13 research outputs found

    A comment on "computational complexity of stochastic programming problems"

    Get PDF
    Although stochastic programming problems were always believed to be computationally challenging, this perception has only recently received a theoretical justification by the seminal work of Dyer and Stougie (Math Program A 106(3):423–432, 2006). Amongst others, that paper argues that linear two-stage stochastic programs with fixed recourse are #P-hard even if the random problem data is governed by independent uniform distributions. We show that Dyer and Stougie’s proof is not correct, and we offer a correction which establishes the stronger result that even the approximate solution of such problems is #P-hard for a sufficiently high accuracy. We also provide new results which indicate that linear two-stage stochastic programs with random recourse seem even more challenging to solve

    Regularized and Distributionally Robust Data-Enabled Predictive Control

    Full text link
    In this paper, we study a data-enabled predictive control (DeePC) algorithm applied to unknown stochastic linear time-invariant systems. The algorithm uses noise-corrupted input/output data to predict future trajectories and compute optimal control policies. To robustify against uncertainties in the input/output data, the control policies are computed to minimize a worst-case expectation of a given objective function. Using techniques from distributionally robust stochastic optimization, we prove that for certain objective functions, the worst-case optimization problem coincides with a regularized version of the DeePC algorithm. These results support the previously observed advantages of the regularized algorithm and provide probabilistic guarantees for its performance. We illustrate the robustness of the regularized algorithm through a numerical case study

    Data-driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

    Full text link
    We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of the worst-case distribution within this Wasserstein ball. The state-of-the-art methods for solving the resulting distributionally robust optimization problems rely on global optimization techniques, which quickly become computationally excruciating. In this paper we demonstrate that, under mild assumptions, the distributionally robust optimization problems over Wasserstein balls can in fact be reformulated as finite convex programs---in many interesting cases even as tractable linear programs. Leveraging recent measure concentration results, we also show that their solutions enjoy powerful finite-sample performance guarantees. Our theoretical results are exemplified in mean-risk portfolio optimization as well as uncertainty quantification.Comment: 42 pages, 10 figure

    A Planner-Trader Decomposition for Multi-Market Hydro Scheduling

    Full text link
    Peak/off-peak spreads on European electricity forward and spot markets are eroding due to the ongoing nuclear phaseout and the steady growth in photovoltaic capacity. The reduced profitability of peak/off-peak arbitrage forces hydropower producers to recover part of their original profitability on the reserve markets. We propose a bi-layer stochastic programming framework for the optimal operation of a fleet of interconnected hydropower plants that sells energy on both the spot and the reserve markets. The outer layer (the planner's problem) optimizes end-of-day reservoir filling levels over one year, whereas the inner layer (the trader's problem) selects optimal hourly market bids within each day. Using an information restriction whereby the planner prescribes the end-of-day reservoir targets one day in advance, we prove that the trader's problem simplifies from an infinite-dimensional stochastic program with 25 stages to a finite two-stage stochastic program with only two scenarios. Substituting this reformulation back into the outer layer and approximating the reservoir targets by affine decision rules allows us to simplify the planner's problem from an infinite-dimensional stochastic program with 365 stages to a two-stage stochastic program that can conveniently be solved via the sample average approximation. Numerical experiments based on a cascade in the Salzburg region of Austria demonstrate the effectiveness of the suggested framework

