1,089 research outputs found

    Programming models to support data science workflows

    Get PDF
    Data Science workflows have become a must to progress in many scientific areas such as life, health, and earth sciences. In contrast to traditional HPC workflows, they are more heterogeneous; combining binary executions, MPI simulations, multi-threaded applications, custom analysis (possibly written in Java, Python, C/C++ or R), and real-time processing. Furthermore, in the past, field experts were capable of programming and running small simulations. However, nowadays, simulations requiring hundreds or thousands of cores are widely used and, to this point, efficiently programming them becomes a challenge even for computer sciences. Thus, programming languages and models make a considerable effort to ease the programmability while maintaining acceptable performance. This thesis contributes to the adaptation of High-Performance frameworks to support the needs and challenges of Data Science workflows by extending COMPSs, a mature, general-purpose, task-based, distributed programming model. First, we enhance our prototype to orchestrate different frameworks inside a single programming model so that non-expert users can build complex workflows where some steps require highly optimised state of the art frameworks. This extension includes the @binary, @OmpSs, @MPI, @COMPSs, and @MultiNode annotations for both Java and Python workflows. Second, we integrate container technologies to enable developers to easily port, distribute, and scale their applications to distributed computing platforms. This combination provides a straightforward methodology to parallelise applications from sequential codes along with efficient image management and application deployment that ease the packaging and distribution of applications. We distinguish between static, HPC, and dynamic container management and provide representative use cases for each scenario using Docker, Singularity, and Mesos. Third, we design, implement and integrate AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of affine loop nests and execute them in parallel in a distributed computing infrastructure. It is based on sequential programming and requires one single annotation (the @parallel Python decorator) so that anyone with intermediate-level programming skills can scale up an application to hundreds of cores. Finally, we propose a way to extend task-based management systems to support continuous input and output data to enable the combination of task-based workflows and dataflows (Hybrid Workflows) using one single programming model. Hence, developers can build complex Data Science workflows with different approaches depending on the requirements without the effort of combining several frameworks at the same time. Also, to illustrate the capabilities of Hybrid Workflows, we have built a Distributed Stream Library that can be easily integrated with existing task-based frameworks to provide support for dataflows. The library provides a homogeneous, generic, and simple representation of object and file streams in both Java and Python; enabling complex workflows to handle any data type without dealing directly with the streaming back-end.Els fluxos de treball de Data Science s’han convertit en una necessitat per progressar en moltes àrees científiques com les ciències de la vida, la salut i la terra. A diferència dels fluxos de treball tradicionals per a la CAP, els fluxos de Data Science són més heterogenis; combinant l’execució de binaris, simulacions MPI, aplicacions multiprocés, anàlisi personalitzats (possiblement escrits en Java, Python, C / C ++ o R) i computacions en temps real. Mentre que en el passat els experts de cada camp eren capaços de programar i executar petites simulacions, avui dia, aquestes simulacions representen un repte fins i tot per als experts ja que requereixen centenars o milers de nuclis. Per aquesta raó, els llenguatges i models de programació actuals s’esforcen considerablement en incrementar la programabilitat mantenint un rendiment acceptable. Aquesta tesi contribueix a l’adaptació de models de programació per a la CAP per afrontar les necessitats i reptes dels fluxos de Data Science estenent COMPSs, un model de programació distribuïda madur, de propòsit general, i basat en tasques. En primer lloc, millorem el nostre prototip per orquestrar diferent programari per a que els usuaris no experts puguin crear fluxos complexos usant un únic model on alguns passos requereixin tecnologies altament optimitzades. Aquesta extensió inclou les anotacions de @binary, @OmpSs, @MPI, @COMPSs, i @MultiNode per a fluxos en Java i Python. En segon lloc, integrem tecnologies de contenidors per permetre als desenvolupadors portar, distribuir i escalar fàcilment les seves aplicacions en plataformes distribuïdes. A més d’una metodologia senzilla per a