114 research outputs found

    On variability and reliability of poly-Si thin-film transistors

    Get PDF
    In contrast to conventional bulk-silicon technology, polysilicon (poly-Si) thin-film transistors (TFTs) can be implanted in flexible substrate and can have low process temperature. These attributes make poly-Si TFT technology more attractive for new applications, such as flexible displays, biosensors, and smart clothing. However, due to the random nature of grain boundaries (GBs) in poly-Si film and self-heating enhanced negative bias temperature instability (NBTI), the variability and reliability of poly-Si TFTs are the main obstacles that impede the application of poly-Si TFTs in high-performance circuits. The primary focus of this dissertation is to develop new design methodologies and modeling techniques for facilitating new applications of poly-Si TFT technology. In order to do that, a physical model is first presented to characterize the GB-induced transistor threshold voltage (V th)variations considering not only the number but also the position and orientation of each GB in 3-D space. The fast computation time of the proposed model makes it suitable for evaluation of GB-induced transistor Vthvariation in the early design phase. Furthermore, a self-consistent electro-thermal model that considers the effects of device geometry, substrate material, and stress conditions on NBTI is proposed. With the proposed modeling methodology, the significant impacts of device geometry, substrate, and supply voltage on NBTI in poly-Si TFTs are shown. From a circuit design perspective, a voltage programming pixel circuit is developed for active-matrix organic light emitting diode (AMOLED) displays for compensating the shift of Vth and mobility in driver TFTs as well as compensating the supply voltage degradation. In addition, a self-repair design methodology is proposed to compensate the GB-induced variations for liquid crystal displays (LCDs) and AMOLED displays. Based on the simulation results, the proposed circuit can decrease the required supply voltage by 20% without performance and yield degradation. In the final section of this dissertation, an optimization methodology for circuit-level reliability tests is explored. To effectively predict circuit lifetime, accelerated aging (i.e. elevated voltage and temperature) is commonly applied in circuit-level reliability tests, such as constant voltage stress (CVS) and ramp voltage stress (RVS) tests. However, due to the accelerated aging, shifting of dominant degradation mechanism might occur leading to the wrong lifetime prediction. To get around this issue, we proposed a technique to determine the proper stress range for accelerated aging tests

    Thin-Film Transistor Integration for Biomedical Imaging and AMOLED Displays

    Get PDF
    Thin film transistor (TFT) backplanes are being continuously researched for new applications such as active-matrix organic light emitting diode (AMOLED) displays, sensors, and x-ray imagers. However, the circuits implemented in presently available fabrication technologies including poly silicon (poly-Si), hydrogenated amorphous silicon (a-Si:H), and organic semiconductor, are prone to spatial and/or temporal non-uniformities. While current-programmed active matrix (AM) can tolerate mismatches and non-uniformity caused by aging, the long settling time is a significant limitation. Consequently, acceleration schemes are needed and are proposed to reduce the settling time to 20 µs. This technique is used in the development of a pixel circuit and system for biomedical imager and sensor. Here, a metal-insulator-semiconductor (MIS) capacitor is adopted for adjustment and boost of the circuit gain. Thus, the new pixel architecture supports multi-modality imaging for a wide range of applications with various input signal intensities. Also, for applications with lower current levels, a fast current-mode line driver is developed based on positive feedback which controls the effect of the parasitic capacitance. The measured settling time of a conventional current source is around 2 ms for a 100-nA input current and 200-pF parasitic capacitance whereas it is less than 4 μs for the driver presented here. For displays needed in mobile devices such as cell phones and DVD players, another new driving scheme is devised that provides for a high temporal stability, low-power consumption, high tolerance of temperature variations, and high resolution. The performance of the new driving scheme is demonstrated in a 9-inch fabricated display intended for DVD players. Also, a multi-modal imager pixel circuit is developed using this technique to provide for gain-adjustment capability. Here, the readout operation is not destructive, enabling the use of low-cost readout circuitry and noise reduction techniques. In addition, a highly stable and reliable driving scheme, based on step calibration is introduced for high precision displays and imagers. This scheme takes advantage of the slow aging of the electronics in the backplane to simplify the drive electronics. The other attractive features of this newly developed driving scheme are its simplicity, low-power consumption, and fast programming critical for implementation of large-area and high-resolution active matrix arrays for high precision

