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Abstract

Sketch-based 3D shape retrieval has unique representation availability of the queries and vast applications. There-
fore, it has received more and more attentions in the research community of content-based 3D object retrieval.
However, sketch-based 3D shape retrieval is a challenging researchtopic due to the semantic gap existing be-
tween the inaccurate representation of sketches and accurate representation of 3D models. In order to enrich and
advance the study of sketch-based 3D shape retrieval, we initialize the research on 3D sketch-based 3D model
retrieval and collect a 3D sketch dataset based on a developed 3D sketching interface which facilitates us to draw
3D sketches in the air while standing in front of a Microsoft Kinect.
The objective of this track is to evaluate the performance of different 3D sketch-based 3D model retrieval algo-
rithms using the hand-drawn 3D sketch query dataset and a generic 3D model target dataset. The benchmark
contains 300 sketches that are evenly divided into 30 classes, as well as 1258 3D models that are classified into
90 classes. In this track, nine runs have been submitted by five groups and their retrieval performance has been
evaluated using seven commonly used retrieval performance metrics. We wish this benchmark, the comparative
evaluation results and the corresponding evaluation code will further promote sketch-based 3D shape retrieval
and its applications.

Categories and Subject Descriptors(according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—
Information Search and Retrieval

1. Introduction

Sketch-based 3D model retrieval is to retrieve relevant 3D
models using sketch(es) as input. This scheme is intuitive
and convenient for users to learn and search for 3D models.
It is also popular and important for related applications such
as sketch-based 3D modeling and recognition.

However, existing sketch-based 3D model retrieval sys-
tems are mainly based on 2D sketch queries which contain

† Track organizers. For any questions related to the track, please
contact li.bo.ntu0@gmail.com.
‡ Track participants.

limited 3D information of the 3D shapes they are supposed
to represent. What’s more, there is a semantic gap between
the iconic representation of 2D sketches and the accurate 3D
coordinate representation of 3D models. This makes the task
of retrieval using sketch queries much more challenging than
those using 3D model queries.

Motivated by the above obstacles, an interesting question
has been raised: “why not 3D sketches?: A 3D sketch may
provide a better description for an object than a 2D sketch,
which not only encodes 3D information (such as depth and
features of more facets) of objects, but also contains the
salient 3D feature lines of its counterpart of 3D models.

The popularity of low-cost depth cameras like Microsoft’s
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Kinect makes 3D sketching in a virtual 3D space no longer
a dream. Kinect facilitates us to track the 3D locations of 20
joints of a human body. Therefore, a Kinect sensor can be
used to track the 3D locations of a user’s hand to create a 3D
sketch.

In 2015, a Kinect-based 3D sketching system [LLG∗15a,
LLG∗15b] was developed to allow a user to use his/her hand
as a drawing tool to draw a 3D sketch. A voice-activated
Graphical User Interface (GUI) is designed to facilitate 3D
sketching. Based on the Kinect-based 3D sketching system,
we have collected aKinect300 3D sketch dataset, which
comprises 300 sketches of 30 classes, each with 10 models,
from 17 users (4 females and 13 males) in computer science
or mathematics related majors. The average age of all the 17
users is 21, and only two males have art experiences.

Based on this new benchmark, we organized this track
to foster this challenging research area of sketch-based 3D
model retrieval by soliciting retrieval results from current
State-of-The-Art 3D model retrieval methods for compari-
son, especially in terms of scalability to 3D sketch queries.
We also provided corresponding evaluation code for com-
puting a set of performance metrics similar to those used in
the Query-by-Model retrieval technique.

2. Data Collection

Our 3D sketch-based 3D model retrieval benchmark is
motivated by a 3D sketch collection built by Li and Lu
et al. [LLG∗15a, LLG∗15b] and SHREC’13 Sketch Track
Benchmark (SHREC13STB) [LLG∗13].

To explore how to draw 3D sketches in a 3D space and
how to use a hand-drawn 3D sketch to search similar 3D
models, Li and Lu et al. [LLG∗15a, LLG∗15b] collected
300 human-drawn 3D sketches of 30 classes, each with 10
sketches by utilizing a Kinect-based virtual 3D drawing sys-
tem. It avoids the bias issue since they collected the same
number of sketches for every class, while the sketch varia-
tion within one class is significant.

