2,228 research outputs found

    An Experimental Study of Two-Level Schwarz Domain Decomposition Preconditioners on GPUs

    Full text link
    The generalized Dryja--Smith--Widlund (GDSW) preconditioner is a two-level overlapping Schwarz domain decomposition (DD) preconditioner that couples a classical one-level overlapping Schwarz preconditioner with an energy-minimizing coarse space. When used to accelerate the convergence rate of Krylov subspace iterative methods, the GDSW preconditioner provides robustness and scalability for the solution of sparse linear systems arising from the discretization of a wide range of partial different equations. In this paper, we present FROSch (Fast and Robust Schwarz), a domain decomposition solver package which implements GDSW-type preconditioners for both CPU and GPU clusters. To improve the solver performance on GPUs, we use a novel decomposition to run multiple MPI processes on each GPU, reducing both solver's computational and storage costs and potentially improving the convergence rate. This allowed us to obtain competitive or faster performance using GPUs compared to using CPUs alone. We demonstrate the performance of FROSch on the Summit supercomputer with NVIDIA V100 GPUs, where we used NVIDIA Multi-Process Service (MPS) to implement our decomposition strategy. The solver has a wide variety of algorithmic and implementation choices, which poses both opportunities and challenges for its GPU implementation. We conduct a thorough experimental study with different solver options including the exact or inexact solution of the local overlapping subdomain problems on a GPU. We also discuss the effect of using the iterative variant of the incomplete LU factorization and sparse-triangular solve as the approximate local solver, and using lower precision for computing the whole FROSch preconditioner. Overall, the solve time was reduced by factors of about 2Ă—2\times using GPUs, while the GPU acceleration of the numerical setup time depend on the solver options and the local matrix sizes.Comment: Accepted for publication in IPDPS'2

    Iteration-fusing conjugate gradient for sparse linear systems with MPI + OmpSs

    Get PDF
    In this paper, we target the parallel solution of sparse linear systems via iterative Krylov subspace-based method enhanced with a block-Jacobi preconditioner on a cluster of multicore processors. In order to tackle large-scale problems, we develop task-parallel implementations of the preconditioned conjugate gradient method that improve the interoperability between the message-passing interface and OmpSs programming models. Specifically, we progressively integrate several communication-reduction and iteration-fusing strategies into the initial code, obtaining more efficient versions of the method. For all these implementations, we analyze the communication patterns and perform a comparative analysis of their performance and scalability on a cluster consisting of 32 nodes with 24 cores each. The experimental analysis shows that the techniques described in the paper outperform the classical method by a margin that varies between 6 and 48%, depending on the evaluation

    Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

    Get PDF
    The ongoing hardware evolution exhibits an escalation in the number, as well as in the heterogeneity, of computing resources. The pressure to maintain reasonable levels of performance and portability forces application developers to leave the traditional programming paradigms and explore alternative solutions. PaStiX is a parallel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore architectures. In this paper, we study the benefits and limits of replacing the highly specialized internal scheduler of the PaStiX solver with two generic runtime systems: PaRSEC and StarPU. The tasks graph of the factorization step is made available to the two runtimes, providing them the opportunity to process and optimize its traversal in order to maximize the algorithm efficiency for the targeted hardware platform. A comparative study of the performance of the PaStiX solver on top of its native internal scheduler, PaRSEC, and StarPU frameworks, on different execution environments, is performed. The analysis highlights that these generic task-based runtimes achieve comparable results to the application-optimized embedded scheduler on homogeneous platforms. Furthermore, they are able to significantly speed up the solver on heterogeneous environments by taking advantage of the accelerators while hiding the complexity of their efficient manipulation from the programmer.Comment: Heterogeneity in Computing Workshop (2014

    Communication in task-parallel ILU-preconditioned CG solversusing MPI + OmpSs

    Get PDF
    We target the parallel solution of sparse linear systems via iterative Krylov subspace–based methods enhanced with incomplete LU (ILU)-type preconditioners on clusters of multicore processors. In order to tackle large-scale problems, we develop task-parallel implementations of the classical iteration for the CG method, accelerated via ILUPACK and ILU(0) preconditioners, using MPI + OmpSs. In addition, we integrate several communication-avoiding strategies into the codes, including the butterfly communication scheme and Eijkhout's formulation of the CG method. For all these implementations, we analyze the communication patterns and perform a comparative analysis of their performance and scalability on a cluster consisting of 16 nodes, with 16 cores each

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also
    • …
    corecore