35 research outputs found

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images

    3D SEM Surface Reconstruction: An Optimized, Adaptive, and Intelligent Approach

    Get PDF
    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, including biological, mechanical, and material sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and information about their three-dimensional (3D) surface structures. Having 3D surfaces from SEM images would provide true anatomic shapes of micro samples which would allow for quantitative measurements and informative visualization of the systems being investigated. In this research project, we novel design and develop an optimized, adaptive, and intelligent multi-view approach named 3DSEM++ for 3D surface reconstruction of SEM images, making a 3D SEM dataset publicly and freely available to the research community. The work is expected to stimulate more interest and draw attention from the computer vision and multimedia communities to the fast-growing SEM application area

    3D SEM Surface Reconstruction from Multi-View Images

    Get PDF
    The scanning electron microscope (SEM), a promising imaging equipment has been used to determine the surface properties such as compositions or geometries of specimens by achieving increased magnification, contrast, and resolution. SEM micro-graphs, however, remain two-dimensional (2D). The knowledge and information about their three-dimensional (3D) surface structures are critical in many real-world applications. Having 3D surfaces from SEM images provides true anatomic shapes of micro-scale samples which allow for quantitative measurements and informative visualization of the systems being investigated. A novel multi-view approach for reconstruction of SEM images is demonstrated in this research project. This thesis focuses on the 3D SEM surface reconstruction from multi-view images. We investigate an approach to reconstruction of 3D surfaces from stereo SEM image pairs and then discuss how 3D point clouds may be registered to generate more complete 3D shapes from multi-views of the microscopic specimen. Then we introduce a method that uses an algorithm called KAZE, which reconstructs 3D surfaces from multiple views of objects. Then Numerous results are presented to show the effectiveness of the presented approaches

    Prioritizing Content of Interest in Multimedia Data Compression

    Get PDF
    Image and video compression techniques make data transmission and storage in digital multimedia systems more efficient and feasible for the system's limited storage and bandwidth. Many generic image and video compression techniques such as JPEG and H.264/AVC have been standardized and are now widely adopted. Despite their great success, we observe that these standard compression techniques are not the best solution for data compression in special types of multimedia systems such as microscopy videos and low-power wireless broadcast systems. In these application-specific systems where the content of interest in the multimedia data is known and well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by identifying and prioritizing multimedia data's content of interest, new compression methods can be invented that are far more effective than standard techniques. In this dissertation, a set of new data compression methods based on the idea of prioritizing the content of interest has been proposed for three different kinds of multimedia systems. I will show that the key to designing efficient compression techniques in these three cases is to prioritize the content of interest in the data. The definition of the content of interest of multimedia data depends on the application. First, I show that for microscopy videos, the content of interest is defined as the spatial regions in the video frame with pixels that don't only contain noise. Keeping data in those regions with high quality and throwing out other information yields to a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy beacon based system, practical multimedia data storage and transmission is possible by prioritizing content of interest. I designed custom image compression techniques that preserve edges in a binary image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving object compression method that prioritizes the content of interest.Doctor of Philosoph

    Image Processing Systems and Algorithms for estimating Deformations of Aircraft Structures in Flight

