6,283 research outputs found

    NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

    Get PDF
    Molecular biology knowledge can be systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist a number of maps of molecular interactions containing detailed description of various cell mechanisms. It is difficult to explore these large maps, to comment their content and to maintain them. Though there exist several tools addressing these problems individually, the scientific community still lacks an environment that combines these three capabilities together. NaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. NaviCell combines three features: (1) efficient map browsing based on Google Maps engine; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting the community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of their interest in the context of signaling pathways and cross-talks between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive fashion due to an imbedded blogging system. NaviCell provides an easy way to explore large-scale maps of molecular interactions, thanks to the Google Maps and WordPress interfaces, already familiar to many users. Semantic zooming used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization meaningful to the user. In addition, NaviCell provides a framework for community-based map curation.Comment: 20 pages, 5 figures, submitte

    Bethe Ansatz in the Bernoulli Matching Model of Random Sequence Alignment

    Full text link
    For the Bernoulli Matching model of sequence alignment problem we apply the Bethe ansatz technique via an exact mapping to the 5--vertex model on a square lattice. Considering the terrace--like representation of the sequence alignment problem, we reproduce by the Bethe ansatz the results for the averaged length of the Longest Common Subsequence in Bernoulli approximation. In addition, we compute the average number of nucleation centers of the terraces.Comment: 14 pages, 5 figures (some points are clarified

    Can retinal ganglion cell dipoles seed iso-orientation domains in the visual cortex?

    Get PDF
    It has been argued that the emergence of roughly periodic orientation preference maps (OPMs) in the primary visual cortex (V1) of carnivores and primates can be explained by a so-called statistical connectivity model. This model assumes that input to V1 neurons is dominated by feed-forward projections originating from a small set of retinal ganglion cells (RGCs). The typical spacing between adjacent cortical orientation columns preferring the same orientation then arises via Moir\'{e}-Interference between hexagonal ON/OFF RGC mosaics. While this Moir\'{e}-Interference critically depends on long-range hexagonal order within the RGC mosaics, a recent statistical analysis of RGC receptive field positions found no evidence for such long-range positional order. Hexagonal order may be only one of several ways to obtain spatially repetitive OPMs in the statistical connectivity model. Here, we investigate a more general requirement on the spatial structure of RGC mosaics that can seed the emergence of spatially repetitive cortical OPMs, namely that angular correlations between so-called RGC dipoles exhibit a spatial structure similar to that of OPM autocorrelation functions. Both in cat beta cell mosaics as well as primate parasol receptive field mosaics we find that RGC dipole angles are spatially uncorrelated. To help assess the level of these correlations, we introduce a novel point process that generates mosaics with realistic nearest neighbor statistics and a tunable degree of spatial correlations of dipole angles. Using this process, we show that given the size of available data sets, the presence of even weak angular correlations in the data is very unlikely. We conclude that the layout of ON/OFF ganglion cell mosaics lacks the spatial structure necessary to seed iso-orientation domains in the primary visual cortex.Comment: 9 figures + 1 Supplementary figure and 1 Supplementary tabl

    On the entropy of protein families

    Get PDF
    Proteins are essential components of living systems, capable of performing a huge variety of tasks at the molecular level, such as recognition, signalling, copy, transport, ... The protein sequences realizing a given function may largely vary across organisms, giving rise to a protein family. Here, we estimate the entropy of those families based on different approaches, including Hidden Markov Models used for protein databases and inferred statistical models reproducing the low-order (1-and 2-point) statistics of multi-sequence alignments. We also compute the entropic cost, that is, the loss in entropy resulting from a constraint acting on the protein, such as the fixation of one particular amino-acid on a specific site, and relate this notion to the escape probability of the HIV virus. The case of lattice proteins, for which the entropy can be computed exactly, allows us to provide another illustration of the concept of cost, due to the competition of different folds. The relevance of the entropy in relation to directed evolution experiments is stressed.Comment: to appear in Journal of Statistical Physic

    Multiscale metabolic modeling of C4 plants: connecting nonlinear genome-scale models to leaf-scale metabolism in developing maize leaves

    Full text link
    C4 plants, such as maize, concentrate carbon dioxide in a specialized compartment surrounding the veins of their leaves to improve the efficiency of carbon dioxide assimilation. Nonlinear relationships between carbon dioxide and oxygen levels and reaction rates are key to their physiology but cannot be handled with standard techniques of constraint-based metabolic modeling. We demonstrate that incorporating these relationships as constraints on reaction rates and solving the resulting nonlinear optimization problem yields realistic predictions of the response of C4 systems to environmental and biochemical perturbations. Using a new genome-scale reconstruction of maize metabolism, we build an 18000-reaction, nonlinearly constrained model describing mesophyll and bundle sheath cells in 15 segments of the developing maize leaf, interacting via metabolite exchange, and use RNA-seq and enzyme activity measurements to predict spatial variation in metabolic state by a novel method that optimizes correlation between fluxes and expression data. Though such correlations are known to be weak in general, here the predicted fluxes achieve high correlation with the data, successfully capture the experimentally observed base-to-tip transition between carbon-importing tissue and carbon-exporting tissue, and include a nonzero growth rate, in contrast to prior results from similar methods in other systems. We suggest that developmental gradients may be particularly suited to the inference of metabolic fluxes from expression data.Comment: 57 pages, 14 figures; submitted to PLoS Computational Biology; source code available at http://github.com/ebogart/fluxtools and http://github.com/ebogart/multiscale_c4_sourc

    A simple mechanistic model of sprout spacing in tumour-associated angiogenesis

    Get PDF
    This paper develops a simple mathematical model of the siting of capillary sprouts on an existing blood vessel during the initiation of tumour-induced angiogenesis. The model represents an inceptive attempt to address the question of how unchecked sprouting of the parent vessel is avoided at the initiation of angiogenesis, based on the idea that feedback regulation processes play the dominant role. No chemical interaction between the proangiogenic and antiangiogenic factors is assumed. The model is based on corneal pocket experiments, and provides a mathematical analysis of the initial spacing of angiogenic sprouts
    • …
    corecore