
 

 
 
 
 

Robust Optimisation and its 
Application to Portfolio Planning 

 
 
 
 
 
 

by 
 

Christine Gregory 
 
 
 
 
 
 
 

A thesis submitted for the degree of Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Mathematical Sciences 
School of Information Systems, Computing and Mathematics 

Brunel University 
 
 

May 2009 
 



i 

 

Abstract 

 
Decision making under uncertainty presents major challenges from both modelling 

and solution methods perspectives.  The need for stochastic optimisation methods is 

widely recognised; however, compromises typically have to be made in order to 

develop computationally tractable models.  Robust optimisation is a practical 

alternative to stochastic optimisation approaches, particularly suited for problems in 

which parameter values are unknown and variable.  In this thesis, we review robust 

optimisation, in which parameter uncertainty is defined by budgeted polyhedral 

uncertainty sets as opposed to ellipsoidal sets, and consider its application to 

portfolio selection.  The modelling of parameter uncertainty within a robust 

optimisation framework, in terms of structure and scale, and the use of uncertainty 

sets is examined in detail.  We investigate the effect of different definitions of the 

bounds on the uncertainty sets 

 

An interpretation of the robust counterpart from a min-max perspective, as applied to 

portfolio selection, is given.  We propose an extension of the robust portfolio 

selection model, which includes a buy-in threshold and an upper limit on cardinality.  

We investigate the application of robust optimisation to portfolio selection through 

an extensive empirical investigation of cost, robustness and performance with respect 

to risk-adjusted return measures and worst case portfolio returns. 

 

We present new insights into modelling uncertainty and the properties of robust 

optimal decisions and model parameters.  Our experimental results, in the application 

of portfolio selection, show that robust solutions come at a cost, but in exchange for a 

guaranteed probability of optimality on the objective function value, significantly 

greater achieved robustness, and generally better realisations under worst case 

scenarios. 
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Chapter 1  

 

An Introduction to Decision Making 
under Uncertainty   

 
Optimisation is fundamental to decision making.  Each time we make a decision we 

take in the available information (past, present and future), process it, and then take 

what we believe is the best action.  In fact, most of the time, the information we use 

to make our decisions is not known exactly, we may only have estimates.  

Essentially, we are optimising under uncertainty, although, we may not think of it 

that way.  Consider the following typical domestic situation:  You’ve hired an 

electrician to install a new fuse box at your flat tomorrow, but you don’t know 

exactly what time he will arrive, only that it will be between 8am and 1pm.  You 

have taken the day off work because you need to be home during the installation.  In 

addition, you have a list of errands to run, to make the most of your day off, but you 

know they will not all get done if the electrician does not show up before 12pm.  You 

also know, from past experience, that he most likely will not arrive before 10am; 

however, if you pop out in the morning and he arrives earlier than expected he will 

not wait around – you will have to schedule another appointment.  What should you 

do?   

 

This problem is actually multi-objective, the aim is to minimise the risk of having to 

reschedule whilst maximising the number of errands that get done.  As input there 

are known parameters (i.e. number of total hours available in your day, number of 

errands to run, the upper and lower bounds for the arrival time of the electrician) and 

uncertain parameters (i.e. the actual arrival time of the electrician).  In addition, there 
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may be particular errands that have to be done while others can wait for another day.  

Thus, they are ranked in order of importance; some may even have a penalty 

associated with not getting them done on the day.  Lastly, there is past experience 

(i.e. available historical data) which enables you to estimate the time period in which 

the electrician is most likely to arrive.  In essence, you are optimising under 

uncertainty.  Thus, there is a natural intuition to consider uncertainty in a decision 

making process; that is, to incorporate the uncertainties into our assessment of a 

situation such that they have an impact on our decisions. 

 

Throughout the remainder of this chapter, we show that just as we are naturally 

inclined to consider uncertainty in a decision making process, when uncertainties are 

present, so should uncertainty be considered in the modelling stage of a real-world 

mathematical programming problem. This necessitates the development and 

application of techniques such as robust optimisation, which incorporate parameter 

uncertainties into the modelling process 

 
 

1.1 Background and Motivation 

 

Many of the great contributions to research arise from practical situations which 

demand better ways of getting a job done.  The birth of mathematical programming 

and the developments henceforth are no different.  The advent of linear programming 

and the implementation of the simplex method as a general solution method during 

the late 1940s were spurred by George Dantzig’s work in the Pentagon during World 

War II.  It began for Dantzig with a need to mechanise the planning process and 

ended with a novel problem formulation and solution method for which even Dantzig 

didn’t initially recognise the potential (Dantzig, 2002).  His planning problem 

formulation implemented an objective function in place of ad-hoc ground rules, 

which were common place, and expressed the problem constraints as a system of 

linear equalities and inequalities (Dantzig, 2002).  Later that same year he proposed 

the simplex method, which, with its subsequent improvements over the years, 

continues to be one of the most applied methods for solving linear programs.  
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Why is it that it was not until Dantzig’s time that those breakthroughs in 

mathematical programming were made?  It wasn’t that the mathematical tools did 

not exist or that the knowledge prior to 1947 to create linear programming and its 

solution methods was lacking.  As far back as 1826, traces of the idea of linear 

programming and the simplex method can be found in works by Fourier (Schrijver, 

1986).  Dantzig (2002) suggests that before 1947, there was simply “a lack of interest 

in trying to optimise” which he corresponds to a lack in computing power.  We see 

through history that Dantzig’s assessment is probably correct as the increases in 

computing power (or the promises thereof) are closely correlated with more 

advanced optimisation models and solution methods for more complicated problem 

formulations. 

 

Interestingly, although Dantzig’s new techniques could be used to solve large 

complex systems, it was a deterministic formulation.  However, his initial problem 

was planning dynamically under uncertainty; thus, his initial problem remained 

unsolved.  It wasn’t until 1955 that Dantzig proposed a method for solving linear 

programs under uncertainty, which marked the beginning of stochastic programming, 

and essentially the beginning of optimisation under uncertainty (a similar work was 

also published the same year independently by Beale (1955)).  Subsequent 

methodologies for planning dynamically under uncertainty include, but are not 

restricted to, chance constrained programming (Charnes and Cooper, 1959), 

stochastic dynamic programming (Greenberg, 1968) and robust optimisation 

(Soyster, 1973).   

 

So, why did Dantzig consider his initial problem unsolved?  Is not a deterministic 

formulation sufficient?  Does optimisation under uncertainty really demand our 

attention?  In many real-world problems, the data are not known exactly.  Ben-Tal, 

El Ghaoui and Nemirovski (2009) differentiate between two types of uncertain data: 

high precision data and stochastic data.  An example of high precision data is what 

the authors term “ugly reals”, data which is given to say five or more decimal places.  

They argue that this type of precise data is rarely, if ever, known with 100% 

certainty.  However, the range within which the true value lies is typically known.  

Stochastic data is not only unknown, but variable.  Variability, commonly expressed 
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as a statistical measure (e.g. standard deviation, variance), is the “naturally occurring, 

unpredictable change” (Burgman, 2005) of a parameter and is not reducible by the 

acquisition of more knowledge (Vose, 2000).  That is, no matter how much 

information is acquired about the parameter it is not going to change its behaviour.  

Uncertainty, however, reflects a lack of knowledge about a future event and can be 

reduced (but not necessarily eliminated) by gathering more information (Vose, 

2000); for example, by collecting more data, parameter distributions can be more 

precisely estimated.  To illustrate the difference between variability and uncertainty, 

consider the random walk of a stock price, which depicts its “naturally occurring, 

unpredictable change”.  It is not possible to change the random walk, i.e. make it less 

volatile, no matter how much data is collected or knowledge acquired regarding its 

past behaviour – this is variability.  However, if we estimate the distribution of a 

random walk, acquiring more information about its past behaviour will increase the 

precision of that estimate – this is uncertainty.   

 

Regardless of the type of data uncertainty, high precision or stochastic, not 

incorporating information about uncertainty, such as the interval within which the 

true value is likely to fall or characteristics about the variability and uncertainty of 

the data, can be problematic.  To illustrate the potential impact of using a 

deterministic model when data is uncertain, consider the following example given by 

Ben-Tal, El Ghaoui and Nemirovski (2009), using PILOT4 from the NETLIB 

library.  This LP has 1000 variables and 410 constraints.  In constraint 372, 28 of the 

variable’s coefficients are non zero and range in value from -122.163055 to 

717.562256, seven of which are between -1 and 1.  Let’s say that these coefficients 

are uncertain, but within 0.1% of their “true” values.  The authors show that in the 

worst case, the constraint will be violated by as much as 450%.  They also show that 

even if the uncertain coefficients do not take their worst case, but only assume a 

random value within 0.1% of the nominal value (assuming they are uniformly 

distributed within that range), on average the constraint will be violated by 125%.  