    Get PDF
    If you have ever been on an aircraft and looked at the window, you may have noticed the remarkable deformations of its wings. This observation actually conveys a lot of information about the aerodynamic efforts that are applied to the aircraft. Long before the first flight of an aircraft, manufacturers are able to predict its mechanical behavior in various scenarii depending for instance on the aircraft weight, speed or angle of attack, based on accurate theoretical models. As part of the aircraft certification procedure, these models have to be validated and refined through in-flight estimation of wing deformations. However, as the quality and accuracy of the wing models increase, the methods used to obtain the actual measurements should also evolve. In this work, a new system is developed and evaluated to estimate the 3D shape of a wing in flight. To answer the new needs of dense mapping, precision, or frequency, while introducing no disturbance on the wing aerodynamic behavior, this study is focusing on the methods of non-contact 3D reconstruction. After performing a detailed study about state-ofthe-art systems in this field, a photogrammetry approach using multiple cameras installed at the aircraft windows was retained, and a full algorithmic and hardware system was developed. Similarly to most standard photogrammetry methods, the proposed approach is based on Bundle Adjustment (BA), a classical method that simultaneously estimates camera positions and surrounding 3D scene. BA is an iterative optimization algorithm that aims at minimizing a non-convex and non-linear cost function. Therefore, one cannot guarantee its convergence to a global minimum, and the choice of the initial conditions is crucial in practical applications. Consequently, the application of photogrammetry to 3D wing reconstruction in flight is a very challenging problem, due to strong installation constraints, and highly varying environment with vibrations, luminosity changes, potential reflections and shadows. To face these challenges, this work presents a new constrained BA, which uses prior knowledge resulting from wing mechanical limits beyond which the wing would break, and improves reconstruction results as demonstrated through realistic tests. In a second step, an in-depth study of error sources and reconstruction uncertainty is provided in order to guarantee the quality of the 3D estimation, as well as the possibility of having a better interpretation of reconstruction errors. To this aim, all potential sources of uncertainty are evaluated, and propagated through the proposed framework using three approaches: analytical calculation, Monte-Carlo simulation, and experimental validation on synthetic images. The different implementations and results allowed one to conclude on the advantages and disadvantages of each method. They also prove that the developed system meets the expectations of Airbus. Finally, the designed system is validated on real tests with an A350-1000 of the flight test center in Airbus. These experimentations conducted in real conditions show the pertinence of the proposed solution with respect to the observed sources of uncertainty, and provide promising results

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Widening the view angle of auto-multiscopic display, denoising low brightness light field data and 3D reconstruction with delicate details

    Get PDF
    This doctoral thesis will present the results of my work into widening the viewing angle of the auto-multiscopic display, denoising light filed data the enhancement of captured light filed data captured in low light circumstance, and the attempts on reconstructing the subject surface with delicate details from microscopy image sets. The automultiscopic displays carefully control the distribution of emitted light over space, direction (angle) and time so that even a static image displayed can encode parallax across viewing directions (light field). This allows simultaneous observation by multiple viewers, each perceiving 3D from their own (correct) perspective. Currently, the illusion can only be effectively maintained over a narrow range of viewing angles. We propose and analyze a simple solution to widen the range of viewing angles for automultiscopic displays that use parallax barriers. We insert a refractive medium, with a high refractive index, between the display and parallax barriers. The inserted medium warps the exitant lightfield in a way that increases the potential viewing angle. We analyze the consequences of this warp and build a prototype with a 93% increase in the effective viewing angle. Additionally, we developed an integral images synthesis method that can address the refraction introduced by the inserted medium efficiently without the use of ray tracing. Capturing light field image with a short exposure time is preferable for eliminating the motion blur but it also leads to low brightness in a low light environment, which results in a low signal noise ratio. Most light field denoising methods apply regular 2D image denoising method to the sub-aperture images of a 4D light field directly, but it is not suitable for focused light field data whose sub-aperture image resolution is too low to be applied regular denoising methods. Therefore, we propose a deep learning denoising method based on micro lens images of focused light field to denoise the depth map and the original micro lens image set simultaneously, and achieved high quality total focused images from the low focused light field data. In areas like digital museum, remote researching, 3D reconstruction with delicate details of subjects is desired and technology like 3D reconstruction based on macro photography has been used successfully for various purposes. We intend to push it further by using microscope rather than macro lens, which is supposed to be able to capture the microscopy level details of the subject. We design and implement a scanning method which is able to capture microscopy image set from a curve surface based on robotic arm, and the 3D reconstruction method suitable for the microscopy image set

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Perception of Unstructured Environments for Autonomous Off-Road Vehicles

