1,372 research outputs found

    Sketch-based 3D Shape Retrieval using Convolutional Neural Networks

    Full text link
    Retrieving 3D models from 2D human sketches has received considerable attention in the areas of graphics, image retrieval, and computer vision. Almost always in state of the art approaches a large amount of "best views" are computed for 3D models, with the hope that the query sketch matches one of these 2D projections of 3D models using predefined features. We argue that this two stage approach (view selection -- matching) is pragmatic but also problematic because the "best views" are subjective and ambiguous, which makes the matching inputs obscure. This imprecise nature of matching further makes it challenging to choose features manually. Instead of relying on the elusive concept of "best views" and the hand-crafted features, we propose to define our views using a minimalism approach and learn features for both sketches and views. Specifically, we drastically reduce the number of views to only two predefined directions for the whole dataset. Then, we learn two Siamese Convolutional Neural Networks (CNNs), one for the views and one for the sketches. The loss function is defined on the within-domain as well as the cross-domain similarities. Our experiments on three benchmark datasets demonstrate that our method is significantly better than state of the art approaches, and outperforms them in all conventional metrics.Comment: CVPR 201

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Visual Information Retrieval in Endoscopic Video Archives

    Get PDF
    In endoscopic procedures, surgeons work with live video streams from the inside of their subjects. A main source for documentation of procedures are still frames from the video, identified and taken during the surgery. However, with growing demands and technical means, the streams are saved to storage servers and the surgeons need to retrieve parts of the videos on demand. In this submission we present a demo application allowing for video retrieval based on visual features and late fusion, which allows surgeons to re-find shots taken during the procedure.Comment: Paper accepted at the IEEE/ACM 13th International Workshop on Content-Based Multimedia Indexing (CBMI) in Prague (Czech Republic) between 10 and 12 June 201

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    SHREC'16 Track: 3D Sketch-Based 3D Shape Retrieval

    Get PDF
    Sketch-based 3D shape retrieval has unique representation availability of the queries and vast applications. Therefore, it has received more and more attentions in the research community of content-based 3D object retrieval. However, sketch-based 3D shape retrieval is a challenging research topic due to the semantic gap existing between the inaccurate representation of sketches and accurate representation of 3D models. In order to enrich and advance the study of sketch-based 3D shape retrieval, we initialize the research on 3D sketch-based 3D model retrieval and collect a 3D sketch dataset based on a developed 3D sketching interface which facilitates us to draw 3D sketches in the air while standing in front of a Microsoft Kinect. The objective of this track is to evaluate the performance of different 3D sketch-based 3D model retrieval algorithms using the hand-drawn 3D sketch query dataset and a generic 3D model target dataset. The benchmark contains 300 sketches that are evenly divided into 30 classes, as well as 1 258 3D models that are classified into 90 classes. In this track, nine runs have been submitted by five groups and their retrieval performance has been evaluated using seven commonly used retrieval performance metrics. We wish this benchmark, the comparative evaluation results and the corresponding evaluation code will further promote sketch-based 3D shape retrieval and its applications

    Application of Machine Learning within Visual Content Production

    Get PDF
    We are living in an era where digital content is being produced at a dazzling pace. The heterogeneity of contents and contexts is so varied that a numerous amount of applications have been created to respond to people and market demands. The visual content production pipeline is the generalisation of the process that allows a content editor to create and evaluate their product, such as a video, an image, a 3D model, etc. Such data is then displayed on one or more devices such as TVs, PC monitors, virtual reality head-mounted displays, tablets, mobiles, or even smartwatches. Content creation can be simple as clicking a button to film a video and then share it into a social network, or complex as managing a dense user interface full of parameters by using keyboard and mouse to generate a realistic 3D model for a VR game. In this second example, such sophistication results in a steep learning curve for beginner-level users. In contrast, expert users regularly need to refine their skills via expensive lessons, time-consuming tutorials, or experience. Thus, user interaction plays an essential role in the diffusion of content creation software, primarily when it is targeted to untrained people. In particular, with the fast spread of virtual reality devices into the consumer market, new opportunities for designing reliable and intuitive interfaces have been created. Such new interactions need to take a step beyond the point and click interaction typical of the 2D desktop environment. The interactions need to be smart, intuitive and reliable, to interpret 3D gestures and therefore, more accurate algorithms are needed to recognise patterns. In recent years, machine learning and in particular deep learning have achieved outstanding results in many branches of computer science, such as computer graphics and human-computer interface, outperforming algorithms that were considered state of the art, however, there are only fleeting efforts to translate this into virtual reality. In this thesis, we seek to apply and take advantage of deep learning models to two different content production pipeline areas embracing the following subjects of interest: advanced methods for user interaction and visual quality assessment. First, we focus on 3D sketching to retrieve models from an extensive database of complex geometries and textures, while the user is immersed in a virtual environment. We explore both 2D and 3D strokes as tools for model retrieval in VR. Therefore, we implement a novel system for improving accuracy in searching for a 3D model. We contribute an efficient method to describe models through 3D sketch via an iterative descriptor generation, focusing both on accuracy and user experience. To evaluate it, we design a user study to compare different interactions for sketch generation. Second, we explore the combination of sketch input and vocal description to correct and fine-tune the search for 3D models in a database containing fine-grained variation. We analyse sketch and speech queries, identifying a way to incorporate both of them into our system's interaction loop. Third, in the context of the visual content production pipeline, we present a detailed study of visual metrics. We propose a novel method for detecting rendering-based artefacts in images. It exploits analogous deep learning algorithms used when extracting features from sketches
    • …
    corecore