This example is not an exception either, nor was it the worst; similar results were 

obtained using other examples from the NETLIB library (see Ben-Tal et. al. (2009) 

for further detail). 
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To answer our previous questions, Dantzig considered his initial problem unsolved 

because of the answers to the second and third question: no, deterministic 

formulations are not sufficient, and yes, data uncertainty does demand our attention, 

as was illustrated by the preceding example.  We also hold to this view, in 

conjunction with many other authors, and argue that a deterministic formulation of a 

model, which has parameters that are not known exactly, is not sufficient.  In fact, 

assuming that it is sufficient and implementing such solutions can be misleading, and 

in many cases costly, depending upon the area of application.  Therefore, there is a 

need for the development and application of methodologies for decision making 

under uncertainty. 

 
 

1.2 Methodologies for Decision making under Uncertainty 

 

There are three common approaches to decision making when a problem’s 

parameters are uncertain:  1) simply ignoring it and applying a deterministic model, 

2) post-optimal analysis, such as sensitivity analysis, or 3) treating uncertainty in the 

modelling stage, such as stochastic optimisation and robust optimisation.  A 

deterministic approach assigns static estimates to unknown parameter values which 

may yield unreliable and unusable decisions.  If the realised parameter values deviate 

too much from their estimates, constraints are violated and decisions become 

infeasible.  A post-optimal analysis, such as sensitivity analysis, assesses the 

sensitivity of the solution to changes in parameter values by changing one parameter 

at a time.  That is, it asks the question “How much can the actual parameter value 

differ from its estimate before the solution loses optimality or feasibility?”  However, 

it is only a means of studying the effects of variability and uncertainty on the optimal 

decision, but does not protect against them.   

 

Alternatively, methodologies such as stochastic optimisation and robust optimisation 

treat variability and uncertainty in the modelling stage.  Under the umbrella of 

stochastic optimisation are a range of approaches.  Three of the most widely known 

and applied approaches are stochastic programming, stochastic dynamic 

programming and chance-constrained programming.  In a stochastic optimisation 
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approach, parameter distributions, or a model that accurately creates them, are 

assumed to be known.  Thus, it is dependent upon precise estimates of the probability 

distributions of uncertain parameters which are used to generate scenarios over 

which the problem is optimised.  In this paradigm, constraints are allowed to be 

violated, but with a specified penalty.  Therefore, the solution may not be feasible for 

all scenarios.  The idea is to hedge against the risk of unfavourable scenarios that 

may occur in the future.  A difficulty with stochastic optimisation approaches is that 

as the number of scenarios increases, the computational demands increase 

significantly.  In addition, the quality of the solution is determined by the validity of 

the assumptions governing the stochastic process used to generate scenarios.  In 

contrast, robust optimisation re-formulates the uncertain model so that the stochastic 

element is removed and the problem is deterministic.  Under this approach, 

knowledge of the underlying probability distributions is not required and scenarios 

are not needed; instead, uncertain parameters are bounded by convex sets (known as 

uncertainty sets) and the problem is optimised under the restriction that decisions 

must be feasible no matter what value each parameter takes within its defined set. 

 
 

1.2.1 Stochastic Optimisation   

 

Stochastic Programming.  The basic stochastic programming formulation of an 

uncertain problem is to minimise expected costs, f(x, ξ).  It is assumed that the 

random vector ξ has a ‘known’ distribution.  The objective seeks an optimal decision 

which will be best ‘on average’ and feasible for all possible realisations of the 

random vector ξ.  This basic formulation can be extended to a two-stage (Beale, 1955 

and Dantzig, 1955) or a multi-stage problem.  Two-stage stochastic programs are the 

most common type of formulation; in many situations they provide better solutions 

than single stage problems and are more readily solved than multi-stage problems 

(Shapiro and Philpott, 2007).   

 

The goal of a two-stage problem is to determine the best decision now (at the first 

stage) given all possible scenarios of what could happen after the decision is made.  

The optimal solution is not only a set of first stage decisions, but also a set of second 
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stage decisions to be made in response to the random scenarios.    Essentially, a two-

stage problem seeks to minimise the cost of the decisions made now and the 

expected cost of the second stage decisions. 