    Approximation Algorithms for Distributionally Robust Stochastic Optimization

    Get PDF
    Two-stage stochastic optimization is a widely used framework for modeling uncertainty, where we have a probability distribution over possible realizations of the data, called scenarios, and decisions are taken in two stages: we take first-stage actions knowing only the underlying distribution and before a scenario is realized, and may take additional second-stage recourse actions after a scenario is realized. The goal is typically to minimize the total expected cost. A common criticism levied at this model is that the underlying probability distribution is itself often imprecise. To address this, an approach that is quite versatile and has gained popularity in the stochastic-optimization literature is the two-stage distributionally robust stochastic model: given a collection D of probability distributions, our goal now is to minimize the maximum expected total cost with respect to a distribution in D. There has been almost no prior work however on developing approximation algorithms for distributionally robust problems where the underlying scenario collection is discrete, as is the case with discrete-optimization problems. We provide frameworks for designing approximation algorithms in such settings when the collection D is a ball around a central distribution, defined relative to two notions of distance between probability distributions: Wasserstein metrics (which include the L_1 metric) and the L_infinity metric. Our frameworks yield efficient algorithms even in settings with an exponential number of scenarios, where the central distribution may only be accessed via a sampling oracle. For distributionally robust optimization under a Wasserstein ball, we first show that one can utilize the sample average approximation (SAA) method (solve the distributionally robust problem with an empirical estimate of the central distribution) to reduce the problem to the case where the central distribution has a polynomial-size support, and is represented explicitly. This follows because we argue that a distributionally robust problem can be reduced in a novel way to a standard two-stage stochastic problem with bounded inflation factor, which enables one to use the SAA machinery developed for two-stage stochastic problems. Complementing this, we show how to approximately solve a fractional relaxation of the SAA problem (i.e., the distributionally robust problem obtained by replacing the original central distribution with its empirical estimate). Unlike in two-stage {stochastic, robust} optimization with polynomially many scenarios, this turns out to be quite challenging. We utilize a variant of the ellipsoid method for convex optimization in conjunction with several new ideas to show that the SAA problem can be approximately solved provided that we have an (approximation) algorithm for a certain max-min problem that is akin to, and generalizes, the k-max-min problem (find the worst-case scenario consisting of at most k elements) encountered in two-stage robust optimization. We obtain such an algorithm for various discrete-optimization problems; by complementing this via rounding algorithms that provide local (i.e., per-scenario) approximation guarantees, we obtain the first approximation algorithms for the distributionally robust versions of a variety of discrete-optimization problems including set cover, vertex cover, edge cover, facility location, and Steiner tree, with guarantees that are, except for set cover, within O(1)-factors of the guarantees known for the deterministic version of the problem. For distributionally robust optimization under an L_infinity ball, we consider a fractional relaxation of the problem, and replace its objective function with a proxy function that is pointwise close to the true objective function (within a factor of 2). We then show that we can efficiently compute approximate subgradients of the proxy function, provided that we have an algorithm for the problem of computing the t worst scenarios under a given first-stage decision, given an integer t. We can then approximately minimize the proxy function via a variant of the ellipsoid method, and thus obtain an approximate solution for the fractional relaxation of the distributionally robust problem. Complementing this via rounding algorithms with local guarantees, we obtain approximation algorithms for distributionally robust versions of various covering problems, including set cover, vertex cover, edge cover, and facility location, with guarantees that are within O(1)-factors of the guarantees known for their deterministic versions

    A General Framework for Optimal Data-Driven Optimization

    Full text link
    We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision is measured by its out-of-sample risk. An additional quality measure is its out-of-sample disappointment, which we define as the probability that the out-of-sample risk exceeds the optimal value of the surrogate optimization model. An ideal data-driven decision should minimize the out-of-sample risk simultaneously with respect to every conceivable probability measure as the true measure is unkown. Unfortunately, such ideal data-driven decisions are generally unavailable. This prompts us to seek data-driven decisions that minimize the out-of-sample risk subject to an upper bound on the out-of-sample disappointment. We prove that such Pareto-dominant data-driven decisions exist under conditions that allow for interesting applications: the unknown data-generating probability measure must belong to a parametric ambiguity set, and the corresponding parameters must admit a sufficient statistic that satisfies a large deviation principle. We can further prove that the surrogate optimization model must be a distributionally robust optimization problem constructed from the sufficient statistic and the rate function of its large deviation principle. Hence the optimal method for mapping data to decisions is to solve a distributionally robust optimization model. Maybe surprisingly, this result holds even when the training data is non-i.i.d. Our analysis reveals how the structural properties of the data-generating stochastic process impact the shape of the ambiguity set underlying the optimal distributionally robust model.Comment: 52 page

    Robust optimisation and its application to portfolio planning

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Decision making under uncertainty presents major challenges from both modelling and solution methods perspectives. The need for stochastic optimisation methods is widely recognised; however, compromises typically have to be made in order to develop computationally tractable models. Robust optimisation is a practical alternative to stochastic optimisation approaches, particularly suited for problems in which parameter values are unknown and variable. In this thesis, we review robust optimisation, in which parameter uncertainty is defined by budgeted polyhedral uncertainty sets as opposed to ellipsoidal sets, and consider its application to portfolio selection. The modelling of parameter uncertainty within a robust optimisation framework, in terms of structure and scale, and the use of uncertainty sets is examined in detail. We investigate the effect of different definitions of the bounds on the uncertainty sets. An interpretation of the robust counterpart from a min-max perspective, as applied to portfolio selection, is given. We propose an extension of the robust portfolio selection model, which includes a buy-in threshold and an upper limit on cardinality. We investigate the application of robust optimisation to portfolio selection through an extensive empirical investigation of cost, robustness and performance with respect to risk-adjusted return measures and worst case portfolio returns. We present new insights into modelling uncertainty and the properties of robust optimal decisions and model parameters. Our experimental results, in the application of portfolio selection, show that robust solutions come at a cost, but in exchange for a guaranteed probability of optimality on the objective function value, significantly greater achieved robustness, and generally better realisations under worst case scenarios