    Pixel Circuits and Driving Schemes for Active-Matrix Organic Light-Emitting Diode Displays

    Get PDF
    Rapid progress over the last decade on thin film transistor (TFT) active matrix organic light emitting (AMOLED) displays led to the emergence of high-performance, low-power, low-cost flat panel displays. Despite the shortcomings of the active matrix that are associated with the instability and low mobility of TFTs, the amorphous silicon TFT technology still remains the primary solution for the AMOLED backplane. To take advantage of this technology, it is crucial to develop driving schemes and circuit techniques to compensate for the limitations of the TFTs. The driving schemes proposed in this thesis address these challenges, in which, the sensitivity of the OLED current to the transistor variations is reduced significantly. This is achieved by comparing the data signal with a feedback signal associated with the pixel current by means of an external driving circuit through a column feedback line. Depending on the nature of the feedback signal, (i.e. current or voltage) several pixel circuits and external drivers are proposed. New AMOLED pixel circuits with voltage and current feedback are designed, simulated, fabricated, and tested. The performance of these circuits is analyzed in terms of their stability, settling time, power efficiency, noise, and temperature-dependence. For the pixel circuits with current feedback, an operational transresistance amplifier is designed and implemented in a high-voltage CMOS process. Measurement results for both voltage and current feedback driving schemes indicate less than a 2%/V sensitivity to shifts in the threshold voltage of the TFTs. By using current feedback and an accelerating pulse, programming times less than 50 s are achieved

    Energy- and Area-Efficient DC-DC Converters Fabricated in Low Temperature Crystalline Silicon-on-Glass Technology

    Get PDF
    The display industry is moving toward the development of system-on-panel (SOP) architectures to make increasingly compact small-format displays and reduce manufacturing cost. Presently, the voltages required by pixel drivers, row scan logic, and timing circuitry, are generated from a single supply voltage using charge pumps fabricated on a high voltage, monolithic integrated circuit mounted off the glass panel. In this work, a new high-efficiency charge pump architecture for fabrication on display glass substrates is presented. The distinguishing feature of this work is the nestedclock timing scheme used to improve power efficiency and reduce output voltage noise without the use of external capacitors. The circuit is intended for implementation on a novel low-temperature crystalline silicon thin-film transistor technology (SiOG) that exhibits superior performance compared to other low-temperature fabrication processes. Based on simulation results, the proposed circuit exhibits both smaller ripple voltage (61% smaller) and improved power efficiency (80.6% vs. 67.8%) when compared to previous work

    Wide Bandwidth - High Accuracy Control Loops in the presence of Slow Varying Signals and Applications in Active Matrix Organic Light Emitting Displays and Sensor Arrays

    Get PDF
    This dissertation deals with the problems of modern active matrix organic light-emitting diode AMOLED display back-plane drivers and sensor arrays. The research described here, aims to classify recently utilized compensation techniques into distinct groups and further pinpoint their advantages and shortcomings. Additionally, a way of describing the loops as mathematical constructs is utilized to derive new circuits from the analog design perspective. A novel principle on display driving is derived by observing those mathematical control loop models and it is analyzed and evaluated as a novel way of pixel driving. Specifically, a new feedback current programming architecture and method is described and validated through experiments, which is compatible with AMOLED displays having the two transistor one capacitor (2T1C) pixel structure. The new pixel programming approach is compatible with all TFT technologies and can compensate for non-uniformities in both threshold voltage and carrier mobility of the pixel OLED drive TFT. Data gathered show that a pixel drive current of 20 nA can be programmed in less than 10usec. This new approach can be implemented within an AMOLED external or integrated display data driver. The method to achieve robustness in the operation of the loop is also presented here, observed through a series of measurements. All the peripheral blocks implementing the design are presented and analyzed through simulations and verified experimentally. Sources of noise are identified and eliminated, while new techniques for better isolation from digital noise are described and tested on a newly fabricated driver. Multiple versions of the new proposed circuit are outlined, simulated, fabricated and measured to evaluate their performance.A novel active matrix array approach suitable for a compact multi-channel gas sensor platform is also described. The proposed active matrix sensor array utilizes an array of P-i-N diodes each connected in series with an Inter-Digitated Electrode (IDE). The functionality of 8x8 and 16x16 sensor arrays measured through external current feedback loops is also presented for the 8x8 arrays and the detection of ammonia (NH3) and chlorine (Cl2) vapor sources is demonstrated