 

Stochastic programming is known to suffer from “the curse of dimensionality” 

because relatively small problems can be computationally intractable.  In fact, Dyer 

and Stougie (2006) provide theoretical evidence that stochastic programming 

problems are generally hard to solve, even more so than a majority of well known 

combinatorial optimisation problems.  In order to solve a two-stage problem 

numerically, it is assumed that the number of possible scenarios of ξ is finite and that 

each scenario can occur with probability P (Shapiro and Philpott, 2007).  However, 

due to computational complexity, it is necessary to restrict the cardinality of the set 

of possible scenarios of ξ by restricting either the number of random parameters or 

the number of potential values each parameter can take, or both.  To demonstrate 

how easily a stochastic programming formulation can become too computationally 

costly, consider the following example: say ξ is a random vector containing 20 

random variables with known distributions, and each ξi will take one of 2 possible 

values at each stage, with probability 1.  With a small problem of this type, taking the 

expectation of f requires summing over 2(20 x 2 stages) or 1012  realisations of the vector 

ξ.  With modern computing power 1012  may not seem like a large number, but as the 

number of possible values of each random variable and/or the number of random 

variables increases, and the problem size increases exponentially.  For example, if ξ 

contains 40 random variables, each with 5 possible values at each stage, the 

expectation requires summing 5(40 x 2 stages) or 8x1055 realisations of the vector ξ, 

which results in an impractically large scale optimisation problem.  Despite its “curse 

of dimensionality”, stochastic programming is a powerful optimisation methodology.  

However, when solving large, real world problems, approximation algorithms are 

necessary (Sen, 2004). 

 

Stochastic Dynamic Programming.  The “essence” of dynamic programming, as 

Bellman (1966) puts it, is to “do the best we can starting from where we are”.  

Bellman demonstrates this principle using an example of calculating the optimal 

trajectory of a space vehicle.  After leaving its initial position, the space vehicle is 
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likely to veer off course, at which point, the optimal trajectory from its current 

position is no longer the initial optimal trajectory.  Thus, instead of trying to get back 

on course, the space vehicle should follow the optimal trajectory calculated from its 

current position.  In other words, the optimal decision of a problem, at any given 

point in time does not depend on previous decisions (i.e. the initial optimal 

trajectory) or the previous state (i.e. the previous position of the space vehicle); it 

only depends on the current state (i.e. current position in space), the available 

resources (i.e. time, fuel, etc…) and the target (i.e. the destination of the space 

vehicle). 

 

Essentially, dynamic programming formulates a problem as a multistage decision 

process and finds the optimal decision by starting at the final stage and working 

backwards, solving the problem recursively.  That is, an optimal solution is found at 

each stage, but is only dependent upon the current stage and state as well as the 

remaining stages.  Dynamic programming has proven to be a powerful tool, 

particularly for deterministic problems.  Challenges arise, however, when the states 

at each stage are uncertain as a result of uncertain parameters – this is a stochastic 

dynamic programming problem (Greenberg, 1968).  Uncertain parameters are 

characterised by probability distributions which are used to generate scenarios at 

each stage.  As with stochastic programming, stochastic dynamic programming 

suffers from the “curse of dimensionality”, thus limiting the number of stages, states 

and scenarios that can be handled in practice. 

 

Chance Constrained Programming.  Stochastic and stochastic dynamic 

programming approaches allow for the possibility of constraints to be violated, 

although typically at some cost.  In certain situations, it is not practical to permit such 

violations.  Instead, it is more appropriate to use an approach which provides a strong 

guarantee on the feasibility of the solution by introducing probabilistic or chance 

constraints (Charnes and Cooper, 1959), which guarantee the feasibility of every 

constraint with high probability.   

 

The basic chance constrained programming model reformulates an optimisation 

problem with uncertain parameters in the constraints, by introducing the condition 
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that the constraints, either individually or jointly, must be feasible with some 

guarantee of confidence α.  That is, either the probability of each individual 

constraint being feasible is greater than or equal to α or the probability of any 

constraint being feasible (considered jointly) is greater than or equal to α.  In this 

approach, not only is it assumed that the distributions of the uncertain parameters are 

known or can be estimated, but that the probability distributions defining the 

individual or joint chance constraints are also known or can be estimated.  Recently, 

however, the application of ambiguous chance constraints has been introduced, 

eliminating the second assumption.  This approach considers the case when the 

probability distributions defining the chance constraints are unknown, but are known 

to belong to an uncertainty set. 