paral·lelitzar aplicacions a partir de codis seqüencials, aquesta combinació proporciona una gestió d’imatges i una implementació d’aplicacions eficients que faciliten l’empaquetat i la distribució d’aplicacions. Distingim entre la gestió de contenidors estàtica, CAP i dinàmica i proporcionem casos d’ús representatius per a cada escenari amb Docker, Singularity i Mesos. En tercer lloc, dissenyem, implementem i integrem AutoParallel, un mòdul de Python per determinar automàticament la paral·lelització basada en tasques de nius de bucles afins i executar-los en paral·lel en una infraestructura distribuïda. AutoParallel està basat en programació seqüencial, requereix una sola anotació (el decorador @parallel) i permet a un usuari intermig escalar una aplicació a centenars de nuclis. Finalment, proposem una forma d’estendre els sistemes basats en tasques per admetre dades d’entrada i sortida continus; permetent així la combinació de fluxos de treball i dades (Fluxos Híbrids) en un únic model. Conseqüentment, els desenvolupadors poden crear fluxos complexos seguint diferents patrons sense l’esforç de combinar diversos models al mateix temps. A més, per a il·lustrar les capacitats dels Fluxos Híbrids, hem creat una biblioteca (DistroStreamLib) que s’integra fàcilment amb els models basats en tasques per suportar fluxos de dades. La biblioteca proporciona una representació homogènia, genèrica i simple de seqüències contínues d’objectes i arxius en Java i Python; permetent gestionar qualsevol tipus de dades sense tractar directament amb el back-end de streaming.Los flujos de trabajo de Data Science se han convertido en una necesidad para progresar en muchas áreas científicas como las ciencias de la vida, la salud y la tierra. A diferencia de los flujos de trabajo tradicionales para la CAP, los flujos de Data Science son más heterogéneos; combinando la ejecución de binarios, simulaciones MPI, aplicaciones multiproceso, análisis personalizados (posiblemente escritos en Java, Python, C/C++ o R) y computaciones en tiempo real. Mientras que en el pasado los expertos de cada campo eran capaces de programar y ejecutar pequeñas simulaciones, hoy en día, estas simulaciones representan un desafío incluso para los expertos ya que requieren cientos o miles de núcleos. Por esta razón, los lenguajes y modelos de programación actuales se esfuerzan considerablemente en incrementar la programabilidad manteniendo un rendimiento aceptable. Esta tesis contribuye a la adaptación de modelos de programación para la CAP para afrontar las necesidades y desafíos de los flujos de Data Science extendiendo COMPSs, un modelo de programación distribuida maduro, de propósito general, y basado en tareas. En primer lugar, mejoramos nuestro prototipo para orquestar diferentes software para que los usuarios no expertos puedan crear flujos complejos usando un único modelo donde algunos pasos requieran tecnologías altamente optimizadas. Esta extensión incluye las anotaciones de @binary, @OmpSs, @MPI, @COMPSs, y @MultiNode para flujos en Java y Python. En segundo lugar, integramos tecnologías de contenedores para permitir a los desarrolladores portar, distribuir y escalar fácilmente sus aplicaciones en plataformas distribuidas. Además de una metodología sencilla para paralelizar aplicaciones a partir de códigos secuenciales, esta combinación proporciona una gestión de imágenes y una implementación de aplicaciones eficientes que facilitan el empaquetado y la distribución de aplicaciones. Distinguimos entre gestión de contenedores estática, CAP y dinámica y proporcionamos casos de uso representativos para cada escenario con Docker, Singularity y Mesos. En tercer lugar, diseñamos, implementamos e integramos AutoParallel, un módulo de Python para determinar automáticamente la paralelización basada en tareas de nidos de bucles afines y ejecutarlos en paralelo en una infraestructura distribuida. AutoParallel está basado en programación secuencial, requiere una sola anotación (el decorador @parallel) y permite a un usuario intermedio escalar una aplicación a cientos de núcleos. Finalmente, proponemos una forma de extender los sistemas basados en tareas para admitir datos de entrada y salida continuos; permitiendo así la combinación de flujos de trabajo y datos (Flujos Híbridos) en un único modelo. Consecuentemente, los desarrolladores pueden crear flujos complejos siguiendo diferentes patrones sin el esfuerzo de combinar varios modelos al mismo tiempo. Además, para ilustrar las capacidades de los Flujos Híbridos, hemos creado una biblioteca (DistroStreamLib) que se integra fácilmente a los modelos basados en tareas para soportar flujos de datos. La biblioteca proporciona una representación homogénea, genérica y simple de secuencias continuas de objetos y archivos en Java y Python; permitiendo manejar cualquier tipo de datos sin tratar directamente con el back-end de streaming