    Dimensionality Reduction in Dynamic Optimization under Uncertainty

    Get PDF
    Dynamic optimization problems affected by uncertainty are ubiquitous in many application domains. Decision makers typically model the uncertainty through random variables governed by a probability distribution. If the distribution is precisely known, then the emerging optimization problems constitute stochastic programs or chance constrained programs. On the other hand, if the distribution is at least partially unknown, then the emanating optimization problems represent robust or distributionally robust optimization problems. In this thesis, we leverage techniques from stochastic and distributionally robust optimization to address complex problems in finance, energy systems management and, more abstractly, applied probability. In particular, we seek to solve uncertain optimization problems where the prior distributional information includes only the first and the second moments (and, sometimes, the support). The main objective of the thesis is to solve large instances of practical optimization problems. For this purpose, we develop complexity reduction and decomposition schemes, which exploit structural symmetries or multiscale properties of the problems at hand in order to break them down into smaller and more tractable components. In the first part of the thesis we study the growth-optimal portfolio, which maximizes the expected log-utility over a single investment period. In a classical stochastic setting, this portfolio is known to outperform any other portfolio with probability 1 in the long run. In the short run, however, it is notoriously volatile. Moreover, its performance suffers in the presence of distributional ambiguity. We design fixed-mix strategies that offer similar performance guarantees as the classical growth-optimal portfolio but for a finite investment horizon. Moreover, the proposed performance guarantee remains valid for any asset return distribution with the same mean and covariance matrix. These results rely on a Taylor approximation of the terminal logarithmic wealth that becomes more accurate as the rebalancing frequency is increased. In the second part of the thesis, we demonstrate that such a Taylor approximation is in fact not necessary. Specifically, we derive sharp probability bounds on the tails of a product of non-negative random variables. These generalized Chebyshev bounds can be computed numerically using semidefinite programming--in some cases even analytically. Similar techniques can also be used to derive multivariate Chebyshev bounds for sums, maxima, and minima of random variables. In the final part of the thesis, we consider a multi-market reservoir management problem. The eroding peak/off-peak spreads on European electricity spot markets imply reduced profitability for the hydropower producers and force them to participate in the balancing markets. This motivates us to propose a two-layer stochastic programming model for the optimal operation of a cascade of hydropower plants selling energy on both spot and balancing markets. The planning problem optimizes the reservoir management over a yearly horizon with weekly granularity, and the trading subproblems optimize the market transactions over a weekly horizon with hourly granularity. We solve both the planning and trading problems in linear decision rules, and we exploit the inherent parallelizability of the trading subproblems to achieve computational tractability

    Aide à la conception de chaînes logistiques humanitaires efficientes et résilientes : application au cas des crises récurrentes péruviennes