    Get PDF
    Autonome Fahrzeuge benötigen die FĂ€higkeit zur Perzeption als eine notwendige Voraussetzung fĂŒr eine kontrollierbare und sichere Interaktion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption fĂŒr strukturierte Innen- und Außenumgebungen deckt wirtschaftlich lukrative Bereiche, wie den autonomen Personentransport oder die Industrierobotik ab, wĂ€hrend die Perzeption unstrukturierter Umgebungen im Forschungsfeld der Umgebungswahrnehmung stark unterreprĂ€sentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine besondere Herausforderung dar, da die vorhandenen, natĂŒrlichen und gewachsenen Geometrien meist keine homogene Struktur aufweisen und Ă€hnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies erschwert die Erfassung dieser Umgebungen und deren Interpretation, sodass Perzeptionsmethoden speziell fĂŒr diesen Anwendungsbereich konzipiert und optimiert werden mĂŒssen. In dieser Dissertation werden neuartige und optimierte Perzeptionsmethoden fĂŒr unstrukturierte Umgebungen vorgeschlagen und in einer ganzheitlichen, dreistufigen Pipeline fĂŒr autonome GelĂ€ndefahrzeuge kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die vorgeschlagenen klassischen Methoden und maschinellen Lernmethoden (ML) zur Perzeption bzw.~Wahrnehmung ergĂ€nzen sich gegenseitig. DarĂŒber hinaus ermöglicht die Kombination von Perzeptions- und Validierungsmethoden fĂŒr jede Ebene eine zuverlĂ€ssige Wahrnehmung der möglicherweise unbekannten Umgebung, wobei lose und eng gekoppelte Validierungsmethoden kombiniert werden, um eine ausreichende, aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu gewĂ€hrleisten. Alle Methoden wurden als einzelne Module innerhalb der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipeline entwickelt, und ihre flexible Kombination ermöglicht verschiedene Pipelinedesigns fĂŒr eine Vielzahl von GelĂ€ndefahrzeugen und AnwendungsfĂ€llen je nach Bedarf. Low-Level-Perzeption gewĂ€hrleistet eine eng gekoppelte Konfidenzbewertung fĂŒr rohe 2D- und 3D-Sensordaten, um SensorausfĂ€lle zu erkennen und eine ausreichende Genauigkeit der Sensordaten zu gewĂ€hrleisten. DarĂŒber hinaus werden neuartige Kalibrierungs- und RegistrierungsansĂ€tze fĂŒr Multisensorsysteme in der Perzeption vorgestellt, welche lediglich die Struktur der Umgebung nutzen, um die erfassten Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz zur Registrierung mehrerer 3D~Light Detection and Ranging (LiDAR) Sensoren und ein vertrauensbasiertes Framework, welches verschiedene Registrierungsmethoden kombiniert und die Registrierung verschiedener Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei validiert die Kombination mehrerer Registrierungsmethoden die Registrierungsergebnisse in einer eng gekoppelten Weise. Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstrukturierter Umgebungen mit zwei Verfahren zur SchĂ€tzung der DisparitĂ€t von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren fĂŒr Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validierungsdaten erfordert, und ein zweites Verfahren, welches die DisparitĂ€t aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schĂ€tzt. Neuartige DisparitĂ€tsfehlermetriken und eine Evaluierungs-Toolbox fĂŒr die 3D-Rekonstruktion von Stereobildern ergĂ€nzen die vorgeschlagenen Methoden zur DisparitĂ€tsschĂ€tzung aus Stereobildern und ermöglichen deren lose gekoppelte Validierung. High-Level-Perzeption konzentriert sich auf die Interpretation von einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung und Hindernisvermeidung. Eine DomĂ€nentransferanalyse fĂŒr State-of-the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfehlungen fĂŒr eine möglichst exakte Segmentierung in neuen ZieldomĂ€nen ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainingsansatz fĂŒr 3D-Segmentierungsverfahren mit CNNs kann die benötigte Menge an Trainingsdaten weiter reduzieren. Methoden zur ErklĂ€rbarkeit kĂŒnstlicher Intelligenz vor und nach der Modellierung ermöglichen eine lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden mit Datensatzbewertung und modellunabhĂ€ngigen ErklĂ€rungen fĂŒr CNN-Vorhersagen. Altlastensanierung und MilitĂ€rlogistik sind die beiden HauptanwendungsfĂ€lle in unstrukturierten Umgebungen, welche in dieser Arbeit behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die LĂŒcke zwischen der Entwicklung einzelner Methoden und ihrer Integration in die Verarbeitungskette fĂŒr autonome GelĂ€ndefahrzeuge mit Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden kann. Zusammenfassend lĂ€sst sich sagen, dass die vorgeschlagene Pipeline flexible Perzeptionslösungen fĂŒr autonome GelĂ€ndefahrzeuge bietet und die begleitende Validierung eine exakte und vertrauenswĂŒrdige Perzeption unstrukturierter Umgebungen gewĂ€hrleistet
    corecore