    Programming models to support data science workflows

    Get PDF
    Data Science workflows have become a must to progress in many scientific areas such as life, health, and earth sciences. In contrast to traditional HPC workflows, they are more heterogeneous; combining binary executions, MPI simulations, multi-threaded applications, custom analysis (possibly written in Java, Python, C/C++ or R), and real-time processing. Furthermore, in the past, field experts were capable of programming and running small simulations. However, nowadays, simulations requiring hundreds or thousands of cores are widely used and, to this point, efficiently programming them becomes a challenge even for computer sciences. Thus, programming languages and models make a considerable effort to ease the programmability while maintaining acceptable performance. This thesis contributes to the adaptation of High-Performance frameworks to support the needs and challenges of Data Science workflows by extending COMPSs, a mature, general-purpose, task-based, distributed programming model. First, we enhance our prototype to orchestrate different frameworks inside a single programming model so that non-expert users can build complex workflows where some steps require highly optimised state of the art frameworks. This extension includes the @binary, @OmpSs, @MPI, @COMPSs, and @MultiNode annotations for both Java and Python workflows. Second, we integrate container technologies to enable developers to easily port, distribute, and scale their applications to distributed computing platforms. This combination provides a straightforward methodology to parallelise applications from sequential codes along with efficient image management and application deployment that ease the packaging and distribution of applications. We distinguish between static, HPC, and dynamic container management and provide representative use cases for each scenario using Docker, Singularity, and Mesos. Third, we design, implement and integrate AutoParallel, a Python module to automatically find an appropriate task-based parallelisation of affine loop nests and execute them in parallel in a distributed computing infrastructure. It is based on sequential programming and requires one single annotation (the @parallel Python decorator) so that anyone with intermediate-level programming skills can scale up an application to hundreds of cores. Finally, we propose a way to extend task-based management systems to support continuous input and output data to enable the combination of task-based workflows and dataflows (Hybrid Workflows) using one single programming model. Hence, developers can build complex Data Science workflows with different approaches depending on the requirements without the effort of combining several frameworks at the same time. Also, to illustrate the capabilities of Hybrid Workflows, we have built a Distributed Stream Library that can be easily integrated with existing task-based frameworks to provide support for dataflows. The library provides a homogeneous, generic, and simple representation of object and file streams in both Java and Python; enabling complex workflows to handle any data type without dealing directly with the streaming back-end.Els fluxos de treball de Data Science s’han convertit en una necessitat per progressar en moltes àrees científiques com les ciències de la vida, la salut i la terra. A diferència dels fluxos de treball tradicionals per a la CAP, els fluxos de Data Science són més heterogenis; combinant l’execució de binaris, simulacions MPI, aplicacions multiprocés, anàlisi personalitzats (possiblement escrits en Java, Python, C / C ++ o R) i computacions en temps real. Mentre que en el passat els experts de cada camp eren capaços de programar i executar petites simulacions, avui dia, aquestes simulacions representen un repte fins i tot per als experts ja que requereixen centenars o milers de nuclis. Per aquesta raó, els llenguatges i models de programació actuals s’esforcen considerablement en incrementar la programabilitat mantenint un rendiment acceptable. Aquesta tesi contribueix a l’adaptació de models de programació per a la CAP per afrontar les necessitats i reptes dels fluxos de Data Science estenent COMPSs, un model de programació distribuïda madur, de propòsit general, i basat en tasques. En primer lloc, millorem el nostre prototip per orquestrar diferent programari per a que els usuaris no experts puguin crear fluxos complexos usant un únic model on alguns passos requereixin tecnologies altament optimitzades. Aquesta extensió inclou les anotacions de @binary, @OmpSs, @MPI, @COMPSs, i @MultiNode per a fluxos en Java i Python. En segon lloc, integrem tecnologies de contenidors per permetre als desenvolupadors portar, distribuir i escalar fàcilment les seves aplicacions en plataformes distribuïdes. A més d’una metodologia senzilla per a paral·lelitzar