    Comparison of pentacene and amorphous silicon AMOLED display driver circuits

    Get PDF
    © 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    전류 센싱 피드백 시스템을 이용한 고안정성 산화물 TFT 쉬프트 레지스터의 설계 및 제작

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 정덕균.Integration of shift registers on the glass panel allows the display to be thinner, lighter, and cheaper to produce, thanks to the reduction of the number of ICs for scanning horizontal lines. Circuits of the shift register employing n-type thin film transistors (TFTs), such as hydrogenated amorphous silicon (a-Si:H) and oxide TFTs, have been reported. Recently, oxide TFTs attract much attention due to their high mobility (5~10 cm2/V∙s) compared with that of a-Si:H TFT (0.8cm2/V∙s). However, oxide TFTs often suffer from severe degradation of the threshold voltage (VTH) against the temperature and electrical stress. In this paper, in order to compensate the instability of oxide TFTs in the shift register, an oxide TFT with double gates, which can control VTH by varying the top gate bias (VTG) is adopted. The top gate of the double-gate TFT can be fabricated in the same process for the pixel IZO (Indium Zinc Oxide) so that an additional process only for the top gate is not required. Adequate VTG is provided timely, adaptively to the gate of the oxide TFTs to stabilize the threshold voltage. The fabrication result shows that the proposed shift register using VTG set at an adapted value become stable at 100℃ whereas the conventional one is mal-functioning. The optimum VTG varies from product to product and changes continuously over the lifetime of the display. Therefore, the feedback driving system suitable for the proposed shift register is required to search the optimum VTG. The system has two main functionsthe first is to sense the current of shift register and the second is the searching algorithm for finding the optimum VTG. When the transistors are degraded by an external stress, the current of the whole shift registers is changed. The information about the VTH degradation in the shift register can be gathered via current sensing circuit. The sensed current is integrated to generate the output and is forwarded to an ADC. The binary-converted current of shift register is processed by the proposed algorithm in the digital domain for obtaining an optimum VTG and then the result is converted back to analog to generate VTG. The IC implementing such functions is fabricated in a 0.18 μm BCDMOS process. When the shift register current is measured on the conventional system with increasing temperature up to 80℃, it is increased to more than 10 times than that at the room temperature. However, the proposed feedback system keeps a highly stable (<13%) current level of shift register up to 80℃ with an optimized VTG.Abstracts i Table of Contents iii List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Background 2 1.2 Outline 7 Chapter 2 Review of oxide-based TFT device and N-type TFT circuit design 8 2.1 Overview 9 2.1.1 Characteristics of Oxide TFT 9 2.2 Oxide-based TFT 14 2.2.1 Electrical characteristics of oxide-based TFT 14 2.2.2 Stability of oxide-based TFT 18 2.3 NMOS driving circuit 24 2.3.1 Bootstrapping driving circuit 24 2.3.2 Shift register with n-type TFT 28 Chapter 3 Proposed Oxide TFT Shift Register 37 3.1 Overview 38 3.2 Characteristic of Double Gate TFT 39 3.3 Design of New shift register 46 3.3.1 Simulation Result of Conventional shift register 46 3.3.2 New shift register using Double Gate TFT 51 3.3.3 Simulation Modeling of Double Gate TFT 58 3.3.4 Simulation and Experimental Result 61 Chapter 4 Real Time Current-Sensing Feedback Compensation System 71 4.1 Overview 72 4.2 System Architecture 74 4.3 Circuit Design 77 4.3.1 Current Sensing Block 77 4.3.2 ADC/DAC Block 85 4.4 Optimum Point Searching Algorithm 100 4.5 System Verification 106 Chapter 5 Summary 116 Appendix A SPICE models 118 Bibliography 120Docto
    corecore