8,725 research outputs found

    Experimental comparison of control strategies for trajectory tracking for mobile robots

    Get PDF
    The purpose of this paper is to implement, test and compare the performance of different control strategies for tracking trajectory for mobile robots. The control strategies used are based on linear algebra, PID controller and on a sliding mode controller. Each control scheme is developed taking into consideration the model of the robot. The linear algebra approaches take into account the complete kinematic model of the robot; and the PID and the sliding mode controller use a reduced order model, which is obtained considering the mobile robot platform as a black-box. All the controllers are tested and compared, firstly by simulations and then, by using a Pioneer 3DX robot in field experiments.Fil: Capito, Linda. Escuela Politécnica Nacional; EcuadorFil: Proaño, Pablo. Escuela Politécnica Nacional; EcuadorFil: Camacho, Oscar. Escuela Politécnica Nacional; EcuadorFil: Rosales, Andrés. Escuela Politécnica Nacional; EcuadorFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network
    • …
    corecore