 

Chance constrained problems, first considered 50 years ago, are still very difficult to 

solve exactly.  Shapiro and Nemirovski (2005) argue that in general, chance 

constraints are not ‘practical’ because even if the constraint is a simple function, say 

f(x, ξ), where ξ belongs to a simple distribution, the chance constraint defines a 

feasible set of decision variables which is nonconvex, making it potentially 

intractable.  The authors note that there are only two generic cases in which this 

nonconvexity does not exist.  Typically, either the chance constraints are replaced by 

tractable deterministic approximations or approximation algorithms are applied. 

 

1.2.2 Robust Optimisation   

 

Model robustness can be defined in many different ways.  When we use the term 

robust optimisation we are not referring to models which can be called robust strictly 

by the definition of the word given by a dictionary.  We are referring to a specific 

branch of optimisation under uncertainty known as robust optimisation, whose roots 

can be found in the field of robust control and in the work of A. L. Soyster (1973) as 

well as later works by Ben-Tal and Nemirovski (1997, 1998 and 1999) and 

independently by El Ghaoui and Lebret (1997) and El Ghaoui, Oustry and Lebret 

(1998).  Robust optimisation is a min-regret modelling methodology that seeks to 

minimise the negative impact of future events when the values of model parameters 

are high precision or stochastic.  Consequently, we define a model as robust if it 
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guarantees, with high probability, that the optimal objective will be achieved or 

exceeded and that the solution will be feasible for all possible realisations of each 

unknown parameter, contained within the bounds of an uncertainty set, even if the 

assumed distributions and estimates of the parameters are imprecise.  Although 

parameter values are unknown, historical data (if available) may be used to estimate 

the uncertainty set, which does not need to encapsulate every possible realisation of 

the parameter, but only the “most likely” values, the specification of which is 

partially a subjective decision.  The two most common ways of defining the 

geometry of uncertainty sets are polyhedral and ellipsoidal sets, discussed further in 

Chapter 2. 

 

During the last ten years, robust optimisation has gained support as a tractable 

alternative to stochastic optimisation.  The robust counterpart is a deterministic 

formulation, which optimises an objective such that all constraints are satisfied for all 

possible values of each uncertain parameter defined within a set.  Unlike stochastic 

optimisation approaches, it does not rely on knowing the exact distributions of 

parameters – which are rarely known in practice and typically estimated.  In addition, 

the robust counterpart does not suffer from the “curse of dimensionality”; it does not 

require scenario generation.  Thus, increasing the number of uncertain parameters 

does not have an exponential effect on the problem size.  However, this does not 

guarantee that the robust counterpart will not be difficult to solve – it will be at least 

as complex as the nominal problem, in terms of appropriate solution methods for the 

problem structure.  For example, if the nominal problem is linear then the robust 

counterpart will remain linear if uncertainty sets are polyhedral, but will be a second 

order cone problem if uncertainty sets are ellipsoidal, which is more difficult to 

solve.  In addition, the problem complexity is dependent upon the geometry of the 

uncertainty sets defining the uncertain parameters.  As long as the uncertainty sets U 

are convex and computationally tractable, the robust counterpart will be tractable 

(Ben-Tal, Nemirovski and El Ghaoui, 2009). 

 

Lastly, underpinning robust optimisation is a desire for mathematical models 

producing solutions insensitive to changes in uncertain parameters such that a) it is 

computationally manageable, b) decisions are useable – if input data changes, the 
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solution is near optimal with high probability and c) the robustness of the solution is 

worth the sacrifice of optimality.   

 
 

1.3 Thesis Outline   

 

The research presented in this thesis focuses on the computational evaluation of the 

robust optimisation methodology and its application to the portfolio selection 

problem.  In particular, the budgeted robust counterpart of the Expected value – 

Variance model (E-V) for portfolio selection, which models the unknown and 

variable return of an asset by budgeted polyhedral uncertainty sets (introduced by 

Bertsimas and Sim, 2004), is presented.  We aim to evaluate this methodology and 

contribute insight into defining uncertainty sets, the properties of robust decisions 

and model parameters.  We also aim to establish whether the robust models 

investigated form a suitable foundation upon which to build real-world portfolio 

selection models.  We do this through an extensive empirical investigation which 

examines the trade-off between the robustness of robust portfolios and the sacrifice 

in optimality and the properties of robust portfolios from a practical perspective; that 

is, do robust portfolios make investment sense? 