    Get PDF
    Every year, more than 400 natural disasters hit the world. To assist those affected populations, humanitarian organizations store in advance emergency aid in warehouses. This PhD thesis provides tools for support decisions on localization and sizing of humanitarian warehouses. Our approach is based on the design of representative and realistic scenarios. A scenario expresses some disasters’ occurrences for which epicenters are known, as well as their gravity and frequency. This step is based on the exploitation and analysis of databases of past disasters. The second step tackles about possible disaster’s propagation. The objective consists in determining their impact on population on each affected area. This impact depends on vulnerability and resilience of the territory. Vulnerability measures expected damage values meanwhile resilience estimates the ability to withstand some shock and recover quickly. Both are largely determined by social and economic factors, being structural (geography, GDP, etc.) or political (establishment or not relief infrastructure, presence and strict enforcement of construction standards, etc.). We propose through Principal Component Analysis (PCA) to identify, for each territory, influential factors of resilience and vulnerability and then estimate the number of victims concerned using these factors. Often, infrastructure (water, telecommunications, electricity, communication channels) are destroyed or damaged by the disaster (e.g. Haiti in 2010). The last step aims to assess the disaster logistics impact, specifically those related to with: transportation flows capacity limitations and destruction of all or part of emergency relief inventories. The following of our study focuses on location and allocation of a warehouses’ network. The proposed models have the originality to consider potential resources and infrastructure degradation after a disaster (resilience dimension) and seek optimizing the equilibrium between costs and results (effectiveness dimension). Initially we consider a single scenario. The problem is an extension of classical location studies. Then we consider a set of probable scenarios. This approach is essential due to the highly uncertain character of humanitarian disasters. All of these contributions have been tested and validated through a real application case: Peruvian recurrent disasters. These crises, mainly due to earthquakes and floods (El Niño), require establishment of a first aid logistics network that should be resilient and efficient.Chaque année, plus de 400 catastrophes naturelles frappent le monde. Pour aider les populations touchées, les organisations humanitaires stockent par avance de l’aide d’urgence dans des entrepôts. Cette thèse propose des outils d’aide à la décision pour les aider à localiser et dimensionner ces entrepôts. Notre approche repose sur la construction de scénarios représentatifs. Un scénario représente la survenue d’une catastrophe dont on connaît l’épicentre, la gravité et la probabilité d’occurrence. Cette étape repose sur l’exploitation et l’analyse de bases de données des catastrophes passées. La seconde étape porte sur la propagation géographique de la catastrophe et détermine son impact sur la population des territoires touchés. Cet impact est fonction de la vulnérabilité et de la résilience du territoire. La vulnérabilité mesure la valeur attendue des dégâts alors que la résilience estime la capacité à résister au choc et à se rétablir rapidement. Les deux sont largement déterminées par des facteurs économiques et sociaux, soit structurels (géographie, PIB…) ou politiques (existence d’infrastructure d’aide, normes de construction…). Nous proposons par le biais d’analyses en composantes principales (ACP) d’identifier les facteurs influents de résilience et de vulnérabilité, puis d’estimer le nombre de victimes touchées à partir de ces facteurs. Souvent, les infrastructures (eau, télécommunication, électricité, voies de communication) sont détruits ou endommagés par la catastrophe (ex : Haïti en 2010). La dernière étape a pour objectif d’évaluer les impacts logistiques en ce qui concerne : les restrictions des capacités de transport existant et la destruction de tout ou partie des stocks d’urgence. La suite de l’étude porte sur la localisation et le dimensionnement du réseau d’entrepôt. Nos modèles présentent l’originalité de tenir compte de la dégradation des ressources et infrastructures suite due à la catastrophe (dimension résilience) et de chercher à optimiser le rapport entre les coûts engagés et le résultat obtenu (dimension efficience). Nous considérons d’abord un scénario unique. Le problème est une extension d’un problème de location classique. Puis, nous considérons un ensemble de scénarios probabilisés. Cette approche est indispensable à la considération du caractère très incertain des catastrophes humanitaires. L’ensemble de ces contributions a été confronté à la réalité des faits dans le cadre d’une application au cas des crises récurrentes du Pérou. Ces crises, essentiellement dues aux tremblements de terre et aux inondations (El Niño), imposent la constitution d’un réseau logistique de premiers secours qui soit résilient et efficient

    Robust optimisation and its application to portfolio planning

    Get PDF
    Decision making under uncertainty presents major challenges from both modelling and solution methods perspectives. The need for stochastic optimisation methods is widely recognised; however, compromises typically have to be made in order to develop computationally tractable models. Robust optimisation is a practical alternative to stochastic optimisation approaches, particularly suited for problems in which parameter values are unknown and variable. In this thesis, we review robust optimisation, in which parameter uncertainty is defined by budgeted polyhedral uncertainty sets as opposed to ellipsoidal sets, and consider its application to portfolio selection. The modelling of parameter uncertainty within a robust optimisation framework, in terms of structure and scale, and the use of uncertainty sets is examined in detail. We investigate the effect of different definitions of the bounds on the uncertainty sets. An interpretation of the robust counterpart from a min-max perspective, as applied to portfolio selection, is given. We propose an extension of the robust portfolio selection model, which includes a buy-in threshold and an upper limit on cardinality. We investigate the application of robust optimisation to portfolio selection through an extensive empirical investigation of cost, robustness and performance with respect to risk-adjusted return measures and worst case portfolio returns. We present new insights into modelling uncertainty and the properties of robust optimal decisions and model parameters. Our experimental results, in the application of portfolio selection, show that robust solutions come at a cost, but in exchange for a guaranteed probability of optimality on the objective function value, significantly greater achieved robustness, and generally better realisations under worst case scenarios.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore