2I0

4

)2 ∫ 2π

0

∫ π

0

sin3(θ)dθdφ

=
8π

3

η(ka)4

32
I2

0

=
πη

12
(ka)4I2

0 (F.39)

From (F.28) and (F.39), we get

Rrad =
πη

6
(ka)4 = 20π2

(
2πa

λ

)4

(F.40)

We see that, unlike the small dipole, in which Rrad is proportional to the square of

the electrical length, the radiation resistance of the small loop is proportional to the

fourth power of the electrical size of the loop, i.e. (ka)4. This statement explains why

the radiation resistance of small loops is much smaller than dipoles of comparable

electrical size. Intuitively, the magnitude of A in a loop is proportional to a2, not l as

in the case of the dipole. One factor of a comes from the conversion from angle dφ′
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to differential length dl′, while the other arises from a first-order Taylor expansion of

the complex function on the left hand side of (F.35).

Loop antennas have an additional degree of freedom not possessed by dipoles: we

can use many turns of wire, each carrying the same current I0, to create the loop.

Suppose we have N such turns, and that the turns are very close to each other,

such that the bundle of wires still has a diameter that is much smaller than the loop

diameter a. The effective source current then increases from I0 to NI0, so we get

A→ NA and Prad → N2Prad. Since the current flowing in the external terminals is

still I0, we still have Rrad = 2Prad/I
2
0 . Therefore Rrad increases by a factor of N2, i.e.

Rrad = 20π2

(
2πa

λ

)4

N2

= 320π4

(
NS

λ2

)2

= 3.1170× 104

(
NS

λ2

)2

(F.41)

where S = πa2 is the surface area of the loop. The formula above is identical to

(A.36), which is reassuring. We see that the radiation resistance of very small loops

can be increased to respectable values by using many turns. A small loop is essentially

an inductor with some loss due to radiation. Its inductance and radiation resistance

both increase as N2, and for the same reason: transformer action between the N

turns increases the impedance by a factor of N2.

It can also be shown that the electric and magnetic fields produced by small

circular and square loops are identical in the far-field region, even though their near

fields are different2. Therefore small circular and square coils have the same radiation

resistance, given by (F.41).

2As a rule of thumb, loop antennas can usually be considered “electrically small” if their circum-
ferences are less than λ/10.
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