1,004 research outputs found

    Optical fibre digital pulse-position-modulation assuming a Gaussian received pulse shape

    Get PDF
    The abundance in bandwidth available in the best monomode fibres may be exchanged for improved receiver sensitivity by employing digital PPM. The paper presents a performance and optimisation analysis for a digital PPM coding scheme operating over a fibre channel employing a PIN-BJT receiver and assuming a Gaussian received pulse shape. The authors present original results for a 50 Mbit/s, 1.3 ÎŒm wavelength digital PPM system and conclude that, provided the fibre bandwidth is several times that of the data rate, digital PPM can outperform commercially available PIN-BJT binary PCM system

    Determination of optical technology experiments for a satellite

    Get PDF
    Optical technology experiments for satellite - communications, acquisition, tracking, lasers, photometry, and atmospheric

    Parametric analysis of microwave and laser systems for communication and tracking. Volume 2 - System selection

    Get PDF
    System selection criteria of microwave and laser systems for communication and tracking - Vol.

    Study of a navigation and traffic control technique employing satellites. Volume 3 - User hardware Interim report

    Get PDF
    User hardware configurations and requirements for navigation and air traffic control technique using satellite

    Pulse position modulation coding schemes for optical inter-satellite links in free space

    Get PDF
    The rapid and significant development of communications links between satellites has made it possible to use various applications such as relay voice, video, multimedia, etc. As a result, a great deal of research has been done in this field during the last few years to reduce power consumption and increase transmission reliability. This thesis is concerned with an analysis of intersatellite links in free space, with optical links using laser sources being considered in particular. It includes a literature survey and a thorough theoretical investigation into designing the model of the link in free space. This thesis describes the novel technique of designing the optical receiver that consists of PIN photodiode as a photodetector, Semiconductor optical amplifier (SOA) and a 3rd order Butterworth filter with central decision detection. In addition, it discusses the use of several different coding schemes for use in such links: multiple pulse position modulation (MPPM); digital pulse position modulation (DPPM); Dicode pulse position modulation (Dicode PPM). This novel technique of an optical receiver is investigated and new work is presented in order to examine the noise performance of this optical receiver and hence determine its sensitivity and the number of photons received for a specified error rate. Further new work is carried out to compare these coding schemes in terms of error weightings and coding efficiency through showing how the PCM error rate is affected by false alarm and erasure errors for MPPM, DPPM and Dicode PPM coding 3, 4, 5 and 6 bits of PCM. An original maximum likelihood sequence detector (MLSD) is presented in this thesis in order to perform these comparisons. In addition, computer simulations models (using MCAD) are performed to compare these three coding schemes operating with 3, 4, 5 and 6 bits of PCM in terms of sensitivity and bandwidth efficiency. These comparisons show that MPPM coding 3, 4, 5 and 6 bits of PCM is the appropriate coding scheme to be used in optical inter-satellite links in free space and PCM data rates of 1 Gbit/s.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Study of modulation techniques for multiple access satellite communications

    Get PDF
    Multiple access communication utilizing small ground stations for satellite communication modulation - multiplexing technique

    Simulation and modeling of the behavior in the four-stroke spark ignition engine by using CFD simulation

    Get PDF
    Computational fluid dynamics (CFD) is a branch of fluid mechanics that use numerical analysis and data structures to analyze and solves problems that involve fluid flows. CFD have been applied to a wide range of research and engineering problems in many fields of study and industries, including engine and combustion analysis. The objective of this review paper is to analyze the behavior in the four-stroke Spark Ignition (SI) engine by using CFD simulation. To get the require result a few methods have been used to analyze the behavior in the engine such as using CAD geometric model where the solid works software have been prepared. Then, in the CAD geometric model also have ANSYS software to perform analysis in engine module. To predict the behavior of the engine during its working two type of analysis can be performed namely port flow simulation and combustion simulation. So, in first part of this report, the CFD analysis is carried out to analyze the performance parameter, including intake stroke, compression stroke, power stroke and exhaust stroke with hexane fuel combustion. For the results, some details of the engine model and some predicted results including temperature, flow time and pressure profiles. With the existence of CFD simulation it can help many fields of study and industries by predict and analyze the possibility that can be happened in the future. At the same time, serves as a quick and economical way of future engine designs and concepts

    Investigation and Implementation of Dicode Pulse Position Modulation Over Indoor Visible Light Communication System

    Get PDF
    A visible light communication (VLC) system with green technology is available and enables users to use white LEDs for illumination as well as for high data rate transmission over wireless optical links. In addition, LEDs have advantages of low power consumption, high speed with power efficiency and low cost. Therefore, a great deal of research is considered for indoor VLC, as it offers huge bandwidth whilst using a significant modulation technique. This thesis is concerned with the investigation and implementation of the dicode pulse position modulation (DiPPM) scheme over a VLC link using white LED sources. Novel work is carried out for applying DiPPM over a VLC channel theoretically and experimentally including a comparison with digital PPM (DPPM) in order to examine the system performance. Moreover, a proposal of variable DiPPM (VDiPPM) is presented in this thesis for dimming control. The indoor VLC channel characteristics have been investigated for two propagation prototypes. Two models have been proposed and developed with DiPPM and DPPM being applied over the VLC channel. A computer simulation for the proposed models for both DiPPM and DPPM systems is performed in order to analyse the receiver sensitivity with the effect of intersymbol interference (ISI). Both systems are operating at 100 Mbps and 1 Gbps for a BER of 10-9. An improvement in sensitivity being achieved by the DiPPM compared to the DPPM VLC system. The system performance has been carried out by Mathcad software. The predicted DiPPM receiver sensitivity outperforms DPPM receiver at by -5.55 dBm and -8.24 dBm, at 1 Gbps data rate, and by -5.53 dBm and -8.22 dBm, at 100 Mbps, without and with guard intervals, respectively. In both cases the optical receiver sensitivity is increased when the ISI is ignored. These results based on the received optical power required by each modulation scheme. Further work has been done in mathematical evaluation carried out to calculate the optical receiver sensitivity to verify the comparison between the two systems. The original numerical results show that DiPPM VLC system provides a better sensitivity than a DPPM VLC system at a selected BER of 10-9 when referred to the same preamplifier at wavelength of 650 nm and based on the equivalent input noise current generated by the optical front end receiver. The results show that the predicted sensitivity for DPPM is greater than that of DPPM by about 1 dBm when both systems operating at 100 Mbps and 1 Gbps. Also, it is show that the receiver sensitivity is increased when the ISI is limited. Experimentally, a complete indoor VLC system has been designed and implemented using Quartus II 11.1 software for generating VHDL codes and using FPGA development board (Cyclone IV GX) as main interface real-time transmission unit in this system. The white LEDs chip based transmitter and optical receiver have been constructed and tested. The measurements are performed by using LED white light as an optical transmitter faced to photodiode optical receiver on desk. Due to the LED bandwidth limitation the achieved operating data rate, using high speed LED driver, is 5.5 Mbps at BER of 10-7. The original results for the measurements determined that the average photodiode current produced by using DiPPM and DPPM optical receivers are 8.50 ÎŒA and 10.22 ÎŒA, respectively. And this in turn indicates that the DiPPM receiver can give a better sensitivity of -17.24 dBm while compared to the DPPM receiver which gives is -16.44 dBm. The original practical results proved the simulation and theoretical results where higher performance is achieved when a DiPPM scheme is used compared to DPPM scheme over an indoor VLC system
    • 

    corecore