To facilitate learning-based retrieval, we randomly select
7 sketches from each class for training and use the remained
3 sketches per class for testing, while all the target models
as a whole are remained as the target dataset. Participants
need to submit results on the training and testing datasets,
respectively, if they use learning in their approach(es). Oth-
erwise, only the retrieval results based on the complete query
dataset are needed. To provide a complete reference for the
future users of our benchmark, we evaluate the participating
algorithms on both the testing dataset (7 sketches per class,
totally 210 3D sketches) and the complete benchmark (10
sketches per class, 300 sketches).

2.1. 3D Sketch Dataset

The 3D sketch query set comprises 300 3D sketches (30
classes, each with 10 sketches), while 21 classes have rel-

evant models in the target 3D dataset of the SHREC’13
Sketch-Based Retrieval benchmark. Therefore, during the
evaluation process, we only consider the performance of
the 210 3D sketch queries that have relevant 3D models in
the target dataset. One 3D sketch example for each of the
30classes is demonstrated in Fig.1.

Figure 1: Example 3D sketches (one example per class,
shown in one view) of ourKinect300 dataset [LLG∗15a].

2.2. 3D Model Dataset

The 3D benchmark dataset is built on the SHREC’13 Sketch
Track Benchmark (SHREC13STB). Totally, 1258 models
of 90 classes are selected to form the target 3D model
dataset. We use this dataset as our target 3D model dataset.
Some examples are shown in Fig.2.

Figure 2: Example 3D models in theSHREC13STB bench-
mark.

2.3. Evaluation Method

To have a comprehensive evaluation of the retrieval algo-
rithm, we employ seven commonly adopted performance
metrics in the 3D model retrieval community. They are
Precision-Recall (PR) diagram, Nearest Neighbor (NN),
First Tier (FT), Second Tier (ST), E-Measures (E), Dis-
counted Cumulated Gain (DCG) and Average Precision
(AP). We also have developed the code to compute them.
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3. Participants

Five groups have participated in the SHREC’16 track on 3D
Sketch-Based 3D Shape Retrieval. Nine (9) rank list results
(runs) for five (5) different methods developed by five (5)
groups have been submitted. The participants and their runs
are listed as follows:

• LSFMRsubmitted by Yachun Fan, Fuqing Duan and Lu
Qian from Beijing Normal University, Beijing, China
(Section4.1)

• CNN-PointandCNN-Edgesubmitted by Yuxiang Li and
Maks Ovsjanikov from Ecole Polytechnique, France (Sec-
tion 4.2)

• HOD1-4, HOD64-1, HOD64-2, andHOD64-4submitted
by Hedi Tabia from ENSEA and the University of Cergy-
Pontoise, France; and Hamid Laga from Murdoch Univer-
sity, Australia (Section4.3)

• CNN-SBRsubmitted by Yuxiang Ye, Yijuan Lu and Bo Li
from Texas State University, USA (Section4.4)

• CNN-Maxout-Siamesesubmitted by Huanpu Yin, Shui-
long Dong, Peng Liu, Ziyu Xue, and Haisheng Li from
Beijing Technology and Business University (Section4.5)

4. Methods

In this section, each participating approach is illustrated in
detail.

4.1. Localized Statistical Feature and Manifold
Ranking, by Y. Fan, F. Duan and L. Qian

This approach is based on the Bag of Feature (BoF)
paradigm. Figure3 illustrates the main steps of the approach.
Three parts of preprocessing, online retrieval and manifold
ranking are included in the approach.

Before visual vocabulary training, SVM is applied to re-
move the noise points in 3D sketches and PCA-based align-
ment is applied to normalize 3D models and 3D sketches.
The local features of the 3D sketch training data are clustered
by k-means method. A visual dictionary is built after cluster-
ing these feature descriptors. In this approach, the number of
the visual vocabulary is 1024.

In this approach, a 3D sketch is modeled as a collection
of surface points. Similarly, the 3D models are sampled by a
collection of points. The point sets of a 3D model are gener-
ated by referencing to the NPR method in [Her10]. The oc-
cluding contour points and boundary points of the 3D model
are calculated. The occluding contour points are the points
at which the normals are perpendicular to the viewing di-
rection. The boundary points are the points at which no two
faces share one edge.

Feature quantification is used to calculate the distribution
of occurrence of code words based on different visual vo-
cabularies for 3D models or 3D sketches. The indexing of

Figure 3: Main steps of the approach.

all the 3D features applies visual vocabulary as the prime
index, while the weight of the visual vocabulary in the 3D
model is used as the secondary index. All the visual vocabu-
lary weights of the 3D models are ranked and stored.

4.1.1. Localized statistical feature

In this approach, a new local feature vector named Localized
Statistical Feature (LSF) is proposed. This feature vector de-
scribes the local region shape as a point statistical result. The
local region comes with a dense grid division. The method
of dense subdivision increases the retrieval performance for
either local features or global features.

In order to statistically describe the 3D point distribu-
tion in a local region, each local region is divided into some
smaller sub-regions. Suppose that the local region is a box,
the sub-region is obtained by using a bisection method ap-
plied on each axis. The sub-region is called cell. The local
region is divided intoL×L×L cells.

The combined each cell feature value forms the local fea-
ture vector LSF. For each cell, the feature value is the num-
ber of points in the cell. All cells accumulate a local 1-D
vector as the local region feature representation.

Because the number of points in a 3D model or a 3D
sketch is not a fixed value, for two shapes of the same ob-
jects their point number distributions may be totally differ-
ent. Different from a global normalization method, a local
normalization method is utilized. For a global method, every
cell feature value is divided by the total number of points in
an 3D object. While, for a local method, each cell feature
value is divided by the total sum of the feature values of the
local region that the cell is belongs to.

For a comparison of two LSF vectors,χ2 distance is em-
ployed rather than Euclidean distance.

χ2(F1,F2)=

√

√

√

√

L3

∑
c=1

(
F1(c)−Eχ(F1)

Eχ(F1)
)+

L3

∑
c=1

(
F2(c)−Eχ(F2)

Eχ(F2)
)

(1)
In this function,F is the LSF vector,E function represents
the expectation of theF .
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4.1.2. Manifold ranking

Manifold can be embedded into a high-dimensional Eu-
clidean space which recovers its intrinsic structure. This ap-
proach is to rank the 3D objects with respect to their intrin-
sic structures. Two manifolds of features are created. One
manifold is for a 3D sketch which is compared with each
3D model. The other is for two different 3D models. In the
first manifold, 3D sketches are used to train the visual vo-
cabulary. In the second manifold, 3D models are used as the
training data. In this way, the high-precision retrieval results
can be obtained not only in the first manifold but also in the
second manifold. The higher retrieval precision achieved for
the retrieval between 3D sketches and 3D models, the better
effect it is for the 3D sketch query.

Given the feature vectorsχ = {x1, · · · ,xq,xq+1, · · · ,xn}⊂
RD of 3D sketches and 3D models, letr : x → R be a
ranking function that assigns each pointxi a ranking score
r i . An initial vector is defined asp = [p1, · · · , pn]

T , where
pi is the similarity between the query 3D sketch and the
ith 3D model. The cost functionC(r) is defined as fol-
lows [LLL ∗15],

C(r) =
1
2

n

∑
i, j=0

Wi j ‖
r i√
Dii

− r j
√

D j j
‖

2
+µ

n

∑
i=0

‖r i − pi‖2 (2)

whereW is the affinity matrix, andD is the diagonal matrix
Dii = ∑ j σWi j . µ> 0 is a regularization parameter.

The smaller the cost function is, the accurate the ranking
is. Thus,C(r) derivation operator is conducted byr, and the
convergent function of the sequence:r i(t) is generated as
below,

r∗ = (I −αS)−1p (3)

where, the matrixSis obtained through the symmetrical nor-
malization of the matrixW, S=D−1/2WD−1/2, andE is the
unit matrix.α is a parameter within (0,1), which defines the
origin of the obtained ranking score of a point during the
process of propagating the ranking score.r = [r1, · · · , rn]

T is
the final ranking score.

4.2. Shape retrieval based on CNN (CNN-Point and
CNN-Edge), by Y. Li, and M. Ovsjanikov

4.2.1. Pipeline

This 3D sketch-based shape retrieval method is also an im-
age classification task. Both a target model and a query
sketch are represented with a set of images, which are used
to train and test a convolutional neural network. The diagram
below shows the pipeline of this method combining training
and testing phases.

The offline training phase transforms target models to sets
of images, which has three steps:

• Step 1: Each model (all 1258 of them) is transformed to
point cloud with some noise;

Figure 4: Shape retrieval pipeline.

• Step 2: Each model is rendered from 120 uniformly dis-
tributed points of view to obtain 150960 images in total;

• Step 3: A neural network is trained on this dataset which
takes as input an image and outputs a vector of dimen-
sion 1258 representing the probability of becoming each
model.

Using this trained neural network, the online testing phase
consists of five steps:

• Step 1: Each 3D sketch is preprocessed usingEdge repre-
sentationor Point representation;

• Step 2: Each preprocessed sketch is rendered from 90 uni-
formly distributed points of view;

• Step 3: For each sketch, its 90 derived images are
tested with the neural network and the output vector was
summed up;

• Step 4: The model is retrieved which has the same index
as the maximum in the overall prediction vector;

• Step 5: The inverse function is used to get a distance-liked
result.

4.2.2. Target preprocessing

The preprocessing of the target dataset transforms 3D mod-
els to point clouds with some noise. For each model, noise
is randomly added alongside all edges according to their
lengths. The number of points in each model is about 1000.
Then each resulting point cloud model is rendered with a
128×128 grayscale image.

4.2.3. Query preprocessing

A specific noise-removal technique is not applied, but some
points are arbitrarily chosen to be removed if they are too
distant from their neighbors (in the sense of creation time).
Do notice that some sketches are completed ruined by this
method due to a large number of outliers.

4.2.3.1. Point representation: the point cloud is directly
used after denoising.

4.2.3.2. Edge representation: in addition to the denoised
point cloud, consecutive points are connected because they
are recorded one by one in order. This will give a sketch-
liked image.

Figure 5 shows one example for each of the above two
representations.
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Figure 5: From left to right are 3D model, noised 3D model,
point-based 3D sketch and edge-based 3D sketch.

4.3. Histogram of Oriented Distances, by H. Tabia and
H. Laga

This approach represents both 3D sketches and 3D models
using the joint distribution of two parameters accumulated
in a 2D histogram following an approach similar to spin im-
ages [JH99]. The descriptor, dubbed Histogram of Oriented
Distances, orHOD, is constructed as follows.

First, randomly samplen pointsP = {pi , i = 1...n} from
the shape. Then, compute for each pair of points

{

pi , p j
}

the
Euclidean distancedi j = ‖pi −p j‖ and measure the angleθi j
between the two vectors−→cpi and−→cpj , wherec is the shape’s
center of mass. Finally, compute the probability distribution
of the distanced ∈ R

+ and the orientationθ ∈ [0,π] of the
sampled pairs of points as a 2D histogramh(d,θ). Note that
the slice of the 2D histogram corresponding to a fixed ori-
entationθ is simply theD2 shape distribution [OFCD02] of
pairs of similarly oriented points from the center. By this
representation, the global structure of the 3D sketches will
be captured. The dissimilarity between the sketch and the
target object can be easily computed using theL2 distance
between the two distributions. In this implementation, four
different histogram sizes 64× 4, 64× 2, 64× 1 and 1× 4
are tested, wherek× l corresponds tok bins for the distance
andl bins for the orientation. The approach does not require
any preprocessing of both the target 3D shapes and the 3D
sketches than the normalization for scale and the sampling
of random points. Figure6 shows six different 64× 4 his-
tograms computed from six 3D sketches; (a) and (b) repre-
sent the histograms of two chairs, (c) and (d) are for two
scissors, while (e) and (f) are for two houses.

Figure 6: Example of HOD descriptors of some 3D sketch
shapes.

4.4. CNN-SBR, by Y. Ye, Y. Lu and B. Li

This Convolutional Neural Network (CNN)-based 3D
sketch-based shape retrieval architecture (CNN-SBR) is in-

spired by early sketch-based image retrieval work. The
state-of-the-art deep Convolutional Neural Network (CNN)
is employed in sketch object recognition and multiple 3D
model processing techniques are combined in this work.
First, pre-train the deep CNN model on the TU Berlin
dataset [EHA12], which contains 20,000 free-hand sketches
across 250 categories of daily objects, and obtain well-
learned weights for the CNN model. Then, convert all the 3D
sketches to multiple 2D sketch views for both the training
and the testing datasets. Next, perform data augmentation
for these 2D sketch views, and fine-tune the CNN model us-
ing previous well-learned weights. After that, the classifica-
tion results for each query 3D sketch based on its 2D sketch
views and a fine-tuned CNN model are obtained. Finally, ap-
ply majority vote and simple label matching to generate the
output result for each testing query 3D sketch. The proposed
CNN-SBR architecture is listed in Fig.7.

Figure 7: Illustration of CNN-SBR framework.

4.4.1. 2D sketch view generation

To adapt the CNN model for 3D sketch queries, the 3D
sketches need to be converted to 2D sketch views. All the
coordinates in each 3D sketch are projected into its six stan-
dard views (after aligned with PCA), and the coordinates are
converted to 2D depth images where the pixel value repre-
sents the distance to its view point (0 is the nearest while 255
is the furthest).

4.4.2. Data augmentation

Data augmentation is a commonly-used technique in ma-
chine learning techniques to prevent over-fitting. In this al-
gorithm, the 2D sketch views are replicated by 500 times
using random vertical and horizontal shift, rotation, and flip
operations.

4.4.3. Core Deep CNN model

On most popular image retrieval benchmarks, CNNs dom-
inate the top performance. As shown in Fig.8, Sketch-a-
Net, which is a sketch-based CNN model designed for sin-
gle sketch recognition problem, is applied as the core CNN
model in the 3D model retrieval system.

4.4.4. Result generation

For each 3D sketch, use majority vote algorithm to choose
the final classification label based on its six 2D sketch views.
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Figure 8: Core deep CNN model: Sketch-a-Net.

More specifically, for each 2D sketch view, a similarity vec-
tor (range:[0,1)) is obtained to predict categories. Thus, to-
tally six similarity vectors and six most similar labels for six
sketch views are obtained. Finally, use the formula “count of
most similar label + average similarity” to rank all the target
labels.

4.5. CNN-Maxout-Siamese, by H. Yin, S. Dong, P. Liu,
Z. Xue, and H. Li

There are mainly three steps in this method, which are as
follows.

4.5.1. Obtain 2D view and sketch pre-processing

In this approach, suggestive contours are used as the 2D line
drawing rendering method for 3D models. For each model,
two random sample views are chosen if their in-between an-
gles are larger than 45◦ to characterize a 3D model. Each
3D sketch is randomly projected to three 2D images. Be-
cause the original sketch image dataset contains only a lim-
ited number of training images, data augmentation is per-
formed to boost the performance.

4.5.2. Learn feature presentations

Siamese network, which typically takes a pair of images
for input, is used to learn feature presentations. The two
sub-nets of Siamese network have the same architecture–
Convolutional Neural Networks (CNN). The sub-net archi-
tecture is shown in Fig.9. To solve the over-fitting problem
in CNN, maxout network is chosen.

Figure 9: The sub-net architecture of Siamese network.

Given an inputx, a maxout hidden layer is computed by
the following function:

hi(x) = maxj∈[1,k]zi j (4)

wherezi j = xTWi j +bi j and the dimension ofW is d∗m∗k, d
denotes the dimension ofx, mdenotes the number of hidden

layer units, andk indicates the maximum number of “hidden
layer” units.

Meanwhile, due to the gap existing between the domain
of sketches and the domain of views, and the fact that the
Siamese network is commonly used for the inputs from the
same domain, two Siamese networks [WKL15] are defined:
one for the view domain, and the other one for the sketch do-
main. The loss function computes the loss from both within-
domain and cross-domain together:

▽(s1,s2,v1,v2,y) = L(s1,s2,y)+L(v1,v2,y)+L(s1,v1,y)
(5)

wheres1 ands2 are two sketches,v1 andv2 are two views,s1
andv1 are from the same class,s2 andv2 are from the same
class, and the loss function is of the following form:

L(x1,x2,y) = (1−y)αD2
w+yβexp−

2.77
β Dw (6)

4.5.3. Similarity distance calculation

After getting the features, similarity distances between mod-
els and sketches are calculated by Euclidean distance.

5. Results

In this section, we perform a comparative evaluation of the
nine runs of the five methods submitted by the five groups.
We measure retrieval performance based on the seven met-
rics mentioned in Section2.3: PR, NN, FT, ST, E, DCG and
AP.

As described in Section2, the complete query sketch
dataset is divided into the “Training” and “Testing” datasets,
which is to accustom to learning-based retrieval algorithms.
To provide complete reference performance data for both
learning-based methods and non-learning based approaches
(like ), we evaluate the submitted results on both the “Test-
ing” dataset and the “Complete” sketch dataset. Figure10
and Table1 compare three non-learning participating meth-
ods and two learning-based participating methods in terms
of the seven performance metrics on the above two datasets,
respectively. As a baseline, we also provide the baseline
method 3D shape histogram (3DSH) that we have imple-
mented in [LLG∗15a,LLG∗15b].

As shown in the aforementioned figure and table, in the
non-learning based category, Li’s CNN-Edge and CNN-
Point algorithms perform the best, followed by Tabia’s HOD
method, while the overall performance of all non-learning
based methods are close to each other. In the learning based
category, Ye’s CNN-SBR algorithm has better permanence
than Yin’s CNN-Maxout-Siamese. More details about the
retrieval performance with respect to different classes for
each participating method can be found in the track home-
page [SHR16].

In addition, compared to the baseline method 3D shape
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Figure 10: Precision-Recall diagram performance comparisons on different datasets of the SHREC’16 3D Sketch Track Bench-
mark for three non-learning based and two learning based participating methods.

Table 1: Performance metrics comparison on the SHREC’16 3D Sketch Track Benchmark.

Participant Method NN FT ST E DCG AP
Complete benchmark
LL [ LLG∗15a,LLG∗15b] 3DSH 0.029 0.021 0.038 0.021 0.254 0.029
Fan LSFMR 0.033 0.020 0.033 0.018 0.248 0.032

Li
CNN-Point 0.124 0.044 0.075 0.046 0.294 0.060
CNN-Edge 0.114 0.056 0.084 0.051 0.302 0.063

Tabia

HOD1-4 0.029 0.015 0.035 0.026 0.259 0.032
HOD64-1 0.052 0.031 0.053 0.034 0.274 0.044
HOD64-2 0.067 0.031 0.057 0.032 0.272 0.044
HOD64-4 0.124 0.019 0.022 0.013 0.230 0.026

Testing dataset
Ye CNN-SBR 0.222 0.251 0.320 0.186 0.471 0.314
Yin CNN-Maxout-Siamese 0.000 0.031 0.108 0.048 0.293 0.072

histogram (3DSH), all the three non-learning approaches
have achieved better overall performance, which further ad-
vances this research direction of 3D sketch-based 3D model
retrieval. However, as can be seen from Fig.10 and Ta-
ble1, the obtained retrieval performance of all the four non-
learning algorithms are relatively close to each other and also
still far from satisfactory.

On the other hand, though we cannot directly compare
non-learning approaches and learning approaches together,
we have found much more promising results in learning-
based approaches. Even in the top-performing non-learning
approaches Li’s CNN-Edge and CNN-Point, the deep learn-
ing approach CNN contributes a lot to its better accuracy

among the non-learning based approaches, in terms of auto-
matically learning the features.

Since most of existing sketch-based retrieval methods
drop apparently when adapted to this challenging 3D bench-
mark. Therefore, one urgent future work is to have more in-
vestigation in both learned and handcrafted features to de-
velop better algorithms that can be scalable to diverse types
of sketch queries, including 2D sketches or images and 3D
sketches. To achieve this, one approach is utilizing tech-
niques from other related disciplines, such as machine learn-
ing, especially the currently most popular and promising ma-
chine learning technique –deep learning– to automatically
learn the features, rather than selecting and fixing the fea-
tures beforehand.
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Finally, we classify all participating methods with respect
to the techniques employed: four participating groups (Fan,
Li, Ye, Yin) utilize local features while Tabia and the base-
line method (3DSH) employ a global feature. Three groups
(Li, Ye, Yin) employ deep learning framework to learn the
features automatically, while both of the other two groups
(Fan and Tabia) extract a statistical distribution of local fea-
tures to represent a 3D model/sketch. But Fan further ap-
plies the Bag-of-Features framework and Manifold Ranking
as well. On the other hand, Tabia directly computes the dis-
tance based on the distributions of sketches and models, sim-
ilar to that in the baseline approach 3DSH.

6. Conclusions

3D sketches are potential in bridging the semantic gap
existing between the inaccurate 2D sketch queries and
accurate 3D model representations for the same ob-
ject we want to search in the scenario of 2D sketch-
based 3D model retrieval. In conclusion, this 3D sketch-
based 3D model retrieval track is to further foster the
challenging and interesting research direction of sketch-
based 3D model retrieval, encouraged by the success
of SHREC’12 [LSG∗12, LLG∗14], SHREC’13 [LLG∗13,
LLG∗14] and SHREC’14 [LLL ∗14, LLL ∗15] sketch-based
3D shape retrieval tracks. Though 3D sketch-based shape
retrieval is even more challenging than 2D based, we still
have five groups who have successfully participated in the
track and contributed nine runs of five methods. This track
provides a common platform to solicit current sketch-based
3D model retrieval approaches in terms of this 3D sketch-
based retrieval scenario. It also helps us identify state-of-the-
art methods as well as future research directions for this re-
search area. We also hope that the 3D sketch retrieval bench-
mark, together with the retrieval results we have obtained in
the track, will become a useful reference for researchers in
this community.
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