335 research outputs found

    Enhanced Hardware Security Using Charge-Based Emerging Device Technology

    Get PDF
    The emergence of hardware Trojans has largely reshaped the traditional view that the hardware layer can be blindly trusted. Hardware Trojans, which are often in the form of maliciously inserted circuitry, may impact the original design by data leakage or circuit malfunction. Hardware counterfeiting and IP piracy are another two serious issues costing the US economy more than $200 billion annually. A large amount of research and experimentation has been carried out on the design of these primitives based on the currently prevailing CMOS technology. However, the security provided by these primitives comes at the cost of large overheads mostly in terms of area and power consumption. The development of emerging technologies provides hardware security researchers with opportunities to utilize some of the otherwise unusable properties of emerging technologies in security applications. In this dissertation, we will include the security consideration in the overall performance measurements to fully compare the emerging devices with CMOS technology. The first approach is to leverage two emerging devices (Silicon NanoWire and Graphene SymFET) for hardware security applications. Experimental results indicate that emerging device based solutions can provide high level circuit protection with relatively lower performance overhead compared to conventional CMOS counterpart. The second topic is to construct an energy-efficient DPA-resilient block cipher with ultra low-power Tunnel FET. Current-mode logic is adopted as a circuit-level solution to countermeasure differential power analysis attack, which is mostly used in the cryptographic system. The third investigation targets on potential security vulnerability of foundry insider\u27s attack. Split manufacturing is adopted for the protection on radio-frequency (RF) circuit design

    Security Aspects of Printed Electronics Applications

    Get PDF
    Gedruckte Elektronik (Printed Electronics (PE)) ist eine neu aufkommende Technologie welche komplementär zu konventioneller Elektronik eingesetzt wird. Dessen einzigartigen Merkmale führten zu einen starken Anstieg von Marktanteilen, welche 2010 \$6 Milliarden betrugen, \$41 Milliarden in 2019 und in 2027 geschätzt \$153 Milliarden. Gedruckte Elektronik kombiniert additive Technologien mit funktionalen Tinten um elektronische Komponenten aus verschiedenen Materialien direkt am Verwendungsort, kosteneffizient und umweltfreundlich herzustellen. Die dabei verwendeten Substrate können flexibel, leicht, transparent, großflächig oder implantierbar sein. Dadurch können mit gedruckter Elektronik (noch) visionäre Anwendungen wie Smart-Packaging, elektronische Einmalprodukte, Smart Labels oder digitale Haut realisiert werden. Um den Fortschritt von gedruckten Elektronik-Technologien voranzutreiben, basierten die meisten Optimierungen hauptsächlich auf der Erhöhung von Produktionsausbeute, Reliabilität und Performance. Jedoch wurde auch die Bedeutung von Sicherheitsaspekten von Hardware-Plattformen in den letzten Jahren immer mehr in den Vordergrund gerückt. Da realisierte Anwendungen in gedruckter Elektronik vitale Funktionalitäten bereitstellen können, die sensible Nutzerdaten beinhalten, wie zum Beispiel in implantierten Geräten und intelligenten Pflastern zur Gesundheitsüberwachung, führen Sicherheitsmängel und fehlendes Produktvertrauen in der Herstellungskette zu teils ernsten und schwerwiegenden Problemen. Des Weiteren, wegen den charakteristischen Merkmalen von gedruckter Elektronik, wie zum Beispiel additive Herstellungsverfahren, hohe Strukturgröße, wenige Schichten und begrenzten Produktionsschritten, ist gedruckte Hardware schon per se anfällig für hardware-basierte Attacken wie Reverse-Engineering, Produktfälschung und Hardware-Trojanern. Darüber hinaus ist die Adoption von Gegenmaßnahmen aus konventionellen Technologien unpassend und ineffizient, da solche zu extremen Mehraufwänden in der kostengünstigen Fertigung von gedruckter Elektronik führen würden. Aus diesem Grund liefert diese Arbeit eine Technologie-spezifische Bewertung von Bedrohungen auf der Hardware-Ebene und dessen Gegenmaßnahmen in der Form von Ressourcen-beschränkten Hardware-Primitiven, um die Produktionskette und Funktionalitäten von gedruckter Elektronik-Anwendungen zu schützen. Der erste Beitrag dieser Dissertation ist ein vorgeschlagener Ansatz um gedruckte Physical Unclonable Functions (pPUF) zu entwerfen, welche Sicherheitsschlüssel bereitstellen um mehrere sicherheitsrelevante Gegenmaßnahmen wie Authentifizierung und Fingerabdrücke zu ermöglichen. Zusätzlich optimieren wir die multi-bit pPUF-Designs um den Flächenbedarf eines 16-bit-Schlüssels-Generators um 31\% zu verringern. Außerdem entwickeln wir ein Analyse-Framework basierend auf Monte Carlo-Simulationen für pPUFs, mit welchem wir Simulationen und Herstellungs-basierte Analysen durchführen können. Unsere Ergebnisse haben gezeigt, dass die pPUFs die notwendigen Eigenschaften besitzen um erfolgreich als Sicherheitsanwendung eingesetzt zu werden, wie Einzigartigkeit der Signatur und ausreichende Robustheit. Der Betrieb der gedruckten pPUFs war möglich bis zu sehr geringen Betriebsspannungen von nur 0.5 V. Im zweiten Beitrag dieser Arbeit stellen wir einen kompakten Entwurf eines gedruckten physikalischen Zufallsgenerator vor (True Random Number Generator (pTRNG)), welcher unvorhersehbare Schlüssel für kryptographische Funktionen und zufälligen "Authentication Challenges" generieren kann. Der pTRNG Entwurf verbessert Prozess-Variationen unter Verwendung von einer Anpassungsmethode von gedruckten Widerständen, ermöglicht durch die individuelle Konfigurierbarkeit von gedruckten Schaltungen, um die generierten Bits nur von Zufallsrauschen abhängig zu machen, und damit ein echtes Zufallsverhalten zu erhalten. Die Simulationsergebnisse legen nahe, dass die gesamten Prozessvariationen des TRNGs um das 110-fache verbessert werden, und der zufallsgenerierte Bitstream der TRNGs die "National Institute of Standards and Technology Statistical Test Suit"-Tests bestanden hat. Auch hier können wir nachweisen, dass die Betriebsspannungen der TRNGs von mehreren Volt zu nur 0.5 V lagen, wie unsere Charakterisierungsergebnisse der hergestellten TRNGs aufgezeigt haben. Der dritte Beitrag dieser Dissertation ist die Beschreibung der einzigartigen Merkmale von Schaltungsentwurf und Herstellung von gedruckter Elektronik, welche sehr verschieden zu konventionellen Technologien ist, und dadurch eine neuartige Reverse-Engineering (RE)-Methode notwendig macht. Hierfür stellen wir eine robuste RE-Methode vor, welche auf Supervised-Learning-Algorithmen für gedruckte Schaltungen basiert, um die Vulnerabilität gegenüber RE-Attacken zu demonstrieren. Die RE-Ergebnisse zeigen, dass die vorgestellte RE-Methode auf zahlreiche gedruckte Schaltungen ohne viel Komplexität oder teure Werkzeuge angewandt werden kann. Der letzte Beitrag dieser Arbeit ist ein vorgeschlagenes Konzept für eine "one-time programmable" gedruckte Look-up Table (pLUT), welche beliebige digitale Funktionen realisieren kann und Gegenmaßnahmen unterstützt wie Camouflaging, Split-Manufacturing und Watermarking um Attacken auf der Hardware-Ebene zu verhindern. Ein Vergleich des vorgeschlagenen pLUT-Konzepts mit existierenden Lösungen hat gezeigt, dass die pLUT weniger Flächen-bedarf, geringere worst-case Verzögerungszeiten und Leistungsverbrauch hat. Um die Konfigurierbarkeit der vorgestellten pLUT zu verifizieren, wurde es simuliert, hergestellt und programmiert mittels Tintenstrahl-gedruckter elektrisch leitfähiger Tinte um erfolgreich Logik-Gatter wie XNOR, XOR und AND zu realisieren. Die Simulation und Charakterisierungsergebnisse haben die erfolgreiche Funktionalität der pLUT bei Betriebsspannungen von nur 1 V belegt

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Stealthy River Navigation in Jungle Combat Conditions

    Get PDF
    One of the biggest challenges for Brazilian military logisticians is to support effective jungle warfare for both real and training operations carried out by their combat forces in the Amazonian region. The jungle\u27s heat, humidity, and dense vegetation put significant demands on the supply chain. Further, because of the difficulties of land or air transportation, water transport is the most reasonable transportation option to sustain these deployed forces. Planners must select from among the available watercourses those whose surroundings provide stealthy navigation to the combat force location where the requested supplies can be safely unloaded. We seek a method of determining a path through a river network that blends short transit times with maximal shade coverage from forest growth along the riverbanks. We combine an astronomical algorithm for computing shadow coverage with Dijkstra\u27s shortest path algorithm to determine the start time and routing information necessary for a supply boat to travel from a depot to a resupply point that minimizes weighted risk, which is defined as the product of shade coverage and arc transit time

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Single-photon detection techniques for underwater imaging

    Get PDF
    This Thesis investigates the potential of a single-photon depth profiling system for imaging in highly scattering underwater environments. This scanning system measured depth using the time-of-flight and the time-correlated single-photon counting (TCSPC) technique. The system comprised a pulsed laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Spectral transmittance measurements were performed on a number of different water samples in order to characterize the water types used in the experiments. This identified an optimum operational wavelength for each environment selected, which was in the wavelength region of 525 - 690 nm. Then, depth profiles measurements were performed in different scattering conditions, demonstrating high-resolution image re-construction for targets placed at stand-off distances up to nine attenuation lengths, using average optical power in the sub-milliwatt range. Depth and spatial resolution were investigated in several environments, demonstrating a depth resolution in the range of 500 μm to a few millimetres depending on the attenuation level of the medium. The angular resolution of the system was approximately 60 μrad in water with different levels of attenuation, illustrating that the narrow field of view helped preserve spatial resolution in the presence of high levels of forward scattering. Bespoke algorithms were developed for image reconstruction in order to recover depth, intensity and reflectivity information, and to investigate shorter acquisition times, illustrating the practicality of the approach for rapid frame rates. In addition, advanced signal processing approaches were used to investigate the potential of multispectral single-photon depth imaging in target discrimination and recognition, in free-space and underwater environments. Finally, a LiDAR model was developed and validated using experimental data. The model was used to estimate the performance of the system under a variety of scattering conditions and system parameters
    corecore