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Abstract

Dynamic optimization problems affected by uncertainty are ubiquitous in many

application domains. Decision makers typically model the uncertainty through ran-

dom variables governed by a probability distribution. If the distribution is precisely

known, then the emerging optimization problems constitute stochastic programs

or chance constrained programs. On the other hand, if the distribution is at least

partially unknown, then the emanating optimization problems represent robust or

distributionally robust optimization problems. In this thesis, we leverage techniques

from stochastic and distributionally robust optimization to address complex problems

in finance, energy systems management and, more abstractly, applied probability. In

particular, we seek to solve uncertain optimization problems where the prior distribu-

tional information includes only the first and the second moments (and, sometimes,

the support).

The main objective of the thesis is to solve large instances of practical optimization

problems. For this purpose, we develop complexity reduction and decomposition

schemes, which exploit structural symmetries or multiscale properties of the problems

at hand in order to break them down into smaller and more tractable components.

In the first part of the thesis we study the growth-optimal portfolio, which maximizes

the expected log-utility over a single investment period. In a classical stochastic setting,

this portfolio is known to outperform any other portfolio with probability 1 in the long

run. In the short run, however, it is notoriously volatile. Moreover, its performance

suffers in the presence of distributional ambiguity. We design fixed-mix strategies that

offer similar performance guarantees as the classical growth-optimal portfolio but for

a finite investment horizon. Moreover, the proposed performance guarantee remains
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Abstract

valid for any asset return distribution with the same mean and covariance matrix.

These results rely on a Taylor approximation of the terminal logarithmic wealth that

becomes more accurate as the rebalancing frequency is increased.

In the second part of the thesis, we demonstrate that such a Taylor approximation is

in fact not necessary. Specifically, we derive sharp probability bounds on the tails of

a product of non-negative random variables. These generalized Chebyshev bounds

can be computed numerically using semidefinite programming—in some cases even

analytically. Similar techniques can also be used to derive multivariate Chebyshev

bounds for sums, maxima, and minima of random variables.

In the final part of the thesis, we consider a multi-market reservoir management prob-

lem. The eroding peak/off-peak spreads on European electricity spot markets imply

reduced profitability for the hydropower producers and force them to participate

in the balancing markets. This motivates us to propose a two-layer stochastic pro-

gramming model for the optimal operation of a cascade of hydropower plants selling

energy on both spot and balancing markets. The planning problem optimizes the

reservoir management over a yearly horizon with weekly granularity, and the trading

subproblems optimize the market transactions over a weekly horizon with hourly

granularity. We solve both the planning and trading problems in linear decision rules,

and we exploit the inherent parallelizability of the trading subproblems to achieve

computational tractability.

Keywords. Convex optimization, conic programming, distributionally robust op-

timization, stochastic programming, linear decision rules, portfolio optimization,

growth-optimal portfolio, value-at-risk, Chebyshev inequality, electricity market
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Résumé

Les problèmes d’optimisation dynamiques affectés par des incertitudes sont om-

niprésents dans de nombreux domaines d’application. Les preneurs de décisions

modélisent l’incertitude au travers de variables aléatoires gouvernées par une distri-

bution de probabilité. Si la distribution est définie de manière précise, les problèmes

d’optimisation émergents constituent des programmes stochastiques. D’autre part, si

la distribution est partiellement indéfinie, les problèmes d’optimisation émergents

représentent une optimisation robuste ou des problèmes d’optimisation distribution-

nellement robuste. Cette thèse est essentiellement constituée de travaux basés sur

l’optimisation stochastique et sur l’optimisation distributionnellement robuste afin

d’apporter une solution aux problèmes complexes dans le domaine financier, aux

systèmes de gestion de l’énergie et, sur un plan abstrait, aux probabilités appliquées.

L’objectif principal de la thèse est de résoudre de grande instance d’optimisation

de problème pratique. A cet effet, nous développons des schémas pour réduire et

décomposer la complexité, qui exploitent des symétries structurelles ou des propriétés

multi-échelles de problèmes existants, dans le but de les diviser en composants plus

petits et traitables.

Dans la première partie de cette thèse, nous étudions la croissance optimale du

portefeuille. Dans une configuration stochastique classique, ce portefeuille est connu

pour être supérieur à tout autre portefeuille avec une probabilité 1 lors d’une exécution

à long terme. Toutefois, lors d’une exécution à court terme, il est connu pour sa

volatilité. De plus, sa performance diminue s’il y a du bruit dans la probabilité de

distribution du rendement de l’actif. Nous concevons des stratégies de portefeuille

rééquilibre constant qui offrent des garanties de performance similaire au classique
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Résumé

croissance-optimale du portefeuille, mais pour un horizon d’investissement fini. De

plus, la garantie de performance proposée reste valide pour toute distribution du

rendement de l’actif avec la même valeur moyenne et même matrice de covariance.

Ces résultats reposent sur une approximation Taylor de la richesse logarithmique

finale qui devient plus précise au fur et à mesure que la fréquence de rééquilibrage est

augmentée.

Dans la seconde partie, nous démontrons qu’une telle approximation Taylor n’est

pas nécessaire. De manière spécifique, nous dérivons une probabilité précise sur

la queue d’un produit de variables aléatoires non-négatives. Ces liens Chebyshev

généralisés peuvent être traités numériquement en utilisant une programmation

semi-définie—voire même dans certains cas de manière analytique.

En dernière partie de la thèse, nous considérons un problème de gestion de réser-

voir multi-marché. L’érosion du pic haut/bas propagée sur le marché au comptant

d’électricité Européenne implique une rentabilité réduite aux producteurs d’énergie

hydraulique et de les forcer à participer aux marchés d’équilibrage. Cela nous motive à

proposer un modèle de programmation a deux-couches stochastiques pour l’optimi-

sation opérationnelle d’une cascade d’une centrale hydraulique qui vend de l’énergie

aussi bien sur un marché au comptant que sur un marché d’équilibrage. Le problème

de planification optimise la gestion du réservoir avec une granularité hebdomadaire

et le projet sous-commercial optimise le marché des transactions avec une granularité

horaire. Nous résolvons aussi bien les problèmes de planification que de trading en

règle de décision linéaire afin de parvenir à une traçabilité informatique.

Mots clefs. Optimisation convexe, programmation conique, optimisation distri-

butionnellement robuste, programmation stochastique, règle de décision linéaire,

optimisation de portefeuille, croissance optimale du portefeuille, valeur à risque,

inégalité de Tchebychev, marché de l’électricité

vi



Contents

Acknowledgements i

Abstract (English/Français) iii

List of figures ix

List of tables xi

1 Introduction 1

1.1 Contributions and Structure of the Thesis . . . . . . . . . . . . . . . . . 4

1.2 Statement of Originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Robust Growth-Optimal Portfolios 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Growth-Optimal Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Robust Growth-Optimal Portfolios . . . . . . . . . . . . . . . . . . . . . 20

2.4 Worst-Case Value-at-Risk of the Growth Rate . . . . . . . . . . . . . . . 22

2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 Support Information . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.2 Moment Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6.1 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6.2 Empirical Backtests . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6.3 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . 62

3 Chebyshev Inequalities for Products of Random Variables 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Optimization Perspective on Chebyshev Inequalities . . . . . . . . . . 72

vii



Contents

3.3 Left-Sided Chebyshev Bounds . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Right-Sided Chebyshev Bounds . . . . . . . . . . . . . . . . . . . . . . . 98

3.5 Covariance Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.7 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.7.1 Comparison of Chebyshev Bounds . . . . . . . . . . . . . . . . 114

3.7.2 Case Study: Financial Risk Management . . . . . . . . . . . . . 118

4 Multi-Market Multi-Reservoir Management 121

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Hydropower Scheduling Model . . . . . . . . . . . . . . . . . . . . . . . 127

4.3 Revenue Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.4 Planner-Trader Decomposition . . . . . . . . . . . . . . . . . . . . . . . 135

4.4.1 Trading Subproblems . . . . . . . . . . . . . . . . . . . . . . . . 137

4.4.2 Planning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.5 Multiscale Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.6 Bang-Bang Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.6.1 Determination of Water Values . . . . . . . . . . . . . . . . . . . 144

4.6.2 Extension of the Bang-Bang Strategy . . . . . . . . . . . . . . . 145

4.7 Case Study: Austrian Electricity Market . . . . . . . . . . . . . . . . . . 148

4.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.7.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Conclusions 157

5.1 Future Research Avenues . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A Appendices 161

A.1 Distributionally Robust Chance Constraints . . . . . . . . . . . . . . . . 161

A.2 Mean and Variance of Mean-Reverting Processes . . . . . . . . . . . . . 162

Bibliography 165

Curriculum Vitae 175

viii



List of Figures

2.1 Comparison of the classical and robust growth-optimal portfolios un-

der the lognormal distribution. . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Companion figure for Lemma 3.2. . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Comparison of the left-sided and right-sided Chebyshev bounds for

the products of random variables. . . . . . . . . . . . . . . . . . . . . . . 116

3.3 Comparison of the right-sided Chebyshev bounds R(γ) and R′(γ). . . . 117

3.4 Worst-case value-at-risk of the growth rates of the minimum-variance

and maximum-expectation portfolios. . . . . . . . . . . . . . . . . . . . 119

4.1 Illustration of downward regulation (↓) and upward regulation (↑). . . 124

4.2 An example cascade of three reservoirs. . . . . . . . . . . . . . . . . . . 128

4.3 Bang-bang strategy for reservoir management. . . . . . . . . . . . . . . 145

4.4 Companion figure for the extended bang-bang strategy. . . . . . . . . 147

4.5 Weekly inflows in the catchment area of the cascade. . . . . . . . . . . 149

4.6 Spot price simulation using the price forward curve. . . . . . . . . . . . 151

4.7 Comparison of the shadow prices when (i) trading in the spot market

only and (ii) trading in both the spot and reserve markets. . . . . . . . 153

4.8 Comparison of the storage levels when (i) trading in the spot market

only and (ii) trading in both the spot and reserve markets. . . . . . . . 154

4.9 Comparison of the cumulative revenues when (i) trading in the spot

market only and (ii) trading in both the spot and reserve markets. . . . 155

ix





List of Tables

2.1 Markowitz risk-aversion parameter�(T,ε) implied by the robust growth-

optimal portfolio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Fractional Kelly risk-aversion parameter κ(T,ε) implied by the robust

growth-optimal portfolio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Relative advantage (in %) of the robust growth-optimal portfolios in

terms of 5% VaR (T = 120 months). . . . . . . . . . . . . . . . . . . . . . 58

2.4 Relative advantage (in %) of the robust growth-optimal portfolios in

terms of 5% VaR (T = 360 months). . . . . . . . . . . . . . . . . . . . . . 59

2.5 Relative advantage (in %) of the robust growth-optimal portfolios in

terms of 5% VaR (T = 1,200 months). . . . . . . . . . . . . . . . . . . . . 60

2.6 Out-of-sample performance of different investment strategies. . . . . 63

3.1 Chebyshev bounds equivalent to supP∈P P(h(ξ̃)≤ 0) for some permu-

tation symmetric functional h(ξ). . . . . . . . . . . . . . . . . . . . . . . 113

3.2 Runtimes (secs) required to calculate the Chebyshev bounds. . . . . . 117

4.1 Description of the bang-bang strategy. . . . . . . . . . . . . . . . . . . . 143

4.2 Description of the extended bang-bang strategy. . . . . . . . . . . . . . 147

4.3 Node parameters of the cascade. . . . . . . . . . . . . . . . . . . . . . . 148

4.4 Arc parameters of the cascade. . . . . . . . . . . . . . . . . . . . . . . . . 148

4.5 Parameters for the stochastic differential equations (4.9). . . . . . . . . 150

4.6 Distributional parameters of the electricity reserve prices. . . . . . . . 152

xi





1 Introduction

Classical results in optimization theory usually deal with static optimization, where a

decision maker implements an optimal action at a single point of time. Many static

optimization problems are well understood and are supported by efficient numerical

procedures. In practice, however, many optimization problems are dynamic. In this

case, a decision maker seeks a sequence of decisions which optimizes some objective

function. Two examples of dynamic optimization problems are discussed extensively

in the remaining chapters, namely portfolio optimization problems and hydropower

scheduling problems.

In a portfolio optimization problem, an investor wishes to distribute his/her current

wealth over a set of available assets in order to maximize his/her terminal wealth.

In a hydropower scheduling problem, on the other hand, a generation company

operating a cascade of reservoirs wants to determine a generation and pumping

schedule to reach a certain goal, which can be, for example, to meet an electricity

demand uninterruptedly or to maximize its net revenue from trading hydroelectricity.

The main difference between static and dynamic optimization is that, in the latter

case, the decision maker has to account for the effects of current decisions carried to

the future. Dynamic optimization problems are further complicated by the presence

of uncertainty because current decisions must be hedged against future uncertainty

whereas future decisions can exploit the knowledge of the past. In this sense, these

future decisions should be expressed as policies, i.e., functions of the observable

information. For the two problems discussed above, the investors and the generation

1



Chapter 1. Introduction

companies are exposed to considerable uncertainty in asset returns, electricity prices

and water inflows.

Searching for optimal policies in a dynamic setting is usually much harder than search-

ing for optimal decisions in a static setting because exact solution methods suffer from

the curse of dimensionality, rendering them intractable for larger problems. In order

to facilitate the incorporation of uncertainty and to gain tractability, one typically

resorts to approximation schemes; see Powell (2014). For large instances of practical

optimization problems though, approximation methods alone may not guarantee a

satisfactory solving time, especially for applications where efficient decision making

is not an option, but a necessity. To summarize, most dynamic optimization problems

under uncertainty share in common the following hurdles.

• Propagation effect. Current decisions allow to hedge against future uncertainty;

on the other hand, they have ramifications on the future. Hence, solving dy-

namic optimization problems is not equivalent to solving static optimization

problems sequentially.

• Uncertainty. Uncertainty in optimization problems implies that decision makers

have to take actions when some of the information is not yet known precisely.

• Problem size. The problem size (e.g. in terms of the numbers of decision stages,

decisions and constraints) can be very large in real-world problems.

It is therefore important for decision makers to have additional domain-specific

knowledge which allows them to solve their problems more efficiently. In some

cases, the repetitive nature of dynamic models leads to an exploitable structure of

the optimal policies. One interesting example advocating this notion is the growth-

optimal portfolio. This portfolio is designed to have a maximum expected log-utility

over a single rebalancing period. Kelly (1956) and Breiman (1961) independently show

that the growth-optimal portfolio will eventually accumulate more wealth than any

other causal portfolio with probability 1 in the long run. To many, this discovery is

counterintuitive because myopic policies are rarely optimal. Nonetheless, despite its

theoretical appeal, the practical relevance of the growth-optimal portfolio remains

limited because of the following reasons.

2



• Ambiguous asset return distribution. The computation of the growth-optimal

portfolio requires full and precise knowledge of the asset return distribution.

This requirement is however rarely met in practice because the asset return

distribution is typically inferred from sparse empirical observations. Hence, the

growth-optimal portfolio is prone to estimation errors.

• Asymptotic guarantees. Many properties of the growth-optimal portfolio, in-

cluding its superior wealth accumulation discussed above, hold asymptotically

when the investment horizon tends to infinity. Little is known, however, about

its finite-time guarantee. Indeed, empirically the growth-optimal portfolio has

been shown to be unstable and amply volatile in the short run.

On the other hand, some of the main challenges for generation companies solving a

hydropower scheduling problem arise, among others, from the significant uncertainty

and the multiscale nature of the problem. Indeed, in European electricity markets,

trading frequencies are usually high, and new information materializes every hour,

be it electricity prices or water inflows. Moreover for the generation companies to

fully capture the seasonality of such information, planning horizons should span at

least a year. Hence, hydropower scheduling models typically consist of large numbers

of decision stages and random variables. Consequently, if the generation company’s

objective is to maximize expected revenue, then the corresponding stochastic program

is intractable.

• Intractability of multistage stochastic programs. Solutions of stochastic pro-

grams are hard to obtain and require significant solving time. For the energy

problem studied in this thesis, the numbers of decision stages and random

variables further compound the complexity of the stochastic program and make

it virtually impossible for the generation companies to obtain (near-) optimal

solutions.

The main objective of this thesis is to formulate and solve dynamic investment prob-

lems that are not only theoretically sound but also practically relevant. To achieve

this, we develop complexity reduction techniques and decomposition schemes for

efficiently solving industrial size instances of the considered problems. Specifically,

we aim to address the following issues related to the growth-optimal portfolios.

3



Chapter 1. Introduction

• For each portfolio, we aim to establish performance guarantees (similar to those

offered by the growth-optimal portfolios) for finite investment horizons when

the asset return distribution is ambiguous. Put differently, we wish to construct

horizon-dependent guarantees that hold for any probability distribution of the

underlying assets within a prescribed ambiguity set.

• An investor adopting our model would be interested in identifying a portfolio

with the most attractive performance guarantee. Thus, it is important that (i)

the performance guarantee of any given portfolio and (ii) the optimal portfolio

in the view of the proposed performance measure can be computed efficiently.

In addition, we address the following concerns about hydropower scheduling.

• Peak/off-peak spreads on European electricity spot markets are eroding, re-

ducing the profitability of engaged generation companies who utilize the price

arbitrages. Hence, in order to recover or to outperform their original profitability,

we propose an optimal strategy for trading hydroelectricity additionally in the

balancing markets.

• Engaging in multiple markets simultaneously complicates the revenue maxi-

mizing stochastic program because the number of pertinent random variables

increases. We therefore propose a systematic way to reduce the complexity of

the problem in order to solve it within a reasonable time frame.

1.1 Contributions and Structure of the Thesis

In this thesis, we investigate how techniques from stochastic and distributionally

robust optimization can be utilized in formulating dynamic investment problems

and how these problems can be reduced or simplified so that they can be efficiently

solved. Specifically, the problems considered are portfolio optimization problems

and hydropower scheduling problems. Both of these problems share the same objec-

tive function which is to maximize total earnings, from their respective investment,

however with respect to different risk measures, i.e., quantiles and expected values.

The main contributions of this thesis are divided into three self-contained chapters.

4



1.1. Contributions and Structure of the Thesis

Chapter 2 and Chapter 4 investigate the aforementioned dynamic investment prob-

lems. Chapter 3 has a more mathematical focus but its contents nonetheless apply to

an investment problem reminiscent of the one studied in Chapter 2.

In Chapter 2 we revisit the growth-optimal portfolio and alleviate some of its shortcom-

ings. In particular, we design a robust portfolio that offers similar performance guar-

antees as the classical growth-optimal portfolio. This guarantee is not distribution-

specific and in fact it applies for any asset return distribution sharing the same mean

and covariance matrix. Relying on a conic reformulation of distributionally robust

chance constraints, we show that this robust portfolio can be computed efficiently

by solving a tractable second-order cone program whose size is independent of the

length of the investment horizon. The contents of this chapter are published in the

following paper.

(i) N. Rujeerapaiboon, D. Kuhn and W. Wiesemann. Robust Growth-Optimal Port-

folios. Management Science 62(7) 2090-2109, 2016.

The results in Chapter 2 rely on a second-order Taylor approximation of logarithmic

terminal wealth which becomes more accurate as the rebalancing frequency increases.

In Chapter 3, however, we show that the portfolio optimization problem in Chapter 2

can be solved exactly in polynomial time without such a Taylor approximation. To

achieve this, we derive sharp probability bounds on the left tail of a product of non-

negative random variables. The material of Chapter 2 can then be viewed as an

application of Chapter 3 where each random variable describes the growth of the

portfolio over a single rebalancing period. We prove that these generalized Chebyshev

bounds (for both left and right tails) can be computed numerically using semidefinite

programming. Furthermore, we demonstrate that similar techniques from duality

for moment problems, polynomial optimization and semidefinite programming can

be used to derive multivariate Chebyshev bounds for sums, maxima, and minima

of non-negative random variables. The contents of this chapter can be found in the

following paper.

(ii) N. Rujeerapaiboon, D. Kuhn and W. Wiesemann. Chebyshev Inequalities for

Products of Random Variables. Under Review for Mathematics of Operations

5



Chapter 1. Introduction

Research, 2016.

In Chapter 4 we propose a stochastic program for the optimal operation of generation

companies trading hydroelectricity in both spot and balancing markets simultane-

ously. Despite its size, this stochastic program needs to be solved efficiently because

of the trading frequencies. We therefore devote Chapter 4 to the development of a

scheme for decomposing the stochastic program into a two-layer stochastic program,

where each layer can be solved efficiently with a linear decision rule approximation.

The outer stochastic program (the planning problem) optimizes the reservoir man-

agement over a yearly horizon with weekly granularity, whereas the inner stochastic

programs (the trading subproblems) optimize the market transactions over a weekly

horizon with hourly granularity. Numerical experiments indicate a considerable

potential of trading hydroelectricity in the balancing markets. The contents of this

chapter are based on the following working paper.

(iii) N. Rujeerapaiboon, D. Kuhn and W. Wiesemann. A Multi-Scale Decision Rule

Approach for Multi-Market Multi-Reservoir Management. Working Paper, 2016.

Finally, the main results in Chapter 2 have been extended and used as a basis for ana-

lyzing portfolio risks incurred by autocorrelations (also known as serial correlations)

of asset returns. These correlations are important in many financial studies because

they help explain various phenomena, for example, seasonality in asset returns and

investors’ beliefs about market movements. The contents of this work are not included

in the thesis but can be found in the following paper.

(iv) B. Choi, N. Rujeerapaiboon and R. Jiang. Multi-Period Portfolio Optimization:

Translation of Autocorrelation Risk to Excess Variance. Under Review for Opera-

tions Research Letters, 2016.

1.2 Statement of Originality

I hereby certify that this thesis is the result of my own work, where some parts are

the result of collaborations with my thesis supervisors Dr. Daniel Kuhn and Dr. Wol-

fram Wiesemann, as well as my industrial partners, Dr. Georg Ostermaier and his
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colleagues from Decision Trees GmbH. No other person’s work has been used without

due acknowledgement.
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2 Robust Growth-Optimal Portfolios

The growth-optimal portfolio is designed to have maximum expected log-return over

the next rebalancing period. Thus, it can be computed with relative ease by solving a

static optimization problem. The growth-optimal portfolio has sparked fascination

among finance professionals and researchers because it can be shown to outperform

any other portfolio with probability 1 in the long run. In the short run, however, it

is notoriously volatile. Moreover, its computation requires precise knowledge of the

asset return distribution, which is not directly observable but must be inferred from

sparse data. By using methods from distributionally robust optimization, we design

fixed-mix strategies that offer similar performance guarantees as the growth-optimal

portfolio but for a finite investment horizon and for a whole family of distributions

that share the same first and second-order moments. We demonstrate that the re-

sulting robust growth-optimal portfolios can be computed efficiently by solving a

tractable conic program whose size is independent of the length of the investment

horizon. Simulated and empirical backtests show that the robust growth-optimal

portfolios are competitive with the classical growth-optimal portfolio across most

realistic investment horizons and for an overwhelming majority of contaminated

return distributions.

2.1 Introduction

Consider a portfolio invested in various risky assets and assume that this portfolio

is self-financing in the sense that there are no cash withdrawals or injections after
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the initial endowment. Loosely speaking, the primary management objective is to

design an investment strategy that ensures steady portfolio growth while controlling

the fund’s risk exposure. Modern portfolio theory based on the pioneering work by

Markowitz (1952) suggests that in this situation investors should seek an optimal trade-

off between the mean and variance of portfolio returns. The Markowitz approach has

gained enormous popularity as it is intuitively appealing and lays the foundations

for the celebrated capital asset pricing model due to Sharpe (1964), Mossin (1966)

and Lintner (1965). Another benefit is that any mean-variance efficient portfolio can

be computed rapidly even for a large asset universe by solving a tractable quadratic

program.

Unfortunately, however, the Markowitz approach is static. It plans only for the next

rebalancing period and ignores that the end-of-period wealth will be reinvested.

This is troubling because of Roll’s insight that a number of mean-variance efficient

portfolios lead to almost sure ruin if the available capital is infinitely often reinvested

and returns are serially independent (Roll 1973, p. 551). The Markowitz approach also

burdens investors with specifying their utility functions, which are needed to find

the portfolios on the efficient frontier that are best aligned with their individual risk

preferences. In this context Roy (1952) aptly noted that ‘a man who seeks advice about

his actions will not be grateful for the suggestion that he maximise expected utility.’

Some of the shortcomings of the Markowitz approach are alleviated by the Kelly strat-

egy, which maximizes the expected portfolio growth rate, that is, the logarithm of the

total portfolio returns’ geometric mean over a sequence of consecutive rebalancing

intervals. If the asset returns are serially independent and identically distributed,

the strong law of large numbers implies that the portfolio growth rate over an infi-

nite investment horizon equals the expected logarithm (i.e., the expected log-utility)

of the total portfolio return over any single rebalancing period; see e.g. Cover and

Thomas (1991) or Luenberger (1998) for a textbook treatment of the Kelly strategy.

Kelly (1956) invented his strategy to determine the optimal wagers in repeated betting

games. The strategy was then extended to the realm of portfolio management by

Latané (1959). Adopting standard terminology, we refer to the portfolio managed

under the Kelly strategy as the growth-optimal portfolio. This portfolio displays several

intriguing properties that continue to fascinate finance professionals and academics
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alike. First and foremost, in the long run the growth-optimal portfolio can be shown

to accumulate more wealth than any other portfolio with probability 1. This powerful

result was first proved by Kelly (1956) in a binomial setting and then generalized by

Breiman (1961) to situations where returns are stationary and serially independent.

Algoet and Cover (1988) later showed that Breiman’s result remains valid even if the

independence assumption is relaxed. The growth-optimal portfolio also minimizes

the expected time to reach a preassigned monetary target V asymptotically as V tends

to infinity, see Breiman (1961) and Algoet and Cover (1988), and it maximizes the me-

dian of the investor’s fortune, see Ethier (2004). Hakansson and Miller (1975) further

established that a Kelly investor never risks ruin. Maybe surprisingly, Dempster et al.

(2008) could construct examples where the growth-optimal portfolio creates value

even though every tradable asset becomes almost surely worthless in the long run.

Hakansson (1971b) pointed out that the growth-optimal portfolio is myopic, meaning

that the current portfolio composition only depends on the distribution of returns

over the next rebalancing period. This property has computational significance as

it enables investors to compute the Kelly strategy, which is optimal across a multi-

period investment horizon, by solving a single-period convex optimization problem.

A comprehensive list of properties of the growth-optimal portfolio has recently been

compiled by MacLean et al. (2010). Moreover, Poundstone (2005) narrated the col-

orful history of the Kelly strategy in gambling and speculation, while Christensen

(2012) provided a detailed review of the academic literature. Remarkably, some of the

most successful investors like Warren Buffet, Bill Gross and John Maynard Keynes are

reported to have used Kelly-type strategies to manage their funds; see e.g. Ziemba

(2005).

The almost sure asymptotic optimality of the Kelly strategy has prompted a heated de-

bate about its role as a normative investment rule. Latané (1959), Hakansson (1971a)

and Thorp (1975) attributed the Kelly strategy an objective superiority over other

strategies and argued that every investor with a sufficiently long planning horizon

should hold the growth-optimal portfolio. Samuelson (1963, 1971) and Merton and

Samuelson (1974) contested this view on the grounds that the growth-optimal portfo-

lio can be strictly dominated under non-logarithmic preferences, irrespective of the

length of the planning horizon. Nowadays there seems to be a consensus that whether

or not the growth-optimal portfolio can claim a special status depends largely on one’s
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definition of rationality. In this context Luenberger (1993) has shown that Kelly-type

strategies enjoy a universal optimality property under a natural preference relation

for deterministic wealth sequences.

Even though the growth-optimal portfolio is guaranteed to dominate any other port-

folio with probability 1 in the long run, it tends to be very risky in the short term.

Judicious investors might therefore ask how long it will take until the growth-optimal

portfolio outperforms a given benchmark with high confidence. Unfortunately, there

is evidence that the long run may be long indeed. Rubinstein (1991) demonstrates,

for instance, that in a Black Scholes economy it may take 208 years to be 95% sure

that the Kelly strategy beats an all-cash strategy and even 4,700 years to be 95% sure

that it beats an all-stock strategy. Investors with a finite lifetime may thus be better off

pursuing a strategy that is tailored to their individual planning horizon.

The Kelly strategy also suffers from another shortcoming that is maybe less well recog-

nized: the computation of the optimal portfolio weights requires perfect knowledge of

the joint asset return distribution. In the academic literature, this distribution is often

assumed to be known. In practice, however, it is already difficult to estimate the mean

returns to within workable precision, let alone the complete distribution function; see

e.g. § 8.5 of Luenberger (1998). As estimation errors are unavoidable, the asset return

distribution is ambiguous. Real investors have only limited prior information on this

distribution, e.g. in the form of confidence intervals for its first and second-order

moments. As the Kelly strategy is tailored to a single distribution, it is ignorant of am-

biguity. Michaud (1989), Best and Grauer (1991) and Chopra and Ziemba (1993) have

shown that portfolios optimized in view of a single nominal distribution often perform

poorly in out-of-sample experiments, that is, when the data-generating distribution

differs from the one used in the optimization. Therefore, ambiguity-averse investors

may be better off pursuing a strategy that is optimized against all distributions consis-

tent with the given prior information. We emphasize that ambiguity-aversion enjoys

strong justification from decision theory, see Gilboa and Schmeidler (1989).

The family of all return distributions consistent with the available prior information

is referred to as the ambiguity set. In this chapter we will assume that the asset

returns follow a weak sense white noise process, which means that the ambiguity set

contains all distributions under which the asset returns are serially uncorrelated and
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have period-wise identical first and second-order moments. No other distributional

information is assumed to be available. To enhance realism, we will later generalize

this basic ambiguity set to allow for moment ambiguity.

The goal of this chapter is to design robust growth-optimal portfolios that offer similar

guarantees as the classical growth-optimal portfolio—but for a finite investment hori-

zon and for all return distributions in the ambiguity set. The classical growth-optimal

portfolio maximizes the return level one can guarantee to achieve with probability 1

over an infinite investment horizon and for a single known return distribution. As it

is impossible to establish almost sure guarantees for finite time periods, we strive to

construct a portfolio that maximizes the return level one can guarantee to achieve

with probability 1−ε over a given finite investment horizon and for every return dis-

tribution in the ambiguity set. The tolerance ε ∈ (0,1) is chosen by the investor and

reflects the acceptable violation probability of the guarantee. While the guaranteed

return level for short periods of time and small violation probabilities ε is likely to be

negative, we hope that attractive return guarantees will emerge for longer investment

horizons even if ε remains small.

The overwhelming popularity of the classical Markowitz approach is owed, at least

partly, to its favorable computational properties. A similar statement holds true for

the classical growth-optimal portfolio, which can be computed with relative ease

due to its myopic nature, see, e.g., Estrada (2010) and § 2.1 of Christensen (2012).

As computational tractability is critical for the practical usefulness of an investment

rule, we will not attempt to optimize over all causal portfolio strategies in this chapter.

Indeed, this would be a hopeless undertaking as general causal policies cannot even

be represented in a computer. Instead, we will restrict attention to memoryless fixed-

mix strategies that keep the portfolio composition constant across all rebalancing

dates and observation histories. This choice is motivated by the observation that

fixed-mix strategies are optimal for infinite investment horizons. Thus, we expect

that the best fixed-mix strategy will achieve a similar performance as the best causal

strategy even for finite (but sufficiently long) investment horizons.

The main contributions of this chapter can be summarized as follows.

(i) We introduce robust growth-optimal portfolios that offer similar performance
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guarantees as the classical growth-optimal portfolio but for finite investment

horizons and ambiguous return distributions. Robust growth-optimal portfolios

maximize a quadratic approximation of the growth rate one can guarantee to

achieve with probability 1− ε by using fixed-mix strategies. This guarantee

holds for a finite investment horizon and for all asset return distributions in the

ambiguity set. Equivalently, the robust growth-optimal portfolios maximize the

worst-case value-at-risk at level ε of a quadratic approximation of the portfolio

growth rate over the given investment horizon, where the worst case is taken

across all distributions in the ambiguity set.

(ii) Using recent results from distributionally robust chance constrained program-

ming by Zymler et al. (2013a), we show that the worst-case value-at-risk of the

quadratic approximation of the portfolio growth rate can be expressed as the

optimal value of a tractable semidefinite program (SDP) whose size scales with

the number of assets and the length of the investment horizon. We then exploit

temporal symmetries to solve this SDP analytically. This allows us to show that

any robust growth-optimal portfolio can be computed efficiently as the solution

of a tractable second-order cone program (SOCP) whose size scales with the

number of assets but is independent of the length of the investment horizon.

(iii) We show that the robust growth-optimal portfolios are near-optimal for isoelas-

tic utility functions with relative risk aversion parameters κ� 1. Thus, they can

be viewed as fractional Kelly strategies, which have been suggested as heuristic

remedies for over-betting in the presence of model risk, see, e.g., Christensen

(2012). Our analysis provides a theoretical justification for using fractional

Kelly strategies and offers a systematic method to select the fractional Kelly

strategy that is most appropriate for a given investment horizon and violation

probability ε.

(iv) In simulated and empirical backtests we show that the robust growth-optimal

portfolios are competitive with the classical growth-optimal portfolio across

most realistic investment horizons and for most return distributions in the

ambiguity set.

Robust growth-optimal portfolio theory is conceptually related to the safety first princi-
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ple introduced by Roy (1952), which postulates that investors aim to minimize the ruin

probability, that is, the probability that their portfolio return falls below a prescribed

safety level. Roy studied portfolio choice problems in a single-period setting and

assumed—as we do—that only the first and second-order moments of the asset return

distribution are known. By using a Chebyshev inequality, he obtained an analytical

expression for the worst-case ruin probability, which closely resembles the portfolio’s

Sharpe ratio. This work was influential for many later developments in behavioral

finance and risk management. Our work can be seen as an extension of Roy’s model to

a multi-period setting, which is facilitated by recent results on distributionally robust

chance constrained programming by Zymler et al. (2013a). For a general introduction

to distributionally robust optimization we refer to Delage and Ye (2010), Goh and Sim

(2010) or Wiesemann et al. (2014). Portfolio selection models based on the worst-case

value-at-risk with moment-based ambiguity sets have previously been studied by

El Ghaoui et al. (2003), Natarajan et al. (2008), Natarajan et al. (2010) and Zymler et al.

(2013b). Moreover, Doan et al. (2015) investigate distributionally robust portfolio

optimization models using an ambiguity set in which some marginal distributions are

known, while the global dependency structure is uncertain, and Meskarian and Xu

(2013) study a distributionally robust formulation of a reward-risk ratio optimization

problem. However, none of these papers explicitly accounts for the dynamic effects of

portfolio selection.

The universal portfolio algorithm by Cover (1991) offers an alternative way to generate

a dynamic portfolio strategy without knowledge of the data-generating distribution.

In its basic form, the algorithm distributes the available capital across all fixed-mix

strategies. Initially each fixed-mix strategy is given the same weight, but the weights are

gradually adjusted according to the empirical performance of the different strategies.

The resulting universal portfolio strategy can be shown to perform at least as well as

the best fixed-mix strategy selected in hindsight. As for the classical growth-optimal

portfolio, however, any performance guarantees are asymptotic, and in the short run

it is susceptible to error maximization phenomena. A comprehensive survey of more

sophisticated universal portfolio algorithms is provided by Györfi et al. (2012).

The rest of the chapter develops as follows. In Section 2.2 we review the asymptotic

properties of classical growth-optimal portfolios, and in Section 2.3 we introduce the
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robust growth-optimal portfolios and discuss their performance guarantees. An ana-

lytical formula for the worst-case value-at-risk of the portfolio growth rate is derived

in Section 2.4, and extensions of the underlying probabilistic model are presented in

Section 2.5. Finally, Section 2.6 reports numerical results and concludes.

Notation. The space of symmetric (symmetric positive semidefinite) matrices in

Rn×n is denoted by Sn (Sn+). For any X,Y ∈Sn we let 〈X,Y〉 =Tr(XY) be the trace scalar

product, while the relation X 	 Y (X 
 Y) implies that X−Y is positive semidefinite

(positive definite). The set of eigenvalues of X ∈ Sn is denoted by eig(X). We also

define 1 as the vector of ones and I as the identity matrix. Their dimensions will

usually be clear from the context. Random variables are represented by symbols with

tildes, while their realizations are denoted by the same symbols without tildes. The set

of all probability distributions on Rn is denoted by P n
0 . Moreover, we define log(x) as

the natural logarithm of x if x > 0; =−∞ otherwise. Finally, we define the Kronecker

delta through δi j = 1 if i = j ; = 0 otherwise.

2.2 Growth-Optimal Portfolios

Assume that there is a fixed pool of n assets available for investment and that the port-

folio composition may only be adjusted at prescribed rebalancing dates indexed by

t = 1, . . . ,T , where T represents the length of the investment horizon. By convention,

period t is the interval between the rebalancing dates t and t +1, while the relative

price change of asset i over period t , that is, the asset’s rate of return, is denoted by

r̃ t ,i ≥ −1. Based on the common belief that markets are information efficient, it is

often argued that the asset returns r̃t = (r̃ t ,1, . . . , r̃ t ,n)ᵀ for t = 1, . . . ,T are governed by a

white noise process in the sense of the following definition.

Definition 2.1 (Strong Sense White Noise). The random vectors (r̃t )T
t=1 form a strong

sense white noise process if they are mutually independent and identically distributed.

A portfolio strategy (wt )T
t=1 is a rule for distributing the available capital across the

given pool of assets at all rebalancing dates within the investment horizon. For-

mally, wt ,i denotes the proportion of capital allocated to asset i at time t , while
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wt = (wt ,1, . . . , wt ,n)ᵀ encodes the portfolio held at time t . As all available capital must

be invested, we impose the budget constraint 1ᵀwt = 1. Moreover, we require wt ≥ 0 to

preclude short sales. For notational simplicity, the budget and short sales constraints

as well as any other regulatory or institutional portfolio constraints are captured by the

abstract requirement wt ∈W , where W represents a convex polyhedral subset of the

probability simplex in Rn . We emphasize that the portfolio composition is allowed to

change over time and may also depend on the asset returns observed in the past, but

not on those to be revealed in the future. In general, the portfolio at time t thus consti-

tutes a causal function wt =wt (r1, . . . ,rt−1) of the asset returns observed up to time

t . Due to their simplicity and attractive theoretical properties, fixed-mix strategies

represent an important and popular subclass of all causal portfolio strategies.

Definition 2.2 (Fixed-Mix Strategy). A portfolio strategy (wt )T
t=1 is a fixed-mix strategy

if there is a w ∈ W with wt (r1, . . . ,rt−1) = w for all (r1, . . . ,rt−1) ∈ Rn×(t−1) and t =
1, . . . ,T .

Fixed-mix strategies are also known as constant proportions strategies. They are

memoryless and keep the portfolio composition fixed across all rebalancing dates

and observation histories. We emphasize, however, that fixed-mix strategies are

nonetheless dynamic as they necessitate periodic trades at the rebalancing dates.

Indeed, the proportions of capital invested in the different assets change randomly

over any rebalancing period. Assets experiencing above average returns will have

larger weights at the end of the period and must undergo a divestment to revert back

to the weights prescribed by the fixed-mix strategy, while assets with a below average

return require a recapitalization. This trading pattern is often condensed into the

maxim ‘buy low & sell high.’ By slight abuse of notation, we will henceforth use the

same symbol w ∈W to denote individual portfolios as well as the fixed-mix strategies

that they induce.

The end-of-horizon value of a portfolio with initial capital 1 that is managed under a

generic causal strategy (wt )T
t=1 can be expressed as

ṼT =
T∏

t=1

[
1+wt (r̃1, . . . , r̃t−1)ᵀr̃t

]
,

where the factors in square brackets represent the total portfolio returns over the
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rebalancing periods. The portfolio growth rate is then defined as the natural logarithm

of the geometric mean of the absolute returns, which is equivalent to the arithmetic

mean of the log-returns.

γ̃T = log T

√√√√ T∏
t=1

[1+wt (r̃1, . . . , r̃t−1)ᵀr̃t ]= 1

T

T∑
t=1

log
[
1+wt (r̃1, . . . , r̃t−1)ᵀr̃t

]
(2.1)

The reverse formula ṼT = e γ̃T T highlights that there is a strictly monotonic relation

between the terminal value and the growth rate of the portfolio. Thus, our informal

management objective of maximizing terminal wealth is equivalent to maximizing

the growth rate. Unfortunately, this maximization is generally ill-defined as γ̃T is

uncertain. However, when the portfolio is managed under a fixed-mix strategy w ∈W

and the asset returns r̃t , t = 1, . . . ,T , follow a strong sense white noise process, then

γ̃T is asymptotically deterministic for large T .

Proposition 2.1 (Asymptotic Growth Rate). If w ∈W is a fixed-mix strategy, while the

asset returns (r̃t )T
t=1 follow a strong sense white noise process, then

lim
T→∞

γ̃T = E
(
log

(
1+wᵀr̃1

))
with probability 1. (2.2)

Proof. The claim follows immediately from (2.1) and the strong law of large numbers.

Proposition 2.1 asserts that the asymptotic growth rate of a fixed-mix strategy w ∈W

coincides almost surely with the expected log-return of portfolio w over a single

(without loss of generality, the first) rebalancing period. A particular fixed-mix strategy

of great conceptual and intuitive appeal is the Kelly strategy, which is induced by

the growth-optimal portfolio w∗ that maximizes the right hand side of (2.2). We

henceforth assume that there are no redundant assets, that is, the second-order

moment matrix of r̃t is strictly positive definite for all t .

Definition 2.3 (Kelly Strategy). The Kelly strategy is the fixed-mix strategy induced by

the unique growth-optimal portfolio w∗ = argmaxw∈W E
(
log(1+wᵀr̃1)

)
.

By construction, the Kelly strategy achieves the highest asymptotic growth rate among
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all fixed-mix strategies. Maybe surprisingly, it also outperforms all other causal portfo-

lio strategies in a sense made precise in the following theorem.

Theorem 2.1 (Asymptotic Optimality of the Kelly Strategy). Let γ̃∗T and γ̃T represent

the growth rates of the Kelly strategy and any other causal portfolio strategy, respec-

tively. If (r̃t )T
t=1 is a strong sense white noise process, then limsupT→∞ γ̃T − γ̃∗T ≤ 0 with

probability 1.

Proof. See e.g. Theorem 15.3.1 of Cover and Thomas (1991).

Even though the Kelly strategy has several other intriguing properties, which are dis-

cussed at length by MacLean et al. (2010), Theorem 2.1 lies at the root of its popularity.

The theorem asserts that, in the long run, the Kelly strategy accumulates more wealth

than any other causal strategy to first order in the exponent, that is, e γ̃T T ≤ e γ̃∗T T+o(T ),

with probability 1. However, the Kelly strategy has also a number of shortcomings that

limit its practical usefulness. First, Rubinstein (1991) shows that it may take hundreds

of years until the Kelly strategy starts to dominate other investment strategies with

high confidence. Moreover, the computation of the growth-optimal portfolio w∗

requires precise knowledge of the asset return distribution P, which is never avail-

able in reality due to estimation errors (Luenberger 1998, § 8.5). This is problematic

because Michaud (1989) showed that the growth-optimal portfolio corresponding

to an inaccurate estimated distribution P̂ may perform poorly under the true data-

generating distribution P. Finally, even if P was known, Theorem 2.1 would require

the asset returns to follow a strong sense white noise process under P. This is an

unrealistic requirement as there is ample empirical evidence that stock returns are

serially dependent; see e.g. Jegadeesh and Titman (1993). Even though the definition

of the Kelly strategy as well as Theorem 2.1 have been generalized by Algoet and Cover

(1988) to situations where the asset returns are serially dependent, the Kelly strategy

ceases to belong to the class of fixed-mix strategies in this setting and may thus no

longer be easy to compute.
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2.3 Robust Growth-Optimal Portfolios

In this section we extend the growth guarantees of Theorem 2.1 to finite investment

horizons and ambiguous asset return distributions. In order to maintain tractability,

we restrict attention to the class of fixed-mix strategies. As this class contains the Kelly

strategy, which is optimal for an infinite investment horizon, we conjecture that it also

contains policies that are near-optimal for finite horizons. We first observe that the

portfolio growth rate γ̃T (w )= 1
T

∑T
t=1 log(1+wᵀr̃t ) of any given fixed-mix strategy w

constitutes a (non-degenerate) random variable whenever the investment horizon T

is finite.

As γ̃T (w ) may have a broad spectrum of very different possible outcomes, it cannot be

maximized per se. However, one can maximize its value-at-risk (VaR) at level ε ∈ (0,1),

which is defined in terms of the chance-constrained program

P-VaRε(γ̃T (w )) = max
γ∈R

{
γ : P

(
1

T

T∑
t=1

log
(
1+wᵀr̃t

)≥ γ

)
≥ 1−ε

}
.

The violation probability ε of the chance constraint reflects the investor’s risk aversion

and is typically chosen as a small number � 10%. If γ∗ denotes the optimal solution

to the above chance-constrained program, then, with probability 1−ε, the value of a

portfolio managed under the fixed-mix strategy w will grow at least by a factor eTγ∗

over the next T rebalancing periods. Of course, the VaR of the portfolio growth rate

γ̃T (w ) can only be computed if the distribution P of the asset returns is precisely

known. In practice, however, P may only be known to belong to an ambiguity set P ,

which contains all asset return distributions that are consistent with the investor’s

prior information. In this situation, an ambiguity-averse investor will seek protection

against all distributions in P . This is achieved by using the worst-case VaR (WVaR) of

γ̃T (w ) to assess the performance of the fixed-mix strategy w .

WVaRε(γ̃T (w )) = min
P∈P

P-VaRε(γ̃T (w ))

= max
γ∈R

{
γ : P

(
1

T

T∑
t=1

log
(
1+wᵀr̃t

)≥ γ

)
≥ 1−ε ∀P ∈P

} (2.3)

In the remainder of this chapter, we refer to the portfolios that maximize WVaR as
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robust growth-optimal portfolios. They offer the following performance guarantees.

Observation 2.1 (Performance Guarantees). Let w∗ be the robust growth-optimal

portfolio that maximizes WVaRε(γ̃T (w )) over W and denote by γ∗ its objective value.

Then, with probability 1− ε, the value of a portfolio managed under the fixed-mix

strategy w∗ will grow at least by eTγ∗ over T periods. This guarantee holds for all

distributions in the ambiguity set P .

Proof. This is an immediate consequence of the definition of WVaR.

We emphasize that the portfolio return in any given rebalancing period displays sig-

nificant variability. Thus, the guaranteed return level γ∗ corresponding to a short

investment horizon is typically negative. However, positive growth rates can be guar-

anteed over longer investment horizons even for ε≤ 5%.

In the following we will assume that the asset returns are only known to follow a weak

sense white noise process.

Definition 2.4 (Weak Sense White Noise). The random vectors (r̃t )T
t=1 form a weak

sense white noise process if they are mutually uncorrelated and share the same mean

values EP (r̃t )=μ and second-order moments EP
(
r̃t r̃ ᵀ

t

)=Σ+μμᵀ for all 1≤ t ≤ T .

Note that every strong sense white noise process in the sense of Definition 2.1 is also a

weak sense white noise process, while the converse implication is generally false. By

modeling the asset returns as a weak sense white noise process we concede that they

could be serially dependent (as long as they remain serially uncorrelated). Moreover,

we deny to have any information about the return distribution except for its first and

second-order moments. In particular, we also accept the possibility that the marginal

return distributions corresponding to two different rebalancing periods may differ (as

long as they have the same means and covariance matrices). In his celebrated article

on the safety first principle for single-period portfolio selection, Roy (1952) provides

some implicit justification for the weak sense white noise assumption. Indeed, he

postulates that the first and second-order moments of the asset return distribution ‘are

the only quantities that can be distilled out of our knowledge of the past.’ Moreover, he

asserts that ‘the slightest acquaintance with problems of analysing economic time series
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will suggest that this assumption is optimistic rather than unnecessarily restrictive.’ It

is thus natural to define

P =

⎧⎪⎪⎨⎪⎪⎩P ∈P nT
0 :

EP (r̃t )=μ ∀t : 1≤ t ≤ T

EP
(
r̃s r̃ ᵀ

t

)= δstΣ+μμᵀ ∀s, t : 1≤ s ≤ t ≤ T

⎫⎪⎪⎬⎪⎪⎭ , (2.4)

where the mean value μ ∈Rn and the covariance matrix Σ ∈Sn+ are given parameters.

Note that the asset returns follow a weak sense white noise process under any distribu-

tion from within P . We remark that, besides its conceptual appeal, the moment-based

ambiguity set P has distinct computational benefits that will become apparent in

Section 2.4. More general ambiguity sets where the moments μ and Σ are also subject

to uncertainty or where the asset return distribution is supported on a prescribed

subset of RnT will be studied in Section 2.5.

In a single-period setting, worst-case VaR optimization problems with moment-based

ambiguity sets have previously been studied by El Ghaoui et al. (2003); Natarajan et al.

(2008, 2010) and Zymler et al. (2013b).

Remark 2.1 (Support Constraints). The ambiguity set P could safely be reduced by

including the support constraints P (r̃t ≥−1) = 1 ∀t : 1 ≤ t ≤ T , which ensure that

the stock prices remain nonnegative. Certainly, these constraints are satisfied by the

unknown true asset return distribution, and ignoring them renders the worst-case VaR

in (2.3) more conservative. In order to obtain a clean model, we first suppress these

constraints but emphasize that problem (2.3) remains well-defined even without them.

Recall that, by convention, the logarithm is defined as an extended real-valued function

on all of R. Support constraints will be studied in Section 2.5.1.

2.4 Worst-Case Value-at-Risk of the Growth Rate

Weak sense white noise ambiguity sets of the form (2.4) are not only physically mean-

ingful but also computationally attractive. We will now demonstrate that useful

approximations of the corresponding robust growth-optimal portfolios can be com-

puted in polynomial time. More precisely, we will show that the worst-case VaR of
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2.4. Worst-Case Value-at-Risk of the Growth Rate

a quadratic approximation of the portfolio growth rate admits an explicit analytical

formula. In the remainder we will thus assume that the growth rate γ̃T (w ) of the

fixed-mix strategy w can be approximated by

γ̃′T (w )= 1

T

T∑
t=1

(
wᵀr̃t − 1

2

(
wᵀr̃t

)2
)

,

which is obtained from (2.1) by expanding the logarithm to second order in wᵀr̃t . This

Taylor approximation has found wide application in portfolio analysis (Samuelson

1970) and is accurate for short rebalancing periods, in which case the probability

mass of wᵀr̃t accumulates around 0. Additional theoretical justification in the context

of growth-optimal portfolio selection is provided by Kuhn and Luenberger (2010).

To assess the approximation quality one can expect in practice, we have computed

the relative difference between γ̃T (w ) and γ̃′T (w ) for each individual asset and for

100,000 randomly generated fixed-mix strategies based on the 10 Industry Portfolios

and the 12 Industry Portfolios from the Fama French online data library.1 For a ten year

investment horizon the approximation error was uniformly bounded by 1% under

monthly and by 5% under yearly rebalancing, respectively, and in most cases the

errors were much smaller than these upper bounds.

From now on we will also impose two non-restrictive assumptions on the moments of

the asset returns.

(A1) The covariance matrix Σ is strictly positive definite.

(A2) For all w ∈W , we have 1−wᵀμ>
√

ε
(1−ε)T

∥∥Σ1/2w
∥∥.

Assumption (A1) ensures that the robust growth-optimal portfolio for a particular T

and ε is unique, and Assumption (A2) delineates the set of moments for which the

quadratic approximation of the portfolio growth-rate is sensible. As the exact growth

rate γ̃T (w ) is increasing and concave in wᵀr̃t , its worst-case VaR must be increasing

in wᵀμ and decreasing in wᵀΣw . Assumption (A2) ensures that the worst-case VaR

of the approximate growth rate γ̃′T (w ) inherits these monotonicity properties and

is also increasing in wᵀμ and decreasing in wᵀΣw . Note that the Assumptions (A1)

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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and (A2) are readily satisfied in most situations of practical interest, even if T = 1.

Assumption (A1) holds whenever there is no risk-free asset or portfolio, while (A2) is

automatically satisfied when μ and Σ are small enough, which can always be enforced

by shortening the rebalancing intervals. In fact, (A2) holds even for yearly rebalancing

intervals if the means and standard deviations of the asset returns fall within their

typical ranges reported in § 8 of Luenberger (1998).

In the rest of this section we compute the worst-case VaR of the approximate growth

rate

WVaRε(γ̃′T (w )) = max
γ∈R

{
γ : P

(
γ̃′T (w )≥ γ

)≥ 1−ε ∀P ∈P
}

(2.5)

for some fixed w ∈ W , T ∈ N and ε ∈ (0,1). By exploiting a known tractable refor-

mulation of distributionally robust quadratic chance constraints with mean and

covariance information (see Theorem A.1 in Appendix A.1), we can re-express prob-

lem (2.5), which involves infinitely many constraints parameterized by P ∈P , as a

finite semidefinite program (SDP). Thus, we obtain

WVaRε(γ̃′T (w )) = max γ

s. t. M ∈SnT+1, β ∈R, γ ∈R
β+ 1

ε
〈Ω,M〉 ≤ 0, M	 0

M−

⎡⎢⎢⎣
1
2

∑T
t=1 Pᵀ

t w wᵀPt −1
2

∑T
t=1 Pᵀ

t w

−1
2

(∑T
t=1 Pᵀ

t w
)ᵀ

γT −β

⎤⎥⎥⎦	 0,

(2.6)

where

Ω=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ+μμᵀ μμᵀ · · · μμᵀ μ

μμᵀ Σ+μμᵀ · · · μμᵀ μ
...

...
. . .

...
...

μμᵀ μμᵀ · · · Σ+μμᵀ μ

μᵀ μᵀ . . . μᵀ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈SnT+1

denotes the matrix of first and second-order moments of (r̃ ᵀ
1 , . . . , r̃ ᵀ

T )ᵀ , while the trun-

cation operators Pt ∈ Rn×nT are defined via Pt (r ᵀ
1 , . . . ,r ᵀ

T )ᵀ = rt , t = 1, . . . ,T . As (2.6)
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2.4. Worst-Case Value-at-Risk of the Growth Rate

constitutes a tractable SDP, the worst-case VaR of any fixed-mix strategy’s approximate

growth rate can be evaluated in time polynomial in the number of assets n and the

investment horizon T , see e.g. Ye (1997).

Remark 2.2 (Maximizing the Worst-Case VaR). In practice, we are not only interested in

evaluating the worst-case VaR of a fixed portfolio, but we also aim to identify portfolios

that offer attractive growth guarantees. Such portfolios can be found by treating w ∈W

as a decision variable in (2.6). In this case, the last matrix inequality in (2.6) becomes

quadratic in the decision variables, and (2.6) ceases to be an SDP. Fortunately, however,

one can convert (2.6) back to an SDP by rewriting the quadratic matrix inequality as

2M−
[

0 0

0 2γT −T −2β

]
	

T∑
t=1

[
Pᵀ

t w

−1

][
Pᵀ

t w

−1

]ᵀ

=
[

Pᵀ
1 w Pᵀ

2 w · · · Pᵀ
T w

−1 −1 · · · −1

][
Pᵀ

1 w Pᵀ
2 w · · · Pᵀ

T w

−1 −1 · · · −1

]ᵀ
,

which is satisfied whenever there are V ∈SnT , v ∈RnT and v0 ∈R with

M=
[

V v

vᵀ v0

]
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2V 2v Pᵀ
1 w · · · Pᵀ

T w

2vᵀ 2v0−2γT +T +2β −1 · · · −1

wᵀP1 −1 1 · · · 0
...

...
...

. . .
...

wᵀPT −1 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
	 0

by virtue of a Schur complement argument.

Even though SDPs are polynomial-time solvable in theory, problem (2.6) will quickly

exhaust the capabilities of state-of-the-art SDP solvers when the asset universe and

the investment horizon become large. Indeed, the dimension of the underlying matrix

inequalities scales with n and T , and many investors will envisage a planning horizon

of several decades with monthly or weekly granularity and an asset universe compris-

ing several hundred titles. However, we will now demonstrate that the approximate

worst-case VaR problem (2.5) admits in fact an analytical solution.

We first notice that the random asset returns r̃t enter problem (2.5) only in the form
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of the portfolio return wᵀr̃t . We can thus use a well-known projection property of

moment-based ambiguity sets to perform a dimensionality reduction.

Proposition 2.2 (General Projection Property). Let ξ̃ and ζ̃ be random vectors valued

in Rp and Rq , respectively, and define the ambiguity sets P ξ̃ and P ζ̃ as

P ξ̃ =
{
P ∈P0

(
Rp) : EP

([
ξ̃ᵀ 1

]ᵀ [
ξ̃ᵀ 1

])=Ωξ̃

}
and

P ζ̃ =
{
P ∈P0

(
Rq) : EP

([
ζ̃ᵀ 1

]ᵀ [
ζ̃ᵀ 1

])=Ωζ̃

}
,

where the moment matrices Ωξ̃ ∈S
p+1
+ and Ωζ̃ ∈S

q+1
+ are related through

Ωζ̃ =
[

Λ 0

0ᵀ 1

]
Ωξ̃

[
Λ 0

0ᵀ 1

]ᵀ

for some matrix Λ ∈Rq×p . Then, for any Borel measurable function f : Rp →R, we have

inf
P∈P ζ̃

P
(

f (ζ̃)≤ 0
)= inf

P∈P ξ̃

P
(

f (Λξ̃)≤ 0
)

.

Proof. This is an immediate consequence of Yu et al. (2009, Theorem 1).

Applying Proposition 2.2 to problem (2.5) yields

WVaRε(γ̃′T (w )) = sup
γ

γ

s. t. P

(
1

T

T∑
t=1

(
η̃t − 1

2
η̃2

t

)
≥ γ

)
≥ 1−ε ∀P ∈P η̃(w ),

(2.7)

where the projected ambiguity set

P η̃(w )=
{
P ∈P T

0 :
EP
(
η̃t
)=wᵀμ ∀t : 1≤ t ≤ T

EP
(
η̃s η̃

ᵀ
t

)= δst wᵀΣw + (wᵀμ
)2 ∀s, t : 1≤ s ≤ t ≤ T

}

contains all distributions on RT under which the portfolio returns (η̃1, . . . , η̃T )ᵀ follow

a weak sense white noise process with (period-wise) mean wᵀμ and variance wᵀΣw .
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2.4. Worst-Case Value-at-Risk of the Growth Rate

Problem (2.7) has the same structure as the original problem (2.5), but the underlying

probability space has only dimension T instead of nT . Thus, it can be converted to a

tractable SDP by using Theorem A.1 to reformulate the underlying distributionally

robust chance constraint. We then obtain

WVaRε(γ̃′T (w )) = max γ

s. t. M ∈ST+1, β ∈R, γ ∈R
β+ 1

ε
〈Ω(w ),M〉 ≤ 0, M	 0

M−
[

1
2 I −1

2 1

−1
2 1ᵀ γT −β

]
	 0,

(2.8)

where Ω(w ) ∈ST+1 denotes the matrix of first and second-order moments of (η̃1, . . .

, η̃T )ᵀ.

Ω(w )=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

wᵀΣw + (wᵀμ)2 (wᵀμ)2 · · · (wᵀμ)2 wᵀμ

(wᵀμ)2 wᵀΣw + (wᵀμ)2 · · · (wᵀμ)2 wᵀμ
...

...
. . .

...
...

(wᵀμ)2 (wᵀμ)2 · · · wᵀΣw + (wᵀμ)2 wᵀμ

wᵀμ wᵀμ · · · wᵀμ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The projected problem (2.7) can be further simplified by exploiting its compound

symmetry.

Definition 2.5 (Compound Symmetry, Votaw (1948)). A matrix M ∈ST+1 is compound

symmetric if there exist τ1,τ2,τ3,τ4 ∈R with

M=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1 τ2 · · · τ2 τ3

τ2 τ1 · · · τ2 τ3
...

...
. . .

...
...

τ2 τ2 · · · τ1 τ3

τ3 τ3 . . . τ3 τ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.9)

Note that the second-order moment matrix Ω(w ) is compound symmetric because

of the temporal symmetry of the random returns. More generally, the second-order

moment matrix of any univariate weak sense white noise process is compound sym-
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metric. The next proposition shows that there exists a matrix M that is both optimal in

(2.8) as well as compound symmetric.

Proposition 2.3. There exists a maximizer
(
M,β,γ

)
of (2.8) with M compound symmet-

ric.

Proof. Denote by ΠT+1 the set of all permutations π of the integers {1,2, . . . ,T +1} with

π(T +1)= T +1. For any π ∈ΠT+1 we define the corresponding permutation matrix

Pπ ∈R(T+1)×(T+1) through (Pπ)i j = 1 if π(i )= j ; = 0 otherwise. Note that Pᵀ
π represents

the permutation matrix corresponding to the inverse of π. A matrix K ∈ ST+1 is

compound symmetric if and only if K=PπKPᵀ
π for all π ∈ΠT+1. Suppose that

(
M,β,γ

)
is a maximizer of (2.8). Since the input matrices in (2.8) are compound symmetric and

Pπ is non-singular, we have

M−
[

1
2 I −1

2

−(1
2

)ᵀ
γT −β

]
	 0 ⇐⇒ Pπ

(
M−

[
1
2 I −1

2

−(1
2

)ᵀ
γT −β

])
Pᵀ
π 	 0

⇐⇒ PπMPᵀ
π−

[
1
2 I −1

2

−(1
2

)ᵀ
γT −β

]
	 0.

The compound symmetry of Ω(w ) and the cyclicity of the trace further imply

〈Ω(w ),M〉 =Tr(MΩ(w ))=Tr
(
MPᵀ

πΩ(w )Pπ

)=Tr
(
PπMPᵀ

πΩ(w )
)= 〈Ω(w ),PπMPᵀ

π〉 .

Hence,
(
PπMPᵀ

π,β,γ
)

is feasible in (2.8) and has the same objective value as
(
M,β,γ

)
.

It is therefore a maximizer of (2.8). As the set of maximizers is convex, the convex

combination

M′ = 1

T !

∑
π∈ΠT+1

PπMPᵀ
π

is also a maximizer of (2.8). Moreover, M′ is compound symmetric because ρ(ΠT+1)=
ΠT+1 and, a fortiori, PρM′Pᵀ

ρ =M′ for any ρ ∈ΠT+1. Thus, the claim follows.

By Proposition 2.3, we may assume without loss of generality that M in (2.8) is com-

pound symmetric. Thus, each matrix inequality in (2.8) requires a compound symmet-

ric matrix to be positive semidefinite. The next proposition shows that semidefinite
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2.4. Worst-Case Value-at-Risk of the Growth Rate

constraints involving compound symmetric matrices of any dimension can be re-

duced to four simple scalar constraints.

Proposition 2.4. For any compound symmetric matrix M ∈ST+1 of the form (2.9), the

following equivalence holds.

M	 0 ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ1 ≥ τ2

τ4 ≥ 0

τ1+ (T −1)τ2 ≥ 0

τ4 (τ1+ (T −1)τ2)≥ Tτ2
3

(2.10a)

(2.10b)

(2.10c)

(2.10d)

Proof. We use the well-known fact that a symmetric matrix is positive semidefinite

if and only if all of its eigenvalues are nonnegative. First, it is easy to verify that any

vector of the form v = [v1, v2, . . . , vT ,0]ᵀ with
∑T

i=1 vi = 0 constitutes an eigenvector of

M with eigenvalue τ1−τ2. Indeed, we have

Mv =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1v1+τ2(v2+ v3+·· ·+ vT )

τ1v2+τ2(v1+ v3+·· ·+ vT )
...

τ1vT +τ2(v2+ v3+·· ·+ vT−1)

τ3(v1+ v2+·· ·+ vT )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(τ1−τ2)v1

(τ1−τ2)v2
...

(τ1−τ2)vT

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (τ1−τ2)v .

There are T − 1 linearly independent eigenvectors of the above type. Next, we as-

sume first that τ3 = 0. In this case, the two remaining eigenvectors can be chosen

as [1,1, . . . ,1,0]ᵀ and [0,0, . . . ,0,1]ᵀ with eigenvalues τ1+ (T −1)τ2 and τ4, respectively.

Thus M	 0 if and only if (2.10a), (2.10b), and (2.10c) hold. Moreover, (2.10d) is trivially

implied by (2.10b) and (2.10c) whenever τ3 = 0. Assume now that τ3 �= 0. In this

case, the two remaining eigenvectors are representable as v = [1,1, . . . ,1, v]ᵀ for some

v ∈R. Observe that λ is a corresponding eigenvalue if and only if Mv =λv , which is

equivalent to

τ1+ (T −1)τ2+ vτ3 =λ, Tτ3+ vτ4 =λv.

The second equation above thus implies that v(λ−τ4)= Tτ3 �= 0, and thus v = Tτ3
λ−τ4

.
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Substituting this expression for v into the first equation above, we obtain

τ1+ (T −1)τ2+
Tτ2

3

λ−τ4
=λ.

Solving this equation for λ yields the two eigenvalues

λ= 1

2

(
τ1+ (T −1)τ2+τ4±

√
(τ1+ (T −1)τ2+τ4)2+4

(
Tτ2

3−τ4(τ1+ (T −1)τ2)
))

(2.11a)

= 1

2

(
τ1+ (T −1)τ2+τ4±

√
(τ1+ (T −1)τ2−τ4)2+4Tτ2

3

)
. (2.11b)

From equation (2.11b) it is evident that the square root term constitutes a strictly

positive real number. The two eigenvalues are thus nonnegative if and only if

τ1+ (T −1)τ2+τ4 ≥ 0, (τ1+ (T −1)τ2)τ4 ≥ Tτ2
3. (2.12)

The second inequality in (2.12) ensures that the square root term in (2.11a) does not

exceed τ1+ (T −1)τ2+τ4, which implies (2.10d). By (2.12), both the product and the

sum of τ1+(T −1)τ2 and τ4 are nonnegative, which implies that each of them must be

individually nonnegative, i.e., (2.10b) and (2.10c) hold. The claim now follows from

the fact that (2.10a)–(2.10d) also imply (2.12).

Corollary 2.1. For any compound symmetric matrix M ∈ST+1 of the form (2.9), the

semidefinite constraint M	 0 is equivalent to a system of second-order cone constraints.

M	 0 ⇐⇒
⎧⎨⎩
τ1 ≥ τ2

τ1+ (T −1)τ2+τ4 ≥
√

(τ1+ (T −1)τ2−τ4)2+4Tτ2
3

Proof. The inequalities (2.10b), (2.10c), and (2.10d) can be viewed as a hyperbolic

constraint. The claim then follows from Boyd and Vandenberghe (2004, Exercise 4.26).

We now demonstrate that the semidefinite program (2.8), which involves O (T 2) de-

cision variables, can be reduced to an equivalent non-linear program with only six
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decision variables. First, by Proposition 2.3, we may assume without any loss of gen-

erality that the decision variable M is of the form (2.9) for some τ ∈R4. Thus, we can

use Proposition 2.4 to re-express both semidefinite constraints in (2.8) in terms of one

non-linear and three linear constraints, respectively. Using the notational shorthands

μp =wᵀμ and σp =
�

wᵀΣw for the mean and the standard deviation of the portfolio

return, we obtain the following non-linear program.

WVaRε(γ̃′T (w )) = max γ

s. t. τ ∈R4, β ∈R, γ ∈R
β+ 1

ε

[
T
(
σ2

p+μ2
p

)
τ1+T (T −1)μ2

pτ2+2Tμpτ3+τ4

]
≤ 0

(2.14a)

τ1 ≥ τ2 (2.14b)

τ4 ≥ 0 (2.14c)

τ1+ (T −1)τ2 ≥ 0 (2.14d)

τ4 (τ1+ (T −1)τ2)≥ Tτ2
3 (2.14e)(

τ1− 1
2

)≥ τ2 (2.14f)

τ4−γT +β≥ 0 (2.14g)(
τ1− 1

2

)+ (T −1)τ2 ≥ 0 (2.14h)(
τ4−γT +β

)((
τ1− 1

2

)+ (T −1)τ2
)≥ T

(
τ3+ 1

2

)2
(2.14i)

Note that (2.14a) corresponds to the trace inequality, while (2.14b)–(2.14e) encodes

the positive semidefiniteness of M, and (2.14f)–(2.14i) is a reformulation of the last

matrix inequality in (2.8).

We first note that (2.14a) is binding at optimality. Indeed, if (2.14a) is not binding

at (τ,β,γ), then (τ,γ+ Δ
T ,β+Δ) remains feasible but has a higher objective value for

a sufficiently small Δ > 0. Moreover, (2.14b) and (2.14d) are redundant in view of

(2.14f) and (2.14h) and can thus be dropped. Finally, there exists an optimal solu-

tion for which (2.14f) is binding. Indeed, if (2.14f) is not binding at (τ,β,γ), then(
τ1+(T−1)τ2− 1

2
T + 1

2 ,
τ1+(T−1)τ2− 1

2
T ,τ3,τ4,γ,β

)
remains feasible with the same objective

value but satisfies (2.14f) as an equality. Without loss of generality, we can thus elimi-
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nate the decision variable τ1 by using the substitution τ1 = τ2+ 1
2 . In summary, we have

WVaRε(γ̃′T (w )) = max γ

s. t. τ2 ∈R, τ3 ∈R, τ4 ∈R, β ∈R, γ ∈R
β+ 1

ε

[
T
2

(
σ2

p+μ2
p

)
+T

(
σ2

p+Tμ2
p

)
τ2+2Tμpτ3+τ4

]
= 0

τ4 ≥ 0

τ4−γT +β≥ 0

τ2 ≥ 0

τ4
(
τ2+ 1

2T

)≥ τ2
3(

τ4−γT +β
)
τ2 ≥

(
τ3+ 1

2

)2
.

(2.15)

Problem (2.15) can be written more compactly as

WVaRε(γ̃′T (w )) = − min aw +bx+c y +d z+e

s. t. w, x, y, z ∈R
w ≥ 0, x ≥ 0, y ≥ 1

( 1
2 z+1)2 ≤w(y +1)

( 1
2 z−1)2 ≤ x(y −1),

(2.16)

where the decision variables w , x, y and z in (2.16) are related to the variables τ2, τ3,

τ4, β and γ in (2.15) through the transformations

w = 4τ4

T
, x = 4

(
τ4−γT +β

)
T

, y = 4Tτ2+1, z =−8τ3−2,

while the objective function coefficients are given by a = 1
4ε − 1

4 , b = 1
4 , c = σ2

p+Tμ2
p

4εT ,

d = −μp

4ε and e = μ2
p

4ε −
μp

2ε +
σ2

p

2ε −
σ2

p

4εT . Note that the inequality constraints in (2.15)

correspond to the inequality constraints in (2.16) in the same order, while the equality
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constraint in (2.15) has been eliminated via the following substitution.

γ= 1
4 (w −x)+ β

T

= 1
4 (w −x)− 1

εT

(
T
2

(
σ2

p+μ2
p

)
+T

(
σ2

p+Tμ2
p

)
τ2+2Tμpτ3+τ4

)
= 1

4 (w −x)− 1
εT

(
T
2

(
σ2

p+μ2
p

)
+ 1

4

(
σ2

p+Tμ2
p

)
(y −1)− 1

4 Tμp(z+2)+ 1
4 T w

)
=−

(( 1
4ε − 1

4

)
w + (1

4

)
x+

(
σ2

p+Tμ2
p

4εT

)
y +

(
−μp

4ε

)
z+ μ2

p

4ε −
μp

2ε +
σ2

p

2ε −
σ2

p

4εT

)
=−(aw +bx+c y +d z+e)

Problem (2.16) admits an explicit analytical solution as stated in the following lemma.

Lemma 2.1. For any given real numbers a,b,c and d that satisfy the conditions

(i) a,b,c > 0,

(ii) (a+b)c > d 2 and

(iii) a+b+d >Δ
�

b/a, where Δ=
√

(a+b)c−d 2 > 0,

the optimal value of the optimization problem

min aw +bx+c y +d z

s. t. w, x, y, z ∈R
w ≥ 0, x ≥ 0, y ≥ 1

( 1
2 z+1)2 ≤w(y +1)

( 1
2 z−1)2 ≤ x(y −1)

(2.17)

is given by

2bd +d 2+Δ2+2Δ
�

ab

a+b
+ 2

�
ab

(a+b)2

(
Δ−d

�
a/b

)(
a+b+d −Δ

�
b/a

)
.

Proof. Assumption (i) ensures that problem (2.17) is bounded, while assumption (ii)

guarantees that Δ=
√

(a+b)c−d 2 is real. Assumption (iii) is not strictly needed, and

problem (2.17) admits a generalized closed-form solution even if this assumption

is violated. However, this more general solution is not needed for this chapter, and

therefore we will not derive it.
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Note that (2.17) constitutes a (convex) SOCP with two hyperbolic constraints, and the

Karush-Kuhn-Tucker (KKT) optimality conditions are necessary and sufficient. We

will now prove the lemma constructively by showing that the candidate solution

y = 2−p−q

p−q
, z = 2(p+q−2pq)

p−q
, w =

(1
2 z+1

)2

y +1
, x =

(1
2 z−1

)2

y −1

with

p = −d +Δ
�

b/a

a+b
, q = −d −Δ

�
a/b

a+b

satisfies the KKT conditions and is thus optimal in (2.17). Note first that this solution

is feasible. Indeed, by the assumptions (i)–(iii) we have q < p < 1. We conclude that

y = 2−p−q

p−q
= 1+ 2(1−p)

p−q
> 1,

which in turn implies that w ≥ 0 and x ≥ 0. The two hyperbolic constraints in (2.17)

are binding by the definition of w and x.

For later reference we state the following identities, which are easy to verify.

ap+bq+d = 0, ap2+bq2 = c, p = z+2

2y +2
, q = z−2

2y −2
(2.18)

Moreover, we denote by α1, α2 and α3 the Lagrange multipliers of the three linear

inequalities and by λ and δ the Lagrange multipliers of the two hyperbolic constraints

in (2.17), respectively. To prove that the suggested candidate solution is indeed op-

timal, we show that it satisfies the KKT conditions with α1 =α2 =α3 = 0, λ= a
y+1 > 0

and δ = b
y−1 > 0. Note that these Lagrange multipliers are dual feasible and satisfy

complementary slackness. By using (2.18) together with the explicit formulas for the

candidate solution and the Lagrange multipliers, we can further verify the stationarity

conditions:

a−α1−λ(y +1)= 0

b−α2−δ(y −1)= 0

c−α3−λw −δx = c−ap2−bq2 = 0

d + 1
2λ(z+2)+ 1

2δ(z−2)= d +ap+bq = 0.
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2.4. Worst-Case Value-at-Risk of the Growth Rate

As all KKT conditions are met, we conclude that the proposed candidate solution is

optimal. In order to evaluate the optimal objective value of problem (2.17), we first

use (2.18) to show that w = p
(1

2 z+1
)

and x = q
(1

2 z−1
)
. This enables us to express

the optimal objective value as

aw +bx+c y +d z = ap
(1

2 z+1
)+bq

(1
2 z−1

)+c y +d z

= ap−bq+c y + 1
2 z
(
2d +ap+bq

)
= ap−bq+c y + 1

2 d z,

where the last equality follows again from (2.18). As y and z are defined in terms of p

and q , we can now express the optimal objective value as a function of p and q only.

The claim then follows by substituting the definitions of p and q into the resulting

formula.

We are now ready to state the main result of this section.

Theorem 2.2 (Worst-Case Value-at-Risk). Under Assumptions (A1) and (A2) we have

WVaRε(γ̃′T (w ))= 1
2

(
1−

(
1−wᵀμ+

√
1−ε
εT

∥∥Σ1/2w
∥∥)2

− T−1
εT wᵀΣw

)
. (2.19)

Proof. We know that the worst-case VaR of γ̃′T (w ) is given by the optimal value of

problem (2.16). By construction, the objective function coefficients a, b and c in (2.16)

are strictly positive. Moreover, the square root discriminant Δ=
√

(a+b)c−d 2 = σp

4ε
�

T

is strictly positive by Assumption (A1), while Assumption (A2) implies that

a+b+d = 1

4ε

(
1−μp

)> 1

4ε

√
ε

(1−ε)T
σp =

�
b/aΔ.

As all conditions of Lemma 2.1 are satisfied, we may conclude that

WVaRε(γ̃′T (w ))=−
(

2bd+d 2+Δ2+2Δ
�

ab
a+b + 2

�
ab

(a+b)2

(
Δ−d

�
a/b

)(
a+b+d −Δ

�
b/a

)
+e

)
.

The claim then follows by substituting the definitions of a, b, c , d and e into the above

expression and rearranging terms.

If the set W of admissible portfolios is characterized by a finite number of linear con-
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straints, then the portfolio optimization problem maxw∈W WVaRε(γ̃′T (w )) reduces to a

tractable SOCP whose size is independent of the investment horizon. In order to avoid

verbose terminology, we will henceforth refer to the unique optimizer of this SOCP as

the robust growth-optimal portfolio, even though it maximizes only an approximation

of the true growth rate. Maybe surprisingly, computing the robust growth-optimal

portfolio is almost as easy as computing a Markowitz portfolio. However, the robust

growth-optimal portfolios offer precise performance guarantees over finite investment

horizons and for a wide spectrum of different asset return distributions.

Note that the worst-case VaR (2.19) is increasing in the portfolio mean return wᵀμ

and decreasing in the portfolio variance wᵀΣw as long as w satisfies Assumption (A2).

Thus, any portfolio that maximizes the worst-case VaR is mean-variance efficient.

This is not surprising as the worst-case VaR is calculated solely on the basis of mean

and covariance information. Markowitz investors choose freely among all mean-

variance efficient portfolios based on their risk preferences, that is, they solve the

Markowitz problem maxw∈W wᵀμ− �
2 wᵀΣw corresponding to their idiosyncratic risk

aversion parameter �≥ 0. In contrast, a robust growth-optimal investor chooses the

unique mean-variance efficient portfolio tailored to her investment horizon T and

violation probability ε. We can thus define a function �(T,ε) with the property that the

robust growth-optimal portfolio tailored to T and ε coincides with the solution of the

Markowitz problem with risk aversion parameter �(T,ε). By comparing the optimality

conditions of the Markowitz and robust growth-optimal portfolio problems, one can

show that

�(T,ε)=
√

1−ε

εT
· 1∥∥Σ1/2w

∥∥ + T −1

εT
(
1−wᵀμ+

√
1−ε
εT

∥∥Σ1/2w
∥∥) , (2.20)

where w denotes the robust growth-optimal portfolio, which depends on both T and

ε and can only be computed numerically. The function �(T,ε) will be investigated

further in Section 2.6.1. From the point of view of mean-variance analysis, a robust

growth-optimal investor becomes less risk-averse as ε or T increases. Indeed, one can

use Assumption (A2) to prove that WVaRε(γ̃′T (w )) is increasing (indicating that �(T,ε)

is decreasing) in ε and T . We emphasize that the robust growth-optimal portfolios may

lose mean-variance efficiency when the ambiguity set of the asset return distribution is

no longer described in terms of exact first and second-order moments. Such situations
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2.4. Worst-Case Value-at-Risk of the Growth Rate

will be studied in Section 2.5.

The classical growth-optimal portfolio is perceived as highly risky. Indeed, if the rebal-

ancing intervals are short enough to justify a quadratic expansion of the logarithmic

utility function, then the classical growth-optimal portfolio can be identified with the

Markowitz portfolio corresponding to the aggressive risk aversion parameter �= 1. In

fact, the two portfolios are identical in the continuous-time limit if the asset prices

follow a multivariate geometric Brownian motion (Luenberger 1998, § 15.5). The

Markowitz portfolios associated with more moderate levels of risk aversion � � 1

are often viewed as ad hoc alternatives to the classical growth-optimal portfolio that

preserve some of its attractive growth properties but mitigate its short-term variability.

According to standard convention, a fractional Kelly strategy with risk-aversion pa-

rameter κ ≥ 1 blends the classical Kelly strategy and a risk-free asset in constant

proportions of 1/κ and (κ−1)/κ, respectively. Fractional Kelly strategies have been

suggested as heuristic remedies for over-betting in the presence of model risk, see

e.g. Christensen (2012). As pointed out by MacLean et al. (2005), the fractional Kelly

strategy corresponding to κ emerges as a maximizer of the Merton problem with

constant relative risk aversion κ if the prices of the risky assets follow a multivariate

geometric Brownian motion in continuous time. In a discrete-time market without a

risk-free asset it is therefore natural to define the fractional Kelly strategy correspond-

ing to κ through the portfolio that maximizes the expected isoelastic utility function
1

1−κE[(1+wᵀr̃1)1−κ]. By expanding the utility function around 1, this portfolio can be

closely approximated by wκ = argmaxw∈W wᵀμ− κ
2 wᵀ (Σ+μμᵀ)w , which is mean-

variance efficient with risk-aversion parameter �= κ/(1+κwᵀ
κμ) whenever wᵀ

κμ≤ 1/κ.

Note that the last condition is reminiscent of Assumption (A2) and is satisfied for typi-

cal choices of ε, T , μ and Σ. It then follows from (2.20) that the robust growth-optimal

portfolio tailored to the investment horizon T and violation probability ε coincides

with the (approximate) fractional Kelly strategy corresponding to the risk-aversion

parameter

κ(T,ε)= υ
�

(1−ε)εT + (T −1)
∥∥Σ1/2w

∥∥
υ
(
εT
∥∥Σ1/2w

∥∥−�(1−ε)εT wᵀμ
)− (T −1)wᵀμ

∥∥Σ1/2w
∥∥ ,

where the robust growth-optimal portfolio w must be computed numerically and υ
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is defined as 1−wᵀμ+
√

1−ε
εT

∥∥Σ1/2w
∥∥. Our work thus offers evidence for the near-

optimality of fractional Kelly strategies under distributional ambiguity and provides

systematic guidelines for tailoring fractional Kelly strategies to specific investment

horizons and violation probabilities. The function κ(T,ε) will be studied further in

Section 2.6.1.

Remark 2.3. (Relation to Worst-Case VaR by El Ghaoui et al. (2003)) Theorem 2.2

generalizes a result by El Ghaoui et al. (2003) for worst-case VaR problems in a single-

period investment setting. Indeed, for T = 1 the portfolio optimization problem

maxw∈W WVaRε(γ̃′1(w )) reduces to

max
w∈W

1
2

(
1−

(
1−wᵀμ+

√
1−ε
ε

∥∥Σ1/2w
∥∥)2)

⇐⇒ max
w∈W

wᵀμ−
√

1−ε

ε

∥∥Σ1/2w
∥∥ .

Under Assumption (A2), the objective functions of the above problems are related

through a strictly monotonic transformation. Thus, both problems share the same

optimal solution (but have different optimal values). The second problem is readily

recognized as the SOCP equivalent to the static worst-case VaR optimization problem

by El Ghaoui et al. (2003).

Remark 2.4. (Long-Term Investors) In the limit of very long investment horizons, the

worst-case VaR (2.19) reduces to

lim
T→∞

WVaRε(γ̃′T (w )) = 1
2 − 1

2

(
1−wᵀμ

)2− 1
2εwᵀΣw ,

which can be viewed as the difference between the second-order Taylor approximation

of the portfolio growth rate in the nominal scenario, log
(
1+wᵀμ

)
, and a risk premium,

which is inversely proportional to the violation probability ε.

Remark 2.5. (Worst-Case Conditional VaR) We could use the worst-case conditional

VaR (CVaR) instead of the worst-case VaR in (2.5) to quantify the desirability of the

fixed-mix strategy w . The CVaR at level ε ∈ (0,1) of a random reward is defined as the

conditional expectation of the ε×100% least favorable reward realizations below the

VaR. CVaR is sometimes considered to be superior to the VaR because it constitutes a

coherent risk measure in the sense of Artzner et al. (1999). However, it has been shown in

Theorem 2.2 of Zymler et al. (2013a) that the worst-case VaR and the worst-case CVaR

under mean and covariance information are actually equal on the space of reward
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2.4. Worst-Case Value-at-Risk of the Growth Rate

functions that are quadratic in the uncertain parameters. As the approximate portfolio

growth rate γ̃′T (w ) is quadratic in the uncertain asset returns, its worst-case VaR thus

coincides with its worst-case CVaR.

In order to perform systematic contamination or stress test experiments, it is essential

to know the extremal distributions from within P under which the actual VaR of the

approximate portfolio growth rate γ̃′T (w ) coincides with WVaRε(γ̃′T (w )). We will now

demonstrate that the worst case is not attained by a single distribution. However,

we can explicitly construct a sequence of asset return distributions that attain the

worst-case VaR asymptotically. A general computational approach to construct ex-

tremal distributions for distributionally robust optimization problems is described by

Bertsimas et al. (2010a). In contrast, the construction presented here is completely

analytical.

For a fixed w ∈ W , we first construct a sequence of portfolio return distributions

Pε′ ∈P η̃(w ), ε′ ∈ (ε,1), that attains the worst case in problem (2.7) as ε′ approaches ε.

Recall that η̃ represents a weak sense white noise process with mean μp =wᵀμ and

standard deviation σp =
�

wᵀΣw .

To construct the distribution Pε′ for a fixed ε′ ∈ (ε,1), we set

Δ=σp

√
T

ε′
, b =μp+

√
ε′

(1−ε′)T
σp, u =μp− Δ

T
−
√

1−ε′

ε′T
σp, d = u+ 2Δ

T

and introduce 2T + 1 portfolio return scenarios ηb , {ηu
t }T

t=1 and {ηd
t }T

t=1, defined

through

ηb = (ηb
1, . . . ,ηb

T )ᵀ where ηb
s = b ∀s = 1, . . . ,T,

ηu
t = (ηu

t ,1, . . . ,ηu
t ,T )ᵀ where ηu

t ,s = u+Δδt s ∀t , s = 1, . . . ,T,

ηd
t = (ηd

t ,1, . . . ,ηd
t ,T )ᵀ where ηd

t ,s = d −Δδt s ∀t , s = 1, . . . ,T.
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We then define Pε′ as the discrete distribution on RT with

Pε′
(
η̃=ηb

)
= 1−ε′,

Pε′ (η̃=ηu
t

)= ε′

2T
∀t = 1, . . . ,T,

Pε′
(
η̃=ηd

t

)
= ε′

2T
∀t = 1, . . . ,T.

Theorem 2.3 below asserts that the distributions Pε′ attain the worst case in (2.7) as

ε′ ↓ ε. Before embarking on the proof of this result, we examine the properties of Pε′ .

Note that in scenario ηb the portfolio returns are constant over time. Moreover, in

scenarios ηu
t and ηd

t the portfolio returns are constant except for period t , in which

they spike up and down, respectively. If T � 1 and/or ε′ � 1, then we have Δ� 1. In

this case the ηd
t scenarios can spike below −1. The distributions Pε′ may therefore be

unduly pessimistic. However, this pessimism is manifestation that we err on the side of

caution. It is the price we must pay for computational (and analytical) tractability. Less

pessimistic worst-case distributions can be obtained by enforcing more restrictive

distributional properties in the definition of the ambiguity set P . Examples include

support constraints as studied in Section 2.5.

Theorem 2.3. The portfolio return distributions Pε′ , ε′ ∈ (ε,1), have the following

properties.

(i) Pε′ ∈P η̃(w ) ∀ε′ ∈ (ε,1).

(ii) If γ̃η

T = 1
T

∑T
t=1(η̃t − 1

2 η̃
2
t ), then lim

ε′↓ε
Pε′-VaRε(γ̃η

T )=WVaRε(γ̃′T (w )).

Proof. We first establish some identities for the parameters Δ, b, u and d that will be

useful for the proof of the two assertions. From the definition of d we conclude that

(T −1)u2+ (u+Δ)2 = (T −1)d 2+ (d −Δ)2 , (2.21)

while the definitions of b and u imply that

(1−ε′)b+ε′
(
u+ Δ

T

)
=μp. (2.22)
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For later reference we define

γ= 1

2

⎛⎝1−
⎛⎝1−μp+

√
1−ε′

ε′T
σp

⎞⎠2

− T −1

ε′T
σ2

p

⎞⎠ . (2.23)

By construction, γ is equal to the worst-case VaR of γ̃′T (w ) at the tolerance level ε′; see

Theorem 2.2. Basic algebraic manipulations yield the following equation equivalent

to (2.23).

(1−ε′)−
(
2μp−μ2

p−σ2
p−2γε′

)
=
⎛⎝√(1−ε′)(1−μp)−

√
ε′

T
σp

⎞⎠2

By using the definition of b, this equation can be reformulated as

b2−2b+
2μp−μ2

p−σ2
p−2γε′

1−ε′
= 0. (2.24)

Similarly, from the definition of u we obtain

u =μp− Δ

T
−
√

1−ε′

ε′T
σp

= 1− Δ

T
−
√

1−2γ− T −1

ε′T
σ2

p

= 1− Δ

T
−
√

1−2γ+ Δ2

T 2
− Δ2

T

=
2(T −Δ)−

√
4(T −Δ)2−4T

(
2Tγ−2Δ+Δ2

)
2T

,

where the second equality uses (2.23) and the third equality uses the definition of Δ.

Therefore, u can be viewed a root of the quadratic equation

Tu2+2u (Δ−T )+2Tγ−2Δ+Δ2 = 0. (2.25)

We are now ready to prove assertion (i). We will show that the distributions Pε′ ,

ε′ ∈ (ε,1), satisfy the moment conditions in the definition of P η̃(w ). By construction,

it is clear that Pε′ is indeed a probability distribution. As for the first order moment
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conditions, we observe that

E
Pε′
(
η̃t
)= (1−ε′

)
b+ ε′

2T
(Tu+Δ)+ ε′

2T
(T d −Δ)

= (1−ε′
)

b+ ε′

T
(Tu+Δ) = μp ∀t = 1, . . . ,T,

where the second equality follows from the definition of d , while the third equality

exploits (2.22). As for the second order moment conditions, we have

E
Pε′
(
η̃2

t

)= (1−ε′
)

b2+ ε′

2T

(
(T −1)u2+ (u+Δ)2)+ ε′

2T

(
(T −1)d 2+ (d −Δ)2)

= (1−ε′
)

b2+ ε′

T

(
(T −1)u2+ (u+Δ)2)

= (1−ε′
)

b2+ ε′

T

(
Tu2+2uΔ+Δ2)

= (1−ε′
)(

2b−
2μp−μ2

p−σ2
p−2γε′

1−ε′

)
+ 2ε′

T

(
uT −Tγ+Δ

)
=μ2

p+σ2
p−2

(
μp− (1−ε′)b−ε′u− ε′Δ

T

)
= μ2

p+σ2
p,

(2.26)

where the second equality follows from (2.21), the fourth equality exploits (2.24) to

re-express b2 and (2.25) to re-express Tu2+2uΔ+Δ2, and the last equality holds due

to (2.22). Similarly, we find

E
Pε′
(
η̃s η̃t

)= (1−ε′
)

b2+ ε′

2T

(
(T −2)u2+2u (u+Δ)

)+ ε′

2T

(
(T −2)d 2+2d (d −Δ)

)
= (1−ε′

)
b2+ ε′

2T

(
(T −1)

(
u2+d 2)+ (u+Δ)2+ (d −Δ)2)− ε′

T
Δ2 = μ2

p

for s �= t . A comparison with (2.26) shows that the first two terms in the second line of

the above expression are equal to μ2
p+σ2

p. The third equality then follows from the

definition of Δ. Thus, Pε′ ∈P η̃(w ).

To prove assertion (ii), we first evaluate the distribution of the (quadratic approxima-

tion of) the uncertain portfolio growth rate γ̃
η

T under Pε′ . Indeed, γ̃η

T will adopt only

one of two different possible values depending on whether the realization of η̃ is equal

to ηb or any of the other scenarios (ηu
t or ηd

t for any t = 1, . . . ,T ), respectively. If η̃=ηb ,

it is easy to verify that γ̃η

T = b− 1
2 b2. On the other hand, if η̃= ηu

t for any t = 1, . . . ,T ,
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then

γ̃
η

T =
1

T

(
(T −1)

(
u− 1

2
u2
)
+ (u+Δ)− 1

2
(u+Δ)2

)
= 1

2T

(−Tu2−2u (Δ−T )+2Δ−Δ2)= γ,

where the second equality follows from basic manipulations, and the third equality

holds due to (2.25). A similar calculation shows that γ̃η

T is also equal to γ if η̃ = ηd
t

for any t = 1, . . . ,T . Details are omitted for brevity. Next, we will demonstrate that

b− 1
2 b2 > γ, that is, the growth rate γ̃

η

T adopts its largest value in scenario η̃=ηb . To

this end, we observe that

γ= 1

2

⎛⎝1−
⎛⎝1−μp+

√
1−ε′

ε′T
σp

⎞⎠2

− T −1

ε′T
σ2

p

⎞⎠
= 1

2

⎛⎝1− (1−μp
)2−2

√
1−ε′

ε′T
(
1−μp

)
σp− T −ε′

ε′T
σ2

p

⎞⎠
< 1

2

(
1− (1−μp

)2− 2

T
σ2

p−
T −ε′

ε′T
σ2

p

)
< 1

2

(
1− (1−μp

)2−σ2
p

)
,

where the first inequality holds because of Assumption (A2) and because ε′ ∈ (ε,1).

Thus,

1

2

(
1− (1−μp

)2−σ2
p

)
> γ ⇐⇒

2μp−μ2
p−σ2

p−2γε′

2(1−ε′)
> γ ⇐⇒ b− 1

2
b2 > γ ,

where the first equivalence follows from basic algebraic manipulations, while the

second equivalence is due to (2.24). In summary, we have shown that

Pε′(γ̃η

T = γ)=Pε′(η̃ �=ηb)= ε′ and Pε′(γ̃η

T > γ)=Pε′(η̃=ηb)= 1−ε′

for all ε′ ∈ (ε,1). Together with the continuity of γ as a function of ε′, which follows

from the definition of γ in (2.23), we may thus conclude that

lim
ε′↓ε

Pε′-VaRε(γ̃η

T )=WVaRε(γ̃′T (w )) .
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This observation completes the proof.

As ε′ tends to ε, the distributions Pε′ converge weakly to Pε, where Pε is defined in the

same way as Pε′ for ε′ ∈ (ε,1). We emphasize, however, that Pε fails to be a worst-case

distribution. As the scenarios ηu
t and ηd

t for t = 1, . . . ,T have total weight ε under Pε,

the VaR at level ε of γ̃η

T , which adopts its largest value in scenario η̃ = ηb , is equal

to b− 1
2 b2, which implies that Pε-VaRε(γ̃η

T ) > WVaRε(γ̃′T (w )). Hence, P-VaRε(γ̃η

T ) is

discontinuous in P at P=Pε.

So far we have constructed a sequence of portfolio return distributions that asymp-

totically attain the worst-case VaR in (2.7). Next, we construct a sequence of asset

return distributions that asymptotically attain the worst-case VaR in (2.5). To this

end, we assume that the portfolio return process (η̃1, . . . , η̃T )ᵀ ∈ RT is governed by a

distribution Pε′ of the type constructed above, where ε′ ∈ (ε,1). Moreover, we denote

by
(
m̃ᵀ

1 , . . . ,m̃ᵀ
T

)ᵀ ∈ RnT an auxiliary stochastic process that obeys any distribution

under which the m̃t are serially independent and each have the same mean μ and

covariance matrix Σ, respectively. Then, we denote by Qε′ the distribution of the asset

return process
(
r̃ ᵀ

1 , . . . , r̃ ᵀ
T

)ᵀ ∈RnT defined through

r̃t = Σw

wᵀΣw
η̃t +

(
I− Σw wᵀ

wᵀΣw

)
m̃t ∀t = 1, . . . ,T.

Corollary 2.2. The asset return distributions Qε′ , ε′ ∈ (ε,1), have the following proper-

ties.

(i) Qε′ ∈P ∀ε′ ∈ (ε,1).

(ii) lim
ε′↓ε

Qε′-VaRε(γ̃′T (w ))=WVaRε(γ̃′T (w )).

Proof. This is an immediate consequence of Theorem 2.3, as well as Theorem 1 of Yu

et al. (2009).
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2.5 Extensions

The basic model of Section 2.3 can be generalized to account for support information

or moment ambiguity. The inclusion of support information shrinks the ambiguity

set and thus mitigates the conservatism of the basic model. In contrast, accounting

for moment ambiguity enlarges the ambiguity set and enhances the realism of the

basic model in situations when there is not enough raw data to obtain high-quality

estimates of the means and covariances.

2.5.1 Support Information

Assume that, besides the usual first and second-order moment information, the asset

returns (r̃ ᵀ
1 , . . . , r̃ ᵀ

T )ᵀ are known to materialize within an ellipsoidal support set of the

form

Ξ=
{

(r ᵀ
1 , . . . ,r ᵀ

T )ᵀ ∈RnT :
1

T

T∑
t=1

(rt −ν)ᵀΛ−1 (rt −ν)≤ δ

}
,

where ν ∈ Rn determines the center, Λ ∈ Sn (Λ 
 0) the shape and δ ∈ R (δ > 0)

the size of Ξ. By construction, the ellipsoid Ξ is invariant under permutations of

the rebalancing intervals t = 1, . . . ,T . This permutation symmetry is instrumental

to ensure that any robust growth-optimal portfolio can be computed by solving a

tractable conic program of size independent of T . If the usual moment information is

complemented by support information, we must replace the standard ambiguity set

P with the (smaller) ambiguity set

PΞ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

EP (r̃t )=μ ∀t : 1≤ t ≤ T

P ∈P nT
0 : EP

(
r̃s r̃ ᵀ

t

)= δstΣ+μμᵀ ∀s, t : 1≤ s ≤ t ≤ T

P
(
(r̃ ᵀ

1 , . . . , r̃ ᵀ
T )ᵀ ∈Ξ)= 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
when computing the worst-case VaR (2.5). By using a tractable conservative approx-

imation for distributionally robust chance constraints with mean, covariance and

support information (see Theorem A.1 in Appendix A.1), we can lower bound this
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generalized worst-case VaR by the optimal value of a tractable SDP.

WVaRε(γ̃′T (w )) ≥ max γ

s. t. M ∈SnT+1, α ∈R, β ∈R, γ ∈R, λ ∈R
α≥ 0, β≤ 0, λ≥ 0, β+ 1

ε
〈Ω,M〉 ≤ 0

M	α

⎡⎢⎢⎣ −∑T
t=1 Pᵀ

t Λ
−1Pt

∑T
t=1 Pᵀ

t Λ
−1ν

(∑T
t=1 Pᵀ

t Λ
−1ν

)ᵀ
T
(
δ−νᵀΛ−1ν

)
⎤⎥⎥⎦

M−

⎡⎢⎢⎣
1
2

∑T
t=1 Pᵀ

t w wᵀPt −1
2

∑T
t=1 Pᵀ

t w

−1
2

(∑T
t=1 Pᵀ

t w
)ᵀ

γT −β

⎤⎥⎥⎦	

λ

⎡⎢⎢⎣ −∑T
t=1 Pᵀ

t Λ
−1Pt

∑T
t=1 Pᵀ

t Λ
−1ν

(∑T
t=1 Pᵀ

t Λ
−1ν

)ᵀ
T
(
δ−νᵀΛ−1ν

)
⎤⎥⎥⎦

(2.27)

Here, the truncation operators Pt , t = 1, . . . ,T , are defined as in Section 2.3. We

emphasize that even though the SDP (2.27) offers only a lower bound on the true

worst-case VaR with support information, it still provides an upper bound on the

worst-case VaR of Section 2.3 without support information. This can be seen by fixing

α = λ = 0, in which case (2.27) reduces to the SDP (2.6). Note that the SDP (2.27)

is polynomial-time solvable in theory but computationally burdensome in practice

because the dimension of the underlying matrix inequalities scales with n and T . We

will now show that (2.27) can be substantially simplified by exploiting its inherent

temporal symmetry. To this end, we first introduce the notion of a block compound

symmetric matrix.

Definition 2.6 (Block Compound Symmetry). A matrix M ∈SnT+1 is block compound

symmetric with blocks of size n×n if it is representable as

M=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B · · · B c

B A · · · B c
...

...
. . .

...
...

B B . . . A c

cᵀ cᵀ · · · cᵀ d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.28)
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for some A ∈Sn, B ∈Sn, c ∈Rn and d ∈R.

Next, we argue that without any loss of generality the decision matrix M in (2.27) may

be assumed to be block compound symmetric.

Proposition 2.5. There exists a maximizer
(
M,α,β,γ,λ

)
of (2.27) where M is block

compound symmetric with blocks of size n×n.

Proof. The proof widely parallels that of Proposition 2.3 and is thus omitted.

The next two propositions demonstrate that the positive semidefiniteness of a block

compound symmetric matrix M ∈RnT+1 can be enforced by two linear matrix inequal-

ities of dimensions only n and n+1, respectively.

Proposition 2.6. For any matrix K ∈SnT of the form

K=

⎡⎢⎢⎢⎢⎢⎣
A B · · · B

B A · · · B
...

...
. . .

...

B B · · · A

⎤⎥⎥⎥⎥⎥⎦ (2.29)

for some A,B ∈Sn we have that eig(K)= eig(A−B)∪eig(A+ (T −1)B).

Proof. We prove this proposition constructively by determining all eigenvalues as

well as the corresponding eigenvectors of K. Let {(vi ,λi )}n
i=1 denote all n pairs of

eigenvectors and eigenvalues of the matrix A+ (T −1)B. For any i = 1, . . . ,n, we have

K

⎡⎢⎢⎢⎢⎢⎣
vi

vi
...

vi

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎣

(A+ (T −1)B) vi

(A+ (T −1)B) vi
...

(A+ (T −1)B) vi

⎤⎥⎥⎥⎥⎥⎦=λi

⎡⎢⎢⎢⎢⎢⎣
vi

vi
...

vi

⎤⎥⎥⎥⎥⎥⎦ ,

which implies that
[

vᵀ
i , vᵀ

i , . . . , vᵀ
i

]ᵀ
is an eigenvector of K with eigenvalue λi . Next,

denote by {(ui ,θi )}n
i=1 the n pairs of eigenvectors and eigenvalues of the matrix A−B.
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For any i = 1, . . . ,n and for any k ∈RT with 1ᵀk = 0 we have

K

⎡⎢⎢⎢⎢⎢⎣
k1ui

k2ui
...

kT ui

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎣

k1 (A−B)ui

k2 (A−B)ui
...

kT (A−B)ui

⎤⎥⎥⎥⎥⎥⎦= θi

⎡⎢⎢⎢⎢⎢⎣
k1ui

k2ui
...

kT ui

⎤⎥⎥⎥⎥⎥⎦ .

Thus,
[
k1uᵀ

i ,k2uᵀ
i , . . . ,kT uᵀ

i

]ᵀ
is an eigenvector of K with eigenvalue θi . Hence, there

are T −1 linearly independent eigenvectors that share the same eigenvalue θi . In

summary, we have found all n +n(T − 1) = nT eigenvalues of K counted by their

multiplicities, and we may thus conclude that eig(K)= eig(A−B)∪eig(A+ (T −1)B).

Proposition 2.7. For any block compound symmetric matrix M ∈SnT+1 of the form

(2.28), the following equivalence holds.

M	 0 ⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A	B[

A+ (T −1)B c

cᵀ d
T

]
	 0

Proof. For ease of exposition, we set

M=
[

K c ′′′

c ′′′ᵀ d

]
,

where c ′′′ = [cᵀ,cᵀ, . . . ,cᵀ]ᵀ, and K is the block matrix defined in (2.29). Assume first

that d = 0. Then, M	 0 if and only if c = 0 and K	 0, which in turn is equivalent to

c = 0, A	B, and A+ (T −1)B	 0; see Proposition 2.6. Thus, the claim follows. Assume
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next that d �= 0. Then,

M	 0 ⇐⇒ d > 0, K	 1

d
c ′′′c ′′′ᵀ

⇐⇒ d > 0,

⎡⎢⎢⎢⎢⎢⎣
A−ccᵀ/d B−ccᵀ/d . . . B−ccᵀ/d

B−ccᵀ/d A−ccᵀ/d . . . B−ccᵀ/d
...

...
. . .

...

B−ccᵀ/d B−ccᵀ/d . . . A−ccᵀ/d

⎤⎥⎥⎥⎥⎥⎦	 0

⇐⇒ d > 0, A	B, A+ (T −1)B	 T

d
ccᵀ

⇐⇒ A	B,

[
A+ (T −1)B c

cᵀ d
T

]
	 0 ,

where the first and the last equivalences follow from standard Schur complement

arguments, while the third equivalence holds due to Proposition 2.6. Thus, the claim

follows again.

By Proposition 2.5, we may assume without any loss of generality that the decision

variable M is of the form (2.28), where A ∈Sn , B ∈Sn , c ∈Rn and d ∈R represent new

auxiliary decision variables to be used instead of M. Proposition 2.7 then allows us to

re-express each (nT +1)-dimensional SDP constraint in (2.27) in terms of two linear

matrix inequalities of dimensions n and n+1. Using a standard Schur complement

argument to linearize all terms quadratic in w , we can thus reformulate the SDP (2.27)
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as

max γ

s. t. A ∈Sn , B ∈Sn , c ∈Rn , d ∈R, α ∈R, β ∈R, γ ∈R, λ ∈R
α≥ 0, β≤ 0, λ≥ 0

β+ 1
ε

(
T 〈A,Σ+++μμᵀ〉+T (T −1)〈B,μμᵀ〉+2T cᵀμ+d

)≤ 0[
A+ (T −1)B c

cᵀ d
T

]
	α

[
−Λ−1 Λ−1ν

νᵀΛ−1 δ−νᵀΛ−1ν

]

A−B	−αΛ−1⎡⎢⎢⎣
A+ (T −1)B+λΛ−1 c−λΛ−1ν w

cᵀ−λνᵀΛ−1 1
2 +

d+β
T −γ−λ(δ−νᵀΛ−1ν) −1

wᵀ −1 2

⎤⎥⎥⎦	 0

[
A−B+λΛ−1 w

wᵀ 2

]
	 0.

(2.31)

This simplified SDP provides a lower bound on WVaRε(γ̃′T (w )) in the presence of

support information. Note that the size of the SDP (2.31) scales only with the num-

ber of assets n but not with T . This observation implies that one can maximize

WVaRε(γ̃′T (w )) approximately over w ∈ W by solving a tractable SDP, and thus the

robust growth-optimal portfolios can be approximated efficiently even in the presence

of support information.

2.5.2 Moment Ambiguity

Assume that μ̂ and Σ̂ are possibly inaccurate estimates of the true mean μ and co-

variance matrix Σ of the asset returns, respectively. Assume further that μ and Σ are

known to reside in a convex uncertainty set of the form

U = {(μ,Σ
) ∈Rn ×Sn :

(
μ− μ̂

)ᵀ
Σ̂−1 (μ− μ̂

)≤ δ1,δ3Σ̂�Σ� δ2Σ̂
}

, (2.32)

where δ1 ≥ 0 reflects our confidence in the estimate μ̂, while the parameters δ2 and

δ3, δ2 ≥ 1≥ δ3 > 0, express our confidence in the estimate Σ̂. Guidelines for selecting

μ̂, Σ̂, δ1, δ2 and δ3 based on historical data are provided by Delage and Ye (2010). If
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the asset returns follow a weak sense white noise process with ambiguous means

and covariances described by the uncertainty set U and if the Assumptions (A1) and

(A2) are satisfied for all
(
μ,Σ

) ∈U , then, by Theorem 2.2, the worst-case VaR of the

approximate portfolio growth rate γ̃′T (w ) is given by

WVaRε(γ̃′T (w ))= min
(μ,Σ)∈U

1

2

(
1−

(
1−wᵀμ+

√
1−ε

εT

∥∥Σ1/2w
∥∥)2

− T −1

εT
wᵀΣw

)
.

We will now demonstrate that the above minimization problem admits an analytical

solution.

Theorem 2.4. If (A1) and (A2) hold for all
(
μ,Σ

) ∈U , then WVaRε(γ̃′T (w )) is equal to

1

2

⎛⎝1−
⎛⎝1−wᵀμ̂+

⎛⎝√δ1+
√

(1−ε)δ2

εT

⎞⎠∥∥Σ̂1/2w
∥∥⎞⎠2

− δ2 (T −1)

εT
wᵀΣ̂w

⎞⎠ .

Proof. Recall that under Assumptions (A1) and (A2) the worst-case VaR (2.19) is in-

creasing in the portfolio mean return wᵀμ and decreasing in the portfolio standard

deviation
∥∥Σ1/2w

∥∥. Thus, the worst case of (2.19) is achieved at the minimum portfo-

lio mean return

min
(μ,Σ)∈U

wᵀμ = wᵀμ̂−
√

δ1
∥∥Σ̂1/2w

∥∥
and at the maximum portfolio standard deviation

max
(μ,Σ)∈U

∥∥Σ1/2w
∥∥ = √

δ2
∥∥Σ̂1/2w

∥∥ .

The claim now follows by substituting the above expressions into (2.19).

We remark that maximizing WVaRε(γ̃′T (w )) over w ∈W gives rise to a tractable SOCP,

and thus the robust growth-optimal portfolios can be computed efficiently even under

moment ambiguity. We further remark that the Assumptions (A1) and (A2) hold for all(
μ,Σ

) ∈U if and only if

δ3Σ̂
 0 and wᵀμ̂+
√

δ1
∥∥Σ̂1/2w

∥∥+
√

εδ2

(1−ε)T

∥∥Σ̂1/2w
∥∥< 1.

51



Chapter 2. Robust Growth-Optimal Portfolios

These semidefinite and second-order conic constraints can be verified efficiently.

2.6 Numerical Experiments

We now assess the robust growth-optimal portfolios in several synthetic and empirical

backtests. The emerging second-order cone and semidefinite programs are solved

with SDPT3 using the MATLAB interface Yalmip by Löfberg (2004). On a 3.4 GHz ma-

chine with 16.0 GB RAM, all portfolio optimization problems of this section are solved

in less than 0.40 seconds. Thus, the runtimes are negligible for practical purposes. All

experiments rely on one of the following time series with monthly resolution. The

10 Industry Portfolios (10Ind) and 12 Industry Portfolios (12Ind) datasets from the

Fama French online data library2 comprise U.S. stock portfolios grouped by industries.

The Dow Jones Industrial Average (DJIA) dataset is obtained from Yahoo Finance3

and comprises the 30 constituents of the DJIA index as of August 2013. The iShares

Exchange-Traded Funds (iShares) dataset is also obtained from Yahoo Finance and

comprises the following nine funds: EWG (Germany), EWH (Hong Kong), EWI (Italy),

EWK (Belgium), EWL (Switzerland), EWN (Netherlands), EWP (Spain), EWQ (France)

and EWU (United Kingdom).

We will consistently use the shrinkage estimators proposed by DeMiguel et al. (2013)

to estimate the mean μ and the covariance matrix Σ of a time series. The shrinkage

estimator of μ (Σ) constitutes a weighted average of the sample mean μ̂ (sample

covariance matrix Σ̂) and the vector of ones scaled by 1ᵀμ̂
n (the identity matrix scaled

by Tr(Σ̂)
n ). The underlying shrinkage intensities are obtained via the bootstrapping

procedure proposed by DeMiguel et al. (2013) using 500 bootstrap samples. Shrinkage

estimators have been promoted as a means to combat the impact of estimation errors

in portfolio selection. We emphasize that the moments estimated in this manner

satisfy the technical Assumptions (A1) and (A2) for all data sets considered in this

section.

We henceforth distinguish two different Kelly investors. Ambiguity-neutral investors

believe that the asset returns follow the unique multivariate lognormal distribution

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
3http://finance.yahoo.com
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Pln consistent with the mean μ and covariance matrix Σ. Note that in this model the

asset prices follow a discrete-time geometric Brownian motion. We assume that the

ambiguity-neutral investors hold the classical growth-optimal portfolio wgo, which

is defined as the unique maximizer of EPln

(
log(1+wᵀr̃t )

)
over w ∈W = {w ∈Rn : w ≥

0, 1ᵀw = 1}. By using the second-order Taylor expansion of the logarithm around

1, we may approximate wgo with ŵgo = argmaxw∈W wᵀμ− 1
2 wᵀ (Σ+μμᵀ)w . This

approximation is highly accurate under a lognormal distribution if the rebalancing

intervals are of the order of a few months or shorter, see Kuhn and Luenberger (2010).

Ambiguity-averse investors hold the robust growth-optimal portfolio wrgo, which

is defined as the unique maximizer of WVaRε(γ̃′T (w )) over W for ε = 5%. Unless

otherwise stated, the worst-case VaR is evaluated with respect to the weak sense

white noise ambiguity set P with known first and second-order moments but without

support information.

2.6.1 Synthetic Experiments

We first illustrate the relation between the parameters T and ε of the robust-growth

optimal portfolio and the risk-aversion parameters �(T,ε) and κ(T,ε) of the Markowitz

and fractional Kelly portfolios, respectively. Afterwards, we showcase the benefits of

accounting for horizon effects and distributional ambiguity when designing portfolio

strategies. In all synthetic experiments we set n = 10 and assume that the true mean μ

and covariance matrix Σ of the asset returns coincide with the respective estimates

obtained from the 120 samples of the 10Ind dataset between 01/2003 and 12/2012. In

this setting the growth-optimal portfolio wgo and its approximation ŵgo are virtually

indistinguishable. We may thus identify the growth-optimal portfolio with ŵgo.

In Section 2.4 we have seen that each robust growth-optimal portfolio tailored to an

investment horizon T and violation probability ε is identical to a Markowitz port-

folio w� = argmaxw∈W wᵀμ− �
2 wᵀΣw for some risk aversion parameter � = �(T,ε).

Table 2.1 shows �(T,ε) for different values of T and ε, based on the means and co-

variances obtained from the 10Ind dataset. As expected from the discussion after

Theorem 2.2, �(T,ε) is decreasing in T and ε. Note that �(T,ε) exceeds the risk aver-

sion parameter of the classical growth-optimal portfolio (� = 1) uniformly for all

investment horizons up to 50 years and for all violation probabilities up to 25%. We
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Table 2.1: Markowitz risk-aversion parameter �(T,ε) implied by the robust growth-
optimal portfolio that is tailored to the investment horizon T (in months) and the
violation probability ε. The reported values are specific to the 10Ind dataset.

������T
ε

5% 10% 15% 20% 25%
������T

ε
5% 10% 15% 20% 25%

24 46.87 28.80 21.66 17.64 14.97 336 27.45 15.16 10.76 8.44 6.97
48 39.20 23.40 17.35 13.99 11.79 360 27.20 14.99 10.62 8.32 6.87
72 35.77 20.98 15.42 12.36 10.38 384 26.98 14.83 10.50 8.22 6.78
96 33.71 19.54 14.26 11.39 9.53 408 26.78 14.69 10.39 8.12 6.69

120 32.30 18.54 13.47 10.72 8.95 432 26.60 14.56 10.29 8.04 6.62
144 31.25 17.81 12.88 10.23 8.53 456 26.42 14.44 10.19 7.95 6.55
168 30.44 17.25 12.43 9.85 8.19 480 26.27 14.33 10.11 7.88 6.49
192 29.78 16.79 12.06 9.53 7.92 504 26.12 14.23 10.02 7.82 6.43
216 29.24 16.41 11.76 9.28 7.70 528 25.98 14.13 9.94 7.75 6.37
240 28.77 16.08 11.50 9.06 7.51 552 25.86 14.04 9.88 7.69 6.32
264 28.38 15.80 11.28 8.88 7.34 576 25.74 13.97 9.81 7.63 6.27
288 28.03 15.56 11.09 8.71 7.21 600 25.62 13.88 9.75 7.58 6.22
312 27.72 15.35 10.91 8.56 7.08

have also observed that all robust growth-optimal portfolios under consideration

are distributed over the leftmost decile of the efficient frontier in the mean-standard

deviation plane. Thus, even though they are significantly more conservative than

the classical growth-optimal portfolio, the robust growth-optimal portfolios display a

significant degree of heterogeneity across different values of T and ε.

In Section 2.4 we have also seen that the robust growth-optimal portfolio tailored to

T and ε can be interpreted as a fractional Kelly strategy wκ = argmaxw∈W wᵀμ−
κ
2 wᵀ (Σ+μμᵀ)w for some risk aversion parameter κ= κ(T,ε). Table 2.2 shows κ(T,ε)

for different values of T and ε in the context of the 10Ind dataset. The fractional Kelly

and Markowitz risk-aversion parameters display qualitatively similar dependencies

on T and ε.

Horizon Effects We assume that the asset returns follow the multivariate lognor-

mal distribution Pln, implying that the beliefs of the ambiguity-neutral investors are

correct. In contrast, the ambiguity-averse investors have only limited distributional

information and are therefore at a disadvantage. Figure 2.1(a) displays the 5% VaR

of the portfolio growth rate over T months for the classical and the robust growth-

optimal portfolios, where the VaR is computed on the basis of 50,000 independent

samples from Pln. Recall that only the robust growth-optimal portfolios are tailored to

54



2.6. Numerical Experiments

Table 2.2: Fractional Kelly risk-aversion parameterκ(T,ε) implied by the robust growth-
optimal portfolio that is tailored to the investment horizon T (in months) and the
violation probability ε. The reported values are specific to the 10Ind dataset.

������T
ε

5% 10% 15% 20% 25%
������T

ε
5% 10% 15% 20% 25%

24 74.35 37.26 26.14 20.50 16.98 336 35.05 17.22 11.77 9.04 7.38
48 56.76 28.70 20.10 15.73 13.01 360 34.65 17.00 11.60 8.91 7.26
72 49.83 25.15 17.55 13.70 11.31 384 34.29 16.80 11.46 8.79 7.16
96 45.92 23.10 16.07 12.51 10.31 408 33.96 16.62 11.32 8.68 7.07

120 43.34 21.73 15.07 11.71 9.64 432 33.67 16.46 11.20 8.58 6.99
144 41.48 20.73 14.35 11.13 9.14 456 33.39 16.30 11.09 8.49 6.91
168 40.06 19.97 13.78 10.68 8.76 480 33.14 16.16 10.98 8.41 6.84
192 38.93 19.35 13.34 10.32 8.45 504 32.91 16.03 10.89 8.33 6.77
216 38.01 18.85 12.96 10.02 8.20 528 32.69 15.91 10.80 8.26 6.71
240 37.23 18.42 12.65 9.76 7.99 552 32.49 15.80 10.72 8.19 6.65
264 36.57 18.06 12.39 9.55 7.80 576 32.30 15.70 10.64 8.13 6.60
288 36.00 17.75 12.15 9.36 7.64 600 32.13 15.60 10.56 8.07 6.55
312 35.49 17.47 11.95 9.19 7.50

T . Thus, under the true distribution Pln the robust growth-optimal portfolios offer

superior performance guarantees (at the desired 95% confidence level) to the classical

growth-optimal portfolio across all investment horizons of less than 170 years. Note

that longer investment horizons are only of limited practical interest.

We also compare the realized Sharpe ratios of the classical and robust growth-optimal

portfolios along 50,000 sample paths of length T drawn from Pln. The Sharpe ratio

along a given path is defined as the ratio of the sample mean and the sample standard

deviation of the monthly portfolio returns on that path. It can be viewed as a signal-

to-noise ratio of the portfolio return process and therefore constitutes a popular

performance measure for investment strategies. The random ex post Sharpe ratios

display a high variability for small T but converge almost surely to the deterministic a

priori Sharpe ratios μᵀwrgo/
√

wᵀ
rgoΣwrgo and μᵀwgo/

√
wᵀ

goΣwgo, respectively, when

T tends to infinity. The boxplot in Figure 2.1(b) visualizes the distribution of

ŜRrgo− ŜRgo∣∣ŜRrgo
∣∣+ ∣∣ŜRgo

∣∣ ,

where ŜRrgo and ŜRgo denote the ex post Sharpe ratios of the robust and the classical

growth-optimal portfolios, respectively. We observe that the Sharpe ratio of the robust

growth-optimal portfolio exceeds that of the classical growth-optimal portfolio by
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14.24% on average.

As they are tailored to the investment horizon T , the robust growth-optimal portfolios

can offer higher performance guarantees and ex post Sharpe ratios than the classical

growth-optimal portfolios even though they are ignorant of the exact data-generating

distribution Pln.

Ambiguity Effects We now perform a stress test inspired by Bertsimas et al. (2010a),

where we contamine the lognormal distribution Pln with the worst-case distributions

for the classical and robust growth-optimal portfolios, respectively. More precisely,

by Corollary 2.3 we can construct two near-worst-case distributions Pgo and Prgo

satisfying

Pgo-VaR5%(γ̃T (wgo)) ≤ WVaR5%(γ̃T (wgo))+δ,

Prgo-VaR5%(γ̃T (wrgo)) ≤ WVaR5%(γ̃T (wrgo))+δ,

where δ is a small constant such as 10−6. We can then construct a contaminated

distribution

P=ψgoPgo+ψrgoPrgo+
(
1−ψgo−ψrgo

)
Pln (2.33)

using the contamination weights ψgo,ψrgo ≥ 0 with ψgo+ψrgo ≤ 1. Note that P ∈P

because Pgo,Prgo,Pln ∈P , which implies that the ambiguity-averse investors hedge

against all distributions of the form (2.33). In contrast, the ambiguity-neutral investors

exclusively account for the distribution with ψgo =ψrgo = 0. In order to assess the ben-

efits of an ambiguity-averse investment strategy, we evaluate the relative advantage of

the robust growth-optimal portfolios over their classical counterparts in terms of their

performance guarantees. Thus, we compute

P-VaR5%(γ̃T (wrgo))−P-VaR5%(γ̃T (wgo))∣∣P-VaR5%(γ̃T (wrgo))
∣∣+ ∣∣P-VaR5%(γ̃T (wgo))

∣∣
for all distributions of the form (2.33), where each VaR is evaluated using 250,000

samples from P. The resulting percentage values are reported in Tables 2.3, 2.4, and

2.5 for investment horizons of 120 months, 360 months and 1,200 months, respectively.
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,

(a) 5% VaR of the monthly portfolio growth rates for the classical and robust
growth-optimal portfolios.

(b) Relative difference of realized Sharpe-ratios (shown are the 10%, 25%,
50%, 75% and 90% quantiles and outliers)

Figure 2.1: Comparison of the classical and robust growth-optimal portfolios under
the lognormal distribution Pln.
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Table 2.3: Relative advantage (in %) of the robust growth-optimal portfolios in terms
of 5% VaR (T = 120 months).

���������ψrgo

ψgo 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 63.87 62.41 65.83 63.28 65.61 68.20 71.18 67.20 98.19 100.0 72.65
0.1 62.89 63.52 67.78 63.96 71.03 64.81 77.36 78.47 100.0 58.41
0.2 64.16 64.70 66.56 69.35 68.64 72.99 83.81 100.0 53.81
0.3 68.97 67.98 68.42 71.10 74.59 90.50 100.0 52.44
0.4 64.84 66.94 69.93 76.00 88.32 100.0 50.13
0.5 68.43 72.95 73.92 79.92 100.0 49.85
0.6 70.19 73.53 89.97 100.0 47.97
0.7 74.08 71.88 100.0 43.69
0.8 100.0 100.0 41.11
0.9 100.0 34.76
1.0 8.52

We observe that the robust growth-optimal portfolios outperform their classical coun-

terparts under all contaminated probability distributions of the form (2.33). Even for

ψgo =ψrgo = 0 the robust portfolios are at an advantage because they are tailored to the

investment horizon. As expected, their advantage increases with the contamination

level and is more pronounced for short investment horizons. Only for unrealistically

long horizons of more than 100 years and for low contamination levels the classical

growth-optimal portfolio becomes competitive.

2.6.2 Empirical Backtests

We now assess the performance of the robust growth-optimal portfolio without (RGOP)

and with (RGOP+) moment uncertainty on different empirical datasets. RGOP+ opti-

mizes the worst-case VaR over all means and covariance matrices in the uncertainty

set (2.32). We compare the robust growth-optimal portfolios against the equally

weighted portfolio (1/n), the classical growth-optimal portfolio (GOP), the fractional

Kelly strategy corresponding to the risk-aversion parameter κ = 2 (1/2-Kelly), two

mean-variance efficient portfolios corresponding to the risk-aversion parameters

�= 1 and �= 3 (MV) and Cover’s universal portfolio (UNIV). The equally weighted

portfolio contains all assets in equal proportions. This seemingly naïve investment

strategy is immune to estimation errors and surprisingly difficult to outperform with

optimization-based portfolio strategies, see DeMiguel et al. (2009). In the presence
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Table 2.4: Relative advantage (in %) of the robust growth-optimal portfolios in terms
of 5% VaR (T = 360 months).

���������ψrgo

ψgo 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 11.60 11.65 11.53 11.50 11.58 11.80 11.90 12.09 13.27 16.30 81.01
0.1 11.61 11.54 11.60 11.87 12.00 12.09 12.41 12.21 16.71 68.62
0.2 11.42 11.61 11.49 11.46 12.12 12.08 12.05 18.26 65.81
0.3 11.42 12.05 12.20 12.56 12.87 13.12 16.20 63.49
0.4 11.37 12.12 11.76 12.00 13.15 18.69 65.79
0.5 11.58 12.06 12.75 13.17 15.96 61.86
0.6 12.07 11.90 12.61 17.24 60.05
0.7 12.19 13.62 16.27 59.91
0.8 12.78 16.01 58.52
0.9 15.40 48.91
1.0 14.75

of a risk-free instrument, the fractional Kelly strategy corresponding to κ= 2 invests

approximately half of the capital in the classical growth-optimal portfolio and the

other half in cash. This so-called ‘half-Kelly’ strategy enjoys wide popularity among

investors wishing to trade off growth versus security, see e.g. MacLean et al. (2005).

The Markowitz portfolio corresponding to � = 1 closely approximates the classical

growth-optimal portfolio, while the Markowitz portfolio corresponding to �= 3 pro-

vides a more conservative alternative. Moreover, the universal portfolio by Cover

(1991) learns adaptively the best fixed-mix strategy from the history of observed asset

returns. We compute the universal portfolio using a weighted average of 106 portfolios

chosen uniformly at random from W where the weights are proportional to their

empirical performance; see Blum and Kalai (1999).

To increase the practical relevance of our experiments, we evaluate all investment

strategies under proportional transaction costs of c = 50 basis points per dollar traded.

Note that the RGOP, RGOP+, GOP, MV and 1/2-Kelly strategies all depend on estimates

μ̂ and Σ̂ of the (unknown) true mean μ and covariance matrix Σ of the asset returns,

respectively. The RGOP+ strategy further depends on estimates of the confidence

parameters δ1, δ2 and δ3 characterizing the uncertainty set (2.32). All moments

and confidence parameters are re-estimated every 12 months using the most recent

120 observations. Accordingly, the portfolio weights of all fixed-mix strategies are

recalculated every 12 months based on the new estimates and (in the case of RGOP
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Table 2.5: Relative advantage (in %) of the robust growth-optimal portfolios in terms
of 5% VaR (T = 1,200 months).

���������ψrgo

ψgo 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 2.49 2.53 2.48 2.50 2.41 2.59 2.58 2.72 2.96 3.03 91.56
0.1 2.52 2.44 2.46 2.47 2.50 2.46 2.68 3.00 3.87 84.23
0.2 2.48 2.48 2.41 2.57 2.54 2.78 2.74 3.34 82.83
0.3 2.51 2.54 2.67 2.71 2.66 2.84 3.74 82.98
0.4 2.56 2.61 2.61 2.64 2.55 3.56 80.90
0.5 2.59 2.53 2.64 2.70 2.82 80.70
0.6 2.52 2.69 2.87 3.90 78.64
0.7 2.46 2.61 4.48 79.01
0.8 2.93 3.26 75.02
0.9 3.48 69.17
1.0 23.57

and RGOP+) a shrunk investment horizon. Strictly speaking, the resulting investment

strategies are thus no longer of fixed-mix type. Instead, the portfolio weights are

periodically updated in a greedy fashion. We stress that our numerical results do

not change qualitatively if we use a shorter re-estimation interval of 6 months or a

longer interval of 24 months. For the sake of brevity, we only report the results for a

re-estimation window of 12 months.

We choose δ1 and δ2 such that the moment uncertainty set (2.32) constructed from the

estimates μ̂ and Σ̂ contains the true mean μ and covariance matrix Σ with confidence

95%. This is achieved via the bootstrapping procedure proposed by Delage and Ye

(2010), implemented with 500 iterations and two bootstrap datasets of size 120 per

iteration. The parameter δ3 defines a lower bound on the covariance matrix that is

never binding; see also Remark 1 of Delage and Ye (2010). Thus, we can set δ3 = 0

without loss of generality.

We evaluate the performance of the different investment strategies on the 10Ind,

12Ind, iShares and DJIA datasets. We denote by w−
t and wt the portfolio weights

before and after rebalancing at the beginning of interval t , respectively. Thus, wt

represents the target portfolio prescribed by the underlying strategy. The following

performance measures are recorded for every strategy:
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1. Mean return:

r̂p = 1

T

T∑
t=1

((
1+wᵀ

t rt
)(

1−c
n∑

i=1

∣∣∣wt ,i −w−
t ,i

∣∣∣)−1

)
.

2. Standard deviation:

σ̂p =
√√√√ 1

T −1

T∑
t=1

((
1+wᵀ

t rt
)(

1−c
n∑

i=1

∣∣∣wt ,i −w−
t ,i

∣∣∣)−1− r̂p

)2

.

3. Sharpe ratio:

ŜR = r̂p

σ̂p
.

4. Turnover rate:

T̂ R = 1

T

T∑
t=1

n∑
i=1

∣∣∣wt ,i −w−
t ,i

∣∣∣ .
5. Net Aggregate Return:

N̂ R = V̂T , V̂t =
t∏

s=1

(
1+wᵀ

s rs
)(

1−c
n∑

i=1

∣∣∣ws,i −w−
s,i

∣∣∣) .

6. Maximum drawdown:

6MDD = max
1≤s<t≤T

V̂s − V̂t

V̂s
.

The results of the empirical backtests are reported in Table 2.6. We observe that the

robust growth-optimal portfolios with and without moment uncertainty consistently

outperform the other strategies in terms of out-of-sample Sharpe ratios and thus gen-

erate the smoothest wealth dynamics. Moreover, the robust growth-optimal portfolios

achieve the lowest standard deviation and the lowest maximum drawdown (maximum

percentage loss over any subinterval of the backtest period) across all datasets. These

results suggest that the robust growth-optimal portfolios are only moderately risky.

The universal portfolio as well as the equally weighted portfolio achieve the lowest
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turnover rate, which determines the total amount of transaction costs incurred by an

investment strategy. This is not surprising as these two portfolios are independent

of the investors’ changing beliefs about the future asset returns. Nonetheless, the

robust growth-optimal portfolios achieve higher terminal wealth than the equally

weighted portfolio in the majority of backtests. Maybe surprisingly, despite its the-

oretical appeal, the classical growth-optimal portfolio is strictly dominated by most

other strategies. In fact, it is highly susceptible to error maximization phenomena as

it aggressively invests in assets whose estimated mean returns are high.

We also tested whether the Sharpe ratio of the RGOP+ strategy statistically exceeds

those of the other strategies by using a significance test proposed in Jobson and Korkie

(1981) and Memmel (2003). The corresponding one-sided p-values are reported in

Table 2.6 (in parenthesis). Star symbols (*) identify p-values that are significant at the

5% level. We observe that the RGOP+ strategy achieves a significantly higher Sharpe

ratio than all other benchmarks in the majority of experiments.

2.6.3 Discussion of the Results

The classical growth-optimal portfolio maximizes the growth-rate of wealth that can

be guaranteed with certainty over an infinite planning horizon if the asset return dis-

tribution is precisely known. The robust growth-optimal portfolios introduced in this

chapter maximize the growth-rate of wealth that can be guaranteed with probability

1−ε over a finite investment horizon of T periods if the asset return distribution is am-

biguous. We show that any robust growth-optimal portfolio can be computed almost

as efficiently as a Markowitz portfolio by solving a convex optimization problem whose

size is constant in T . If the distributional uncertainty is captured by a weak-sense

white noise ambiguity set, then the robust growth-optimal portfolios can naturally

be identified with classical Markowitz portfolios or fractional Kelly strategies. How-

ever, in contrast to Markowitz and fractional Kelly investors, robust growth-optimal

investors are absolved from the burden of determining their risk-aversion parameter.

Instead, they only have to specify their investment horizon T and violation tolerance

ε, both of which admit a simple physical interpretation. Simulated backtests indicate

that the robust growth-optimal portfolio tailored to a finite investment horizon T

can outperform the classical growth-optimal portfolio in terms of Sharpe ratio and
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Table 2.6: Out-of-sample performance of different investment strategies. The first
column specifies the dataset used in the respective experiment as well as the under-
lying backtest period (excluding the ten-year estimation window prior to the first
rebalancing interval). The best performance measures found in each experiment are
highlighted by gray shading.

Dataset Portfolio r̂p σ̂p ŜR T̂ R N̂ R 6MDD

10Ind
(01/2000−
12/2012)

RGOP 0.0062 0.0360 0.1718 0.0437 2.3628 0.3555
RGOP+ 0.0064 0.0361 0.1775 0.0433 2.4465 0.3544
1/n 0.0050 0.0444 0.1130* (0.0311) 0.0325 1.8714 0.4818
GOP 0.0008 0.0583 0.0143* (0.0105) 0.0812 0.8681 0.6738
1/2-Kelly 0.0015 0.0502 0.0301* (0.0113) 0.0760 1.0352 0.6319
MV (�= 1) 0.0009 0.0583 0.0150* (0.0107) 0.0805 0.8740 0.6731
MV (�= 3) 0.0025 0.0442 0.0555* (0.0133) 0.0706 1.2550 0.5617
UNIV 0.0050 0.0441 0.1139* (0.0310) 0.0323 1.8763 0.4796

12Ind
(01/2000−
12/2012)

RGOP 0.0063 0.0359 0.1744 0.0445 2.3925 0.3605
RGOP+ 0.0065 0.0361 0.1805 0.0444 2.4875 0.3606
1/n 0.0049 0.0449 0.1097* (0.0207) 0.0320 1.8374 0.4966
GOP 0.0013 0.0585 0.0225* (0.0134) 0.0763 0.9338 0.6457
1/2-Kelly 0.0018 0.0499 0.0368* (0.0134) 0.0763 1.0920 0.6146
MV (�= 1) 0.0013 0.0584 0.0231* (0.0136) 0.0761 0.9395 0.6451
MV (�= 3) 0.0026 0.0437 0.0596* (0.0135) 0.0712 1.2897 0.5489
UNIV 0.0049 0.0446 0.1103* (0.0206) 0.0318 1.8402 0.4951

iShares
(04/2006−
07/2013)

RGOP 0.0033 0.0573 0.0575 0.0388 1.1548 0.5867
RGOP+ 0.0033 0.0573 0.0576 0.0388 1.1555 0.5865
1/n 0.0029 0.0689 0.0425 (0.3086) 0.0321 1.0466 0.6045
GOP 0.0032 0.0628 0.0503 (0.3723) 0.0649 1.1042 0.6165
1/2-Kelly 0.0030 0.0592 0.0505 (0.2482) 0.0514 1.1114 0.6022
MV (�= 1) 0.0032 0.0627 0.0505 (0.3753) 0.0646 1.1054 0.6154
MV (�= 3) 0.0030 0.0582 0.0516 (0.1695) 0.0457 1.1195 0.5964
UNIV 0.0030 0.0687 0.0431 (0.3141) 0.0321 1.0509 0.6045

DJIA
(04/2000−
07/2013)

RGOP 0.0049 0.0381 0.1296 0.0668 1.9569 0.3966
RGOP+ 0.0057 0.0381 0.1498 0.0651 2.2118 0.4000
1/n 0.0066 0.0460 0.1424 (0.4230) 0.0527 2.4017 0.4824
GOP −0.0025 0.0801 −0.0313* (0.0107) 0.1034 0.3831 0.8389
1/2-Kelly −0.0029 0.0685 −0.0430* (0.0055) 0.1002 0.4105 0.8269
MV (�= 1) −0.0025 0.0805 −0.0308* (0.0109) 0.1024 0.3828 0.8398
MV (�= 3) −0.0009 0.0563 −0.0160* (0.0068) 0.0931 0.6605 0.7325
UNIV 0.0066 0.0459 0.1434 (0.4333) 0.0527 2.4153 0.4804
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growth guarantees for all investment horizons up to ∼ 170 years even if the classical

growth-optimal portfolio has access to the true data-generating distribution. The out-

performance becomes more dramatic if the out-of-sample distribution deviates from

the in-sample distribution used to compute the classical growth-optimal portfolio.

Empirical backtests suggest that robust growth-optimal portfolios compare favorably

against popular benchmark strategies such as the 1/n portfolio, various Markowitz

portfolios, the classical growth-optimal portfolio, the half-Kelly strategy and Cover’s

universal portfolio. The 1/n portfolio achieves a lower turnover rate but is dominated

by the robust growth-optimal portfolio in terms of the realized Sharpe ratio, realized

net return and several other indicators even in the presence of high proportional

transaction costs of 50 basis points. Our backtest experiments further showcase the

benefits of accounting for moment ambiguity.
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3 Chebyshev Inequalities for Products

of Random Variables

We derive sharp probability bounds on the tails of a product of symmetric non-

negative random variables using only information about their first two moments.

If the covariance matrix of the random variables is known exactly, these bounds can

be computed numerically using semidefinite programming. If only an upper bound

on the covariance matrix is available, the probability bounds on the right tails can be

evaluated analytically. The bounds under precise and imprecise covariance informa-

tion coincide for all left tails as well as for all right tails corresponding to quantiles that

are either sufficiently small or sufficiently large. We also prove that all left probability

bounds reduce to the trivial bound 1 if the number of random variables in the product

exceeds an explicit threshold. Thus, in the worst case, the weak-sense geometric

random walk defined through the running product of the random variables is ab-

sorbed at 0 with certainty as soon as time exceeds the given threshold. The techniques

devised for constructing Chebyshev bounds for products can also be used to derive

Chebyshev bounds for sums, maxima and minima of non-negative random variables.

3.1 Introduction

The classical one-sided Chebyshev inequality (Bienaymeé 1853; Chebyshev 1867) for

a random variable ξ̃ with mean μ and variance σ2 can be represented as

P(ξ̃≥ γ)≤
⎧⎨⎩

σ2

σ2+(γ−μ)2 if γ≥μ,

1 if γ<μ.
(3.1)
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This inequality is sharp. Indeed, for γ �=μ it is binding under the two-point distribution

P� =

⎧⎪⎨⎪⎩
σ2

σ2+(γ−μ)2δγ+ (γ−μ)2

σ2+(γ−μ)2δμ−σ2/(γ−μ) if γ>μ,

σ2

σ2+(μ−γ)2δγ+ (μ−γ)2

σ2+(μ−γ)2δμ+σ2/(μ−γ) if γ<μ.
(3.2)

In the degenerate case γ=μ, the inequality (3.1) is still sharp because the distributions

Pκ = 1

1+κ2
δγ−σκ+ κ2

1+κ2
δγ+σ/κ

have mean μ and variance σ2 for every κ > 0, while limκ↑∞Pκ(ξ̃ ≥ γ) = 1. Note,

however, that no single distribution with mean μ= γ and variance σ2 > 0 can satisfy

P(ξ̃≥ γ)= 1.

If we have the extra information that the random variable ξ̃ is non-negative (and

without much loss of generality that μ> 0), then one can strengthen the Chebyshev

inequality (3.1) to

P(ξ̃≥ γ)≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ2

σ2+(γ−μ)2 if γ≥μ+σ2/μ,
μ
γ if μ≤ γ<μ+σ2/μ,

1 if γ<μ,

(3.3)

see, e.g., Godwin (1955); Shohat and Tamarkin (1943). The extremal distributions (3.2)

are supported on the non-negative real line if either γ ≥ μ+σ2/μ > μ or if γ < μ.

Thus, they certify the sharpness of (3.3) in the respective parameter domains. For

μ≤ γ< μ+σ2/μ the Chebyshev inequality (3.3) for non-negative random variables

reduces in fact to the classical Markov inequality P(ξ̃≥ γ)≤μ/γ. In this Markov regime,

the Chebyshev inequality (3.3) remains sharp because the distributions

Pκ =
[

1+ σ2

κγ
− μ(κ−μ)

γ(κ−γ)
− μ(γ−μ)

κ(κ−γ)

]
δ0+ μ(κ−μ)−σ2

γ(κ−γ)
δγ+ σ2−μ(γ−μ)

κ(κ−γ)
δκ

have mean μ and variance σ2 for every κ > μ+σ2/μ, while limκ↑∞Pκ(ξ̃ ≥ γ) = μ/γ.

From the textbook proof of Markov’s inequality it follows thatP� = [1−μ/γ]δ0+[μ/γ]δγ

is the only distribution on the non-negative reals that has mean μ and satisfies P�(ξ̃≥
γ)=μ/γ. However, the additional requirement that the variance of ξ̃ under P� must
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equal σ2 implies γ=μ+σ2/μ. Thus, for μ≤ γ<μ+σ2/μ there cannot exist any single

distribution with P(ξ̃≥ γ)=μ/γ.

In the rest of the chapter we consider a sequence of T random variables ξ̃1, ξ̃2, . . . , ξ̃T

and assume that the first two moments of these random variables are known and

permutation symmetric. Specifically, assume that all random variables share the same

mean μ and variance σ2, respectively, while all pairs of mutually distinct random

variables share the same correlation coefficient ρ. Thus, the mean vector and the

covariance matrix of ξ̃= (ξ̃1, . . . , ξ̃T )ᵀ are given by

μ=

⎡⎢⎢⎢⎢⎢⎣
μ

μ
...

μ

⎤⎥⎥⎥⎥⎥⎦ ∈RT and Σ=

⎡⎢⎢⎢⎢⎢⎣
σ2 ρσ2 · · · ρσ2

ρσ2 σ2 · · · ρσ2

...
...

. . .
...

ρσ2 ρσ2 · · · σ2

⎤⎥⎥⎥⎥⎥⎦ ∈ST , (3.4)

respectively. Throughout the chapter we assume that σ> 0 and − 1
T−1 < ρ < 1. These

conditions are necessary and sufficient for the covariance matrix Σ to be strictly

positive definite. Note that ξ̃ constitutes a weak-sense stationary stochastic process in

the sense of Lindgren (2012).

An elementary calculation reveals that the sum
∑T

t=1 ξ̃t has mean value Tμ and vari-

ance Tσ2(1+ (T −1)ρ). The classical Chebyshev inequality (3.1) applied to
∑T

t=1 ξ̃t

thus implies

P(
∑T

t=1 ξ̃t ≥ γ)≤
⎧⎨⎩

Tσ2(1+(T−1)ρ)
Tσ2(1+(T−1)ρ)+(γ−Tμ)2 if γ≥ Tμ,

1 if γ< Tμ.
(3.5)

This inequality is still sharp due to a projection property of distribution families

with compatible first and second moments. Indeed, for any distribution Pζ of a ran-

dom variable ζ̃ with mean value Tμ and variance Tσ2(1+ (T − 1)ρ) there exists a

distribution P of the random vector ξ̃ with mean vector μ and covariance matrix

Σ such that Pζ coincides with the marginal distribution of
∑T

t=1 ξ̃t under P, that is,

Pζ(ζ̃ ∈ B) = P(
∑T

t=1 ξ̃t ∈ B) for every Borel set B ⊆ R (Yu et al. 2009). The extremal

distributions (3.2) certifying the sharpness of (3.1) can therefore be used to construct

multivariate extremal distributions of ξ̃ certifying the sharpness of (3.5). This result
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may be unexpected. Indeed, if ξ̃1, . . . , ξ̃T are independent and identically distributed,

then, by the central limit theorem, their sum is approximately normally distributed

with mean Tμ and variance Tσ2. In contrast, if ξ̃1, . . . , ξ̃T are only known to be un-

correlated with a common mean and variance (but not necessarily independent and

identically distributed), then, by the projection theorem, their sum may follow any

distribution with mean Tμ and variance Tσ2.

Assume now that ξ̃t is non-negative for every t = 1, . . . ,T (and without much loss

of generality that μ> 0). As we will prove in Proposition 3.1 below, a distribution P

supported on RT+ with mean vector μ and covariance matrix Σ as given in (3.4) exists

iff μ2+ρσ2 ≥ 0. We will assume that this condition holds throughout the rest of the

chapter. In this setting, the generalized Chebyshev inequality (3.3) applied to the

non-negative random variable
∑T

t=1 ξ̃t implies

P(
∑T

t=1 ξ̃t ≥ γ)≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Tσ2(1+(T−1)ρ)

Tσ2(1+(T−1)ρ)+(γ−Tμ)2 if γ≥ Tμ+σ2(1+ (T −1)ρ)/μ,
Tμ
γ if Tμ≤ γ< Tμ+σ2(1+ (T −1)ρ)/μ,

1 if γ< Tμ.

(3.6)

Even though the multivariate extension (3.6) of the univariate Chebyshev inequal-

ity (3.3) can still be shown to be sharp, we are not aware of an elementary proof;

see Theorem 3.9 below.

In this chapter we aim to derive Chebyshev inequalities for products of non-negative

random variables. Specifically, we will derive sharp upper bounds on the left and

right tail probabilities P(
∏T

t=1 ξ̃t ≤ γ) and P(
∏T

t=1 ξ̃t ≥ γ), respectively. Products of

random variables frequently arise in physics, statistics, finance, number theory and

many other branches of science (Galambos and Simonelli 2004). Indeed, they are

at the heart of stochastic models of many complex phenomena. When rocks are

crushed, for example, the size of a fragment is multiplied by a random factor (that

is smaller than 1) in every single breakup event (Frisch and Sornette 1997). Similar

multiplicative phenomena explain the distribution of body weights, stock prices, the

sizes of biological populations, income, rainfall etc. (Aitchison and Brown 1957).

Note that the stochastic process π̃ = {π̃T }T∈N defined through π̃T =∏T
t=1 ξ̃t can be

interpreted as a geometric random walk driven by the weak-sense stationary process
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ξ̃= {ξ̃t }t∈N. Chebyshev inequalities for the products of the ξ̃t thus provide tight bounds

on the quantiles of a geometric random walk when there is limited distributional in-

formation. Consequently, they are potentially relevant for the many applications in

economics and operations research, where geometric Brownian motions are tradi-

tionally used to model the prices of assets (Karatzas and Shreve 1991). An improved

understanding of weak-sense geometric random walks may also stimulate new re-

search directions in distributionally robust optimziation (Delage and Ye 2010; Goh

and Sim 2010; Wiesemann et al. 2014) and optimal uncertainty quantification (Hana-

susanto et al. 2015c; Owhadi et al. 2013).

Remark 3.1 (Chebyshev in Log-Space). It seems natural to reduce Chebyshev inequali-

ties for products of non-negative random variables to Chebyshev inequalities for their

logarithms. Assume thus that the first two moments of the logarithmic random vari-

ables η̃t = log(ξ̃t ), 1, . . . ,T , are known and permutation symmetric. Specifically, denote

by μη, σ2
η and ρη the mean, variance and correlation coefficient in log-space. Then, the

Chebyshev inequality (3.5) for sums implies

P(
∏T

t=1 ξ̃t ≥ γ)=P(
∑T

t=1 η̃t ≥ logγ)≤
⎧⎨⎩

Tσ2
η(1+(T−1)ρη)

Tσ2
η(1+(T−1)ρη)+(logγ−Tμη)2 if logγ≥ Tμη,

1 if logγ< Tμη.

(3.7)

Note that (3.7) is sharp because (3.5) is sharp. However, there is no one-to-one corre-

spondence between the moments of the original and the logarithmic random variables.

Even worse, it is possible that μ is finite while μη = −∞ (e.g., if ξt = 0 with positive

probability), or that μη is finite while μ=+∞ (e.g., if ξ̃t follows a Pareto distribution

with unit shape parameter). In this work we focus on the case where the ξ̃t have known

finite first and second moments, and we explicitly allow the event ξ̃t = 0 to have positive

probability. This assumption can be crucial for truthfully capturing the bankruptcy

risks in financial applications, for instance.

The starting point of this chapter is the intriguing observation that modern opti-

mization theory provides powerful tools for constructing and analyzing probabil-

ity inequalities (Bertsimas and Popescu 2005). Assume for instance that we aim to

find a sharp probability inequality for a target event characterized through finitely
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many polynomial inequalities on a random vector ξ̃. Assume further that the desired

inequality should hold for all distributions of ξ̃ satisfying finitely many polynomial

support and moment constraints. In the special case of the Chebyshev inequality (3.1),

the target event corresponds to the set {ξ ∈R : ξ≥ γ}, while the relevant distribution

family corresponds to the class of all distributions on R with mean μ and variance σ2.

Constructing the desired probability inequality is thus tantamount to maximizing the

probability of the target event over the given distribution family. This leads to a gener-

alized moment problem over probability measures. Under a mild regularity condition,

this moment problem admits a strong dual linear program subject to polynomially

parameterized semi-infinite constraints; see e.g. Isii (1960, 1962); Karlin and Studden

(1966). A key insight of Bertsimas and Popescu (2005) is that this dual problem can

be approximated systematically by tractable semidefinite programs. The resulting

approximations are safe (i.e., they are guaranteed to provide upper bounds on the

probability of the semialgebraic event). Moreover, these approximations are always

tight in the univariate case but generically loose in the multivariate setting.

Stronger statements are available for probability inequalities that rely exclusively on

first- and second-order moments. Specifically, if the support of the random vector ξ̃ is

unrestricted, the best upper bound on the probability of a convex target event is given

by 1/(1+d 2), where d represents the distance of the target event from the mean vector

of ξ̃ under the Mahalanobis norm induced by the covariance matrix of ξ̃ (Marshall and

Olkin 1960). More generally, if the target event constitutes a union of finitely many

convex sets, over each of which convex quadratic optimization problems can be solved

in polynomial time, then the best Chebyshev bound can be computed by an efficient

algorithm reminiscent of the ellipsoid method of convex optimization (Bertsimas and

Popescu 2005). Recently it has been observed that if the target event is defined by

quadratic inequalities, the best Chebyshev bound coincides exactly with the optimal

value of a single tractable semidefinite program (Vandenberghe et al. 2007). In spite of

these encouraging results, the computation of Chebyshev bounds becomes hard in

the presence of support constraints. Specifically, if ξ̃ is supported on the non-negative

orthant, it is already NP-hard to find sharp Chebyshev bounds for convex polyhedral

target events (Bertsimas and Popescu 2005).

For a random vector ξ̃ with zero mean and unrestricted support, the above methods
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have been used to derive a sharp Chebyshev bound on P(
∏T

t=1 ξ̃t ≥ 1, ξ̃t > 0 ∀t ), which

is expressed in terms of the solution of a tractable convex program (Marshall and

Olkin 1960). As the ξ̃t are allowed to adopt negative values, however, we believe that

the practical relevance of this bound is limited. In this chapter we aim to derive

sharp Chebyshev bounds on P(
∏T

t=1 ξ̃t ≥ γ) and P(
∏T

t=1 ξ̃t ≤ γ) under the explicit

assumption that ξ̃ is supported on the non-negative orthant. Note that the second

target event {ξ ∈ RT+ :
∏T

t=1ξt ≤ γ} is neither convex nor representable as a finite

union of convex sets, nor representable through finitely many quadratic constraints

in ξ. Thus, none of the existing techniques could be used to bound its probability

even if there were no support constraints. As support constraints generically lead to

intractability (Bertsimas and Popescu 2005), we focus here on the special case where

the first- and second-order moments are permutation-symmetric.

The main results of this chapter can be summarized as follows.

(i) If the distribution P of the non-negative random variables has mean μ and

covariance matrix Σ as given in (3.4), then the sharp upper Chebyshev bounds

on P(
∏T

t=1 ξ̃t ≥ γ) and P(
∏T

t=1 ξ̃t ≤ γ) can both be expressed as the optimal values

of explicit semidefinite programs, which are amenable to efficient numerical

solution via interior point algorithms.

(ii) If the distribution P of the non-negative random variables has mean μ and a

covariance matrix bounded above by Σ in a positive semidefinite sense, then

we obtain an explicit analytical formula for the sharp upper Chebyshev bound

on P(
∏T

t=1 ξ̃t ≥ γ).

(iii) The Chebyshev bound in (ii) coincides with the corresponding bound in (i)

for all values of γ that are either sufficiently small or sufficiently large. For

intermediate values of γ the numerical bound in (i) may be strictly smaller than

the analytical bound in (ii).

(iv) If the distribution P of the non-negative random variables has mean μ and a

covariance matrix bounded above by Σ in a positive semidefinite sense, then

the sharp upper Chebyshev bound on P(
∏T

t=1 ξ̃t ≤ γ) coincides with the corre-

sponding numerical bound in (i). Thus, there is a distribution that makes this

bound sharp and has covariance matrix Σ.
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(v) The Chebyshev bound in (iv) reduces to the trivial bound 1 for every γ > 0 if

T exceeds an explicit threshold T0. Thus, in the worst case, the weak-sense

geometric random walk π̃= {π̃T }T∈N defined through π̃T =∏T
t=1 ξ̃t is absorbed

at 0 with certainty if T ≥ T0.

(vi) The techniques devised for constructing Chebyshev bounds for products of

random variables can also be used to derive Chebyshev bounds on sums, max-

ima and minima (and possibly other permutation-symmetric functionals) of

non-negative random variables.

The rest of the chapter is structured as follows. In Section 3.2 we formalize the connec-

tion between probability inequalities and convex optimization. Left- and right-sided

Chebyshev inequalities for products of random variables are then derived in Sec-

tions 3.3 and 3.4, respectively, while generalized Chebyshev inequalities that account

for imprecise knowledge of the covariances are discussed in Section 3.5. Chebyshev

inequalities for other permutation-symmetric functionals of the random variables are

presented in Section 3.6, and examples are given in Section 3.7.

Notation. The symbol I stands for the identity matrix, 1 for the vector of all ones,

and ei for the i -th standard basis vector. Their dimensions will always be clear from

the context. The space of symmetric T ×T matrices is denoted by ST , and its subset

of all positive semidefinite matrices is denoted by ST+. For A,B ∈ST , the statements

A 	 B and B � A both mean that A−B ∈ST+. The indicator function 1E of a logical

statement E is defined through 1E = 1 if E holds true;= 0 otherwise. Random variables

are denoted by tilde signs, while their realizations are denoted by the same symbols

without tildes. The Dirac distribution concentrating unit mass at ξ is denoted by

δξ. For any closed set S ⊆ RT , we let M+(S ) be the cone of all non-negative Borel

measures supported on S .

3.2 Optimization Perspective on Chebyshev Inequalities

To analyze probability bounds using tools from optimization, we first introduce an

ambiguity set P , that is, a family of distributions for which the desired probability
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bound should hold. In this chapter we mainly focus on the ambiguity set of all

distributions supported on RT+ that share the permutation-symmetric mean and

covariance matrix defined in (3.4), that is, we set

P =
{
P ∈M+(RT

+) : P
(
ξ̃≥ 0

)= 1, EP
(
ξ̃
)=μ, EP

(
ξ̃ξ̃ᵀ

)=Σ+μμᵀ
}

. (3.8)

We highlight that P is characterized by only four parameters: T,μ,σ,ρ. Without much

loss of generality, we assume henceforth that μ> 0, σ> 0 and − 1
T−1 < ρ < 1. The last

two conditions are equivalent to Σ 
 0. To rule out trivial special cases, we further

restrict attention to T ≥ 2. However, all of these conditions do not yet guarantee that

P is non-empty. Proposition 3.1 below provides a necessary and sufficient condition

for the non-emptiness of P .

Proposition 3.1 (Non-emptiness of P ). The ambiguity set P is non-empty iff μ2+
ρσ2 ≥ 0.

Proof. If P is non-empty, then any P ∈P satisfies

0≤ EP
(
ξ̃ξ̃ᵀ

)=Σ+μμᵀ⇐⇒
{

μ2+σ2 ≥ 0

μ2+ρσ2 ≥ 0
⇐⇒μ2+ρσ2 ≥ 0,

where the equivalences follow from the definition of Σ and the assumption that ρ < 1.

Assume now that μ2+ρσ2 ≥ 0. We show that P contains a discrete distribution P

satisfying

P
(
ξ̃= y1+ (x− y)ei

)= p

T
, i = 1, . . . ,T, and P

(
ξ̃= z1

)= 1−p (3.9)

for x ≥ y ≥ 0, z ≥ 0 and p ∈ [0,1]. For this distribution to be contained in P , it must

also satisfy the following moment conditions:

(i) EP[ξ̃]=μ ⇐⇒ p

T
(x+ (T −1)y)+ (1−p)z =μ;

(ii) EP[ξ̃ξ̃ᵀ]=Σ+μμᵀ ⇐⇒ p

T
(x2+ (T −1)y2)+ (1−p)z2 =μ2+σ2,

p

T
(2x y + (T −2)y2)+ (1−p)z2 =μ2+ρσ2.
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To construct P, it is notationally convenient to perform the change of variables m1 ←
1
T (x+ (T −1)y) and m2 ← 1

T (x2+ (T −1)y2). For a given (m1,m2), we can then recover

(x, y) via

x =m1+
√

(T −1)(m2−m2
1) and y =m1−

√
(m2−m2

1)/(T −1).

Note that the correspondence between (x, y) and (m1,m2) is one-to-one and onto

over {(x, y) ∈R2+ : x ≥ y} and {(m1,m2) ∈R2+ : m2
1 ≤m2 ≤ Tm2

1}. Now, for P to be in P ,

we require that

(i’) EP[ξ̃]=μ ⇐⇒ pm1+ (1−p)z =μ;

(ii’) EP[ξ̃ξ̃ᵀ]=Σ+μμᵀ ⇐⇒ pm2+ (1−p)z2 =μ2+σ2,

p

T −1
(Tm2

1−m2)+ (1−p)z2 =μ2+ρσ2.

In the remainder of the proof, we thus need to show that there exist m1,m2, z ≥ 0,

m2
1 ≤m2 ≤ Tm2

1, and p ∈ [0,1] satisfying (i’) and (ii’). To this end, consider the choice

p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

{
Tμ2

Tμ2+(1+(T−1)ρ)σ2 , ρT
1+(T−1)ρ

}
if ρ > 0,

Tμ2

Tμ2+σ2 if ρ = 0,

−ρT
1−ρ if ρ < 0,

(3.10)

which satisfies p ∈ [0,1] by construction, as well as

m1 =μ+σ
√

(1−p)(1+(T−1)ρ)
pT , m2 =m2

1+ (1−ρ)(T−1)σ2

pT , z =μ−σ
√

p(1+(T−1)ρ)
(1−p)T .

Note that the terms inside the square roots are non-negative since ρ >−1/(T −1).

Step 1: We show that m1,m2, z ≥ 0. The non-negativity of m1 and m2 holds by

construction. To check that z ≥ 0, we distinguish the cases ρ > 0, ρ = 0 and ρ < 0.

For ρ > 0, we obtain z = 0 for p = Tμ2

Tμ2+(1+(T−1)ρ)σ2 . Since the square root term in the

expression for z is increasing in p, we thus conclude that z ≥ 0. The case where ρ = 0

is analogous since Tμ2

Tμ2+σ2 = Tμ2

Tμ2+(1+(T−1)ρ)σ2 for ρ = 0. For ρ < 0, on the other hand,
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we obtain z =μ−σ
�−ρ for our choice of p. The resulting z is thus non-negative due

to the assumption that μ2+ρσ2 ≥ 0.

Step 2: To check that m2
1 ≤ m2 ≤ Tm2

1, we first use the definition of m2 and the

assumption that ρ < 1 to verify that m2
1 ≤m2. The other inequality holds if and only if

m2 ≤ Tm2
1 ⇐⇒

√
1−ρ

pT
σ≤m1

⇐⇒ μ
√

pT +
(√

(1+ (T −1)ρ)(1−p)−√1−ρ
)
σ≥ 0,

(3.11)

where the first and second equivalence follow from the definitions of m2 and m1,

respectively. We now show that the last inequality holds by distinguishing the cases

ρ > 0, ρ = 0 and ρ < 0.

For ρ > 0, we observe that the expression
√

(1+ (T −1)ρ)(1−p)−√1−ρ in (3.11)

evaluates to 0 for p = Tρ
1+(T−1)ρ and that it is decreasing in p. Since μ

√
pT ≥ 0 by

construction, we thus conclude that the last inequality in (3.11) holds, and hence

m2 ≤ Tm2
1 when ρ ≥ 0. In combination with (3.10) and (3.11), the above inequality

ensures that m2 ≤ Tm2
1.

For ρ = 0, equation (3.11) simplifies to

μ
√

pT + (
√

1−p−1)σ≥ 0 ⇐⇒ μ
�

T

σ
≥ 1−√1−p

�
p

⇐= μ
�

T

σ
≥�p,

where the two implications follow from algebraic manipulations and the fact that
�

p ≥ 1−�1−p�
p for p ∈ [0,1], respectively. One readily verifies that the last inequality is

satisfied by p = Tμ2

Tμ2+σ2 .

For ρ < 0, substituting p in (3.11) with its definition from (3.10) yields

μ
√

pT + (
√

(1+ (T −1)ρ)(1−p)−√1−ρ)σ= Tμ
�−ρ√
1−ρ

+
(

1+ (T −1)ρ√
1−ρ

−√1−ρ

)
σ

≥ −Tρσ√
1−ρ

+
(

1+ (T −1)ρ√
1−ρ

−√1−ρ

)
σ

= 0,
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where the equalities follow from direct calculations and the inequality holds since

μ2+ρσ2 ≥ 0. We thus conclude that m2 ≤ Tm2
1 whenever ρ < 0 as postulated.

Step 3: We show that our choice of m1,m2 and z meets the requirements (i’) and

(ii’), regardless of the value of p. First, a direct calculation shows that requirement (i’)

follows from the definitions of m1 and z. Next, the first requirement in (ii’) follows

from

pm2+ (1−p)z2 = pm2+ (1−p)z2− (pm1+ (1−p)z
)2+μ2

= p(m2−m2
1)+ (pm2

1+ (1−p)z2)− (pm1+ (1−p)z
)2+μ2

= p(m2−m2
1)+p(1−p)(m1− z)2+μ2

= 1
T (1−ρ)(T −1)σ2+ 1

T (1+ (T −1)ρ)σ2+μ2

=σ2+μ2,

where the first equality holds since the requirement (i’) is met, and the fourth equality

follows from the definitions of m1, m2 and z.

Finally, to prove the second requirement in (ii’), we first observe that

pm2− p

T −1
(Tm2

1−m2)= pT

T −1
(m2−m2

1)= (1−ρ)σ2,

where the second equality follows from the definition of m2. Note that the term on

the left (right) side of this equality constitutes the difference between the left (right)

sides of the requirements in (ii’). The second requirement in (ii’) and the claim thus

follow.

In order to establish Chebyshev bounds for products of random variables, we will

formulate generalized moment problems that optimize over the probability measures

in the ambiguity set P . We can then leverage powerful duality results from convex op-

timization to reformulate these moment problems as explicit semidefinite programs

that are amenable to efficient solution via interior point methods. The weak duality

principle, which holds true for every optimization problem, states that the optimal

value of a (primal) minimization problem is bounded from below by the optimal value

of its associated dual (maximization) problem. To establish tight probability bounds,
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we need to invoke the strong duality principle, which states that under certain condi-

tions the optimal values of the primal and dual optimization problems coincide. In

our setting, strong duality holds whenever μ2+ρσ2 > 0.

Theorem 3.1 (Slater Condition). If μ2+ρσ2 > 0, then the moment vector (1,μ,Σ+μμᵀ)

is contained in the interior of the moment cone K defined through

K =
{(∫

RT+
P(dξ),

∫
RT+

ξP(dξ),
∫
RT+

ξξᵀP(dξ)

)
: P ∈M+(RT

+)

}
.

Proof. We first show that P contains a distribution of the form (3.9) where the in-

equalities x ≥ y ≥ 0, z ≥ 0 and p ∈ [0,1] hold strictly, as well as x+(T −1)y > Tz (Step 1).

This distribution allows us to show that (1,μ,Σ+μμᵀ) is in the relative interior of

K1 =K ∩ ({1}×RT+ ×ST+) (Step 2), from which the result follows directly by re-scaling

the measures in K1 (Step 3).

Step 1: We distinguish the cases ρ < 0 and ρ ≥ 0. For ρ < 0, one readily verifies that

the choice of p, x, y and z in the proof of Proposition 3.1 satisfies x > y > 0, z > 0,

p ∈ (0,1) and x+ (T −1)y > Tz by construction. Moreover, these inequalities are also

satisfied strictly for ρ ≥ 0 if we replace p in (3.10) with any value from the open interval

(0, p).

Step 2: To prove that (1,μ,Σ+μμᵀ) ∈ rel intK1, we show that all perturbed ambiguity

sets

P (με,Ωε)= {P ∈M+(RT
+) : P

(
ξ̃> 0

)= 1, EP
(
ξ̃
)=με, EP

(
ξ̃ξ̃ᵀ

)=Ωε
}

with με ∈Bε(μ) and Ωε ∈Bε(Σ+μμᵀ) are non-empty for sufficiently small ε, where

Bε(x) denotes the ε-ball around x in the respective space. Note that the covariance

matrix of any distribution in P (με,Ωε) is positive definite for small ε since Σ
 0 and

the eigenvalues are continuous functions of the second-order moment matrix. In the

following, we construct a discrete distribution Pε ∈P (με,Ωε) with

Pε
(
ξ̃= ξε,i

)
= p

T
i = 1, . . . ,T and Pε

(
ξ̃= ξε,T+1)= 1−p, (3.12)
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where p is the constant chosen in Step 1. The moment conditions for Pε then simplify

to:

(i) EPε[ξ̃]=με ⇐⇒ p

T

T∑
i=1

ξε,i
t + (1−p)ξε,T+1

t =με
t ∀t = 1, . . . ,T ;

(ii) EPε[ξ̃ξ̃ᵀ]=Ωε ⇐⇒ p

T

T∑
i=1

(
ξε,i

t

)2+ (1−p)
(
ξε,T+1

t

)2 =Ωε
t t ∀t = 1, . . . ,T ,

p

T

T∑
i=1

ξε,i
s ξε,i

t + (1−p)ξε,T+1
s ξε,T+1

t =Ωε
st ∀1≤ s < t ≤ T .

These moment conditions represent a system of nonlinear equations

F (με,Ωε; {ξε,i }T+1
i=1 )= 0

in the moments με and Ωε as well as the atoms ξε,i , i = 1, . . . ,T + 1, of the distri-

bution Pε. From Step 1 we know that F (μ,Σ+μμᵀ; {ξi }T+1
i=1 ) = 0 for ξi = y1+ (x −

y)ei , i = 1, . . . ,T , ξT+1 = z1 and for some x, y, z ∈ R+ satisfying x > y > 0, z > 0 and

x + (T −1)y > Tz. Moreover, the implicit function theorem proves the existence of

continuously differentiable functions g i : RT+ ×ST+ → RT , i = 1, . . . ,T +1, such that

F (με,Ωε; {g i (με,Ωε)}T+1
i=1 )= 0 for all με ∈Bε(μ) and Ωε ∈Bε(Σ+μμᵀ), provided that

ε is sufficiently small, F is continuously differentiable, and the Jacobian of F with

respect to ξε,i has full row rank at (με,Ωε, {ξε,i }T+1
i=1 )= (μ,Σ+μμᵀ, {ξi }T+1

i=1 ). Thus, the

functions g i allow us to construct distributions of the form (3.12) that satisfy the

moment conditions of the perturbed ambiguity sets P (με,Ωε) for all με ∈ Bε(μ)

and Ωε ∈Bε(Σ+μμᵀ). Since each g i is continuous, we have g i (με,Ωε) > 0 for all

με ∈Bε(μ) and Ωε ∈Bε(Σ+μμᵀ) when ε is sufficiently small, that is, the support of

Pε is contained in RT+, and thus Pε is indeed contained in P (με,Ωε).

The moment function F is continuously differentiable by construction. To apply the

implicit function theorem, we therefore only need to show that the Jacobian J of F with

respect to ξε,1, . . . , ξε,T+1 has full row rank at (με,Ωε, {ξε,i }T+1
i=1 )= (μ,Σ+μμᵀ, {ξi }T+1

i=1 ).

For ease of exposition, we divide the first T 2 and the last T columns of J by p
T and 1−p,

respectively, and we divide the rows corresponding to the first requirement in (ii) by 2.
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We then obtain

J=

⎡⎢⎢⎢⎣
I I · · · I I

y I+ (x− y)e1eᵀ1 y I+ (x− y)e2eᵀ2 · · · y I+ (x− y)eT eᵀT zI

C1 C2 · · · CT CT+1

⎤⎥⎥⎥⎦ ,

where for i = 1, . . . ,T , the matrix Ci ∈R(T
2)×T satisfies

C i
st , j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x if (s, t ) ∈ {(i , j ), ( j , i )},

y if (s, t ) ∈ {( j ,τ) : τ �= i }∪ {(τ, j ) : τ �= i },

0 otherwise.

Here, the indices s and t , 1 ≤ s < t ≤ T , encode the row and the index j refers to

the column of Ci , respectively. The matrix CT+1 is defined analogously with x and y

replaced by z.

Consider the linear combination (mᵀ, vᵀ,cᵀ)J of all rows of J with the coefficients

mt (t = 1, . . . ,T ) for the first block of T rows, vt (t = 1, . . . ,T ) for the second block

of T rows, and cst for the third block of
(T

2

)
rows. For notational convenience, we

define cst = ct s for s > t . To prove that J has full row rank, we need to show that

(mᵀ, vᵀ,cᵀ)J evaluates to 0ᵀ only if m, v and c vanish. To this end, consider the first

and the (T +1)th element (i.e., the first elements of the first two column blocks) of the

equation (mᵀ, vᵀ,cᵀ)J= 0ᵀ, which are equivalent to

m1+xv1+ y
T∑

t=2
c1t = 0 and m1+ y v1+xc12+ y

T∑
t=3

c1t = 0.

Subtracting the two equations implies that (x− y)(v1−c12)= 0, which in turn yields

v1 = c12 since x �= y . Generalizing this observation to the t th columns in each pair of

column blocks s and t , we find that all vt and cst must be equal to a single variable v .

Next, consider the (T 2+1)th and (T 2+2)th columns (i.e., the first two elements of the

last column block) of the equation (mᵀ, vᵀ,cᵀ)J= 0ᵀ, which are equivalent to
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m1+ zv1+ z
T∑

t=2
c1t = 0 and m2+ zv2+ z

(
c21+

T∑
t=3

c2t

)
= 0.

However, since vt = cst = v for all s and t , we conclude that m1 =m2. Again, generaliz-

ing this observation to each pair of columns in the last column block, we can identify

all mt by a single number m. Replacing vt and cst by v and mt by m, the previous two

equations simplify to

m+ (x+ (T −1)y)v = 0 and m+Tzv = 0,

and we conclude that m = v = 0 since we established earlier that x + (T −1)y �= Tz.

Hence, the Jacobian J indeed has full row rank, which concludes Step 2.

Step 3: We have shown in Step 2 that P (με,Ωε) �= � for all με ∈ Bε(μ) and Ωε ∈
Bε(Σ+μμᵀ), which implies that (1,μ,Σ+μμᵀ) ∈ rel intK1. Since {λK1 : λ ∈R+}⊆K ,

we have λP (με,Ωε)⊆K for all λ≥ 0. As the moments are linear in the measure, we

thus conclude that (1,μ,Σ+μμᵀ) ∈ intK as desired.

Theorem 3.1 will allow us to use the strong duality theorem of Shapiro (2001, Proposi-

tion 3.4), which states that a linear optimization problem over the distributions in P

has the same optimal value as its associated dual problem. In the remainder of the

chapter, we will make extensive use of this insight, and we therefore assume from now

on that μ2+ρσ2 > 0.

3.3 Left-Sided Chebyshev Bounds

In this section we study left-sided Chebyshev bounds of the form

L(γ)= sup
P∈P

P

(
T∏

t=1
ξ̃t ≤ γ

)
,

where the ambiguity set P is defined in (3.8). We begin with the main result of this

section.
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Theorem 3.2 (Left-Sided Chebyshev Bound). Let γ > 0. For all T ≥ 3, the left-sided

Chebyshev bound L(γ) coincides with the optimal objective value of the semidefinite

program

inf α+Tμβ+T (μ2+σ2)γ1+T
[
Tμ2+σ2+ (T −1)ρσ2]γ2

s. t. α,β,γ1,γ2 ∈R, λ1,λ2,λ3 ≥ 0, p ∈R2T+1, P ∈ST+1
+ , q ∈R2T−1, Q ∈ST

+

α≥ 1, γ1+γ2 ≥ 0, γ1+Tγ2 ≥ 0

γ2+ γ1

T
+α≥

∥∥∥(β−λ1,γ2+ γ1

T
−α

)∥∥∥
2

γ2+γ1+α−1≥ ∥∥(β−λ2,γ2+γ1−α+1
)∥∥

2

γ2+ γ1

T
+λ3+α−1≥

∥∥∥(β−λ3Tγ1/T ,γ2+ γ1

T
+λ3−α+1

)∥∥∥
2

p0 = (T −1)γ1γ
2

T−1 + (T −1)2γ2γ
2

T−1 , p1+q0 = (T −1)βγ
1

T−1

p2+q1 =α−1, pT +qT−1 = 2(T −1)γ2γ
1

T−1 , pT+1+qT =β

p2T = γ1+γ2, pt +qt−1 = 0 ∀t = 3, . . . ,T −1,T +2, . . . ,2T −1

pt =∑i+ j=t Pi , j ∀t = 0, . . . ,2T, qt =∑i+ j=t Qi , j ∀t = 0, . . . ,2T −2,

(3.13)

where we use the convention that the entries of p , P , q and Q are numbered starting

from 0. For T = 2, L(γ) is given by a variant of (3.13) where the constraints p2+q1 =α−1

and pT +qT−1 = 2(T −1)γ2γ
1

T−1 are combined to p2+q1 =α−1+2(T −1)γ2γ
1

T−1 .

Proof. We first reformulate the maximum probability of the left tail of the prod-

uct
∏T

t=1 ξ̃t falling below γ as the generalized moment problem

L(γ)= sup
∫
RT+

1{
∏T

t=1 ξt≤γ} P(dξ)

s. t. P ∈M+(RT
+)∫

RT+
P(dξ)= 1∫

RT+
ξ P(dξ)=μ∫

RT+
ξξᵀ P(dξ)=Σ+μμᵀ.

(3.14)

This moment problem admits a strong conic dual in the Lagrange multipliers α ∈
R, β ∈ RT and Γ ∈ ST corresponding to the normalization, mean and covariance

constraints in (3.14), respectively, see Theorem 3.1 and Shapiro (2001, Proposition 3.4).
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Recalling that μ=μ1 and Σ= (1−ρ)σ2I+ρσ211ᵀ, the dual problem can be expressed

as

L(γ)= inf α+μ1ᵀβ+〈(1−ρ)σ2I+ (μ2+ρσ2
)

11ᵀ,Γ〉
s. t. α ∈R, β ∈RT , Γ ∈ST

α+ξᵀβ+ξᵀΓξ≥ 0 ∀ξ≥ 0

α+ξᵀβ+ξᵀΓξ≥ 1 ∀ξ≥ 0 :
∏T

t=1ξt ≤ γ.

(3.15)

By Lemma 3.1 below, the symmetry of problem (3.15) implies that we may restrict

attention to permutation-symmetric solutions of the form
(
α,β,Γ

)
with β=β1 and

Γ= γ1I+γ211ᵀ for some β,γ1,γ2 ∈R. Thus, problem (3.15) simplifies to

L(γ)= inf α+Tμβ+T (μ2+σ2)γ1+T
[
Tμ2+σ2+ (T −1)ρσ2

]
γ2

s. t. α,β,γ1,γ2 ∈R
α+β‖ξ‖1+γ1‖ξ‖2

2+γ2‖ξ‖2
1 ≥ 0 ∀ξ≥ 0

α+β‖ξ‖1+γ1‖ξ‖2
2+γ2‖ξ‖2

1 ≥ 1 ∀ξ≥ 0 :
∏T

t=1ξt ≤ γ.

(3.16)

Lemma 3.2 then implies that (3.16) can be reduced to

L(γ)= inf α+Tμβ+T (μ2+σ2)γ1+T
[
Tμ2+σ2+ (T −1)ρσ2

]
γ2

s. t. α,β,γ1,γ2 ∈R
inf
s≥0

α+βs+γ2s2+ γ1

T
s2 ≥ 0

inf
s≥0

α+βs+γ2s2+γ1s2 ≥ 1

inf
s≥0

α+βs+γ2s2+γ1s2 fT

(
0,

γ

sT

)
≥ 1.

(3.17)

By assigning a Lagrange multiplier λ1 ≥ 0 to the constraint s ≥ 0 and using the S -

lemma (Pólik and Terlaky 2007), the first constraint in (3.17) can be reformulated as

the linear matrix inequality

[
γ2+ γ1

T
β−λ1

2
β−λ1

2 α

]
	 0 ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
α≥ 0

γ2+ γ1
T ≥ 0

(γ2+ γ1
T )α≥ 1

4 (β−λ1)2

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
α≥ 0

γ1+Tγ2 ≥ 0

γ2+ γ1
T +α≥ ∥∥(β−λ1,γ2+ γ1

T −α
)∥∥

2 ,
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where the first equivalence follows from the observation that a 2×2-matrix is positive

semidefinite iff it has non-negative diagonal elements as well as a non-negative deter-

minant, while the second equivalence uses a well-known reformulation of hyperbolic

constraints as second-order cone constraints (Boyd and Vandenberghe 2004, p. 197).

Similarly, the second constraint in (3.17) holds iff there exists λ2 ≥ 0 with

[
γ2+γ1

β−λ2
2

β−λ2
2 α−1

]
	 0 ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
α≥ 1

γ2+γ1 ≥ 0

γ2+γ1+α−1≥ ∥∥(β−λ2,γ2+γ1−α+1
)∥∥

2 .

Lemma 3.3 below further allows us to decompose the third constraint in (3.17) into

two simpler semi-infinite constraints.

inf
s∈[0,Tγ1/T ]

α+βs+γ2s2+γ1
s2

T
≥ 1 (3.18a)

inf
s≥Tγ1/T

{
α+βs+γ2s2+γ1 min

ξ,ξ≥0

{
ξ2+ (T −1)ξ2 : ξ+ (T −1)ξ= s, ξξT−1 = γ

}}
≥ 1

(3.18b)

As s ∈ [0,Tγ1/T
]

iff s(Tγ1/T − s) ≥ 0, we can once again use the S -lemma to show

that (3.18a) holds iff there exists λ3 ≥ 0 with

⎡⎣ γ2+ γ1
T +λ3

β−λ3Tγ1/T

2
β−λ3Tγ1/T

2 α−1

⎤⎦	 0 ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α≥ 1

γ2+ γ1
T +λ3 ≥ 0

γ2+ γ1
T +λ3+α−1

≥ ∥∥(β−λ3Tγ1/T ,γ2+ γ1
T +λ3−α+1

)∥∥
2 .

Finally, it remains to be shown that (3.18b) also admits a conic reformulation. To do

so, we first argue that one can replace (3.18b) with

inf
s≥Tγ1/T ,ξ,ξ≥0

{
α+βs+γ2s2+γ1

[
ξ2+ (T −1)ξ2

]
: ξ+ (T −1)ξ= s, ξξT−1 = γ

}
≥ 1

(3.19)

without changing the optimal value of problem (3.17). If γ1 ≥ 0, then (3.19) is indeed
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equivalent to (3.18b). On the other hand, if γ1 < 0, we find

inf
s≥Tγ1/T

{
α+βs+γ2s2+γ1 min

ξ,ξ≥0

{
ξ2+ (T −1)ξ2 : ξ+ (T −1)ξ= s, ξξT−1 = γ

}}

≥ inf
s≥Tγ1/T

{
α+βs+γ2s2+γ1 max

ξ,ξ≥0

{
ξ2+ (T −1)ξ2 : ξ+ (T −1)ξ= s, ξξT−1 = γ

}}

= inf
s≥Tγ1/T ,ξ,ξ≥0

{
α+βs+γ2s2+γ1

[
ξ2+ (T −1)ξ2

]
: ξ+ (T −1)ξ= s, ξξT−1 = γ

}
≥ inf

s≥Tγ1/T
α+βs+γ2s2+γ1s2,

which means that (3.18b) is implied by the second semi-infinite constraint in prob-

lem (3.17). By eliminating s = ξ+ (T −1)ξ, the maximization problem on the left hand

side of (3.19) reduces to

inf
ξ,ξ≥0, ξξT−1=γ

α+β
[
ξ+ (T −1)ξ

]
+γ2

[
ξ+ (T −1)ξ

]2+γ1

[
ξ2+ (T −1)ξ2

]
.

Note that the constraint s ≥ Tγ1/T has been dropped in the above formulation. This

constraint is redundant due to the inequality of arithmetic and geometric means,

which implies that

s = ξ+ (T −1)ξ≥ T (ξξ
T−1

)1/T = Tγ1/T .

By setting κ = ξ1/(T−1), we can further replace ξ and ξ with κT−1 and γ1/(T−1)/κ, re-

spectively. Using elementary manipulations, one can then show that (3.19) reduces

to

inf
κ≥0

(T −1)γ1γ
2

T−1 + (T −1)2γ2γ
2

T−1 + (T −1)βγ
1

T−1κ+ (α−1)κ2

+2(T −1)γ2γ
1

T−1κT +βκT+1+ (γ1+γ2)κ2T ≥ 0. (3.20)

Note that the objective of the maximization problem on the left hand side of (3.20)

constitutes a polynomial of degree 2T in κ and is therefore representable as l (κ) =
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∑2T
i=0 aiκ

i , where

ai =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T −1)γ1γ
2

T−1 + (T −1)2γ2γ
2

T−1 if i = 0,

(T −1)βγ
1

T−1 if i = 1,

α−1 if i = 2,

2(T −1)γ2γ
1

T−1 if i = T,

β if i = T +1,

γ1+γ2 if i = 2T,

0 otherwise.

(3.21)

Here we assumed that T > 2. For T = 2, the quadratic monomial in l (κ) would have

the coefficient α−1+2(T −1)γ2γ
1

T−1 instead of α−1. Thus, the case T = 2 could be

handled via a case distinction, which we omit for the sake of brevity.

Constraint (3.19) thus requires the polynomial l (κ) to be non-negative for all κ≥ 0.

By the Markov-Lukacs Theorem (Krein and Nudelman 1977), this is equivalent to

postulating that l (κ) admits a sum-of-squares representation of the form l (κ)= p(κ)+
κq(κ), where p(κ)=∑2T

i=0 piκ
i and q(κ)=∑2T−2

i=0 qiκ
i are sum-of-squares polynomials

of degrees 2T and 2T −2, respectively. By matching the coefficients of all monomials,

one verifies that the identity l (κ)= p(κ)+κq(κ) holds iff

p0 = a0, pt +qt−1 = at ∀t = 1, . . . ,2T −1 and p2T = a2T . (3.22)

Moreover, by Nesterov (2000, Theorem 3), p(κ) and q(κ) are sum-of-squares poly-

nomials iff there exist positive semidefinite matrices P ∈ST+1+ and Q ∈ST+ such that

pt =
∑

i+ j=t
Pi , j ∀t = 0, . . . ,2T and qt =

∑
i+ j=t

Qi , j ∀t = 0, . . . ,2T −2. (3.23)

Thus, (3.19) holds iff the conic constraints (3.22) and (3.23) are satisfied. The claim

now follows by replacing the three semi-infinite constraints in (3.17) with their explicit

conic reformulations.

The proof of Theorem 3.2 relies on 4 auxiliary lemmas, which we prove next.

Lemma 3.1. Problem (3.15) has a permutation symmetric minimizer
(
α�,β�,Γ�

)
that
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satisfies β� =β�1 and Γ� = γ�
1 I+γ�

2 11ᵀ for some β�,γ�
1 ,γ�

2 ∈R.

Proof. Let P be the set of all permutations of the index set {1, . . . ,T }. For any π ∈
P we denote by Pπ ∈ RT×T the permutation matrix defined through (Pπ)i j = 1 if

π(i ) = j ; = 0 otherwise. Let
(
α,β,Γ

)
by any optimal solution to (3.15), which ex-

ists by Shapiro (2001, Proposition 3.4). We first show that the permuted solution

(απ,βπ,Γπ)= (α,Pπβ,PπΓPᵀ
π

)
is also optimal in (3.15). To this end, we observe that

απ+μ1ᵀβπ+〈(1−ρ)σ2I+ (μ2+ρσ2)11ᵀ,Γπ〉
= α+μ1ᵀPπβ+〈(1−ρ)σ2I+ (μ2+ρσ2)11ᵀ,PπΓPᵀ

π〉
= α+μ(Pᵀ

π1)ᵀβ+〈(1−ρ)σ2Pᵀ
πPπ+

(
μ2+ρσ2)Pᵀ

π1(Pᵀ
π1)ᵀ,Γ〉

= α+μ1ᵀβ+〈1−ρ)σ2I+ (μ2+ρσ2)11ᵀ,Γ〉 ,

where the first equality follows from the definition of απ, βπ and Γπ, the second

equality exploits the cyclicity property of the trace scalar product, and the third

equality holds due to the permutation symmetry of 1 and the fact that Pᵀ
π =Pπ−1 =P−1

π .

Thus, (απ,βπ,Γπ) has the same objective value as
(
α,β,Γ

)
. To show that

(
απ,βπ,Γπ

)
is feasible in (3.15), we note that

απ+ξᵀβπ+ξᵀΓπξ≥ 1{
∏T

t=1 ξt≤γ} ∀ξ≥ 0

⇐⇒ α+ (Pπ−1ξ)ᵀβ+ (Pπ−1ξ)ᵀ Γ(Pπ−1ξ)≥ 1{
∏T

t=1 ξt≤γ} ∀ξ≥ 0

⇐⇒ α+ξᵀβ+ξᵀΓξ≥ 1{
∏T

t=1 ξπ(t )≤γ} ∀ξ≥ 0

⇐⇒ α+ξᵀβ+ξᵀΓξ≥ 1{
∏T

t=1 ξt≤γ} ∀ξ≥ 0,

where the first equivalence follows from the definition of απ, βπ and Γπ and because

Pᵀ
π =P−1

π , the second equivalence holds because permutations are bijective, and the

third equivalence relies on the permutation symmetry of the non-negative orthant.

Thus, (απ,βπ,Γπ) satisfies the semi-infinite constraints in (3.15) whenever (α,β,Γ)

does. We conclude that (απ,βπ,Γπ) is feasible and thus optimal in (3.15) for every

π ∈P.

Due to the convexity of the (semi-infinite) linear program (3.15), the equally weighted

average
(
α�,β�,Γ�

)= 1
T !

∑
π∈P(απ,βπ,Γπ) constitutes another optimal solution. It is

now clear that Pπβ
� =β� and PπΓ

�Pᵀ
π =Γ� for any π ∈P since π(P)=P. Thus, the

claim follows.
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Figure 3.1: The subproblems (3.25a) (top) and (3.25b) (bottom) determine the smallest
and the largest spheres centered at the origin that intersect with the hyperplane
‖ξ‖1 = 1 (shaded areas) and the hyperbola

∏T
t=1ξt = γ,γ (solid lines). The dashed

circles represent level sets of the objective function ‖ξ‖2
2. Both graphs illustrate the

case where T = 3.

Lemma 3.2. For α,β,γ1,γ2,Δ ∈R and γ,γ ∈R+∪ {∞}, γ≤ γ, we have

inf
ξ≥0

{
α+β‖ξ‖1+γ1‖ξ‖2

2+γ2‖ξ‖2
1 :
∏T

t=1ξt ∈ [γ,γ]
}
≥Δ

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
inf

s≥Tγ1/T
α+βs+γ2s2+γ1s2 fT (γ/sT ,γ/sT )≥Δ

inf
s≥Tγ1/T

α+βs+γ2s2+γ1s2 gT (γ/sT ,γ/sT )≥Δ,

(3.24)

where

fT (γ,γ)= inf
ξ≥0

{
‖ξ‖2

2 : ‖ξ‖1 = 1,
∏T

t=1ξt ∈ [γ,γ]
}

(3.25a)

and gT (γ,γ)= sup
ξ≥0

{
‖ξ‖2

2 : ‖ξ‖1 = 1,
∏T

t=1ξt ∈ [γ,γ]
}

. (3.25b)

Moreover, we have fT (γ,∞)= 1/T for γ≤ T−T and gT (0,γ)= 1 for γ ∈R+∪ {∞}.

Figure 3.1 visualizes the two parametric subproblems (3.25a) and (3.25b). Note that

both problems are non-convex whenever γ<∞ as their last constraints are equivalent

to (
∏T

t=1ξt )1/T ∈ [γ1/T ,γ1/T ] and because geometric means are concave (Boyd and
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Vandenberghe 2004, § 3.1). Moreover, the subproblem (3.25b) remains non-convex

for γ=∞ since it maximizes a convex objective function.

Proof of Lemma 3.2: The first constraint in (3.24) can be reduced to

inf
s≥Tγ1/T

α+βs+γ2s2+ inf
ξ≥0

{
γ1‖ξ‖2

2 : ‖ξ‖1 = s,
∏T

t=1ξt ∈ [γ,γ]
}
≥Δ (3.26)

by decomposing the maximization over all ξ≥ 0 into two nested maximization prob-

lems over all s ≥ Tγ1/T and over all ξ≥ 0 with ‖ξ‖1 = s, respectively. Here, the lower

bound on s is owed to the fact that there is ξ≥ 0 satisfying ‖ξ‖1 = s and
∏T

t=1ξt ∈ [γ,γ]

if and only if s ≥ Tγ1/T . A case distinction on the sign of γ1 shows that constraint (3.26)

holds if and only if⎧⎪⎪⎨⎪⎪⎩
inf

s≥Tγ1/T
α+βs+γ2s2+γ1 inf

ξ≥0

{
‖ξ‖2

2 : ‖ξ‖1 = s,
∏T

t=1ξt ∈ [γ,γ]
}
≥Δ

inf
s≥Tγ1/T

α+βs+γ2s2+γ1 sup
ξ≥0

{
‖ξ‖2

2 : ‖ξ‖1 = s,
∏T

t=1ξt ∈ [γ,γ]
}
≥Δ

is satisfied. The change of variables ξ → sξ shows that this constraint system is

equivalent to the second constraint system in (3.24). Finally, we have fT (γ,∞)= 1/T

for γ≤ T−T and gT (0,γ)= 1 for γ ∈R+∪{∞} since the inequalities 1
T ‖ξ‖2

1 ≤ ‖ξ‖2
2 ≤ ‖ξ‖2

1

are tight for ξ= 1
T 1 and ξ= ei , respectively.

Lemma 3.3. For T ≥ 2, γ= 0 and γ≥ 0, the optimal value fT (0,γ) of (3.25a) equals

fT (0,γ)=

⎧⎪⎨⎪⎩
min

ξ≥0,ξ≥0

{
ξ2+ (T −1)ξ2 : ξ+ (T −1)ξ= 1, ξξT−1 = γ

}
if 0≤ γ≤ T−T ,

1
T if γ> T−T .

(3.27)

Proof. We first observe that the non-convex optimization problem (3.25a) is bounded

below by its relaxation min‖ξ‖1=1 ‖ξ‖2
2. Note, however, that the optimal solution ξ= 1

T 1

of this relaxation is feasible and thus optimal in (3.25a) whenever γ ≥ T−T . Thus,

we have fT (0,γ) = 1
T for γ ≥ T−T . For 0 ≤ γ < T−T , on the other hand, the product

constraint
∏T

t=1ξt ≤ γ must be binding, for otherwise convex combinations of the

optimal solution ξ with 1
T 1 would improve the objective function of fT (0,γ), which is
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a contradiction. In summary, we thus find

fT (0,γ)=
{

infξ≥0
{‖ξ‖2

2 : ‖ξ‖1 = 1,
∏T

t=1ξt = γ
}

if 0≤ γ< T−T ,
1
T if γ≥ T−T .

(3.28)

When γ = 0, the product constraint in the first line of (3.28) can only be satisfied if

ξt = 0 for at least one t . By permutation symmetry, we may assume without loss of

generality that ξT = 0. Then, the product constraint is automatically satisfied and may

be disregarded, implying that the minimization problem in the first line of (3.28) is

solved by ξ1 = ξ2 = ·· · = ξT−1 = 1
T−1 and ξT = 0. We thus conclude that fT (0,0)= 1

T−1

and therefore

fT (0,γ)=

⎧⎪⎪⎨⎪⎪⎩
1

T−1 if γ= 0,

infξ>0
{‖ξ‖2

2 : ‖ξ‖1 = 1,
∏T

t=1ξt = γ
}

if 0< γ< T−T ,
1
T if γ≥ T−T .

(3.29)

We now study the non-convex parametric optimization problem

min
ξ>0

{‖ξ‖2
2 : ‖ξ‖1 = 1,

∏T
t=1ξt = γ

}
(3.30)

on the domain 0< γ< T−T . Observe that (3.30) has a non-empty compact feasible set

for any admissible γ and is therefore solvable. Assigning Lagrange multipliers a and b

to the norm and product constraints, respectively, we find that any optimal solution

to (3.30) must satisfy the stationarity conditions

2ξt +a+ b

ξt

T∏
t ′=1

ξt ′ = 0 ∀t = 1, . . . ,T ⇐⇒ 2ξ2
t +aξt +bγ= 0 ∀t = 1, . . . ,T,

where the equivalence follows from primal feasibility. Note that each ξt needs to

satisfy an identical quadratic equation, which must have two distinct positive real

roots1 ξ and ξ. The roots depend on a, b and γ, but this dependence is notationally

suppressed to avoid clutter. At optimality, the decision variables ξ1,ξ2 . . . ,ξT can thus

be partitioned into two groups, where all variables in the first group are equal to ξ,

1The existence of at least one real root is guaranteed because (3.30) is solvable and because any
optimal solution must satisfy the stationarity conditions. In fact, the stationarity conditions must
admit two distinct positive real roots because otherwise ξ= 1

T 1 would be the only conceivable optimal
solution, which is impossible for γ< T−T .
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and all variables in the second group are equal to ξ. This structural insight allows us to

simplify problem (3.30). Indeed, by permutation symmetry, it is sufficient to consider

only solutions that satisfy ξ1 = ·· · = ξk = ξ and ξk+1 = ·· · = ξT = ξ for some ξ,ξ> 0 and

for some k ∈ {1, . . . ,�T
2 �}. Thus, the optimal value of (3.30) coincides with

min
k∈{1,...,� T

2 �}
fT,k (γ), (3.31)

where the functions fT,k : (0,T−T )→R for k = 1,2, . . . ,�T
2 � are defined through

fT,k (γ)= min
ξ>0,ξ>0

{
kξ2+ (T −k)ξ2 : kξ+ (T −k)ξ= 1, ξkξT−k = γ

}
. (3.32)

By Lemma 3.4 below, the optimal value of (3.31) is given by fT,1(γ). Hence, if we

replace the minimization problem in (3.29) with fT,1(γ), we obtain

fT (0,γ)=

⎧⎪⎨⎪⎩
min

ξ≥0,ξ≥0

{
ξ2+ (T −1)ξ2 : ξ+ (T −1)ξ= 1, ξξT−1 = γ

}
if 0≤ γ< T−T ,

1
T if γ≥ T−T .

The statement of the lemma now follows since the minimization problem in the

equation above evaluates to 1/T at γ = T−T . Indeed, the minimization problem is

bounded below by min‖ξ‖1=1 ‖ξ‖2
2, and the optimal value 1/T of this bound is achieved

by the feasible solution ξ= ξ= 1/T of the minimization problem at γ= T−T .

Lemma 3.4. For T ≥ 2 and 0< γ< T−T , the optimal value of (3.31) is given by fT,1(γ).

Proof. The statement holds trivially true when �T
2 � = 1, that is, for T ∈ {2,3}. Next, we

show that f4,1(γ)< f4,2(γ) for any γ ∈ (0,4−4). This inequality not only implies that the

statement holds true for T = 4 but will also be instrumental for proving the statement

for T > 4.
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Fix γ ∈ (0,4−4) and note that

f4,2(γ)= min
ξ>0,ξ>0

{
2ξ2+2ξ2 : 2ξ+2ξ= 1, ξ2ξ2 = γ

}
= 1

2
min

ξ>0,ξ>0

{
ξ2+ξ2 : ξ+ξ= 1, ξξ= 4

√
γ

}
= 1

2
f2,1(4

√
γ) = 1

2
−4

√
γ,

where the second equality follows from the substitution ξ← 2ξ and ξ← 2ξ, and the

last equality holds because f2,1(γ)= 1−2γ for any γ ∈ (0,2−2), which can be verified by

direct calculation. Thus, we need to show that f4,1(γ)< 1
2 −4

√
γ, where

f4,1(γ)= min
ξ>0,ξ>0

{
ξ2+3ξ2 : ξ+3ξ= 1, ξξ3 = γ

}
=min

ξ>0

{
(1−3ξ)2+3ξ2 : (1−3ξ)ξ3 = γ

}
. (3.33)

It is therefore sufficient to find ξ� feasible in (3.33) with

(1−3ξ�)2+3(ξ�)2 < 1/2−4
√

γ ⇐⇒ 12(ξ�)2−6ξ�+ (1/2+4
√

γ)< 0

⇐⇒ ξ� ∈ (ζ−,ζ+
)

,

where ζ± = (3±
√

3−48
√

γ)/12 are the roots of 12(ξ�)2−6ξ�+ (1/2+4
√
γ). Equiva-

lently, we should demonstrate the existence of some ξ� ∈ (ζ−,ζ+) with (1−3ξ�)(ξ�)3−
γ= 0. By the intermediate value theorem, this holds if

(1−3ζ−)(ζ−)3−γ> 0 and (1−3ζ+)(ζ+)3−γ< 0. (3.34)

But these inequalities are automatically satisfied under the assumption thatγ ∈ (0,4−4).

Indeed, recalling the definition of ζ− and defining z− = 12ζ−−3=−
√

3−48
√

γ, we

have

(1−3ζ−)(ζ−)3−γ=
(
1− 3+ z−

4

)(
3+ z−

12

)3

−
(

3− (z−)2

48

)2

=− 1

123
(z−)3(z−+2)> 0,
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where the inequality holds because z− ∈ (−�3,0) for γ ∈ (0,4−4). Similarly, defining

z+ = 12ζ+−3=
√

3−48
√

γ, we can prove that (1−3ζ+)(ζ+)3−γ< 0. Thus, we have

shown that f4,1(γ) < f4,2(γ) for any γ ∈ (0,4−4), which establishes the assertion for

T = 4.

Fix now some T ≥ 5 and assume for the sake of argument that there exist k ∈ {2, . . . ,�T
2 �}

and γ ∈ (0,T−T ) with fT (0,γ)= fT,k (γ)< fT,1(γ). Hence, there are some ξ> 0 and ξ> 0

with ξ �= ξ such that the minimum of fT (0,γ) in (3.25) is attained by the solution

ξ1 = ·· · = ξk = ξ and ξk+1 = ·· · = ξT = ξ. Fixing ξ1, . . . ,ξk−2 and ξk+3, . . . ,ξT at their

optimal values and optimizing only over the remaining four decision variables in

fT (0,γ) yields

fT (0,γ) = min
ξk−1,ξk ,ξk+1,ξk+2≥0

(k−2)ξ2+ (T −k−2)ξ2+∑k+2
t=k−1ξ

2
t

s. t. (k−2)ξ+ (T −k−2)ξ+∑k+2
t=k−1ξt = 1

ξk−2ξT−k−2 ∏k+2
t=k−1ξt ≤ γ.

Defining the strictly positive constant c = 1− (k−2)ξ− (T −k−2)ξ= 2ξ+2ξ and using

the substitution yt ← ξk−2+t /c for t = 1, . . . ,4 further yields

fT (0,γ) = (k−2)ξ2+ (T −k−2)ξ2+

min
y1,y2,y3,y4≥0

{∑4
t=1 c2 y2

t :
∑4

t=1 yt = 1,
∏4

t=1 yt ≤ γ

c4 ξk−2 ξT−k−2

}
(3.35)

= (k−2)ξ2+ (T −k−2)ξ2+c2 f4

(
0,

γ

c4ξk−2ξT−k−2

)
,

where the second equality follows from the definition of f4(0,γ) in (3.25). By construc-

tion, the minimization problem in (3.35) must be solved by y1 = y2 = ξ and y3 = y4 = ξ.

However, this contradicts our previous results. In fact, we know that the solution

of f4(0,γ) must have the following properties for T = 4. If γ/[c4ξk−2ξT−k−2] < 4−4,

then three out of the four ξt variables must be equal at optimality. Conversely, if

γ/[c4ξk−2ξT−k−2]≥ 4−4, then all four ξt variables must be equal. This contradicts our

assumption that there exist k ∈ {2, . . . ,�T
2 �} and γ ∈ (0,T−T ) with fT (0,γ) = fT,k (γ) <

fT,1(γ). Thus, the assertion holds for all T > 4.
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We now show that in the worst case, the weak-sense geometric random walk π̃ =
{π̃T }T∈N defined through π̃T =∏T

t=1 ξ̃t is absorbed at 0 with certainty if T exceeds a

threshold T0.

Theorem 3.3 (Certainty of Absorption). For T > μ2+σ2

(1−ρ)σ2 +1 we have L(γ)= 1 for every

γ> 0.

Proof. From the proof of Proposition 3.1 we know that there exists a discrete distri-

bution P0 =∑k∈K pkδξk ∈P with scenarios ξk and associated probabilities pk > 0,

where k ranges over a finite index set K of cardinality T +1. By the permutation

symmetry, any discrete distribution of the form P0 ∈P can be used to construct a

corresponding symmetric distribution

P= 1

T !

∑
π∈P

∑
k∈K

pkδPπξk , (3.36)

which is also an element of P . Here, P denotes the group of all permutations of

{1, . . . ,T }, while Pπ ∈RT×T denotes the permutation matrix induced by π ∈P; see also

Lemma 3.1. Next, we define mk
1 = 1

T

∑T
t=1ξ

k
t and mk

2 = 1
T

∑T
t=1(ξk

t )2 as the arithmetic

and quadratic means of scenario ξk , respectively. It turns out that the first two mo-

ments of ξ̃ can be expressed in terms of mk
1 and mk

2 . Note, for instance, that for any

t �= s we have

EP
(
ξ̃t ξ̃s

)= 1

T !

∑
π∈P

∑
k∈K

pk ξ
k
π(t )ξ

k
π(s) =

∑
k∈K

pk

T !

T∑
r=1

ξk
r

∑
π∈P:π(s)=r

ξk
π(t )

= ∑
k∈K

pk

T !

T∑
r=1

ξk
r (T −2)!

(
Tmk

1 −ξk
r

)
= ∑

k∈K

pk

T −1

(
T (mk

1 )2−mk
2

)
,

where the first equality follows from the definition of P and because the t-th compo-

nent of Pπξ
(k) is given by ξk

π(t ), while the third equality holds because there are (T −2)!

permutations that map s to r and t to any fixed index different from r . Similarly, one

can show that

EP
(
ξ̃t
)= ∑

k∈K
pk mk

1 and EP
(
ξ̃2

t

)= ∑
k∈K

pk mk
2 .
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The moment conditions in the definition of P thus reduce to

∑
k∈K

pk = 1 (3.37a)∑
k∈K

pk mk
1 =μ (3.37b)∑

k∈K
pk mk

2 =μ2+σ2 (3.37c)∑
k∈K

pk

T −1

(
T (mk

1 )2−mk
2

)
=μ2+ρσ2. (3.37d)

In the following we will update the scenarios ξk of the distribution P iteratively in

finitely many steps, always ensuring that P remains within P after each update. The

terminal distribution will have the property that
∏T

t=1ξ
k
t = 0 for every k ∈K , which

means that we will have constructed a distribution P ∈P with P(
∏T

t=1 ξ̃t = 0)= 1. This

will establish the claim.

Step 1: Keeping the scenario probabilities as well as the scenario-wise arithmetic

and quadratic means constant, we first replace each ξk with a minimizer of the

problem

inf
ξ≥0

{
T∏

t=1
ξt :

1

T

T∑
t=1

ξt =mk
1 ,

1

T

T∑
t=1

ξ2
t =mk

2

}
, (3.38)

which depends parametrically on mk
1 and mk

2 . By Lemma 3.5 (i) below, problem (3.38)

is indeed solvable for every k ∈K . The new distribution with updated scenarios

still belongs to P because we did not change pk , mk
1 and mk

2 , implying that the

moment conditions (3.37) remain valid. To gain a better understanding of the updated

distribution, we define the disjoint index sets

K + =
{

k ∈K : T ≥ mk
2

(mk
1 )2

≥ T

T −1

}
and K − =

{
k ∈K : 1≤ mk

2

(mk
1 )2

< T

T −1

}
,
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and note that K =K +∪K − by Lemma 3.5 (i) below. Lemma 3.5 (ii) further implies

that

k ∈K + ⇐⇒ T ≥ mk
2

(mk
1 )2

≥ T

T −1
⇐⇒ 1

T
≤ mk

2 − (mk
1 )2

mk
2

≤ T −1

T

⇐⇒
T∏

t=1
ξk

t = 0

(3.39a)

and

k ∈K − ⇐⇒ 1≤ mk
2

(mk
1 )2

< T

T −1
⇐⇒ 0≤ mk

2 − (mk
1 )2

mk
2

< 1

T

⇐⇒
T∏

t=1
ξk

t > 0.

(3.39b)

We will henceforth say that K + (K −) is the index set of the absorbing (non-absorbing)

scenarios. If all scenarios are absorbing (that is, if K + =K ), then P(
∏T

t=1 ξ̃t = 0)= 1,

and we are done.

Step 2: If there exists a non-absorbing scenario i ∈K −, we will alter both the sce-

narios and their quadratic means to make scenario i absorbing, while ensuring that

all scenarios k ∈K + remain absorbing. To achieve this, we consider the following

family of quadratic means parameterized in λ ∈ [0,1].

mk
2 (λ)=

⎧⎪⎪⎨⎪⎪⎩
(1−λ)mk

2 +λ T
T−1 (mk

1 )2 for k ∈K +

mi
2+λ

∑
k∈K + pk

pi
(mk

2 − T
T−1 (mk

1 )2) for k = i

mk
2 for k ∈K −\{i }

(3.40)

By construction, pk , mk
1 and mk

2 = mk
2 (λ) satisfy the moment conditions (3.37) for

every λ ∈ [0,1]. As in Step 1, the scenario ξk (λ) is then chosen to be a minimizer

of problem (3.38) with inputs mk
1 and mk

2 = mk
2 (λ). However, (3.38) could fail to

be solvable for λ� 1, in which case the proposed construction would fail. Indeed,

Lemma 3.5 (i) shows that (3.38) is only solvable when 1 ≤mk
2 (λ)/(mk

1 )2 ≤ T . In the

remainder we will demonstrate that there is λ� ∈ (0,1) such that ξk (λ�) exists for every

k ∈K and such that all scenarios k ∈K +∪ {i } are absorbing.
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Subtracting (3.37d) from (3.37c) and dividing the difference by (3.37c) yields

T
∑

k∈K pk
(
mk

2 − (mk
1 )2
)

(T −1)
∑

k∈K pk mk
2

= (1−ρ)σ2

μ2+σ2
> 1

T −1
,

where the inequality follows from the assumption that T > μ2+σ2

(1−ρ)σ2 +1. Multiplying

both sides of the inequality by T−1
T and partitioning K into K + and K − further

reveals that

∑
k∈K + pk mk

2
mk

2−(mk
1 )2

mk
2

+∑k∈K − pk mk
2

mk
2−(mk

1 )2

mk
2∑

k∈K + pk mk
2 +

∑
k∈K − pk mk

2

> 1

T
. (3.41)

The expression on the left hand side of the above inequality represents a weighted aver-

age of the fractions (mk
2 − (mk

1 )2)/mk
2 across all k ∈K . Recall from (3.39a) and (3.39b)

that the fractions indexed by k ∈K + are larger or equal to 1/T , while those indexed

by k ∈K − are strictly smaller than 1/T . The inequality (3.41) asserts that the fractions

corresponding to k ∈ K + dominate those corresponding to k ∈ K −. Thus, (3.41)

remains valid if we replace K − with {i }, that is,

∑
k∈K + pk mk

2
mk

2−(mk
1 )2

mk
2

+pi mi
2

mi
2−(mi

1)2

mi
2∑

k∈K + pk mk
2 +pi mi

2

> 1

T
,

which is equivalent to

∑
k∈K + pk

(mk
1 )2

T−1 +pi

(
mi

2+
∑

k∈K + pk
pi

(
mk

2 − T
T−1 (mk

1 )2
)− (mi

1)2
)

∑
k∈K + pk

T
T−1 (mk

1 )2+pi

(
mi

2+
∑

k∈K + pk
pi

(
mk

2 − T
T−1 (mk

1 )2
)) > 1

T
. (3.42)

Using the notation introduced in (3.40), the inequality (3.42) can be reformulated as

∑
k∈K + pk mk

2 (1)
mk

2 (1)−(mk
1 )2

mk
2 (1)

+pi mi
2(1)

mi
2(1)−(mi

1)2

mi
2(1)∑

k∈K + pk mk
2 (1)+pi mi

2(1)
> 1

T
,

which constitutes a weighted average of the fractions (mk
2 (1)− (mk

1 )2)/mk
2 (1) across all

k ∈K +∪ {i }. By construction, we have (mk
2 (1)− (mk

1 )2)/mk
2 (1)= 1

T for every k ∈K +,
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and thus the average on the left hand side of the above inequality can exceed 1
T only if

mi
2(1)− (mi

1)2

mi
2(1)

> 1

T
.

As i ∈K −, the relation (3.39b) further implies that

mi
2(0)− (mi

1)2

mi
2(0)

= mi
2− (mi

1)2

mi
2

< 1

T
.

The intermediate value theorem then guarantees the existence of λ� ∈ (0,1) with

mi
2(λ�)− (mi

1)2

mi
2(λ�)

= 1

T
⇐⇒ mi

2(λ�)

(mi
1)2

= T

T −1
.

By construction, we thus have 1≤mk
2 (λ�)/(mk

1 )2 ≤ T for every k ∈K , which implies

via Lemma 3.5 (i) that the corresponding scenarios ξk (λ�) are well-defined. Our con-

struction also guarantees that T
T−1 ≤mk

2 (λ�)/(mk
1 )2 ≤ T for every k ∈K +∪ {i }, which

implies via Lemma 3.5 (ii) that the corresponding scenarios ξk (λ�) are absorbing.

Thus, by replacing ξk with ξk (λ�) in (3.36) we obtain a new distribution P ∈P with

more absorbing scenarios. As the total number of scenarios is finite, we can repeat

Step 2 finitely many times to construct a distribution P ∈P that has only absorbing

scenarios. Thus, the claim follows.

The proof of Theorem 3.3 relies on the following auxiliary result.

Lemma 3.5. Assume that m1,m2 > 0 and consider the parametric program

inf
ξ≥0

{
T∏

t=1
ξt :

1

T

T∑
t=1

ξt =m1,
1

T

T∑
t=1

ξ2
t =m2

}
. (3.43)

Then, the following statements hold:

(i) Problem (3.43) is feasible and solvable iff T ≥ m2

m2
1
≥ 1.

(ii) The optimal value of (3.43) is zero iff T ≥ m2

m2
1
≥ T

T−1 .

Proof. As for assertion (i), assume that there is ξ feasible in (3.43). We then have

97



Chapter 3. Chebyshev Inequalities for Products of Random Variables

1
T

∑T
t=1ξt =m1, which implies that Tm2

1 ≥m2 ≥m2
1 since ‖ξ‖1 ≥ ‖ξ‖2 ≥ 1�

T
‖ξ‖1. Con-

versely, if T ≥ m2

m2
1
≥ 1, we may define ξ= (z, m1T−z

T−1 , . . . , m1T−z
T−1 ) for some z ∈ [m1,Tm1]

to be chosen later. By construction, we have 1
T

∑T
t=1ξt =m1 irrespective of z, while

1

T

T∑
t=1

ξ2
t =

z2

T
+ T −1

T

(
m1T − z

T −1

)2

changes continuously from m2
1 to Tm2

1 when z is swept from m1 to Tm1. Thus, by

the intermediate value theorem, we may assume that 1
T

∑T
t=1ξ

2
t =m2 ∈ [m2

1,Tm2
1] for

some suitably chosen z ∈ [m1,Tm1]. We conclude that (3.43) is feasible whenever

T ≥ m2

m2
1
≥ 1. In that case, however, (3.43) is also solvable as the objective function is

continuous and the feasible set is compact.

To prove assertion (ii), we observe that the optimal value of (3.43) vanishes iff the

problem admits a minimizer ξ with
∏T

t=1ξt = 0. More precisely, by permutation sym-

metry, the minimum of (3.43) vanishes iff there exists ξ with ξT = 0, 1
T

∑T−1
t=1 ξt =m1

and 1
T

∑T−1
t=1 ξ2

t =m2. By assertion (i), however, the last two inequalities are satisfiable

iff

T −1≥ m2
( T

T−1

)
(
m1

( T
T−1

))2 ≥ 1 ⇐⇒ T ≥ m2

m2
1

≥ T

T −1
,

and thus the claim follows.

3.4 Right-Sided Chebyshev Bounds

We now study right-sided Chebyshev bounds of the form

R(γ)= sup
P∈P

P

(
T∏

t=1
ξ̃t ≥ γ

)
,

where the ambiguity set P is defined in (3.8). We first present the main result of this

section.

Theorem 3.4 (Right-Sided Chebyshev Bound). Let γ> 0. For all T ≥ 3 the right-sided

Chebyshev bound R(γ) coincides with the optimal objective value of the semidefinite
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program

inf α+Tμβ+T (μ2+σ2)γ1+T (Tμ2+σ2+ (T −1)ρσ2)γ2

s. t. α,β,γ1,γ2 ∈R, λ1,λ2,λ3 ≥ 0, p ∈R2T+1, P ∈ST+1
+ , q ∈R2T−1, Q ∈ST

+

α≥ 0, α≥ 1−λ3Tγ1/T , γ1+Tγ2 ≥ 0, γ1+γ2 ≥ 0

γ2+ γ1

T
+α≥

∥∥∥(β−λ1,γ2+ γ1

T
−α

)∥∥∥
2

γ2+γ1+α≥ ∥∥(β−λ2,γ2+γ1−α
)∥∥

2

γ2+ γ1

T
+λ3Tγ1/T +α−1≥

∥∥∥(β−λ3,γ2+ γ1

T
−λ3Tγ1/T −α+1

)∥∥∥
2

p0 = (T −1)γ1γ
2

T−1 + (T −1)2γ2γ
2

T−1 , p1+q0 = (T −1)βγ
1

T−1

p2+q1 =α−1, pT +qT−1 = 2(T −1)γ2γ
1

T−1 , pT+1+qT =β

p2T = γ1+γ2, pt +qt−1 = 0 ∀t = 3, . . . ,T −1,T +2, . . . ,2T −1

pt =∑i+ j=t Pi , j ∀t = 0, . . . ,2T, qt =∑i+ j=t Qi , j ∀t = 0, . . . ,2T −2,

(3.44)

where we use the convention that the entries of p , P , q and Q are numbered starting

from 0. For T = 2, R(γ) is given by a variant of (3.44) where the constraints p2+q1 =α−1

and pT +qT−1 = 2(T −1)γ2γ
1

T−1 are combined to p2+q1 =α−1+2(T −1)γ2γ
1

T−1 .

Proof. Using similar arguments as in the proof of Theorem 3.2, one first shows that the

worst-case probability problem supP∈P P(
∏T

t=1 ξ̃t ≥ γ) admits a strong dual which con-

stitutes a semi-infinite optimization problem. Exploiting this problem’s permutation

symmetry, one can further show that its optimal value amounts to

R(γ)= inf α+Tμβ+T (μ2+σ2)γ1+T
[
Tμ2+σ2+ (T −1)ρσ2

]
γ2

s. t. α,β,γ1,γ2 ∈R
α+β‖ξ‖1+γ1‖ξ‖2

2+γ2‖ξ‖2
1 ≥ 0 ∀ξ≥ 0

α+β‖ξ‖1+γ1‖ξ‖2
2+γ2‖ξ‖2

1 ≥ 1 ∀ξ≥ 0 :
∏T

t=1ξt ≥ γ.

(3.45)

Details are omitted for brevity of exposition. Lemma 3.2 then implies that (3.45)
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reduces to

R(γ)= inf α+Tμβ+T (μ2+σ2)γ1+T (Tμ2+σ2+ (T −1)ρσ2)γ2

s. t. α,β,γ1,γ2 ∈R
inf
s≥0

α+βs+γ2s2+ γ1

T
s2 ≥ 0

inf
s≥0

α+βs+γ2s2+γ1s2 ≥ 0

inf
s≥Tγ1/T

α+βs+γ2s2+ γ1

T
s2 ≥ 1

inf
s≥Tγ1/T

α+βs+γ2s2+γ1s2gT

( γ
sT

,∞
)
≥ 1.

(3.46)

By leveraging the S -lemma and a well-known reformulation of hyperbolic constraints

as second-order cone constraints, one can use similar arguments as in the proof

of Theorem 3.2 to show that the first three constraints in (3.46) hold iff there exist

λ1,λ2,λ3 ≥ 0 satisfying

α≥ 0, α≥ 1−λ3Tγ1/T , γ1+Tγ2 ≥ 0, γ1+γ2 ≥ 0

γ2+ γ1

T
+α≥

∥∥∥(β−λ1,γ2+ γ1

T
−α

)∥∥∥
2

γ2+γ1+α≥ ∥∥(β−λ2,γ2+γ1−α
)∥∥

2

γ2+ γ1

T
+λ3Tγ1/T +α−1≥

∥∥∥(β−λ3,γ2+ γ1

T
−λ3Tγ1/T −α+1

)∥∥∥
2

.

By Lemma 3.6 below, the last semi-infinite constraint in (3.46) can be re-expressed as

inf
s≥Tγ1/T ,ξ,ξ≥0

{
α+βs+γ2s2+γ1

[
ξ2+ (T −1)ξ2

]
: ξ+ (T −1)ξ= s, ξξT−1 = γ

}
≥ 1,

which is identical to (3.19). The claim then follows by replacing this constraint with its

explicit semidefinite reformulation familiar from Theorem 3.2.

The proof of Theorem 3.4 relies on 2 auxiliary lemmas, which we prove next.

Lemma 3.6. For T ≥ 2, γ=∞ and γ≥ 0, the optimal value gT (γ,∞) of (3.25b) equals

gT (γ,∞)=

⎧⎪⎨⎪⎩
max

ξ≥0,ξ≥0

{
ξ2+ (T −1)ξ2 : ξ+ (T −1)ξ= 1, ξξT−1 = γ

}
if 0≤ γ≤ T−T ,

−∞ if γ> T−T .
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Proof. If γ > T−T , then the maximization problem (3.25b) is infeasible due to the

inequality of arithmetic and geometric means, and thus we have gT (γ,∞) = −∞.

For γ = T−T , the unique feasible solution of (3.25b) is ξ = 1
T 1, which implies that

gT (γ,∞)= 1
T . Moreover, for γ= 0, the last constraint in (3.25b) becomes redundant.

In this case gT (γ,∞) is optimized by ξ= ei , and thus we find gT (γ,∞)= 1. Lastly, for

0< γ< T−T , the maximization problem (3.25b) is feasible, and every feasible solution

has strictly positive components. In addition, the product constraint
∏T

t=1ξt ≥ γ is

binding at optimality for otherwise convex combinations of the optimal solution ξ

with ei , where i ∈ argmax{ξ j : j = 1, . . . ,T }, would improve the objective function

of (3.25b), which is a contradiction. We thus conclude that

gT (γ,∞)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if γ= 0,

maxξ>0

{
‖ξ‖2

2 : ‖ξ‖1 = 1,
∏T

t=1ξt = γ
}

if 0< γ< T−T ,
1
T if γ= T−T ,

−∞ if γ> T−T .

As in the proof of Lemma 3.3, for 0< γ< T−T one can use the optimality conditions

of (3.25b) to show that

gT (γ,∞)= max
k∈{1,...,� T

2 �}
gT,k (γ), (3.47)

where the functions gT,k : (0,T−T )→R, k = 1,2, . . . ,�T
2 �, are defined through

gT,k (γ)= max
ξ>0,ξ>0

{
kξ2+ (T −k)ξ2 : kξ+ (T −k)ξ= 1, ξkξT−k = γ

}
. (3.48)

Lemma 3.7 below asserts that the maximum in (3.47) is attained at k = 1. We thus

obtain

gT (γ,∞)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if γ= 0,

max
ξ≥0,ξ≥0

{
ξ2+ (T −1)ξ2 : ξ+ (T −1)ξ= 1, ξξT−1 = γ

}
if 0< γ< T−T ,

1
T if γ= T−T ,

−∞ if γ> T−T .

The statement of the lemma now follows since the maximization problem in the
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equation above evaluates to 1 at γ= 0 and to 1/T atγ= T−T . Indeed, the maximization

problem is bounded above by max‖ξ‖1=1 ‖ξ‖2
2, and the optimal value 1 of this bound is

achieved by the feasible solution (ξ,ξ)= (1,0) of the maximization problem at γ= 0.

Likewise, gT (T−T ,∞) is bounded above by maxξ≥0{‖ξ‖2
2 : ‖ξ‖1 = 1,

∏
t ξt = T−T }, and

the optimal value 1/T of this bound is achieved by the feasible solution (ξ,ξ)= ( 1
T , 1

T )

of the maximization problem.

Lemma 3.7. For T ≥ 2 and 0< γ< T−T , the optimal value of (3.47) is given by gT,1(γ).

Proof. The proof widely parallels that of Lemma 3.4 and is therefore omitted.

We now show that in the extreme case, the weak-sense geometric random walk

π̃= {π̃T }T∈N defined through π̃T =∏T
t=1 ξ̃t weakly exceeds the deterministic growth

process {μT }T∈N with certainty for any time horizon T , assuming that ρ ≥ 0. The result

can be viewed as the right-sided analogue of Theorem 3.3.

Proposition 3.2. If ρ ≥ 0, then R(γ)= 1 for all γ≤μT .

Proof. The objective function of problem (3.46) can be reformulated as

(α+Tμβ+Tμ2γ1+T 2μ2γ2)+Tσ2(γ1+ (1+ (T −1)ρ)γ2).

For γ≤μT , the first term equals the left hand side of the third semi-infinite constraint

in (3.46) if we set s = Tμ, and it must therefore be greater than or equal to 1. In

the second term, the factor (γ1 + (1+ (T − 1)ρ)γ2) can be expressed as the linear

combination ρ·(γ1+Tγ2)+(1−ρ)·(γ1+γ2). For ρ ≥ 0, this linear combination becomes

a convex combination, and the claim follows since γ1+Tγ2 ≥ 0 and γ1+γ2 ≥ 0 are

explicit constraints in the equivalent reformulation (3.44).

We highlight that Proposition 3.2 breaks down for ρ < 0.

3.5 Covariance Bounds

The ambiguity set P reflects the assumption that the covariance matrix Σ is known

precisely and that the (co-)variances of the components of ξ̃ are permutation sym-
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metric. Either assumption may prove overly restrictive in practice. In this section,

we therefore assume that only an upper bound on the covariance matrix is available.

More precisely, we consider the ambiguity set

P ′ =
{
P ∈M+(RT

+) : P
(
ξ̃≥ 0

)= 1, EP
(
ξ̃
)=μ, EP

(
ξ̃ξ̃ᵀ

)�Σ+μμᵀ
}

,

where μ and Σ are defined as in Section 3.1. For γ > 0, we are then interested in

quantifying relaxed left-sided and right-sided Chebyshev bounds of the form

L′(γ)= sup
P∈P ′

P

(
T∏

t=1
ξ̃t ≤ γ

)
and R′(γ)= sup

P∈P ′
P

(
T∏

t=1
ξ̃t ≥ γ

)
.

In the following, we analyze each of these relaxed bounds in turn.

Theorem 3.5 (Relaxed Left-Sided Chebyshev Bound). The relaxed left-sided Chebyshev

bound satisfies L′(γ)= L(γ) for all γ> 0.

Proof. By repeating the first few steps of the proof of Theorem 3.2, one can show

that L′(γ) coincides with the optimal value of (3.15) with the extra constraint Γ 	 0.

In this case Lemma 3.1 remains valid and implies that we can restrict attention to

permutation-symmetric solutions of the form Γ= γ1I+γ211ᵀ for some γ1,γ2 ∈R. As

Γ = γ1I+γ211ᵀ 	 0 iff γ1+Tγ2 ≥ 0 and γ1 ≥ 0 by virtue of Proposition 2.4, we may

then conclude that L′(γ) coincides with the optimal value of (3.16) with the extra

constraints γ1+Tγ2 ≥ 0 and γ1 ≥ 0. Note that (3.16) is equivalent to (3.13) and (3.17).

As γ1+Tγ2 ≥ 0 is an explicit constraint of problem (3.13), it is necessarily an implicit

constraint of the problems (3.16) and (3.17). Thus, L′(γ) coincides with the optimal

value of (3.17) with the extra constraint γ1 ≥ 0. To prove the identity L(γ)= L′(γ), it is

therefore sufficient to show that appending the extra constraint γ1 ≥ 0 has no impact

on the optimal value of (3.17).

To this end, fix any feasible solution of problem (3.17) with γ1 < 0. As this solution

must satisfy the constraint α+ sβ+ s2γ2+ s2γ1 ≥ 1 for every s ≥ 0 and as s = Tμ> 0,

we have

α+Tμβ+T 2μ2γ2+T 2μ2γ1 ≥ 1. (3.49)
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Moreover, the objective function of (3.17) can be reformulated as

α+Tμβ+T (μ2+σ2)γ1+T
[
Tμ2+σ2+ (T −1)ρσ2]γ2

= (α+Tμβ+T 2μ2γ2+T 2μ2γ1
)+T (1−T )

(
μ2+ρσ2)γ1+Tσ2(1+ (T −1)ρ)(γ1+γ2),

which constitutes a sum of three terms. The first term in the sum is greater than or

equal to 1 because of (3.49), and the second term is strictly positive because T ≥ 2,

γ1 < 0 and μ2 + ρσ2 > 0. The third term is non-negative because ρ > −1/(T − 1)

and γ1 + γ2 ≥ 0 is an explicit constraint of (3.13) and thus an implicit constraint

of (3.17). In summary, we have shown that the objective value of any feasible solution

of (3.17) with γ1 < 0 is strictly greater than 1. As the optimal value L(γ) of (3.17)

represents a probability, however, we conclude that no feasible solution with γ1 < 0

can optimize (3.17). Thus, the extra constraint γ1 ≥ 0 does not change the optimal

value of (3.17), and the claim follows.

Theorem 3.6 (Relaxed Right-Sided Chebyshev Bound). The relaxed right-sided Cheby-

shev bound admits the analytical solution

R′(γ)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 0< γ≤μT ,

μγ−1/T if μT < γ<
(
μ+ σ2θ

Tμ

)T
,

σ2θ
σ2θ+T (μ−γ1/T )2 if γ≥

(
μ+ σ2θ

Tμ

)T
,

where θ = 1+ (T −1)ρ > 0.

Proof. Using similar arguments as in the proof of the previous theorem, one can show

that R′(γ) coincides with the optimal value of the following semi-infinite optimization

problem:

R′(γ)= inf α+μ1ᵀβ+〈(1−ρ)σ2I+ (μ2+ρσ2
)

11ᵀ,Γ〉
s. t. α ∈R, β ∈RT , Γ ∈ST+

α+ξᵀβ+ξᵀΓξ≥ 0 ∀ξ≥ 0

α+ξᵀβ+ξᵀΓξ≥ 1 ∀ξ≥ 0 :
∏T

t=1ξt
≥ γ

(3.50)

Without loss of generality, we use different symbols ξ and ξ to denote the uncertain

parameters in the two semi-infinite constraints, respectively. Note that (3.50) can be
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viewed as the robust counterpart of an uncertain convex program with constraint-wise

uncertainty sets (Ben-Tal et al. 2009). As the left hand sides of the robust constraints

are convex in the respective uncertainties, the ‘primal worst equals dual best’ duality

scheme portrayed in Beck and Ben-Tal (2009, Theorem 4.1) implies that (3.50) is

equivalent to

R′(γ)= sup q

s. t. p, q ∈R+, ξ,ξ ∈R+T ,
∏T

t=1ξt
≥ γ

p+q = 1

pξ+qξ=μ1

pξξ
ᵀ+qξξᵀ � (1−ρ)σ2I+ (μ2+ρσ2

)
11ᵀ,

(3.51)

where p and q represent dual variables assigned to the two robust constraints in (3.50).

Thus, the primal uncertain convex program (3.50) is solved under the worst possible

realizations of ξ and ξ, while the dual uncertain convex program (3.51) is solved under

the best possible realizations, in which case ξ and ξ become decision variables. Prob-

lem (3.51) has intuitive appeal as it can be interpreted as a restriction of the original

worst-case probability problem that minimizes over all two-point distributions in the

ambiguity set P ′ with scenarios ξ and ξ and corresponding probabilities p and q ,

respectively. Note that (3.51) constitutes a non-convex program because it involves

multilinear terms in the decisions. Using the variable transformations u ← pξ and

v ← qξ we can reformulate (3.51) as

R′(γ)= sup q

s. t. p, q ∈R+, u, v ∈RT+∏T
t=1 vt ≥ qTγ

p+q = 1

u+v =μ1
1
p uuᵀ+ 1

q v vᵀ � (1−ρ)σ2I+ (μ2+ρσ2
)

11ᵀ.

(3.52)

Note that if p = 0 (q = 0), then u = 0 (v = 0) for otherwise the matrix inequality is

not satisfiable. In (3.52) and below we adhere to the convention that 0/0= 0, which

reflects the idea that a scenario with zero probability mass should have zero weight in

the covariance matrix. Observe that problem (3.52) is a convex program. In particular,

the first constraint is convex because of the concavity of geometric means, and the
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last constraint is convex due to a standard Schur complement argument. Exploiting

the problem’s permutation symmetry and convexity, one can proceed as in Lemma

3.1 to show that (3.52) has a permutation symmetric minimizer of the form u = u1

and v = v1 for some scalar decision variables u, v ∈ R+. Restricting the search to

permutation symmetric solutions, problem (3.52) can therefore be reformulated as

R′(γ)= sup q

s. t. p, q,u, v ∈R+
v ≥ qγ1/T

p+q = 1

u+ v =μ

(1−ρ)σ2I+
(
μ2+ρσ2− u2

p − v2

q

)
11ᵀ 	 0.

(3.53)

It can be shown that the eigenvalues of the matrix (1−ρ)σ2I+ (μ2+ρσ2− u2

p − v2

q )11ᵀ

are given by (1−ρ)σ2 and (1−ρ)σ2+T (μ2+ρσ2− u2

p − v2

q ); see e.g. Proposition 2.4.

Since (1−ρ)σ2 > 0 by assumption, the matrix inequality in (3.53) is equivalent to the

scalar constraint

(1−ρ)σ2+T
(
μ2+ρσ2− u2

p − v2

q

)
≥ 0. (3.54)

Any feasible solution of (3.53) satisfies qγ1/T ≤ v ≤μ, implying that the optimal value

of (3.53) is bounded above by min{1,μγ−1/T }. For 0< γ1/T ≤ μ, an optimal solution

of (3.53) is then given by (p, q,u, v) = (0,1,0,μ), and the optimal value is equal to

1. For μ < γ1/T < μ+ (1+(T−1)ρ)σ2

Tμ
, on the other hand, an optimal solution is given

by (p, q,u, v) = (1−μγ−1/T ,μγ−1/T ,0,μ) with corresponding optimal value μγ−1/T .

Indeed, any larger value of q would require a larger value of v , which in turn would

violate the non-negativity of u as u+ v =μ. One can show that the constraint (3.54) is

always inactive at this solution. For γ1/T ≥μ+ (1+(T−1)ρ)σ2

Tμ , finally, the constraint (3.54)

implies that q must not exceed μγ−1/T , which in turn implies that the constraint

must be binding. Furthermore, q has to be strictly positive for otherwise (3.53) would

be solved by (p, q,u, v) = (1,0,μ,0), which contradicts our earlier finding that the

constraint (3.54) is binding. Substituting p = 1−q and u = μ− v , the left hand side

of (3.54) becomes a quadratic function of v parametric in q . We denote the two

roots of this function by v+ and v− and define u+ =μ− v+ and u− =μ− v−. A direct
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calculation yields

u± = (1−q)μ±σ
√

1+ (T −1)ρ

√
q(1−q)

T
and v± = qμ∓σ

√
1+ (T −1)ρ

√
q(1−q)

T
.

By construction, both (u+, v+) and (u−, v−) satisfy (3.54) as an equality. However,

there is no q ∈ (0,1] for which (u+, v+) is feasible in (3.53). Indeed, a direct calculation

reveals that the constraint v+ ≥ qγ1/T from (3.53) can hold only if

q(μ−γ1/T )≥σ
√

1+ (T −1)ρ

√
q(1−q)

T
. (3.55)

However, (3.55) is not satisfiable as its left hand side is strictly negative by assumption,

whereas its right hand side is non-negative. Therefore, (u+, v+) is infeasible in (3.53).

In contrast, the second solution (u−, v−) is feasible in (3.53) if we select q ∈ (0,1] with

u− ≥ 0 ⇐⇒ q ≤ Tμ2

Tμ2+σ2(1+ (T −1)ρ)

and

v− ≥ qγ1/T ⇐⇒ q ≤ σ2(1+ (T −1)ρ)

σ2(1+ (T −1)ρ)+T (μ−γ1/T )2
.

Problem (3.53) aims to maximize q , which is tantamount to setting

q =min

{
Tμ2

Tμ2+σ2(1+ (T −1)ρ)
,

σ2(1+ (T −1)ρ)

σ2(1+ (T −1)ρ)+T (μ−γ1/T )2

}
= σ2(1+ (T −1)ρ)

σ2(1+ (T −1)ρ)+T (μ−γ1/T )2
,

where the second equality follows from γ1/T ≥μ+ (1+(T−1)ρ)σ2

Tμ
. Thus, the claim follows.

In addition to admitting an analytical solution, the relaxed right-sided Chebyshev

bounds also allow us to determine a distribution P� ∈P ′ that attains the probability

bound.

Corollary 3.1 (Extremal Distribution). A distribution P� ∈P ′ attaining the relaxed
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right-sided Chebyshev bound R′(γ) is given by P� = p�δ[u�/p�]1+q�δ[v�/q�]1, where

q� =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 0< γ≤μT ,

μγ−1/T if μT < γ<
(
μ+ σ2θ

Tμ

)T
,

σ2θ
σ2θ+T (μ−γ1/T )2 if γ≥

(
μ+ σ2θ

Tμ

)T
,

and p� = 1−q�, as well as

v� =

⎧⎪⎨⎪⎩μ if 0< γ<
(
μ+ σ2θ

Tμ

)T
,

q�μ+σ

√
θq�(1−q�)

T if γ≥
(
μ+ σ2θ

Tμ

)T

and u� =μ− v�, where θ = 1+ (T −1)ρ > 0.

Proof. The proof follows directly from that of Theorem 3.6 and is thus omitted.

The relaxed left-sided and right-sided Chebyshev bounds differ in the sense that the

left-sided bound coincides with L(γ), whereas R′(γ) does not equal R(γ) in general.

The relaxed right-sided Chebyshev bound does coincide with R(γ), however, when T

is sufficiently large.

Proposition 3.3. If μ>
√

1−ρ
T σ, then R′(γ)=R(γ) for all γ≥ γ, where

γ1/T =μ+ 1

2ab

⎛⎝1+
√

4ab

√
1−ρ

T
σ+1

⎞⎠
with a =μ−

√
1−ρ

T σ, b = T
σ2θ

and θ = 1+ (T −1)ρ.

Note that ab →∞ and thus γ1/T → μ whenever T →∞. The rate of convergence

depends on μ, σ and ρ, and the fastest convergence is observed for large μ and small

σ and ρ.

Proof. We first show that γ1/T >μ+ σ2θ
Tμ (Step 1), which allows us to invoke Theorem

3.6 to conclude that R′(γ) = σ2θ
σ2θ+T (μ−γ1/T )2 . We then employ Corollary 3.1 to con-

struct a distribution P� ∈ P ′ that satisfies P�
(∏T

t=1 ξ̃t ≥ γ
) = R′(γ) (Step 2), and we
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3.5. Covariance Bounds

show that a suitable perturbation of P� results in a distribution P ∈P that satisfies

P
(∏T

t=1 ξ̃t ≥ γ
)= P�

(∏T
t=1 ξ̃t ≥ γ

)
(Step 3). The statement then follows from the fact

that R(γ) is bounded above by R′(γ).

Step 1: We show that γ1/T is the maximum root of the convex quadratic function

q(x)=σ2θ
[
a
(
1+b(μ−x)2)−x

]
,

where a and b are defined in the statement of the theorem, and that this root satisfies

γ1/T > μ+ σ2θ
Tμ

. From the quadratic formula we know that the maximum root x� of

q(x) satisfies

x� = 2abμ+1+√(2abμ+1)2−4a2b(bμ2+1)

2ab
=μ+ 1

2ab

(
1+

√
4ab(μ−a)+1

)
,

and replacing a with its definition inside the square root reveals that x� = γ1/T . To

show that γ1/T >μ+ σ2θ
Tμ

, we observe that

q

(
μ+ σ2θ

Tμ

)
=
(
μ−

√
1−ρ

T
σ

)(
σ2θ+ σ4θ2

Tμ2

)
−σ2θ

(
μ+ σ2θ

Tμ

)

=σ2θ(σ2θ+Tμ2)

(
μ−√(1−ρ)/Tσ

Tμ2
− 1

Tμ

)
< 0,

as well as q(x)→∞ for x →∞ since μ>
√

1−ρ
T σ. Since q(x) is quadratic, both obser-

vations imply that the maximum root x� = γ1/T of q(x) indeed belongs to the interval(
μ+ σ2θ

Tμ
,∞

)
.

Step 2: The distribution P� in Corollary 3.1 satisfies P�
(∏T

t=1 ξ̃t ≥ γ
) = R′(γ). For

later reference, we remark that P� = p�δ[u�/p�]1+q�δ[v�/q�]1 satisfies the properties

v� = q�γ1/T , u�+v� =μ and
(u�)2

p�
+ (v�)2

q�
=μ2+ 1

T
(1+(T −1)ρ)σ2. (3.56)

Note that the last condition holds because (3.54) is binding when γ1/T ≥μ+ σ2θ
Tμ .
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Step 3: Consider the distribution P defined through

P

(
ξ̃=

(
u�

p�
−λ

)
1+Tλei

)
= 1

T
p�, i = 1, . . . ,T, and P

(
ξ̃= v�

q�
1
)
= q�

with λ=
√

1−ρ
p�T σ. If P ∈P , then we find that

R(γ)≥P

(
T∏

t=1
ξ̃t = γ

)
≥P

(
ξ̃= v�

q�
1
)
= q� =R′(γ),

which implies R(γ) = R′(γ). We thus need to show that P ∈P . To this end, we first

observe that the first two moments of ξ̃ under P satisfy

EP
(
ξ̃
)= p�

T

T∑
i=1

((
u�

p�
−λ

)
1+Tλei

)
+ v�1= (u�+ v�)1=μ

EP
(
ξ̃ξ̃ᵀ

)= p�

T

T∑
i=1

((
u�

p�
−λ

)
1+Tλei

)((
u�

p�
−λ

)
1+Tλei

)ᵀ
+ (v�)2

q�
11ᵀ

= p�

T

((
T

(
u�

p�
−λ

)2

+2

(
u�

p�
−λ

)
Tλ

)
11ᵀ+T 2λ2I

)
+ (v�)2

q�
11ᵀ

=
(

(u�)2

p�
+ (v�)2

q�
−p�λ2

)
11ᵀ+p�Tλ2I

= (μ2+ρσ2)11ᵀ+ (1−ρ)σ2I=Σ+μμᵀ,

where the last row is due to (3.56) and our definition of λ. It remains to be shown that

ξ̃ is non-negative P-a.s. By construction of P, this is the case iff u� ≥ p�λ. We now

observe that

u� =μ−q�γ1/T =μ− σ2θγ1/T

σ2θ+T (μ−γ1/T )2
≥
√

1−ρ

T
σ,

where the first identity follows from (3.56), the second one is due to the definition of

q� in Corollary 3.1, and the inequality holds since there is C > 0 such that

q
(
γ1/T )=C

[
μ− σ2θγ1/T

σ2θ+T (μ−γ1/T )2
−
√

1−ρ

T
σ

]
,
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and this expression is non-negative whenever γ≥ γ. We thus conclude that

(u�)2

p�
≥ (u�)2 ≥ (1−ρ)σ2

T
,

which in turn implies that u� ≥
√

(1−ρ)p�

T σ= p�λ as desired. The claim now follows.

3.6 Extensions

The techniques developed in this chapter can also be used to construct Cheby-

shev bounds for sums, minima and maxima of non-negative random variables. All

these Cheybshev bounds can be reduced to computing supP∈P P(h(ξ̃)≤ 0) for some

permutation-symmetric functional h(ξ).

Theorem 3.7. For any permutation-symmetric continuous functional h : RT+ →R, we

have

sup
P∈P

P(h(ξ̃)≤ 0) = inf α+Tμβ+T (μ2+σ2)γ1+T
[
Tμ2+σ2+ (T −1)ρσ2

]
γ2

s. t. α,λ1,λ2 ∈R+, β,γ1,γ2 ∈R
γ1+γ2 ≥ 0, γ2+γ1+α≥ ∥∥(β−λ1,γ2+γ1−α

)∥∥
2

γ1
T +γ2 ≥ 0, γ2+ γ1

T +α≥ ∥∥(β−λ2,γ2+ γ1
T −α

)∥∥
2

α+βs+γ2s2+γ1φ(s)≥ 1 ∀s ∈S

α+βs+γ2s2+γ1φ(s)≥ 1 ∀s ∈S ,

(3.57)

where the optimal value functions φ(s) and φ(s) are defined as

φ(s)= inf
ξ≥0

{‖ξ‖2
2 : ‖ξ‖1 = s, h(ξ)≤ 0

}
and φ(s)= sup

ξ≥0

{‖ξ‖2
2 : ‖ξ‖1 = s, h(ξ)≤ 0

}

for all s ≥ 0, while S =
{

s ∈R+ : φ(s)<+∞
}

denotes the effective domain of φ(s) and

φ(s).

Proof. The proof is largely based on arguments familiar from Theorems 3.2 and 3.4.

Details are omitted for brevity of exposition.
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The significance of Theorem 3.7 is that it enables us to compute supP∈P P(h(ξ̃)≤ 0)

by solving a semidefinite program whenever φ(s) and φ(s) are piecewise polynomi-

als. In this case the last two constraints in (3.57) reduce to the requirement that a

univariate piecewise polynomial, whose coefficients depend affinely on the decision

variables, must be non-negative uniformly on S . Such conditions can systematically

be reformulated as linear matrix inequalities (Nesterov 2000).

Table 3.1 lists examples of permutation-symmetric functionals h(ξ) that lead to piece-

wise polynomial mappings φ(s) and φ(s) and thus to computable Chebyshev bounds.

Theorems 3.8 and 3.9 below present two special cases in which these bounds can be

evaluated analytically.

Theorem 3.8 (Left-Sided Chebyshev Bound for Sums). For any γ> 0 we have

sup
P∈P

P

(
T∑

t=1
ξ̃t ≤ γ

)
=
⎧⎨⎩ 1 if γ≥ Tμ,

Tσ2θ
Tσ2θ+(γ−Tμ)2 otherwise,

where θ = 1+ (T −1)ρ > 0.

Proof. By Theorem 3.7 the Chebyshev bound supP∈P P(
∑T

t=1 ξ̃t ≤ γ) can be refor-

mulated as the semi-infinite program (3.57), where the functions φ(s) and φ(s) are

specified in Table 3.1. Distinguishing the cases γ1 ≥ 0 and γ1 < 0, this semi-infinite

program can be reduced to a robust optimization problem with a scalar uncertain

parameter. By using the ‘primal worst equals dual best’ duality scheme from robust

optimization (Beck and Ben-Tal 2009), one can further show that the optimal value

of this problem coincides with the univariate Chebyshev bound supP∈P1
P(ξ̃ ≤ γ),

where P1 contains all distributions of ξ̃ supported on R+ with mean Tμ and variance

σ2T (1+ (T −1)ρ). The latter Chebyshev bound has an analytical formula, which can

be derived based on arguments familiar from Section 3.1.

Theorem 3.9 (Right-Sided Chebyshev Bound for Sums). For any γ> 0 we have

sup
P∈P

P

(
T∑

t=1
ξ̃t ≥ γ

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Tσ2θ

Tσ2θ+(γ−Tμ)2 if γ≥ Tμ+σ2θ/μ,
Tμ
γ

if Tμ≤ γ< Tμ+σ2θ/μ,

1 if γ< Tμ,
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≤
γ
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>
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>
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γ
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1
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t
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≥
γ
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{ s2 −∞
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s
≥
γ

if
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≤

s
<
γ

Table 3.1: Chebyshev bounds equivalent to supP∈P P(h(ξ̃)≤ 0) for some permutation
symmetric functional h(ξ). These bounds coincide with the optimal value of (3.57),
instantiated with the respective piecewise polynomials φ(s) and φ(s).
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Chapter 3. Chebyshev Inequalities for Products of Random Variables

where θ = 1+ (T −1)ρ > 0.

Proof. The proof is widely parallel to that of Theorem 3.8 and is thus omitted for

brevity.

3.7 Numerical Experiments

We first compare our Chebyshev bounds R(γ) and L(γ) with alternative bounds pro-

posed in the literature, as well as the relaxed Chebyshev bound R′(γ) from Section 3.5.

We then present a case study that employs our left-sided Chebyshev bound L(γ) to

select financial portfolios under imprecise knowledge of the asset return distributions.

All optimization problems are solved with the SDPT3 optimization software using the

YALMIP interface (Löfberg 2004; Toh et al. 1999).

3.7.1 Comparison of Chebyshev Bounds

Instead of employing the bounds R(γ) and L(γ) from Sections 3.3 and 3.4, which are

exact but may result in computationally challenging optimization problems, one can

employ existing results to derive approximate bounds on the tail probabilities of a

product of non-negative, permutation-symmetric random variables. In the following,

we compare our bounds with two such approximations based on earlier results of

Marshall and Olkin (1960) and Vandenberghe et al. (2007). Both approximations rely

on the larger ambiguity set

P 0 = {P ∈M+(RT ) : EP
(
ξ̃
)=μ, EP

(
ξ̃ξ̃ᵀ

)=Σ+μμᵀ}
with supportRT , whereμ ∈RT andΣ ∈ST+, Σ
 0, need not be permutation-symmetric.

Marshall and Olkin (1960) derive a convex optimization problem that provides a tight

upper bound on the probability that the random vector ξ̃ is contained in a closed

convex set C , assuming that ξ̃ can be governed by any distribution from the ambiguity

set P 0. The choice C = {ξ ∈RT :
∏T

t=1ξt ≥ γ
}

allows us to approximate the right-sided

Chebyshev bound R(γ). For this special case, the bound of Marshall and Olkin has the
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analytical solution

RMO(γ)=
⎧⎨⎩ 1 if 0< γ≤μT ,

σ2(1+(T−1)ρ)
σ2(1+(T−1)ρ)+T (μ−γ1/T )2 if γ>μT ,

which follows from Bertsimas and Popescu (2005, Theorem 6.1). By construction,

RMO(γ)≥R(γ) since P ⊂P 0. Note that RMO(γ) coincides with our relaxed Chebyshev

bound R′(γ) for γ ≥ (μ+ σ2θ
Tμ

)T , see Theorem 3.6. Thus, RMO(γ) also coincides with

our right-sided Chebyshev bound R(γ) for large values of γ, see Proposition 3.3. Note

that the bound of Marshall and Olkin cannot be used to approximate our left-sided

Chebyshev bound L(γ) since the complement of C fails to be convex.

Vandenberghe et al. (2007) derive a semidefinite program that provides a tight up-

per bound on the probability that ξ̃ ∈ C for a (not necessarily convex) set C = {ξ ∈
RT : ξᵀAiξ+2bᵀ

i ξ+ ci < 0 ∀i = 1, . . . ,m}, assuming that the random vector ξ̃ can be

governed by any distribution from the ambiguity set P 0. Employing a second-order

Taylor approximation of
∏T

t=1ξt around μ1,

T∏
t=1

ξt ≈μT−2
(
μ2+μ(ξ−μ1)ᵀ1+ 1

2
(ξ−μ1)ᵀ(11ᵀ− I)(ξ−μ1)

)
=μT−2

(
(1−T )μ2+μξᵀ1+ 1

2
ξᵀ(11ᵀ− I)ξ+ 1

2
μ2T (T −1)− (T −1)μξᵀ1

)
= 1

2
μT−2 ((T −1)(T −2)μ2−2(T −2)μξᵀ1+ξᵀ(11ᵀ− I)ξ

)
,

we can derive an approximate right-sided Chebyshev bound RVBC(γ)= supP∈P 0 P(ξ̃ ∈
C ) by replacing the product

∏T
t=1ξt with its Taylor approximation in the definition of

the set C :

C =
{
ξ ∈RT :

1

2
μT−2 ((T −1)(T −2)μ2−2(T −2)μξᵀ1+ξᵀ(11ᵀ− I)ξ

)> γ

}
.

A similar approximation LVBC(γ) can be derived for our left-sided Chebyshev bound

L(γ) by considering the strict complement of C . Note that RVBC(γ) and LVBC(γ) can

over- or underestimate our bounds R(γ) and L(γ) due to the use of the Taylor approxi-

mation.

Figure 3.2 compares our Chebyshev bounds L(γ) and R(γ) with the approximate
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Figure 3.2: Comparison of the left-sided (left) and right-sided (right) Chebyshev
bounds for the products of T = 5 (top) and T = 10 (bottom) random variables with
μ= 1 and ρ = 0. The solid lines with squares, the dashed lines with triangles and the
dotted lines with circles represent our bounds, the VBC bounds and the MO bounds,
respectively. From bottom to top, the blue, red and green lines correspond to σ= 0.2,
0.3 and 0.4 (left) and σ= 0.4, 0.5 and 0.6 (right), respectively.

bounds LVBC(γ) and RVBC(γ) (‘VBC bounds’) as well as RMO(γ) (‘MO bound’). As

expected, the VBC bounds can over- and underestimate our bounds L(γ) and R(γ),

whereas the MO bound consistently overestimates R(γ). Moreover, the MO bound

coincides with our right-sided Chebyshev bound for large values of γ. The quality of

both approximations deteriorates with increasing σ and decreasing γ. Interestingly,

the VBC bound deterioates with increasing numbers of random variables, whereas

the MO bound improves with increasing T . The figure shows that both approximate

bounds can misestimate the bounds L(γ) and R(γ) substantially.

The MO bound has an analytical solution and can therefore be computed in negligible

time. In contrast, the VBC bounds and our bounds require the solution of semidefinite

programs with two LMIs of size O (T 2). Table 3.2 compares the computation times
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Number of random variables T
4 8 12 16 20 24 28 32 36 40

VBC bounds 1.02 1.01 1.06 1.07 1.11 1.23 1.29 1.48 1.72 2.02
Our bounds 1.63 1.81 2.19 2.64 3.43 4.71 6.38 9.34 13.37 18.35

Table 3.2: Runtimes (secs) required to calculate the Chebyshev bounds. Each runtime
is averaged over 10 instances with randomly selected μ, σ and γ, and it includes the
calculation of both the left-sided and the right-sided bounds.
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Figure 3.3: Comparison of the right-sided Chebyshev bounds R(γ) (solid lines with
squares), R′(γ) (dashed lines with diamonds) and RMO(γ) (dotted lines with circles)
with μ= 1 and ρ = 0. From bottom to top, the blue, red and green lines correspond to
σ= 0.4, 0.5 and 0.6 in the left graph (with T = 5 fixed) and to T = 3, 5 and 7 in the right
graph (with σ= 0.5 fixed), respectively.

of both bounds for products of different size T on a computer with a 3.40GHz i7

CPU and 16GB RAM. While both bounds can be computed within seconds, the VBC

bounds require significantly less runtime than our bounds. We attribute this to the

LMI reformulations of the polynomial constraints in Theorems 3.2 and 3.4, which

seem to lack structure that can be exploited by SDPT3.

Figure 3.3 compares the right-sided Chebyshev bound R(γ) with the relaxed right-

sided bound R′(γ) and the MO bound RMO(γ). The figure illustrates that RMO(γ)

coincides with R′(γ) for γ≥ (μ+ σ2θ
Tμ

)T , and subsequently both bounds coincide with

R(γ) for large values of γ. The gaps between the bounds increase with larger variances

σ2, and they decrease with larger numbers of random variables T .
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3.7.2 Case Study: Financial Risk Management

Consider an investor who allocates a limited budget to a fixed pool of n assets over

a time horizon of T periods. We denote by r̃ t ,i ≥−1, t = 1, . . . ,T and i = 1, . . . ,n, the

relative price change of asset i between periods t and t + 1. We assume that the

investor pursues a fixed-mix (or constant proportions) strategy which rebalances the

portfolio composition to a pre-selected set of weights w ∈W = {z ∈Rn+ : eᵀz = 1} at the

beginning of each period. Note that despite being memoryless, fixed-mix strategies

are dynamic since they recapitalize those assets whose returns were below average

(‘buy low’ ) and divest assets whose returns were above average (‘sell high’ ). Fixed-mix

strategies generalize the well-known 1/N -portfolio (DeMiguel et al. 2009), and they

have received significant attention among both academics and practitioners.

We assume that the investor assesses the fixed-mix strategy w in view of the value-at-

risk of the portfolio’s terminal wealth, which is defined as

VaRε(w )= sup
γ∈R

{
γ : P

(
T∏

t=1
(1+wᵀr̃t )> γ

)
≥ 1−ε

}
.

Here, the asset returns r̃t = (r̃ t ,i )n
i=1 are governed by the probability distribution P,

and ε is a pre-specified parameter that reflects the investor’s risk tolerance.

Calculating the value-at-risk of a portfolio’s terminal wealth requires perfect knowl-

edge of the joint asset return distribution P, which is unavailable in practice. Fol-

lowing Chapter 2, we will assume that it is only known that the asset returns (r̃t )T
t=1

follow a weak-sense white noise process with mean μ and variance Σ, that is, the asset

returns are serially uncorrelated and have period-wise identical first and second-order

moments. In that case, the wealth evolution (ξ̃t )T
t=1 = (1+wᵀr̃t )T

t=1 also follows a

weak-sense stochastic process governed by a distribution Pw supported on RT+, under

which the ξ̃t have mean wᵀμ and variance wᵀΣw and are serially uncorrelated. We

denote the set of all these distributions by Pw . In this setting, an ambiguity-averse

investor may assess the fixed-mix strategy w in view of the worst-case value-at-risk of

the portfolio’s terminal wealth over all distributions Pw ∈Pw :

WVaRε(w )= sup
γ∈R

{
γ : inf

Pw∈Pw
Pw

(
T∏

t=1
ξ̃t > γ

)
≥ 1−ε

}
.
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Figure 3.4: Worst-case value-at-risk of the growth rates of the minimum-variance (left)
and maximum-expectation (right) portfolios for different investment horizons T and
risk tolerances ε.

In Chapter 2, the worst-case value-at-risk of the portfolio’s terminal wealth is replaced

with a quadratic approximation. The Chebyshev bounds proposed in this chapter

allow us to calculate the worst-case value-at-risk exactly without resorting to any

approximation. Indeed, one verifies that

WVaRε(w ) = sup
γ∈R

{
γ : sup

Pw∈Pw

Pw

(
T∏

t=1
ξ̃t ≤ γ

)
≤ ε

}
= sup

γ∈R

{
γ : L(γ; wᵀμ, wᵀΣw )≤ ε

}
,

where we have made explicit the dependence of the left-sided Chebyshev bound L

on the mean wᵀμ and the variance wᵀΣw of the wealth evolution (ξ̃t )T
t=1. Since L is

monotonically non-decreasing in γ, the last expression can be evaluated efficiently

through bisection on γ.

Figure 3.4 reports the worst-case value-at-risk of two portfolios over different time

horizons T , whereμ andΣ are calibrated to the 2003–2012 period of Fama and French’s

10 Industry Portfolios data set.2 The minimum-variance portfolio (left graph) corre-

sponds to the weight vector w ∈W that minimizes wᵀΣw , whereas the maximum-

expectation portfolio (right graph) invests all wealth into the asset i with the highest

expected return μi . To facilitate a fair comparison among different time horizons,

the graphs report the growth rates of the portfolios, that is, the logarithms of the

terminal wealth, divided by the number of investment periods T . As expected, the

minimum-variance portfolio is less risky than the maximum-expectation portfolio,

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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and the risk of both portfolios tends to decrease when the investment horizon T grows.

Interestingly, however, the risk of the maximum-expectation portfolio increases with

large T for low risk tolerances ε � 0.15. This seemingly counter-intuitive effect is

explained by Theorem 3.3, which states that the wealth evolution
∏T

t=1 ξ̃t is absorbed

at 0 for large investment horizons T .

In addition to evaluating the worst-case value-at-risk of a pre-selected portfolio w , an

investor often seeks to determine a portfolio w� that optimizes the worst-case value-

at-risk. The search for optimal portfolios is greatly simplified by the observation that

there is always a portfolio w� on the mean-variance efficient frontier that maximizes

WVaRε(w ) over (subsets of) W . Indeed, Theorem 3.5 implies that L(γ; wᵀμ, wᵀΣw )=
L′(γ; wᵀμ, wᵀΣw ), and one readily verifies that L′(γ; wᵀμ, wᵀΣw ) is non-decreasing

in both γ and wᵀΣw . This implies that

sup
γ∈R

{
γ : L′(γ; wᵀμ, wᵀΣw )≤ ε

} ≤ sup
γ∈R

{
γ : L′(γ; w ′ᵀμ, w ′ᵀΣw ′)≤ ε

}
for two portfolios w and w ′ that satisfy wᵀμ=w ′ᵀμ and wᵀΣw ≥w ′ᵀΣw ′. We thus

conclude that among all portfolios w ∈W that achieve the same mean return wᵀμ,

the portfolio with smallest variance wᵀΣw provides the best worst-case value-at-risk.

We can therefore identify an optimal portfolio through a one-dimensional line search

over the mean-variance efficient frontier.

120



4 Multi-Market Multi-Reservoir Manage-

ment

Peak/off-peak spreads on European electricity spot markets are eroding due to the

nuclear phaseout and the recent growth in photovoltaic capacity. The reduced prof-

itability of peak/off-peak arbitrage thus forces hydropower producers to participate

in the reserve markets. We propose a two-layer stochastic programming model for the

optimal operation of a cascade of hydropower plants selling energy on both the spot

and reserve markets. The planning problem optimizes the reservoir management over

a yearly horizon with weekly granularity, and the trading subproblems optimize the

market transactions over a weekly horizon with hourly granularity. We solve both the

planning and trading problems in linear decision rules, and we exploit the inherent

parallelizability of the trading subproblems to achieve computational tractability.

4.1 Introduction

Electricity from renewable sources, e.g. wind, geothermal, solar and hydropower, has

seen its share growing in European electricity markets in recent years. The increase of

renewable energies is resulting in numerous environmental and economic benefits.

However, electricity generation from some of these sources, especially wind and solar,

is intermittent because of its reliance on weather and sunlight conditions. Hence,

there is a growing need to invest in power plants with storage capacities that can

produce or consume electricity on a short notice. For example, pumped-storage

hydropower plants are capable of buffering short-term fluctuations in demand and

supply because of their storage capabilities and negligible start-up times.
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In terms of wholesale electricity markets, most generation companies in Switzer-

land, France, Germany, Luxembourg and Austria participate in the European Energy

Exchange (EEX), which is one of the largest electricity markets in central Europe.1

Among the markets offered by EEX, European Power Exchange Spot (EPEX SPOT) is

an exchange for power spot trading. It consists of different forward markets, with

the main component being the day-ahead market. Generation companies operating

pumped-storage hydropower plants typically trade in this market. In the remainder

of the chapter, we use the terminology spot market to refer to this day-ahead market.

Pumped-storage hydropower plants benefit from participating in the spot market

by releasing the water downstream for electricity generation at peak times and by

pumping the water upstream during off-peak periods for future generation (‘buy low

& sell high’). In doing so, the generation companies exploit the gaps between peak

and off-peak electricity prices to make immediate profits. However, these price gaps

have been shrinking since 2008 (Mayer 2014). This phenomenon occurs because of

two main reasons: (i) the phaseout of nuclear power plants from European electric-

ity markets and (ii) the rapid growth in photovoltaic capacity; see Morris and Pehnt

(2015); Wirth (2016). Nuclear power plants are important sources of base load power.

As a result, their withdrawal from the electricity markets increases base load electricity

prices. On the other hand, the growth in photovoltaic capacity increases the amount of

electricity supply during daytime, which significantly overlaps weekdays’ peak hours,

and thus reduces the peak electricity prices.

As the spot market is a day-ahead market, electricity supply and demand are settled on

the day before delivery. In practice, however, this cannot be achieved without errors

for many reasons. Examples include operational outages, withdrawal of power plants,

and sudden rises in demand. While small errors are usually corrected by trading in

intraday markets, bigger errors need to be handled separately. Moreover, since wind

and sunlight conditions can change abruptly and are difficult to predict with high

accuracy, wind and solar energy is highly volatile. Thus, as the percentage of the

renewable energy supply increases, the resulting fluctuations can be large, and they

cannot be absorbed completely in the spot and intraday markets.

In order for the frequency of the electricity grid to be maintained at 50Hz, the im-

1https://www.eex.com
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balances between demand and supply have to be diminished. To achieve this, the

transmission system operators procure additional ancillary services (in this case, con-

trol energy) in advance on separate markets.2 These markets, depending on their

geographical locations, have different names, for example, balancing markets, reserve

markets, regulation markets, and control markets. To avoid terminological confusion,

we will consistently use the term reserve market in the remainder of the chapter. For

a succinct overview of how the reserve markets work and what role the hydropower

producers play in these markets, we refer interested readers to Beck and Scherer

(2015); Hirth and Ziegenhagen (2015).

With reserve markets, when electricity demand and supply differ, the transmission

system operator of the control area responds by requesting reserve market participants

to increase or decrease their electricity output. For generation companies, the benefit

of trading in the reserve markets is two-fold. First, they receive capacity fees in

advance regardless of whether the reserve capacities are activated. Second, they also

earn money proportional to the increase or decrease in their production levels when

the transmission system operator triggers the reserves. Since the amount of activated

reserves can be positive (upward regulation) or negative (downward regulation), we

distinguish between the two cases by decomposing the reserve market into reserve-up

and reserve-down markets, respectively. Figure 4.1 visualizes situations when reserve-

down and reserve-up capacities are activated by the transmission system operator.

The existence of the reserve markets should ease the pressure on the hydropower plant

operators who are struggling to recover their capital costs or their original profitability

on the spot market because of the eroding peak/off-peak spreads.

The focus of this chapter is to develop, for hydropower producers, a stochastic program

that maximizes their total revenues earned from simultaneously trading in both

the spot and reserve markets. The resulting optimization model is computationally

challenging because it involves a large number of decision stages as well as significant

uncertainty in electricity prices and water inflows. For example, consider the setting

where the planning horizon is one year, and where electricity is traded daily. In this

case, the number of decision stages already exceeds a few hundreds. Furthermore, in a

2The European Network of Transmission System Operators for Electricity (ENTSOE) publishes the
list of transmission system operators in Europe, available at https://www.entsoe.eu.
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Figure 4.1: Illustration of downward regulation (↓) and upward regulation (↑).

system with multiple connected reservoirs, a coordinated water release and pumping

policy is required because the water releases from an upstream reservoir contribute

to the inflows of its downstream reservoir(s).

As pointed out by Shapiro and Nemirovski (2005), multi-stage stochastic programs

‘generically are computationally intractable already when medium-accuracy solutions

are sought.’ It would appear hopeless for us to directly solve the formulated stochastic

program. Inspired by Pritchard et al. (2005), we decompose the problem temporally,

which in our case is achieved by splitting the planning horizon into weekly periods.

At the beginning of each week, the generation company sets a target release for each

reservoir. This target is obtained by solving a reservoir management problem, which

can also be formulated as a stochastic program. Then, for a predetermined target,

the generation company solves another stochastic program to determine an optimal

trading policy for both the spot and reserve markets over the course of one week. To

gain tractability, all arising stochastic programs are solved approximately in linear

decision rules, which we discuss next.

In dynamic optimization problems, future decisions are representable as measurable

functions of the observable data. One major challenge for solving such problems is

that optimizing over functions is generally much harder than optimizing over finite

vectors. The linear decision rule approximation simplifies the problem by focus-

ing on the subclass of affine functions only. By focusing on decision rules in affine

forms, we obtain a conservative approximation of the true optimization problem. The

main advantage of solving dynamic optimization problems in linear decision rules is
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tractability as highlighted by Shapiro and Nemirovski (2005); Ben-Tal et al. (2004). Of-

ten, such an approximation is scalable to industrial-size problems. However, there are

two main issues that may limit the relevance of the linear decision rule approximation

in practice. First, it is possible that the approximation may result in a non-negligible

degree of suboptimality. Second, some feasible stochastic programs, even those with

complete recourse, may fail to admit feasible linear decision rules (Chen et al. 2008).

To address the first shortcoming, Kuhn et al. (2011) outline a primal-dual approach

to numerically quantify the loss of optimality incurred by the linear decision rule

approximation, and Bertsimas et al. (2010b) further show that linear decision rules are

optimal for some instances of one-dimensional dynamic problems. In contrast, the

second shortcoming ceases to be relevant to the reservoir management problem if the

generation company sets the target storage levels at the end of the planning horizon to

be the same as the initial storage levels. In this case, there always exists a feasible water

discharge policy in affine form, one of which is to immediately spill the inflows. In any

case, more flexible decision rules can be used if high-accuracy solutions are sought;

see Georghiou et al. (2015); Chen et al. (2008). The linear decision rule approximation

(in a simpler form) has been previously applied to the reservoir management problem

in different settings. We refer the readers to Yeh (1985) and the references therein.

The main contributions of the chapter may be summarized as follows.

(i) We propose a stochastic program for maximizing the net revenue of a hy-

dropower producer who simultaneously trades in both the spot and reserve

markets. The proposed model accounts for uncertainty in electricity prices,

reserve capacity fees, inflows, etc. Accounting for price uncertainty usually

leads to intractability because of the high frequency at which market prices

fluctuate. Therefore, we develop a complexity reduction scheme (ii).

(ii) To achieve tractability, we propose a planner-trader decomposition, which leads

to a two-layer stochastic program. The decomposition is achieved by separating

fast and slow dynamics. In particular, the inflow uncertainty is accounted for in

the planning problem, which is a reservoir management problem with weekly

granularity. On the other hand, the market uncertainty is absorbed in the the

trading subproblems, which optimize intra-week transactions in both the spot

and reserve markets.
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(iii) We prove that if the reservoirs in the considered cascade have seasonal storages

in the sense that it takes at least a few weeks to fully replenish or deplete them,

then the planner-trader decomposition generically provides a conservative

approximation of the stochastic program proposed in (i).

(iv) We consider a cascade of three connected reservoirs operating in the con-

trol area of the Austrian Power Grid AG (APG).3 The data for this case study

is provided by the energy consultancy Decision Trees GmbH.4 We solve our

stochastic programs conservatively using a linear decision rule approximation

to determine a near-optimal operation of the generation company under two

circumstances: (a) the generation company participates in the spot market only

and (b) the generation company participates in both the spot and reserve mar-

kets. Our experimental results suggest that participating in the reserve markets

increases total revenues by 48.3% on average. Furthermore, it also reduces

variation in storage levels.

The remainder of the chapter is structured as follows. In Section 4.2, we introduce

the notation and the operational constraints for the hydropower producers, while

Section 4.3 presents the revenue-maximizing stochastic program. Our decomposition

scheme and numerical solution procedure are described in Section 4.4 and Section 4.5,

respectively. In Section 4.6, we discuss a common heuristic used in hydropower

scheduling and extend it to cater for additional investments in the reserve markets.

Finally, we quantify the benefits of trading in the reserve markets in Section 4.7.

Notation. Basic matrix operations used in this chapter follow from MATLAB symbols.

In particular, for two matrices with the same number of rows (columns), we use a

comma (semicolon) to concatenate them horizontally (vertically). For a column vector

x , we let diag(x) denote a square diagonal matrix with x on its main diagonal.

3https://www.apg.at/
4http://dtrees.com/
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4.2 Hydropower Scheduling Model

We consider a generation company that operates a cascade of reservoirs, indexed by

i ∈I , and trades hydroelectricity in both the spot and reserve markets. For notational

convenience, we represent the topology of the interconnected reservoirs by a directed

acyclic graph with a set of nodes I and a set of arcs A ⊂I ×I where reservoirs are

represented as nodes. A tuple (i , j ) is an arc in A if i ( j ) is an upstream (downstream)

reservoir of j (i ). Without loss of generality, we assume that I contains a unique

sink node ⊗which represents a dummy reservoir below the cascade. In this way, all

reservoirs except ⊗ have at least one outdegree. The topology of the cascade can be

encoded conveniently with an incidence matrix M, where for each (i , a) ∈I ×A we

have that

Mi ,a =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if i is the tail of arc a,

−1 if i is the head of arc a,

0 otherwise.

Last but not least, we denote the cardinality of A and I by A and I , respectively.

We split the entire planning horizon into trading hours indexed by t ∈T := {1, . . . ,T }.

We remark that the planning horizon should span at least a year in order for the gener-

ation company to fully capture the seasonality of electricity prices and water inflows.

To begin our discussion on the constraints of hydropower scheduling problems, we

consider the case where the company participates only in the spot market. At the

beginning of each trading hour t , the generation company commits, for each arc

a = (i , j ) ∈A , gt ,a and pt ,a which represent the amount of water released from i to

j (in m3) and the amount of water pumped up from j to i (in m3), respectively. We

denote the storage level of reservoir i ∈ I at the end of trading hour t by vt ,i . For

the sake of transparent exposition, we assume that the delays in water flows between

reservoirs are negligible. Aggregating these decisions across the arcs as

g t := [gt ,a]a∈A ∈RA, pt := [pt ,a]a∈A ∈RA, vt := [vt ,i ]i∈I ∈RI ,
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Figure 4.2: An example cascade of three reservoirs. From top to bottom, we denote
them by U , M and L , respectively. Hence in this case, I = {U ,M ,L ,⊗} and A =
{(U ,M ), (M ,L ), (L ,⊗)}. A turbine-pump pair is attached to arc (U ,M ), whereas
the remaining two arcs have only turbines.

we can then represent the dynamics of the reservoirs’ storage levels as

vt = vt−1+ψt −M
(
st +g t −pt

) ∀t ∈T ,

where st = [st ,a]a∈A ∈RA represents the vector of spilling decisions, while ψt ,i and v0,i

denote the hourly natural inflow and the initial storage level of reservoir i , respectively.

Both gt ,a and st ,a represent water release quantities. However, the difference between

them lies in the purpose of the release. On the one hand, gt ,a represents the amount

of water discharged to a turbine for hydroelectricity generation and thus contributes

to an hourly revenue the company earns on the spot market. On the other hand, st ,a

represents the amount of water released to adjust the reservoir storage level when

necessary, for example, when the upstream reservoir of arc a is overfilled, and hence

it does not contribute to any profit. We may refer to gt ,a and st ,a as the productive and

non-productive releases, respectively. For the equation of the reservoir dynamics, we
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use the matrix M to ensure that the water released from an upstream reservoir flows

into the corresponding downstream reservoir(s). The decisions g t , pt , st , vt have to be

taken subject to the following physical constraints.

1. Non-negativity:

g t ≥ 0, pt ≥ 0, st ≥ 0 ∀t ∈T .

2. Maximum generating and pumping levels:

g t ≤ g , pt ≤ p ∀t ∈T ,

where g a (m3/h) and pa (m3/h) are the maximum release and pumping rates of

a turbine-pump pair attached to arc a. If the pump (turbine) is absent, we set

pa = 0 (g a = 0).

3. Bounds on storage levels:

v t ≤ vt ≤ v t ∀t ∈T ,

where v t ,i (m3) and v t ,i (m3) represent the lower and upper bounds on the stor-

age levels of reservoir i , respectively. Typically, the upper bounds coincide with

the reservoirs’ full capacities, whereas the lower bounds can vary throughout

the year. For example, they can be higher in the summer months than in the

rest of the year for environmental or touristic purposes.

The generation company aims to find a policy to distribute water among reservoirs

over the entire planning horizon such that it maximizes the total revenue from the

spot market which amounts to

∑
t∈T

πs
t cᵀ

(
g t −Dpt

)
,

where πs
t is the electricity spot price (e/MWh) at time t , whereas c and D represent

the collections of conversion rates and cycling deficiencies of all hydrological arcs
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a ∈A in the form

c := [ca]a∈A and D := diag([da]a∈A ).

For each hydrological arc a, the conversion rate ca > 0 (MWh/m3) translates the water

amount (m3) to energy output (MWh). In reality, this conversion rate ca depends on

the net hydraulic head which is defined as the difference of the water levels between

endpoint reservoirs; see e.g. Tester et al. (2012, § 12.3). For tractability reasons,

however, we follow the literature (see e.g. Baillo et al. (2004); Löhndorf et al. (2013)) in

assuming that ca is a constant. This typically offers a good approximation for a cascade

of weekly and annual reservoirs, especially when the net heads are high. Besides, the

cycling deficiency da > 1 determines the rate of energy loss when producing electricity

from pumped water.

In addition to trading in the spot market, the generation company may simultaneously

participate in the reserve market (which is decomposed into reserve-up and reserve-

down markets). The transmission system operator regulates these reserve markets to

maintain the network frequency in its control area. The mechanisms underlying the

spot and reserve markets are different in the following senses.

1. The spot market is a day-ahead market, i.e., it is cleared on the day before energy

delivery, whereas the reserve markets are cleared week-ahead.5

2. Trading decisions for the spot market have to be implemented regardless of the

state of the control area, whereas reserve capacities may or may not be activated

by the transmission system operator, whose action depends on total real-time

demand and supply within the control area.

From the transmission system operator’s perspective, the main purpose of reserve

markets is to smooth out the differences between real-time electricity demand and

supply. These differences can be caused by several reasons, for example, a production

failure, a sudden rise in demand, or, more importantly, an inaccurate forecast of

the production levels of other renewable energy sources. The reserve-up capacities

5We consider the electricity markets in the control area of APG, Austria. The tendering period can be
different in other control areas. However, this does not fundamentally change our model.
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may be activated when the demand is higher than the supply and more electricity

is needed. On the other hand, the reserve-down capacities may be activated when

there is an oversupply of electricity in the transmission system operator’s control area.

Upon the request to activate the reserve-up capacity, the generation company has

two choices to honor the reserve commitments. It can either increase the electricity

production or decrease the electricity consumption. In the case that a significant

amount of additional electricity is required, it may also be possible that the generation

company has to take both actions. Similar arguments in the opposite direction apply

to the reserve-down capacities.

From the generation company’s perspective, the benefit of participating in the reserve

markets is two-fold. First, the transmission system operator offers compensations for

the reserve capacities in the form of an advance payment (i.e., reserve capacity fees).

Second, the company is also paid for the hydroelectricity production/consumption

when the reserve capacities are activated.

Participation in the reserve markets complicates the producer’s planning problem

because it involves more decisions. Such decisions include ut ,a ≥ 0 and dt ,a ≥ 0

(for all t ∈T and a ∈A ) representing the reserve-up and reserve-down capacities,

respectively. Similarly to previously introduced decision variables, we aggregate these

decisions over a ∈A as

ut := [ut ,a]a∈A and dt := [dt ,a]a∈A .

Moreover, additional constraints have to be incorporated in order to ensure that the

company is able to honor the commitment in both the spot and reserve markets.

These new constraints are:

0≤ut ≤ g −g t +pt , ∀t ∈T ,

0≤ dt ≤ p −pt +g t , ∀t ∈T .

As discussed above, the upper bound on the reserve-up capacity ut ,a (reserve-down

capacity dt ,a) is given by the sum of the production buffer g a − gt ,a (consumption

buffer pa −pt ,a) and the consumption level pt ,a (production level gt ,a). Furthermore

to take into account the effects of reserve capacities, the dynamics of the reservoirs’
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storage levels for all t ∈T and i ∈I is amended to

vt = vt−1+ψt −M
(

st +g t −pt +ρu
t ut −ρd

t dt

)
,

where ρu
t = 1 implies an activation for the reserve-up energy (= 0 otherwise) and

ρd
t = 1 implies an activation for the reserve-down energy (= 0 otherwise). A generation

company that participates in both the spot and reserve markets earns the total revenue

of

∑
t∈T

cᵀ
(
(φu

t +ρu
t π

u
t )ut + (φd

t +ρd
t π

d
t )dt +πs

t (g t −Dpt )
)

,

where (φu
t ,πu

t ) and (φd
t ,πd

t ) are the capacity fees (e/MWh) and the electricity prices

(e/MWh) in the reserve-up and reserve-down markets, respectively.

Lastly, we assume that the generation company is a price taker, that is, its operation

is not large enough to have a non-negligible influence on the electricity prices, be it

spot prices (πs
t ), capacity fees (φu

t ,φd
t ) or reserve prices (πu

t ,πd
t ).

4.3 Revenue Maximization

Based on the discussion in Section 4.2, the generation company may formulate an op-

timization problem to identify a revenue maximizing policy subject to the constraints

previously described. In practice, though, it is impossible to have a perfect forecast

of the future inflows (ψt ,i ), the electricity prices in the different markets (πs
t ,πu

t ,πd
t ),

the reserve capacity fees (φu
t ,φd

t ) and the activation sequences of the reserve capaci-

ties (ρu
t ,ρd

t ). The optimization problem thus needs to account for uncertainty in the

market and inflow information.

We highlight that it is of great importance to explicitly account for uncertainty in this

problem. This is the case, for example, if hydroelectricity generation is profitable in

only a few hours with high spot prices within a week. Assuming a constant spot price

throughout the week may lead to a highly suboptimal solution, that is, not to generate

at all. Henceforth, we assume that the generation company is risk-neutral. Therefore,

it aims to identify a reservoir management policy that is feasible almost surely under
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the joint probability distribution P of the relevant random variables and maximizes

the expected total revenue. In order to respect non-anticipativity, future decisions can

exploit knowledge of the past, but not that of the future. Thus, it is necessary for us to

introduce the sequence of revealed information which evolves as time passes.

For the sake of concise notation, we denote by ξt the information that is revealed to

the generation company at the beginning of trading hour t . Furthermore, we denote

the first hour of the day and the first hour of the week containing t by d(t ) and w(t ),

respectively, and we let t (w) denote the first trading hour of the operational week w .

Last but not least, we denote by ξ (without subscript) the information available at the

end of the planning horizon, that is, ξ= (ξ1; . . . ;ξT+1).

In our hydropower scheduling problems, natural inflows ψt as well as electricity

prices πu
t ,πd

t and activations ρu
t ,ρd

t in the reserve markets are assumed to materialize

hourly. On the other hand, daily spot prices are revealed at the beginning of the day,

i.e., when t = d(t ), whereas weekly reserve capacity fees are revealed at the beginning

of the week, i.e., when t =w(t ). We summarize the information that is revealed to the

generation company at the beginning of hour t ∈T as follows.

ξt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ρu

t−1,ρd
t−1,πu

t−1,πd
t−1,ψᵀ

t−1

)ᵀ
if t �= d(t ),

(
ρu

t−1,ρd
t−1,πu

t−1,πd
t−1,ψᵀ

t−1,πs
t , . . . ,πs

t+23

)ᵀ
if t = d(t ) and t �=w(t ),

(
ρu

t−1,ρd
t−1,πu

t−1,πd
t−1,ψᵀ

t−1,πs
t , . . . ,πs

t+23,

φu
t , . . . ,φu

t+167,φd
t , . . . ,φd

t+167

)ᵀ
if t =w(t )

Recall that the spot market is a day-ahead market. Therefore, when t = d(t), the

generation company decides on the trading volumes in the spot market for the next

24 hours, i.e., gτ and pτ for τ= t , . . . , t +23. On the other hand, the reserve markets

are cleared week-ahead. Thus, when t =w(t ), the generation company has to decide

on the reserve capacities for the next whole week, i.e., uτ and dτ for τ= t , . . . , t +167.
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The company may then solve

max E
(∑

t∈T cᵀ
((
φu

t +ρu
t π

u
t

)
ut +

(
φd

t +ρd
t π

d
t

)
dt +πs

t

(
g t −Dpt

)))
s. t. g t , pt ∼Fd(t ), ut ,dt ∼Fw(t ), st , vt ∼Ft+1 ∀t ∈T

0≤ g t ≤ g , 0≤ pt ≤ p , 0≤ st

ut ≤ g −g t +pt

dt ≤ p −pt +g t

vt = vt−1+ψt −M
(
st +g t −pt +ρu

t ut −ρd
t dt

)
v t ≤ vt ≤ v t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀t ∈T , P-a.s.,

(4.1)

which represents a multistage stochastic program. Here, the objective is to maximize

the expected revenue accumulated over the planning horizon from the reserve-up,

reserve-down, and spot markets. The constraints were previously discussed in Sec-

tion 4.2. It is worth noting again that all decisions must be non-anticipative, and we

capture the non-anticipativity requirements by using a σ-algebra

Ft =σ(ξs |1≤ s ≤ t )

generated by the observation history up to time t ∈T . Since the reserve market is a

week-ahead market, ut and dt are adapted to the σ-algebra Fw(t ). On the other hand,

the spot market is a day-ahead market; hence, g t and pt are adapted to Fd(t ). Lastly,

st and vt are adapted to Ft+1 as the storage levels are monitored and adjusted hourly.

Multistage stochastic programs are difficult to solve numerically. In fact, determin-

ing an exact solution of a two-stage stochastic program is already computationally

intractable when the random variables follow independent uniform distributions;

see Dyer and Stougie (2006); Hanasusanto et al. (2015a). To achieve tractability, we

propose in Section 4.4 a framework to decompose the stochastic program (4.1) into a

two-layer stochastic programming problem. After the decomposition, a number of

smaller stochastic programs, which consist of much fewer decision stages and random

variables, emerge. Moreover, many of them can be solved in parallel. Nonetheless,

they still constitute multistage stochastic programs. To simplify the problem even
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more, we solve these stochastic programs approximately in linear decision rules, that

is, we express future decisions as affine functions of prior observations. In many

cases, including ours, a linear decision rule approximation ensures the tractability of

dynamic optimization problems under uncertainty.

4.4 Planner-Trader Decomposition

The stochastic program (4.1) consists of a large number of decision stages as the

planning horizon usually comprises at least one year. As a first step to simplify the

problem, we decompose (4.1) into a collection of smaller and more tractable stochastic

programs. Our decomposition is motivated by the following observation concerning

the problem’s dynamics. Electricity prices are volatile and can differ greatly from one

hour to another. On the other hand, the dynamics of the reservoirs’ storage levels

change on a much coarser scale. For a cascade of seasonal reservoirs, it takes at

least weeks to fully deplete or to fully replenish each reservoir, and hourly changes

in the storage levels are often marginal. This contrast between electricity prices and

hydrological dynamics can be used to simplify (4.1) as follows.

Since the reservoirs’ storage levels change slowly, we split the entire planing horizon

T into weeks W := {1, . . . ,W }, and we monitor the storage levels only at the end of

each week. Denote by T (w) the set of trading hours within week w . Hence, the entire

planning horizon can be expressed as T = ⋃w∈W T (w). By the tower property of

conditional expectations, we may then rewrite the objective function of (4.1) as

∑
w∈W

∑
a∈A

E

( ∑
t∈T (w)

(
π̂u

t ,aut ,a + π̂d
t ,adt ,a + π̂s

t ,a(gt ,a −da pt ,a)
))

= ∑
w∈W

∑
a∈A

E

(
E

( ∑
t∈T (w)

(
π̂u

t ,aut ,a + π̂d
t ,adt ,a + π̂s

t ,a(gt ,a −da pt ,a)
)∣∣∣∣∣ξt (w)

))
,

where π̂u
t ,a , π̂d

t ,a and π̂s
t ,a are introduced for notational simplicity as net revenues

earned from the reserve-up, reserve-down, and spot markets, respectively, for comit-

ting 1 m3/h of water release, i.e.,

π̂u
t ,a := ca(φu

t +ρu
t π

u
t ), π̂d

t ,a := ca(φd
t +ρd

t π
d
t ), π̂s

t ,a := caπ
s
t .
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The outer expectation is taken with respect to ξt (w), and the inner expectation is

taken with respect to π̂u
t , π̂d

t and π̂s
t (for t ∈T (w)) conditionally on ξt (w). We are now

ready to discuss the planner-trader decomposition which is used to simplify the full

model (4.1).

At the beginning of each week w ∈ W , the generation company solves a reservoir

management problem, that is, it sets a weekly target of productive release, say qw,a ,

for every arc a ∈A of the hydrological system. We highlight that qw,a is not necessarily

positive as it can take a negative value when the net volume of the pumped water

exceeds the net volume of the released water. Subsequently, after deciding on qw,a ,

the generation company has to optimize the intra-week market transactions, that is, it

has to trade in both the spot and reserve markets on an hourly basis while respecting

the weekly targets of water consumption qw := [qw,a]a∈A . At the end of the week, the

weekly aggregate inflows, from both natural sources and upstream reservoirs, then

materialize.

This explains the main idea behind the planner-trader decomposition where the

planner optimizes the reservoir management with weekly granularity, whereas the

trader optimizes the intra-week market transactions with hourly granularity. Referring

to the graph representation of the cascade’s topology, the planner optimizes the

allocation of water over the set of nodes I to maintain the reservoirs’ storage levels,

and the trader optimizes hourly transactions locally for each individual arc a ∈A .

Before we formulate the planning and the trading problems mathematically, we

impose the following statistical assumptions about the relevant random variables.

(A1) The process [ψt ]t∈T is statistically independent of the other exogenous stochas-

tic processes.

(A2) The stochastic processes [πu
t ]t∈T , [πd

t ]t∈T , [ρu
t ]t∈T , [ρd

t ]t∈T are serially indepen-

dent.

(A3) The stochastic process [πs
t ]t∈T is Markovian.

We remark that the planner-trader decomposition is still implementable even if As-

sumptions (A1)–(A3) fail to hold. However, these assumptions strengthen the approxi-
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mation quality and improve the tractability of the decomposition. We are now ready

to state our decomposition scheme.

4.4.1 Trading Subproblems

The information crucial to the decision making process of the trader is that from

within the week. This observation is due to Assumptions (A2) and (A3). For trading

hour t ∈T , we define a new σ-algebra F ′
t ⊂Ft as

F ′
t =σ(ξs |w(t )≤ s ≤ t ). (4.2)

To maximize the expected weekly revenue with the hydroelectricity production and

consumption from hydrological arc a, the trader solves

max E
(∑

t∈T (w)
(
π̂u

t ,aut ,a + π̂d
t ,adt ,a + π̂s

t ,a

(
gt ,a −da pt ,a

))∣∣∣ξt (w)

)
s. t. gt ,a , pt ,a ∼F ′

d(t ), ut ,a ,dt ,a ∈R+ ∀t ∈T (w)

0≤ gt ,a ≤ g a , 0≤ pt ,a ≤ pa

ut ,a ≤ g a − gt ,a +pt ,a , dt ,a ≤ pa −pt ,a + gt ,a

⎫⎪⎬⎪⎭ ∀t ∈T (w), P-a.s.,

∑
t∈T (w)

(
gt ,a −pt ,a +ρu

t ut ,a −ρd
t dt ,a

)≤ qw,a

(4.3)

where the weekly target of water release qw,a is determined by the planner and is there-

fore exogenous to the trader’s problem. We then denote the optimal objective value

of this trading problem by Πw,a
(
qw,a ,ξt (w)

)
. A detailed description of the stochastic

modeling of the market uncertainty [πu
t ]t∈T , [πd

t ]t∈T , [ρu
t ]t∈T , [ρu

t ]t∈T and [πs
t ]t∈T is

relegated to Section 4.7, where we report on the experimental results of our model.

Note that the last constraint in (4.3) is imposed as an inequality (as opposed to an

equality) constraint. Indeed, we will see in the proof of Theorem 4.1 that impos-

ing the water target as an equality would disallow exploitation of the information

materializing within a week.
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4.4.2 Planning Problem

The planner receives information about the expected weekly revenues from the trader

through the functionals Πw,a and manages the water resources in the cascade in

order to maximize the expected earnings of the generation company over the entire

planning horizon T . Particularly, the planner solves

max E
(∑

w∈W
∑

a∈A Πw,a
(
qw,a ,ξt (w)

))
s. t. qw ∼Ft (w), sw ∼Ft (w+1) ∀w ∈W

q
w
≤ qw ≤ q w , sw ≥ 0

v+w ≤ v0+∑w
ω=1

(
ψ+

ω−M
(
sω+qω

))≤ v+w

⎫⎪⎬⎪⎭ ∀w ∈W , P-a.s.

(4.4)

Here, the planner optimizes weekly target release quantities qw,a for every (w, a) ∈W ×
A . The target qw,a attains its upper bound when the turbine operates at a maximum

level throughout the week, whereas it attains its lower bound when the pump operates

maximally. Hence, to make (4.4) complete, we set q
w

and q w to −168p and +168g ,

respectively. Note that, for notational convenience, in the formulation above we

introduce ψ+
w as an aggregate weekly inflow, i.e., ψ+

w = ∑t∈T (w)ψt . Similarly, we

introduce v+w and v+w as the lower and upper bounds on the storage levels at the end

of week w , i.e., v+w = v t and v+w = v t for t such that t +1= t (w +1). This corresponds

to the earlier observation that the storage levels may not need updating every hour.

By a slight abuse of notation, sw in (4.4) represents weekly spilling decisions, not to be

confused with hourly spilling decisions st in (4.1).

We end this section by discussing the accuracy of the planner-trader decomposition.

Theorem 4.1 below asserts that the planner-trader decomposition provides a conser-

vative approximation to a variant of (4.1) when the intra-week bounds on the storage

levels are omitted.

Theorem 4.1 (Suboptimality of planner-trader decomposition). If v t ,a = −∞ and

v t ,a =+∞ for every t ∈T : t+1 �=w(t+1), then the planner-trader decomposition (4.4)

provides a conservative approximation for (4.1).

Proof. Under the assumption that the reservoir bounds are imposed only at the end
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of each week, there is no need for us to keep track of the intra-week storage levels.

Therefore, we can simplify (4.1) by aggregating the inflows and the spilling decisions

as well as the productive release quantities over the trading hours in week w as

ψ+
w =

∑
t∈T (w)

ψt , s+w =
∑

t∈T (w)
st , and qw =

∑
t∈T (w)

g t −pt +ρu
t ut −ρd

t dt .

Recall that since st ∼Ft+1, we have that s+w ∼Ft (w+1). Moreover, since both g t and pt

are adapted to Fd(t ) and ρu
t ,ρd

t are contained in ξt+1, it follows that qw ∼Ft (w+1). If

v+w denotes the vector of storage levels at the end of week w , we find

v+w = v+w−1+ψ+
w −M

(
s+w +qw

)
,

and therefore v+w ∼Ft (w+1). We can then re-express (4.1) as

max
∑

w∈W
∑

a∈A E
(
E
(∑

t∈T (w)
(
π̂u

t ,aut ,a + π̂d
t ,adt ,a + π̂s

t ,a(gt ,a −da pt ,a)
)∣∣∣ξw(t )

))
s. t. g t , pt ∼Fd(t ), ut ,dt ∼Fw(t ) ∀t ∈T

0≤ g t ≤ g , 0≤ pt ≤ p

ut ≤ g −g t +pt

dt ≤ p −pt +g t

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
∀t ∈T , P-a.s.

s. t. qw , s+w , v+w ∼Ft (w+1) ∀w ∈W

0≤ s+w , v+w ≤ v+w ≤ v+w

qw =∑t∈T (w) g t −pt +ρu
t ut −ρd

t dt

v+w = v+w−1+ψ+
w −M

(
s+w +qw

)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
∀w ∈W , P-a.s.,

where the measurability properties of the aggregate decisions follow directly from

their construction. Next, we argue that the equality constraint which assigns a value

to the weekly net productive release qw can be equivalently rewritten as a greater than

or equal to constraint. Indeed, if there is a positive slack between the left hand side

and the right hand side of this constraint, we can add this slack to the corresponding

spilling decision sw as there are no upper bounds on spilling. In this way, the weekly
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total releases (both productive and non-productive) qw + s+w remain unchanged.

By enforcing qw to be adapted only to Ft (w) (instead of Ft (w+1)), we obtain a conser-

vative approximation of (4.1), and the emerging problem is equivalent to the proposed

planner-trader decomposition because we can assign hourly constraints (those in the

first bracket) to the corresponding trading subproblems and assign weekly constraints

(those in the second bracket) to the planning problem.

4.5 Multiscale Approximation

The focus of this section is to outline numerical methods for solving the planning and

the trading problems efficiently. Notice that, even after the decomposition, the emerg-

ing optimization problems still constitute multistage stochastic programs, which

are computationally hard to solve. Henceforth, we solve them approximately in lin-

ear decision rules, that is, we restrict the future decisions to affine functions of the

observable data.

We assume that we are given a set of independent samples {ξs : s ∈S } of the random

vector ξ, where the index set S is defined as {1, . . . ,S}. This allows us to solve the

planning problem (4.4) by replacing its objective function with the sample average

1

S

∑
s∈S

∑
w∈W

∑
a∈A Πw,a

(
qw,a ,ξs

t (w)

)
and by replacing all almost sure constrains by robust constraints over a polyhedral

uncertainty set Ξ of the form

Ξ=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ξ :

φu
t , φd

t , πs
t , πu

t , πd
t , ρu

t , ρd
t ≥ 0, ψt ≥ 0 ∀t ∈T

ρu
t +ρd

t ≤ 1, φu
t
≤φu

t ≤φ
u
t , φd

t
≤φd

t ≤φ
d
t ∀t ∈T

πs
t ≤πs

t ≤πs
t , πu

t ≤πu
t ≤πu

t , πd
t ≤πd

t ≤πd
t ∀t ∈T

ψ+
w
≤∑t∈T (w)ψt ≤ψ

+
w ∀w ∈W

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (4.5)

We emphasize that any feasible solution of the resulting optimization problem is also

feasible for the realizations ξ ∈Ξ\{ξs : s ∈S }. Observe that much of the description
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of Ξ is explained by component-wise box constraints, with two exceptions. First,

ρu
t +ρd

t ≤ 1 is imposed because the reserve-up and the reserve-down capacities cannot

be activated in the same trading hour. The other exception is ψ+
w
≤∑t∈T (w)ψt ≤ψ

+
w ,

which corresponds to the bounds on the aggregate weekly inflows instead of individual

hourly inflows. The motivation for using these aggregate bounds is that, as we will

describe below, in the planning problem (4.4) we aggregate hourly inflows to weekly

inflows for tractability reasons.

We then solve the resulting planning problem in linear decision rules by approximating

the decisions qw ∼Ft (w) by affine functions of ξ1, . . . ,ξt (w). The decisions sw can be

approximated analogously using the slightly richer information base ξ1, . . . ,ξt (w+1). To

solve the planning problem efficiently, we further restrict our attention to simplified

linear decision rules of the form

qw =Qw
(
1;ψ+

1 ; . . . ;ψ+
w−1

)
and sw = Sw

(
1;ψ+

1 ; . . . ;ψ+
w

)
,

for some matrices Qw and Sw with appropriate dimensions, where in the information

bases we aggregate hourly inflows within the same week to weekly inflows and we

exclude the market information from the planning problem. Hence, the planning

problem can be approximated by

max
1

S

∑
s∈S

∑
w∈W

∑
a∈A Πw,a

(
eᵀaQw

(
1;ψ+

1 ; . . . ;ψ+
w−1

)
,ξs

t (w)

)
s. t. Qw ∈RA×[(w−1)I+1],Sw ∈RA×[w I+1]

q
w
≤Qw

(
1;ψ+

1 ; . . . ;ψ+
w−1

)≤ q w

Sw
(
1;ψ+

1 ; . . . ;ψ+
w

)≥ 0

v+w ≤ v0+∑w
ω=1

(
ψ+

ω−M
(
Sω

(
1;ψ+

1 ; . . . ;ψ+
ω

)+
Qω

(
1;ψ+

1 ; . . . ;ψ+
ω−1

)))≤ v+w

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∀w ∈W

∀ξ ∈Ξ,

(4.6)

where ea represents the a-th standard basis vector. The above optimization problem

involves robust constraints over a polyhedral uncertainty set. Therefore, they admit a

linear reformulation by using strong duality of linear programs; see, e.g., Ben-Tal et al.

(2009); Kuhn et al. (2011). However, the objective function is not yet tractable because
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the trader’s objectives Πw,a remain unknown. Nonetheless, it follows from perturba-

tion and sensitivity analysis (see, e.g., Boyd and Vandenberghe (2004)) that Πw,a is

concave in its first argument qw,a .6 We can exploit this concavity to convert (4.6) into

a tractable linear program, if we further approximate the function Πw,a by a concave

piecewise linear function

Πw,a
(
qw,a ,ξs

t (w)

)≈min
l∈L

αw,s,l +βw,s,l qw,a ,

where l ∈L is the index of the affine function characterized by a slope βw,s,l and a

vertical intercept αw,s,l . Then, we can rewrite the objective function of (4.6) using

an epigraphical reformulation. To find this piecewise approximation, we solve each

trading subproblem Πw,a
(
qw,a ,ξs

t (w)

)
for 7 different values of

qw,a ∈
{−168pa ,−112pa ,−56pa ,0,56g a ,112g a ,168g a

}
a priori (in this case |L | = 6 because each affine piece is identified by two consecutive

discretized values of qw,a). Note that, since the trading subproblems still constitute

multistage stochastic programs, we also solve them in linear decision rules. This can

be done in a similar manner as before, and thus the details are omitted for brevity.

The number of trading subproblems to be formulated is equal to S×W × A, and each

subproblem has to be resolved |L |+1 times. Moreover, all of them can be solved in

parallel, which is an important benefit of the planner-trader decomposition.

We highlight that, in the trading subproblems, the weekly decisions ut ,a and dt ,a

are modeled as here-and-now decisions, whereas the daily decisions gt ,a and pt ,a

are adapted to F ′
d(t ), which is defined in (4.2). This is possible because of Assump-

tions (A2) and (A3). Last but not least, the inflow information ψt can be dropped from

the information bases of the decisions gt ,a and pt ,a because of Assumption (A1).

4.6 Bang-Bang Strategy

The purpose of this section is to derive a heuristic for controlling the storage levels

while trading in the electricity markets. This is an important issue to address because

6This observation remains valid when we solve the trading problems in linear decision rules.
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wait-and-see decisions, unlike here-and-now decisions, are not readily available as

they constitute functions and not numbers. Even after the planner-trader decomposi-

tion, the generation and pumping decisions in the spot market are still wait-and-see

decisions in the trading subproblems (4.3). This motivates us to develop a heuristic

to retrieve the values of these decisions at little computational costs. For the devel-

opment of this heuristic, we require that each reservoir has at most one downstream

reservoir, that is, for reservoirs i , j1, j2 ∈I we impose that

(A4) (i , j1), (i , j2) ∈A =⇒ j1 = j2.

If the generation company participates only in the spot market, then a bang-bang

strategy is nearly optimal and often employed; see e.g. Kovacevic et al. (2013, § 4.3)

and Näsäkkälä and Keppo (2008). Under the bang-bang strategy, for each trading

hour t ∈T and for each hydrological arc a ∈A , one of the following three actions is

taken, namely, the generation company either operates the turbine (if exists) at full

power, operates the pump (if exists) at full power, or switches off both the turbine

and the pump. The selection criterion is based on a comparison between spot prices

and water values, where a water value (in e/m3) measures the opportunity cost of

releasing a cubic meter of water. We denote these water values by ϑt ,a .

To make spot prices and water values comparable, we divide the water value ϑt ,a

by the corresponding conversion rate ca in order to measure the opportunity cost

of producing 1 MWh of hydroelectricity. In this case, Table 4.1 below presents the

selection criterion and the corresponding actions underlying the bang-bang strategy.

Simply put, when the spot price is high in comparison to the water value, then it is

profitable for the generation company to generate and sell hydroelectricity. On the

other hand, when the spot price is low, then the generation company should purchase

electricity from the spot market and use it to pump water upstream.

ϑt ,a/ca ≤πs
t ϑt ,a/ca ∈ (πs

t ,daπ
s
t ] ϑt ,a/ca > daπ

s
t

(g a ,0) (0,0) (0, pa)

Table 4.1: Description of the bang-bang strategy explained in terms of (gt ,a , pt ,a) for
engaging in the spot market when the water value is given by ϑt ,a .
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Incidentally, the bang-bang strategy can also be derived from a short-term variant of

our planning model, which maximizes a net revenue in trading hour t locally for each

hydrological arc a:

(gt ,a , pt ,a) ∈ argmax gt ,a(caπ
s
t −ϑt ,a)+pt ,a(ϑt ,a −dacaπ

s
t )

s. t. gt ,a , pt ,a ∈R+
gt ,a ≤ g a , pt ,a ≤ pa .

(4.7)

This linear program incorporates altogether the immediate revenues from trading

in the spot market as well as the incurred opportunity costs. Furthermore, it can be

shown to admit an analytical solution that coincides with the expressions presented in

Table 4.1. In the remainder of this section, we outline how to obtain the water values,

which are instrumental to implementing the bang-bang strategy, from our stochastic

programs and how to extend the bang-bang strategy to the multiple-market case.

4.6.1 Determination of Water Values

Water values may be extracted from the optimization problem (4.1). To achieve this,

we first consider the shadow prices (i.e., dual variables) of the storage level constraint

vt = vt−1+ψt −M
(

st +g t −pt +ρu
t ut −ρd

t dt

)
.

We denote the dual variables of this I -dimensional constraint by λt ∈RI . For trading

hour t , λt ,i determines the monetary value of one additional cubic meter of water

stored in reservoir i . Note that, for the generation company opting out of investment

in the reserve markets, ut and dt can be restricted to 0. In this case, the following

result still applies.

To determine the water value ϑt ,a , we denote the upstream reservoir of arc a by i ∈I .

Moreover, by Assumption (A4), reservoir i has exactly one downstream reservoir

(which can be either a real reservoir or the sink node ⊗), and we denote it by i−. If

i has no downstream reservoir, i.e., a = (i ,⊗), then ϑt ,a coincides with λt ,i . Assume

now that i− �= ⊗. Then, the water value ϑt ,a is thus given by the difference of the the

shadow prices λt ,i −λt ,i− because a water outflow from i constitutes to a water inflow
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to i−.

This method of determining water values is still applicable when we approximate (4.1)

by the planner-trader decomposition. In the planner-trader decomposition, we up-

date the reservoirs’ storage levels on a weekly basis in the planning problem (4.4),

which implies that the shadow prices are also updated weekly. In other words, the

water values ϑt ,a are fixed throughout the week because of the planner-trader decom-

position. Figure 4.3 illustrates the intra-week operation of a hydrological arc a during

a given week when the planner-trader decomposition and the bang-bang strategy are

conjunctively used.

t

π
s t

Figure 4.3: Weekly trading decisions in the spot market determined by the bang-bang
strategy. The two horizontal dashed lines, from bottom to top, represent the values of
ϑt ,a/(cada) and ϑt ,a/ca , respectively, where ϑt ,a is kept constant throughout the week.
When the spot price is above the top dashed line, the generation company releases
water downstream (↓) to sell hydroelectricity, whereas when the spot price is under
the bottom dashed line, the generation company purchases electricity to pump water
upstream (↑).

4.6.2 Extension of the Bang-Bang Strategy

We are now ready to generalize the bang-bang strategy explained in Table 4.1 for the

intra-week operation of the generation company wishing to participate in both the
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spot and reserve markets. To achieve this, we modify the linear program (4.7) by

introducing additional constraints as follows.

(gt ,a , pt ,a) ∈ argmax gt ,a(caπ
s
t −ϑt ,a)+pt ,a(ϑt ,a −dacaπ

s
t )

s. t. gt ,a , pt ,a ∈R+
gt ,a ≤ g a , pt ,a ≤ pa

gt ,a ≤ g a −ut ,a +pt ,a

pt ,a ≤ pa −dt ,a + gt ,a

(4.8)

The new constraints model the obligations of the generation company arising from

the reserve markets. We highlight that the reserve market decisions (ut ,a and dt ,a) are

chosen at the beginning of the week. They represent here-and-now decisions in the

view of the trading subproblems. Therefore, they can be readily extracted upon solving

the stochastic program (4.3). The trading decisions in the spot market, on the other

hand, can instead be determined using the linear progrem (4.8). Henceforth, when

considering this linear program, we assume that ut ,a and dt ,a are already determined.

Similarly to (4.7), we will now demonstrate that (4.8) also admits an analytical so-

lution. Keeping in mind the results in Table 4.1, we begin our derivation by distin-

guishing three regimes for the water values: (i) ϑt ,a/ca ≤ πs
t , (ii) πs

t < ϑt ,a/ca ≤ daπ
s
t

and (iii) ϑt ,a/ca > daπ
s
t . For the case (i), in view of the linear program (4.8), gt ,a and

pt ,a should be set to their respective maximum and minimum, respectively. For the

case (ii), both gt ,a and pt ,a should be set to their respective minima. Finally, for the

case (iii), gt ,a and pt ,a should be set to their respective minimum and maximum.

Note, however, that solving (4.8) is not as straightforward as solving (4.7) because of

the coupling between the decision variables gt ,a and pt ,a in the last two constraints

of (4.8).

To solve (4.8) analytically, we first visualize its feasible region in Figure 4.4. We highlight

that the shape of the feasible set is determined by the reserve market decisions, which

can be categorized into three disjoint cases: (i) ut ,a ≤ g a , dt ,a ≤ pa , (ii) dt ,a > pa

and (iii) ut ,a > g a . In particular, there is no overlap between the cases (ii) and (iii)

because the last two constraints of (4.8) imply that ut ,a +dt ,a ≤ g a +pa .

Furthermore, one can show that it is always suboptimal to have the turbine and
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gt,a

p
t
,a

gt,a

p
t
,a

gt,a

p
t
,a

Figure 4.4: The feasible set of the linear program (4.8) is visualized by the shaded
areas, from left to right, for (i) ut ,a ≤ g a , dt ,a ≤ pa , (ii) dt ,a > pa and (iii) ut ,a > g a .
The marked dots (×××) represent the candidate optimal solutions for each case. For (i),
the candidates are (0,0), (g a −ut ,a ,0) and (0, pa −dt ,a). For (ii), the candidates are
(g a −ut ,a ,0) and (dt ,a − pa ,0). Finally, the candidates for (iii) are (0, pa −dt ,a) and
(0,ut ,a − g a).

the pump operating at the same time. Indeed, if (gt ,a , pt ,a)= (g +δ, p+δ) for some

g , p ≥ 0 and δ > 0 is feasible in (4.8), then a new solution (gt ,a , pt ,a) = (g , p) is also

feasible and yields a better objective value because da > 1. Hence we conclude that, at

optimality, gt ,a or pt ,a vanishes. This observation allows us to readily solve the linear

program (4.8), which in turn admits an analytical solution as displayed in Table 4.2.

ϑt ,a/ca ≤πs
t ϑt ,a/ca ∈ (πs

t ,daπ
s
t ] ϑt ,a/ca > daπ

s
t

ut ,a ≤ g a
dt ,a ≤ pa

(g a −ut ,a ,0) (0,0) (0, pa −dt ,a)

dt ,a > pa (g a −ut ,a ,0) (dt ,a −pa ,0) (dt ,a −pa ,0)
ut ,a > g a (0,ut ,a − g a) (0,ut ,a − g a) (0, pa −dt ,a)

Table 4.2: Description of the extended bang-bang strategy explained in terms of
(gt ,a , pt ,a) for engaging in the spot market when the water value is given by ϑt ,a .

We remark that Table 4.2 generalizes Table 4.1. Indeed, one can verify that if the

generation company decides to trade only in the spot market, i.e., if ut ,a = dt ,a = 0,

then only the first row of Table 4.2 is of interest, and it coincides with the contents of

Table 4.1.
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U M L
v+w,i (m3) 1.85×107 6.90×106 1.6×106

v+w,i (m3)

⎧⎨⎩
1.25×107

if w ≤ 18,
0 otherwise

0 0

Table 4.3: Node parameters of the cascade.

(U ,M ) (M ,L ) (L ,⊗)
ca (MWh/m3) 6.69×10−4 1.03×10−3 6.22×10−4

da 1.40 – –
g a (m3/h) 4.63×104 4.45×104 5.18×104

pa (m3/h) 3.99×104 – –

Table 4.4: Arc parameters of the cascade.

4.7 Case Study: Austrian Electricity Market

The purpose of this section is to evaluate how profitable it is to invest in the reserve

markets. In all of our experiments, we consider a generation company operating a

cascade of three reservoirs, and we assume that the planning horizon comprises one

year divided into weeks w ∈W = {1, . . . ,52}. Moreover, we assume that the topology of

the considered cascade coincides with the one shown in Figure 4.2. We denote the

upper, middle and lower reservoirs by U , M and L , respectively. In our terminology,

reservoirs are represented as nodes of a graph. Their relevant parameters (i.e., bounds

on storage levels) are given in Table 4.3. Reservoirs M and L are allowed to be full or

empty at any point in time during the planning horizon. The storage level of reservoir

U , however, cannot be lower than 67.57% of its full capacity for the first 18 weeks

(starting from 1st of July). Moreover, this cascade possesses three hydrological arcs:

(U ,M ), (M ,L ) and (L ,⊗), where we use⊗ to denote the sink node. The parameters

of each arc are given in Table 4.4, where the first arc has an attached turbine-pump

pair and the remaining ones have only turbines. Finally, we assume that initially all of

the reservoirs are 80% full. The target storage levels at the end of the planning horizon

are set to the initial levels. This ensures a smooth transition between operational

years.
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Figure 4.5: 20 realizations of the weekly inflows in the catchment area of the cascade
across the year.

4.7.1 Experimental Setup

The planner-trader decomposition proposed in Section 4.4 requires as input S real-

izations of the relevant stochastic processes. Here, we explain how these realizations

are obtained. The information in this section has been kindly provided to us by our

industrial partner, Decision Trees GmbH.

We consider 20 realizations of the total weekly inflows in the catchment area of the

cascade as illustrated in Figure 4.5. These are part of the input to the planning prob-

lem (4.6). The total inflow to the different reservoirs is distributed proportionally

to their surface areas. In our experiment, reservoirs U , M and L are assumed to

receive 11%, 57% and 0%, respectively, of the total inflows. We note that this constant

proportion assumption speeds up the solution time of the planning problem as we

can reduce the information bases for the decisions in (4.6). In particular, we can

replace ψ+
w ∈RI with a single scalar.

We now consider the stochastic processes explaining the electricity spot prices. We

assume that the spot price forward curve is available to the generation company at the

beginning of the planning horizon. In our experiment, we use hourly spot prices from

2014 as our price forward curve.7 We denote this price forward curve by πf
0,t , t ∈T .

We use this price forward curve to construct realizations of the spot prices as well as

7Historical prices are available for download at https://www.eex.com/en/market-data.
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the updated price forward curve at time τ> 0, denoted by πf
τ,t , through

πs
t =πf

0,t ·
exp(xt )

E
(
exp(xt )

) , ∀t ≥ 0 and πf
τ,t =πf

0,t ·
E
(
exp(xt )|Fτ

)
E
(
exp(xt )

) , ∀t ≥ τ,

where xt and yt are exogenous stochastic processes. Their evolution is described by

the stochastic differential equations

dxt =α(yt −xt )dt +σxdw x
t and dyt =σy dw y

t , (4.9)

driven by the independent standard Wiener processes w x
t and w y

t .8 This two-factor

model for electricity spot and forward prices is inspired by Pilipovic (1998); Haar-

brücker and Kuhn (2009), respectively. The exact values for α,σx and σy used in our

experiments are again shared with us by Decision Trees GmbH. To further elaborate,

we sort the price forward curve [πf
0,t ]t∈T in ascending order and divide it into five

equidistant bands. Accordingly, we split the trading hours T into five disjoint sets.

The corresponding α,σx and σy for each price band are given in Table 4.5.

Spot price band
1 2 3 4 5

α (year−1) 20.767 391.283 508.168 333.480 282.830
σx (year−1/2) 4.648 12.260 9.781 9.758 9.184
σy (year−1/2) 0.123

Table 4.5: Parameters for the stochastic differential equations (4.9).

Note that the spot price simulation heavily relies on the calculation of E
(
exp(xt )

)
. To

demonstrate how these expectations are obtained from (4.9), we observe that both

xt and yt are normally distributed; see Haarbrücker and Kuhn (2009). Hence, exp(xt )

follows a longnormal distribution, and its expectation can be expressed in terms of

the mean and variance of xt . A detailed derivation of the first two moments of xt is

relegated to Appendix A.2.

Figure 4.6 below demonstrates how to use the price forward curve to simulate spot

prices and how to update it in the future. The updated price forward curve can then

8In this setting, [(xt , yt )]t∈T is Markovian but [πs
t ]t∈T is not, implying that Assumption (A3) is vio-

lated. We conjecture that this phenomenon does not greatly degrade the quality of the decomposition.
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be used to simulate new updates of the spot prices as time passes. The spot price

realizations in the left figure are simulated using the original price forward curve

[πf
0,t ]t∈T , and they constitute inputs for the planning problem (4.6). On the other

hand, the realizations in the right figure are obtained from the updated price forward

curve. These realizations represent spot prices as seen by the trading subproblems,

where the trader updates the price forward curve using on-line information from the

most recent week.

t t t

Figure 4.6: Spot price simulation using the price forward curve. In the left figure, the
solid and dashed lines represent πf

0,t and πs
t , respectively. In the middle figure, we

update the price forward curve and obtain πf
τ,t , which is represented by the solid line.

In the right figure, we simulate new spot prices πs
t for t ≥ τ using the updated price

forward curve.

Finally, for the reserve markets, we assume that the activations of the reserve capacities

(ρu
t and ρd

t ) follow independent Bernoulli distributions with success probabilities of

1%. Assume further that the electricity prices in the reserve markets (πu
t and πd

t ) follow

uniform distributions as described in Table 4.6. Within a week, there are 60 peaking

hours and 108 off-peak hours. Peaking hours cover the periods with high electricity

demands from 8:00 to 20:00 from Monday to Friday.9 Under these assumptions, we

can generate any given number of realizations of the random variables relevant to the

reserve markets. To be consistent with the number of the inflow scenarios available to

us, we generate 20 realizations of πu
t ,πd

t ,ρu
t ,ρd

t , and we set all of the reserve capacity

fees φu
t ,φd

t to zero in all of our experiments. In practice, the reserve capacity fees can

be strictly positive. In that case, setting φu
t = φd

t = 0 for all t ∈ T is a conservative

choice which underestimates the profit opportunities of the generation company.

9http://www.apg.at
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Peaking hour (e/MWh) Off-peak hour (e/MWh)
lower bound upper bound lower bound upper bound

πu
t 590.4 885.6 641.9 962.9

πd
t 1518.4 2277.6 1586.6 2380.0

Table 4.6: Distributional parameters of the electricity reserve prices.

Under this setting, we then have a set S of 20 realizations of ξ. In order to solve

the planning and the trading problems, we also have to specify precisely the uncer-

tainty set Ξ defined in (4.5). The lower bounds and the upper bounds in Table 4.6

correspond to the values of πu
t ,πu

t ,πd
t ,πd

t . On the other hand, the lower bounds and

the upper bounds on electricity spot prices and weekly inflows are determined from

the minimum and the maximum of the corresponding variables over all realizations

ξ1, . . . ,ξS .

Specifically to the regulations of the Austrian electricity markets, the tendering period

of reserve capacities is one week. Within a week, reserve-up capacities for all peaking

hours must be equal. Similarly, reserve-up capacities for all off-peak hours must also

share the same value. These rules also apply to reserve-down capacities. We remark

that these requirements are readily embedded in the trading subproblems (4.3).

4.7.2 Numerical Results

We now assess the benefit of trading in the reserve markets. To this end, we solve the

planning problem in a receding horizon fashion. That is, at the beginning of each week

w , we resolve the planning problem in order to obtain the target release quantities

q�
w . We then solve the trading subproblems to obtain the reserve capacity decisions

u�
t and d�

t for t ∈T (w). In fact, since we already solve each trading subproblem for

different values of the target release qw,a when we approximate Πw,a by Π̂w,a , we may

estimate u�
t ,a and d�

t ,a by linear interpolation over qw,a . Lastly, we use the extended

bang-bang strategy developed in Section 4.6 to decide on the trading decisions g�
t

and p�
t in the spot market. In doing so, we only extract first-stage decisions from

the planning and trading problems, and we use the heuristics to obtain high-quality

wait-and-see decisions.

We then repeat the experiment with the additional restriction that all reserve capacities
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are zero, implying that the generation company trades in the spot market only. We

then compare the results of both experiments to quantify the profitability of the

reserve markets by several means: shadow prices, storage levels, and total revenues.

All linear programs are solved with CPLEX 12.6.2. For all trading subproblems that can

be solved in parallel, we thank the High Performance Computing (HPC) services at

École Polytechnique Fédérale de Lausanne and Imperial College London for allowing

us to use their platforms.

Shadow prices: When we solve the planning problem at the beginning of week w ,

we can extract the shadow prices λt (w), which in turn give us information about water

values to be used in the extended bang-bang strategy. Figure 4.7 below compares the

shadow prices of the three reservoirs. By participating in the reserve markets, the

shadow prices of all reservoirs increase, which is already an indicator of the additional

profitability offered by the reserve markets.
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Figure 4.7: Weekly shadow prices (e/m3) of the three reservoirs, from top to bottom,
U , M and L . The left figure shows the shadow prices when the generation company
trades in the spot market only, whereas the right figure represents the case where the
generation company trades simultaneously in both the spot and reserve markets. The
shaded areas cover the range between the 10%- and 90%-percentiles of the shadow
prices, and the marked lines (×) in the middle of the shaded areas represent average
shadow prices.

Storage levels: In Figure 4.8, we show how the storage levels of the three reservoirs

evolve over the entire planning horizon. Recall that, for each reservoir, we set the
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initial and target storage levels to 80% of its full capacity. In the planning model (4.4),

the storage levels are updated every week, while in reality they are updated on a much

finer scale. To capture the storage levels in high resolution, Figure 4.8 shows hourly

storage levels, where within a week we use the transactions (determined by the trader)

on the electricity markets to determine the hourly storage levels, and we assume that

natural inflows are uniform within a week, i.e., ψt = 1
168ψ

+
w for every t ∈T (w). We

can see that participation in the reserve markets reduces the variation in the storage

levels.

On the other hand, it can also be seen that it is possible for the storage levels to drop

below zero. This is the price that we have to pay for tractability, as in the planner-trader

decomposition, we only impose bounds on the storage levels at the end of each week.

However, since the considered cascade consists of only seasonal reservoirs, these

events are very rare. Though, it should be pointed out that the current model is not

suitable for daily or hourly reservoirs. To account for smaller reservoirs, we may have

to change our decomposition scheme as we have to keep track of hourly storage levels.

Alternatively, this phenomenon could be avoided by increasing the lower bounds of

the storage levels to combat the effects of over-discharging.
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Figure 4.8: Storage levels (m3) of the three reservoirs, from top to bottom, U , M and
L . The left figure shows the storage levels when the generation company trades in the
spot market only, whereas the right figure represents the case where the generation
company trades in both the spot and reserve markets. The shaded areas cover the
range between the 10%- and 90%-percentiles of the storage levels, and the marked
lines (×) in the middle of the shaded areas represent the average storage levels.
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Total revenues: Finally, Figure 4.9 compares the cumulative revenues over the entire

planning horizon for two cases: (i) the generation company trades in the spot market

only and (ii) the generation company trades in both the spot and reserve markets.

By participating in both markets simultaneously, the generation company can in-

crease average revenues by 48.3%. Hence, our analysis in this chapter suggests that

the reserve markets offer substantial additional profit opportunities for hydropower

generation companies.

Week
10 20 30 40 50

C
um

ul
at

iv
e 

re
ve

nu
e

×10 7

0

0.5

1

1.5

2

2.5
spot + reserve
spot

Figure 4.9: Cumulative revenues (e) from all three reservoirs over the entire planning
horizon. The shaded areas cover the range between the 10%- and 90%-percentiles of
the cumulative revenues, and the marked lines in the middle (×) of the shaded areas
represent the averages.
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5 Conclusions

Information in optimization problems is often inexact, and disregarding this phe-

nomenon may lead to ill-informed decisions which perform disappointingly. In the

past, researchers have identified two principles to deal with uncertain information.

On the one hand, uncertainty in optimization problems is representable as random

variables governed by a probability distribution. On the other hand, it can be ex-

pressed as uncertain parameters living on an uncertainty set. In the former approach,

a risk-neutral decision maker may try to minimize an expected loss function; in this

case, the arising optimization problem is a stochastic program. In the latter approach,

a risk-averse decision maker may seek a robust solution that is optimal in the view of

worst case. While both approaches are pervasively implemented in practice, they are

not without shortcomings. Stochastic programs are computationally demanding to

solve, and exact solution methods generally require perfect knowledge of the distribu-

tion, which is difficult to acquire in practice. On the other hand, even though typically

tractable, robust programs are ignorant of any distributional information except for

the support and therefore often considered to be overly conservative. To mitigate the

drawbacks of each paradigm, one might consider combining both of them. Indeed, a

distributionally robust optimization approach has been intensively explored in the

past few years. The main results in this thesis are leveraged from distributionally

robust optimization techniques and linear decision rule approximations in stochastic

programs.

In this thesis, we considered applications of optimization under uncertainty in dif-

ferent disciplines. Particularly, we utilized techniques from distributionally robust
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optimization in financial and mathematical applications, in Chapter 2 and Chapter 3

respectively. In Chapter 4, on the other hand, we formulated a multi-market multi-

reservoir management problem as a stochastic program and solved it approximately

in linear decision rules. We highlight that the solutions obtained in Chapter 4 is dis-

tributionally robust in the sense that the expected revenue earned by the generation

company remains unchanged even under perturbed probability distributions as long

as their first and second moments are preserved. This is an artifact of the approxima-

tion, owing to the fact that the expectation of a quadratic function can be expressed in

terms of the first two moments of the distribution.

Another important feature of this thesis lies in complexity reduction and decompo-

sition schemes. In Chapter 2 and Chapter 3, the complexity reduction was achieved

by exploiting the permutation symmetry of the first two moments of weak-sense

stationary processes. In Chapter 4, the reduction is more direct as we decomposed the

reservoir management problem spatially and temporally, which is possible by distin-

guishing between dynamics with different paces. We hope that these decomposition

ideas can be reused in other problems which may appear discouraging to solve at first

glance.

5.1 Future Research Avenues

During the course of the doctoral programme, we identified several research questions

to address in the future. Some of them would complement the results in the thesis,

whereas the others would answer open questions in optimization under uncertainty.

In Chapter 2 and Chapter 3, we studied variants of distributionally robust chance

constrained programs with Chebyshev-type ambiguity sets. An interesting open ques-

tion here is to investigate whether it is possible to extend the tractable reformulations

of individual chance constraints to joint chance constraints. The extension is by no

means obvious, even in the following simple setting

inf
P∈P

P(Ax ≤ ξ̃)≥ 1−ε, (5.1)

where A ∈Rm×n is a technology matrix with m > 1, x ∈Rn is a decision vector, and P
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is a Chebyshev-type ambiguity set. Zymler et al. (2013a) highlighted the numerical

difficulties encountered upon solving these programs exactly, whereas recently Hana-

susanto et al. (2015b) proposed a tractable reformulation of these programs, albeit

in a different ambiguity setting. Despite these indications, it still remains unknown

whether a tractable reformulation of (5.1) exists.

In Chapter 3, we derived sharp probability bounds for products of random variables.

Unlike the classical Chebyshev inequalities, our bounds are not analytical and have to

be obtained by solving a semidefinite program whose size scales with the number of

random variables (T ) in the product. Hence, the computational burden for calculating

these bounds increases with T . Although, this is not as cumbersome as it sounds

because we showed, for large T , that the bounds reduce to a trivial number or to an

analytical bound for the majority of the quantiles, it would still be more insightful

to have bounds that are more accessible. Perhaps one can show that the Chebyshev

bounds for products admit closed-form expressions that we are not aware of. In that

case, it would be interesting to relate the solutions of the semidefinite programs with

the corresponding analytical bounds.

In line with Bertsimas and Popescu (2005), this chapter provides an optimization

perspective for probability inequalities. There are abundant applications in machine

learning, probability, and statistics which can benefit from advances in optimization

under uncertainty. Recent examples include Goldenshluger et al. (2015) and Fertis

(2009).

Moreover, the distributionally robust optimization with Chebyshev-type ambiguity

sets can be classified as a parametric approach which assumes that the probability

distribution is fully characterized by a finite set of fixed parameters. With increasing

processing power and storage capabilities, however, one may be inclined towards a

non-parametric (or a data-driven) approach, in which the distributional knowledge

can be adapted to accumulated information; see Mohajerin Esfahani and Kuhn (2015).

Last but not least, the results in Chapter 4 are not yet settled and more experiments

have to be performed before we can provide the generation companies with informed

managerial insights. To get a comprehensive understanding of the problem, we should

(i) quantify the loss of optimality incurred by the linear decision rule approximation,
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(ii) improve the model in such a way that daily reservoirs can be included, (iii) compare

the obtained results with the results from other approaches proposed in the literature,

and (iv) reduce the solution times of both the planning and the trading problems.
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A Appendices

A.1 Distributionally Robust Chance Constraints

Theorem A.1. Let P be the set of all probability distributions of ξ̃ ∈Rn that share the

same mean μ ∈ Rn and covariance matrix Σ ∈ Sn+, Σ 
 0. Moreover, let P (Ξ) be the

subset of P that contains only distributions supported on the ellipsoid Ξ = {ξ ∈ Rn :

(ξ−ν)ᵀΛ−1(ξ−ν)≤ δ}, where Λ ∈Sn, Λ
 0, ν ∈Rn and δ ∈R, δ> 0. Then, for Q ∈Sn,

q ∈Rn and q0 ∈R, the following statements hold.

(i) The distributionally robust chance constraint infP∈P P
(
ξ̃ᵀQξ̃+ ξ̃ᵀq +q0 ≤ 0

)≥
1−ε with moment information is equivalent to

∃M ∈Sn+1, β ∈R : β+ 1

ε
〈Ω,M〉 ≤ 0, M	 0, M	

⎡⎢⎢⎣ Q 1
2 q

1
2 qᵀ q0−β

⎤⎥⎥⎦ . (A.1)

(ii) The distributionally robust chance constraint infP∈P (Ξ)P
(
ξ̃ᵀQξ̃+ ξ̃ᵀq +q0 ≤ 0

)≥
1−ε with moment and support information is implied (conservatively approxi-
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mated) by

∃M ∈Sn+1, α≥ 0, β≤ 0, λ≥ 0 :

β+ 1

ε
〈Ω,M〉 ≤ 0, M	α

⎡⎢⎢⎣ −Λ−1 Λ−1ν

(Λ−1ν)ᵀ δ−νᵀΛ−1ν

⎤⎥⎥⎦ ,

M	

⎡⎢⎢⎣ Q 1
2 q

1
2 qᵀ q0−β

⎤⎥⎥⎦+λ

⎡⎢⎢⎣ −Λ−1 Λ−1ν

(Λ−1ν)ᵀ δ−νᵀΛ−1ν

⎤⎥⎥⎦ .

(A.2)

In the above expressions, Ω is a notational shorthand for the second-order moment

matrix of ξ̃, i.e.,

Ω=
[

Σ+μμᵀ μ

μᵀ 1

]
.

Proof. Assertion (i) follows from Vandenberghe et al. (2007) or Theorem 2.3 of Zymler

et al. (2013b). Assertion (ii) is an immediate consequence of Theorem 3.7 of Zymler

et al. (2013b). Note that (A.2) reduces to (A.1) if we set α=λ= 0.

A.2 Mean and Variance of Mean-Reverting Processes

Lemma A.1. Consider a two-dimensional stochastic process {(xt , yt )}t≥0 defined by (4.9)

with a given initial condition (x0, y0). The following statements hold.

(i) The mean of xt is (x0− y0)exp(−αt )+ y0.

(ii) The variance of xt is (1,0,0)
∫t

0
exp(ατN)

(
σ2

x ,0,σ2
y

)ᵀ
dτ, where N is a constant

matrix defined as

N=

⎡⎢⎢⎣
−2 2 0

0 −1 1

0 0 0

⎤⎥⎥⎦ .

Proof. The expectation of xt has a starting point E(x0)= x0 and follows a deterministic
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process

dE(xt )= E(dxt )= E(α(yt −xt )dt )=α
(
y0−E(xt )

)
dt ,

where the last equality holds because E(yt ) = y0, which is implied by the second

equation in (4.9). From elementary calculus, the solution of the above ordinary

differential equation is given by

E(xt )= (x0− y0)exp(−αt )+ y0,

and thus assertion (i) holds. As for assertion (ii), we consider the derivative of the

second-order moment of (xt , yt ), which includes the variances of xt and yt as well as

their covariance. To facilitate the calculation of these derivatives, we define cov(·, ·) as

the covariance between two input random variables. First, for the derivative of the

variance of xt , we consider

cov(xt+dt , xt+dt )= cov
(
xt +α(yt −xt )dt +σxdw x

t , xt +α(yt −xt )dt +σxdw x
t

)
= cov(xt , xt )+α2cov

(
yt −xt , yt −xt

)
(dt )2+σ2

xcov(dw x
t ,dw x

t )+
2α cov(xt , yt −xt )dt .

Hence, we find d
dt cov(xt , xt )=σ2

x +2α cov(xt , yt −xt ). Similarly, we find

d
dt cov

(
yt , yt

)=σ2
y and d

dt cov
(
xt , yt

)=α cov
(
yt −xt , yt

)
.

Introducing a vector of second-order moments zt = [cov(xt , xt ) ,cov
(
xt , yt

)
,cov

(
yt , yt

)
]ᵀ,

the above three differential equations are representable as

d
dt zt =

(
σ2

x ,0,σ2
y

)ᵀ+αNzt .

Moreover, this linear system has an initial condition z0 = 0 because (x0, y0) is deter-

ministically given. It can then be shown to admit a solution of the form

zt =
∫t

0
exp(ατN)

(
σ2

x ,0,σ2
y

)ᵀ
dτ,

where in this case ‘exp’ represents the matrix exponential. With this, assertion (ii)
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holds and the proof thus completes.
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