aplicacions a partir de codis seqüencials, aquesta combinació proporciona una gestió d’imatges i una implementació d’aplicacions eficients que faciliten l’empaquetat i la distribució d’aplicacions. Distingim entre la gestió de contenidors estàtica, CAP i dinàmica i proporcionem casos d’ús representatius per a cada escenari amb Docker, Singularity i Mesos. En tercer lloc, dissenyem, implementem i integrem AutoParallel, un mòdul de Python per determinar automàticament la paral·lelització basada en tasques de nius de bucles afins i executar-los en paral·lel en una infraestructura distribuïda. AutoParallel està basat en programació seqüencial, requereix una sola anotació (el decorador @parallel) i permet a un usuari intermig escalar una aplicació a centenars de nuclis. Finalment, proposem una forma d’estendre els sistemes basats en tasques per admetre dades d’entrada i sortida continus; permetent així la combinació de fluxos de treball i dades (Fluxos Híbrids) en un únic model. Conseqüentment, els desenvolupadors poden crear fluxos complexos seguint diferents patrons sense l’esforç de combinar diversos models al mateix temps. A més, per a il·lustrar les capacitats dels Fluxos Híbrids, hem creat una biblioteca (DistroStreamLib) que s’integra fàcilment amb els models basats en tasques per suportar fluxos de dades. La biblioteca proporciona una representació homogènia, genèrica i simple de seqüències contínues d’objectes i arxius en Java i Python; permetent gestionar qualsevol tipus de dades sense tractar directament amb el back-end de streaming.Los flujos de trabajo de Data Science se han convertido en una necesidad para progresar en muchas áreas científicas como las ciencias de la vida, la salud y la tierra. A diferencia de los flujos de trabajo tradicionales para la CAP, los flujos de Data Science son más heterogéneos; combinando la ejecución de binarios, simulaciones MPI, aplicaciones multiproceso, análisis personalizados (posiblemente escritos en Java, Python, C/C++ o R) y computaciones en tiempo real. Mientras que en el pasado los expertos de cada campo eran capaces de programar y ejecutar pequeñas simulaciones, hoy en día, estas simulaciones representan un desafío incluso para los expertos ya que requieren cientos o miles de núcleos. Por esta razón, los lenguajes y modelos de programación actuales se esfuerzan considerablemente en incrementar la programabilidad manteniendo un rendimiento aceptable. Esta tesis contribuye a la adaptación de modelos de programación para la CAP para afrontar las necesidades y desafíos de los flujos de Data Science extendiendo COMPSs, un modelo de programación distribuida maduro, de propósito general, y basado en tareas. En primer lugar, mejoramos nuestro prototipo para orquestar diferentes software para que los usuarios no expertos puedan crear flujos complejos usando un único modelo donde algunos pasos requieran tecnologías altamente optimizadas. Esta extensión incluye las anotaciones de @binary, @OmpSs, @MPI, @COMPSs, y @MultiNode para flujos en Java y Python. En segundo lugar, integramos tecnologías de contenedores para permitir a los desarrolladores portar, distribuir y escalar fácilmente sus aplicaciones en plataformas distribuidas. Además de una metodología sencilla para paralelizar aplicaciones a partir de códigos secuenciales, esta combinación proporciona una gestión de imágenes y una implementación de aplicaciones eficientes que facilitan el empaquetado y la distribución de aplicaciones. Distinguimos entre gestión de contenedores estática, CAP y dinámica y proporcionamos casos de uso representativos para cada escenario con Docker, Singularity y Mesos. En tercer lugar, diseñamos, implementamos e integramos AutoParallel, un módulo de Python para determinar automáticamente la paralelización basada en tareas de nidos de bucles afines y ejecutarlos en paralelo en una infraestructura distribuida. AutoParallel está basado en programación secuencial, requiere una sola anotación (el decorador @parallel) y permite a un usuario intermedio escalar una aplicación a cientos de núcleos. Finalmente, proponemos una forma de extender los sistemas basados en tareas para admitir datos de entrada y salida continuos; permitiendo así la combinación de flujos de trabajo y datos (Flujos Híbridos) en un único modelo. Consecuentemente, los desarrolladores pueden crear flujos complejos siguiendo diferentes patrones sin el esfuerzo de combinar varios modelos al mismo tiempo. Además, para ilustrar las capacidades de los Flujos Híbridos, hemos creado una biblioteca (DistroStreamLib) que se integra fácilmente a los modelos basados en tareas para soportar flujos de datos. La biblioteca proporciona una representación homogénea, genérica y simple de secuencias continuas de objetos y archivos en Java y Python; permitiendo manejar cualquier tipo de datos sin tratar directamente con el back-end de streaming.Postprint (published version

    Whitepaper on Reusable Hybrid and Multi-Cloud Analytics Service Framework

    Full text link
    Over the last several years, the computation landscape for conducting data analytics has completely changed. While in the past, a lot of the activities have been undertaken in isolation by companies, and research institutions, today's infrastructure constitutes a wealth of services offered by a variety of providers that offer opportunities for reuse, and interactions while leveraging service collaboration, and service cooperation. This document focuses on expanding analytics services to develop a framework for reusable hybrid multi-service data analytics. It includes (a) a short technology review that explicitly targets the intersection of hybrid multi-provider analytics services, (b) a small motivation based on use cases we looked at, (c) enhancing the concepts of services to showcase how hybrid, as well as multi-provider services can be integrated and reused via the proposed framework, (d) address analytics service composition, and (e) integrate container technologies to achieve state-of-the-art analytics service deploymen

    The DeepHealth Toolkit: A key European free and open-source software for deep learning and computer vision ready to exploit heterogeneous HPC and cloud architectures

    Get PDF
    At the present time, we are immersed in the convergence between Big Data, High-Performance Computing and Artificial Intelligence. Technological progress in these three areas has accelerated in recent years, forcing different players like software companies and stakeholders to move quickly. The European Union is dedicating a lot of resources to maintain its relevant position in this scenario, funding projects to implement large-scale pilot testbeds that combine the latest advances in Artificial Intelligence, High-Performance Computing, Cloud and Big Data technologies. The DeepHealth project is an example focused on the health sector whose main outcome is the DeepHealth toolkit, a European unified framework that offers deep learning and computer vision capabilities, completely adapted to exploit underlying heterogeneous High-Performance Computing, Big Data and cloud architectures, and ready to be integrated into any software platform to facilitate the development and deployment of new applications for specific problems in any sector. This toolkit is intended to be one of the European contributions to the field of AI. This chapter introduces the toolkit with its main components and complementary tools, providing a clear view to facilitate and encourage its adoption and wide use by the European community of developers of AI-based solutions and data scientists working in the healthcare sector and others. iThis chapter describes work undertaken in the context of the DeepHealth project, “Deep-Learning and HPC to Boost Biomedical Applications for Health”, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825111.Peer Reviewed"Article signat per 19 autors/es: Marco Aldinucci, David Atienza, Federico Bolelli, Mónica Caballero, Iacopo Colonnelli, José Flich, Jon A. Gómez, David González, Costantino Grana, Marco Grangetto, Simone Leo, Pedro López, Dana Oniga, Roberto Paredes, Luca Pireddu, Eduardo Quiñones, Tatiana Silva, Enzo Tartaglione & Marina Zapater "Postprint (author's final draft

    Autonomous Incident Response

    Get PDF
    Trabalho de Projeto de Mestrado, Segurança Informática, 2022, Universidade de Lisboa, Faculdade de CiênciasInformation security is a must-have for any organization willing to stay relevant and grow, it plays an important role as a business enabler, be it from a regulatory perspective or a reputation perspective. Having people, process, and technology to solve the ever growing number of security incidents as fast as possible and with the least amount of impact is a challenge for small and big companies. To address this challenge, companies started investing in Security Orchestration, Automation, and Response (SOAR) [39, 68, 70]. Security orchestration is the planning, integration, cooperation, and coordination of the activities of security tools and experts to produce and automate required actions in response to any security incident across multiple technology paradigms [40]. In other words, the use of SOAR is a way to translate the manual procedures followed by the security analysts into automated actions, making the process faster and scalable while saving on human resources budget. This project proposes a low-cost cloud native SOAR platform that is based on serverless computing, presenting the underlying details of its design. The performance of the proposed solution was evaluated through 364 real-world incidents related to 11 use cases in a large multinational enterprise. The results show that the solution is able to decrease the duration of the tasks by an average of 98.81% while having an operating expense of less than $65/month. Prior to the SOAR, it took the analyst 75.84 hours to perform manual tasks related to the 11 use cases. Additionally, an estimated 450 hours of the analyst’s time would be used to run the Update threat intelligence database use case. After the SOAR, the same tasks were automatically ran in 31.2 minutes and the Update threat intelligence database use case ran 9.000 times in 5.3 hours
    corecore