356 research outputs found

    ASR Systems in Noisy Environment: Analysis and Solutions for Increasing Noise Robustness

    Get PDF
    This paper deals with the analysis of Automatic Speech Recognition (ASR) suitable for usage within noisy environment and suggests optimum configuration under various noisy conditions. The behavior of standard parameterization techniques was analyzed from the viewpoint of robustness against background noise. It was done for Melfrequency cepstral coefficients (MFCC), Perceptual linear predictive (PLP) coefficients, and their modified forms combining main blocks of PLP and MFCC. The second part is devoted to the analysis and contribution of modified techniques containing frequency-domain noise suppression and voice activity detection. The above-mentioned techniques were tested with signals in real noisy environment within Czech digit recognition task and AURORA databases. Finally, the contribution of special VAD selective training and MLLR adaptation of acoustic models were studied for various signal features

    Arabic Isolated Word Speaker Dependent Recognition System

    Get PDF
    In this thesis we designed a new Arabic isolated word speaker dependent recognition system based on a combination of several features extraction and classifications techniques. Where, the system combines the methods outputs using a voting rule. The system is implemented with a graphic user interface under Matlab using G62 Core I3/2.26 Ghz processor laptop. The dataset used in this system include 40 Arabic words recorded in a calm environment with 5 different speakers using laptop microphone. Each speaker will read each word 8 times. 5 of them are used in training and the remaining are used in the test phase. First in the preprocessing step we used an endpoint detection technique based on energy and zero crossing rates to identify the start and the end of each word and remove silences then we used a discrete wavelet transform to remove noise from signal. In order to accelerate the system and reduce the execution time we make the system first to recognize the speaker and load only the reference model of that user. We compared 5 different methods which are pairwise Euclidean distance with MelFrequency cepstral coefficients (MFCC), Dynamic Time Warping (DTW) with Formants features, Gaussian Mixture Model (GMM) with MFCC, MFCC+DTW and Itakura distance with Linear Predictive Coding features (LPC) and we got a recognition rate of 85.23%, 57% , 87%, 90%, 83% respectively. In order to improve the accuracy of the system, we tested several combinations of these 5 methods. We find that the best combination is MFCC | Euclidean + Formant | DTW + MFCC | DTW + LPC | Itakura with an accuracy of 94.39% but with large computation time of 2.9 seconds. In order to reduce the computation time of this hybrid, we compare several subcombination of it and find that the best performance in trade off computation time is by first combining MFCC | Euclidean + LPC | Itakura and only when the two methods do not match the system will add Formant | DTW + MFCC | DTW methods to the combination, where the average computation time is reduced to the half to 1.56 seconds and the system accuracy is improved to 94.56%. Finally, the proposed system is good and competitive compared with other previous researches

    Text-independent speaker recognition

    Get PDF
    This research presents new text-independent speaker recognition system with multivariate tools such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) embedded into the recognition system after the feature extraction step. The proposed approach evaluates the performance of such a recognition system when trained and used in clean and noisy environments. Additive white Gaussian noise and convolutive noise are added. Experiments were carried out to investigate the robust ability of PCA and ICA using the designed approach. The application of ICA improved the performance of the speaker recognition model when compared to PCA. Experimental results show that use of ICA enabled extraction of higher order statistics thereby capturing speaker dependent statistical cues in a text-independent recognition system. The results show that ICA has a better de-correlation and dimension reduction property than PCA. To simulate a multi environment system, we trained our model such that every time a new speech signal was read, it was contaminated with different types of noises and stored in the database. Results also show that ICA outperforms PCA under adverse environments. This is verified by computing recognition accuracy rates obtained when the designed system was tested for different train and test SNR conditions with additive white Gaussian noise and test delay conditions with echo effect

    DeepVOX: Discovering Features from Raw Audio for Speaker Recognition in Degraded Audio Signals

    Full text link
    Automatic speaker recognition algorithms typically use pre-defined filterbanks, such as Mel-Frequency and Gammatone filterbanks, for characterizing speech audio. The design of these filterbanks is based on domain-knowledge and limited empirical observations. The resultant features, therefore, may not generalize well to different types of audio degradation. In this work, we propose a deep learning-based technique to induce the filterbank design from vast amounts of speech audio. The purpose of such a filterbank is to extract features robust to degradations in the input audio. To this effect, a 1D convolutional neural network is designed to learn a time-domain filterbank called DeepVOX directly from raw speech audio. Secondly, an adaptive triplet mining technique is developed to efficiently mine the data samples best suited to train the filterbank. Thirdly, a detailed ablation study of the DeepVOX filterbanks reveals the presence of both vocal source and vocal tract characteristics in the extracted features. Experimental results on VOXCeleb2, NIST SRE 2008 and 2010, and Fisher speech datasets demonstrate the efficacy of the DeepVOX features across a variety of audio degradations, multi-lingual speech data, and varying-duration speech audio. The DeepVOX features also improve the performance of existing speaker recognition algorithms, such as the xVector-PLDA and the iVector-PLDA

    Analysis of Speech Recognition Techniques

    Get PDF
    Speech recognition has been an intregral part of human life acting as one of the five senses of human body, because of which application developed on the basis of speech recognition has high degree of acceptance. Here in this project we tried to analyse the different steps involved in artificial speech recognition by man-machine interface. The various steps we followed in speech recognition are feature extraction, distance calculation, dynamic time wrapping. We have tried to find out an approach which is both simple and efficient so that it can be utilised in embedded systems. After analysing the steps above we realised the process using small programs using MATLAB which is able to do small no. of isolated word recognition
    corecore