 

Within the area of robust optimisation are a handful of methods for modelling 

parameter uncertainty (both in structure and scale) which lead to different robust 

formulations.  In Chapter 2, we detail how parameter uncertainty is modelled, by 

considering different structures for the uncertainty set U (defining uncertain 

parameters), with particular focus on budgeted polyhedral structures and how they 

relate to ellipsoidal and polyhedral structures.  In addition, we clearly define the 

different aspects relating to the scale of U and highlight recent work in this area. 

 

In Chapter 3, we discuss the portfolio selection problem.  We argue that the E-V 

model is problematic because it is assumed that the distribution of asset returns is 

known, or at least estimated to a high degree of accuracy.  That is, precise estimates 

of the expected return and variance of each asset can be obtained.  In order to address 

this difficulty, a robust portfolio selection model, which treats the distribution of 
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asset returns as uncertain, is presented as an alternative approach.  In the remainder 

of the chapter we review the derivation of the budgeted robust counterpart by duality, 

first given by Bertsimas and Sim (2004), followed by an interpretation of that model 

from a min-max perspective.  Lastly, we present the linear robust portfolio selection 

model resulting from the budgeted polyhedral uncertainty sets proposed by 

Bertsimas and Sim (2004) and then propose an extended model which includes a 

buy-in threshold constraint and cardinality constraint. 

 

In Chapter 4, we investigate the cost and robustness of the budgeted robust 

counterpart resulting from different definitions of the uncertainty set U.  In each 

instance, the structure of U remains a budgeted polyhedral uncertainty set, but the 

scale of that structure changes.  With respect to scale, we consider different 

definitions of the parameters which specify how the bounds of the uncertainty set are 

defined, as well as different values of the scaling factor c (which determines the 

magnitude of the structure of U).  In addition, we investigate the effect of changing 

the size of the historical dataset from which the specific value of each parameter is 

estimated.  The purpose of this chapter is to evaluate the cost and robustness of the 

proposed models corresponding to these changes, both in the scale of U and in the 

size of the historical dataset.  We do this by introducing several measures of cost and 

robustness.  Results suggest that certain definitions of the parameters which specify 

how the bounds of the uncertainty set are defined result in portfolios with a better 

trade-off between cost and robustness.  The investigations presented in Chapter 5 and 

Chapter 7 make use of the concepts and results reported in this chapter 

 

In Chapter 5, we compare the cost and robustness of the budgeted robust counterpart 

to that of the E-V model and to the budgeted robust counterpart with added 

constraints (a buy-in threshold, an upper limit on cardinality or both).  For both 

robust models, we choose fixed definitions for the parameters specifying how the 

bounds of the uncertainty set are defined, which were established in Chapter 4.  

Numerical results show that robust models do come at a cost, but in exchange for 

significantly greater robustness.  In addition, portfolios constrained by a buy-in 

threshold and/or cardinality yielded solutions that were at least as Robust, but at the 
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same time decisions that were at least as costly, as the solutions and decisions of the 

unconstrained robust portfolios. 

 

In Chapter 6, we discuss the properties of robust models with respect to 

diversification, asset selection and the distribution of asset weights amongst selected 

assets, based upon the total number of assets available, the size of the historical 

dataset (or number of observations) and the desired level of the guaranteed 

probability of optimality.  In addition, we examine whether these properties hold 

when threshold and/or cardinality constraints are imposed. 

 

In Chapter 7, we compare the performance of the unconstrained robust portfolio, in 

terms of portfolio return, to that of E-V portfolios and an Index portfolio and to 

robust portfolios constrained by a buy-in threshold and/or cardinality.  We back-test 

these portfolios over the out-of-sample period as well as two bootstrap samples 

which were generated using the out-of-sample period as the original sample from 

which to draw.  We report the performance of these portfolios using two risk-

adjusted return measures (the Sharpe and Sortino ratio) as well as downside risk and 

reward statistics.  In addition, we evaluate worst-case performance under four worst-

case scenarios estimated using the out-of-sample period and both bootstrap samples. 

 

Lastly, in Chapter 8, we present our conclusions and outline future directions for 

research. 
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Chapter 2  

 

Uncertain Mathematical Programs 
and Robust Decisions   

 
Robust optimisation is a modelling methodology that seeks to minimise the negative 

impact of future events when model parameters are high precision or stochastic.  

Hence, the robust counterpart is a deterministic worst case formulation of an 

uncertain mathematical program.  Within this framework, model parameters are 

assumed to be uncertain, but symmetrically distributed over a bounded interval.  

Instead of nominal values, the uncertain parameters can potentially take any value 

within a bounded and symmetric set, known as an uncertainty set U.  The structure 

and scale of U is specified by the modeller, typically based upon statistical estimates.  

The structure refers to the geometry or shape of the constraint set U, such as 

ellipsoidal or polyhedral.  It is important that the structure of U be convex in order 

for the robust counterpart to be computationally tractable (Ben-Tal, Nemirovski and 

El Ghaoui, 2009).  The scale refers to the magnitude of the deviations of the 

uncertain parameters from their nominal values; the scale can be thought of as the 

size of the structure defining U.  For example, in three dimensions, the scale refers to 

the width, height and depth of the structure.  As a result, the structure and scale 

directly affect the computational complexity of the robust counterpart, 

conservativeness of the solution and the probability of feasibility/optimality 

(feasibility if the uncertainty is in the constraints and optimality if the uncertainty is 

in the objective).  We will frequently use the phrase “guaranteed robustness” when 

referring to the probability of feasibility/optimality in a general sense (i.e. when we 

are not discussing specific numerical values of either probability).   
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An uncertain linear program (LP) can be expressed in the following general form 

(Ben-Tal and Nemirovski, 1998): 

 

Max        xc
T .              (2.1) 

Subject to bAx ≤ , 

 

where A, b and c are uncertain parameters belonging to an uncertainty set U.  A 

general form of the robust counterpart of (2.1) is given as 

 

x
Max     [

U∈c
Min  ( xc

T )].              (2.2) 

Subject to bAx ≤ ,  UcbA ∈∀ ),,( . 

 

The difference between the constraints in (2.1) and (2.2) is that the former simply 

states that A, b and c are uncertain but known to belong to the set U, whereas the 

latter stipulates that the solution must be feasible for every possible value of A, b and 

c within the set U.  In addition, the objective in (2.2) seeks the best worst case 

solution by minimising the function with respect to the uncertain parameter and 

maximising with respect to x.  The robust counterpart cannot be solved directly using 

(2.2).  Typically, duality is applied to express it in a tractable form.   

 

As defined by Ben-Tal and Nemirovski (1998), feasible solutions to Equation (2.2) 

are robust feasible solutions and the optimal solution to Equation (2.2) is a robust 

optimal solution.  Bertsimas and Sim (2004) introduced the concept “price of 

robustness” which considers how “heavily” the objective function value is penalised 

when we are guarded against objective underperformance and/or constraint violation.  

Implicitly, this is the difference between the robust optimal solution and the 

objective function value of the nominal problem.  In Chapter 4, we explicitly define a 

similar measure called the cost of robustness.   
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Bertsimas and Sim (2004) introduced an alternative robust counterpart with budgeted 

uncertainty, which is referred to as a budgeted robust counterpart.  They relaxed the 

condition that the solution must be feasible for all UcbA ∈),,(  under the assumption 

that not every parameter will take its worst case value.  Thus, the solution must be 

feasible only for some UcbA ∈),,( .  The numerical value of ‘for some’ is 

represented by a user defined parameter Γ, which can take any real value between 1 

and J , where J is set of uncertain parameters; hence, J  is the cardinality of J.  The 

value of Γ affects the structure of U and thus, the guaranteed robustness of the 

solution.  To illustrate this, consider the uncertainty in a 1 x N vector A.  In the robust 

optimisation framework, the true value ai, of an uncertain parameter, is given by the 

following equation: 

 

iiii aaa ηˆ+= ,    i∀ ,            (2.3) 

 

where ia  is a statistical estimate of the expected value of ia  (commonly referred to 

as a point estimate), iâ  is a statistical estimate of the maximum distance that ia  is 

“likely” to deviate from the point estimate ia  and iη  is a random variable which is 

bounded by and symmetrically distributed within the interval [ ]1,1− .  The nature of 

the uncertain parameters will determine how iη  is distributed over this interval (for 

example, iη  may be stochastic in nature, uniformly distributed, etc…).  Recall that Γ 

is chosen by the user as the maximum number of uncertain parameters that can take 

their worst case value; in our example, Γ is the maximum number of ia  that will take 

a value of ii aa ˆ− .  Bertsimas and Sim express this by the following constraint: 

 

Γ≤∑ =

J

i i1
η ,    [ ]NJ ,1∈ ,           (2.4) 

 

where J  is the number of uncertain parameters and N is the total number of 

parameters.  Using our very simple example, in which uncertainty is only in the 1 x 
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N vector A, a general form of the budgeted robust counterpart of Bertsimas and Sim 

can be written as follows: 

 

x
Max     [

U∈c
Min  ( xc

T )].              (2.5) 

Subject to bAx ≤ ,  where UA∈ , 

  Γ≤∑ =

J

i i1
η ,  [ ]NJ ,1∈ , 

 

Clearly, when Γ = 0 none of the uncertain parameters take their worst case value; 

thus, the dimension of the structure of U is zero and the budgeted robust counterpart 

is similar to (2.1), the non-robust nominal problem.  When Γ = J , all of the 

uncertain parameters take their worst case value; thus, the dimension of the structure 

of U is J  and the budgeted robust counterpart is similar to (2.2) – the solution must 

be feasible for all U∈A .  In Chapter 3, we show the derivation and interpretation of 

a budgeted robust counterpart of the portfolio selection problem in which duality has 

been applied. 

 

Soyster (1973) was the first to show that uncertain linear programs could be 

formulated as robust convex linear programs such that feasibility was preserved for 

all possible values of the uncertain parameters defined within a set.  Many authors, 

including Soyster, agreed that his formulation was overly conservative – too much of 

the optimal objective value was lost in exchange for the preservation of feasibility.  

In other words, robustness cost too much.  Soyster's approach lay dormant until the 

early 1990s when Ben-Tal and Nemirovski reformulated a less conservative model, 

one more realistic for application.   

 

Consider an uncertain linear program in which the uncertainty is in the constraints.  

In Soyster’s model, the worst case solution is guaranteed to be feasible for all 

UA∈ , where the uncertainty set U includes every possible realisation of the 

uncertain parameters such that the probability of violating the ith constraint is zero 

(Table 2.1).  In Ben-Tal and Nemirovski’s model (1998), it is possible to scale down 
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the uncertainty set U such that it only includes the “most likely” values of the 

uncertain parameters instead of every possible value.  The “most likely” values are 

determined by the user, based upon statistical estimates.  Since scaling down U opens 

up the possibility for the true value of any uncertain parameter to be outside the 

bounds of U, for which the worst case solution has not accounted, feasibility is no 

longer 100% guaranteed.  Ben-Tal and Nemirovski prove that the probability of 

violating the ith constraint, given by a confidence term γ, is greater than 0 and 

bounded above by an exponential term that is a function of the scale of U (Table 

2.1). 

 

The budgeted robust counterpart of Bertsimas and Sim (2004) builds on similar 

principles to those of Ben-Tal and Nemirovski’s model.  In their model, it is also 

possible to adjust U such that it only includes “most likely” values, and feasibility is 

not 100% guaranteed.  In addition, the probability of constraint violation is bounded 

above by an exponential term, however, the exponential term does not incorporate 

information about the scale of U, but the structure of U (Table 2.1).  We will expand 

upon this difference in the following section. 

 
 

2.1 Uncertainty Sets 

 

The structure and scale of an uncertainty set U determines the computational 

complexity of the robust counterpart as well as the conservativeness and guaranteed 

robustness of the solution.  In Ben-Tal and Nemirovski’s model (1998) U is 

structured as ellipsoids and intersections of ellipsoids and the scale of U, that is the 

size of the ellipsoidal structure of U, is adjusted by a user defined parameter Ω.  

Within this framework, they show that the probability of constraint violation, given 

by the confidence term γ, is bounded below by zero and above by 2/2Ω−
e  (Table 2.1).  

As mentioned previously, the scale of U determines the guaranteed robustness and 

conservativeness of the solution.  Therefore, the parameter Ω, determined by the user 

based upon the desired confidence term γ, adjusts the trade-off between robustness 

and the optimality of the solution with respect to that of the nominal problem.  It 

follows then, that if Ω = 0, there is no robustness and the formulation is simply the 
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nominal problem.  As Ω increases, the probability of constraint violation decreases 

and the optimal objective value deteriorates.  A drawback to their approach is that the 

robust counterpart is more difficult to solve than the nominal problem.  For example, 

LPs become second order cone programs (SOCPs), SOCPs become semi-definite 

programs (SDPs) and SDPs are NP-hard (Bertsimas et al., 2008). 

 

Bertsimas and Sim (2004) suggested budgeted polyhedral uncertainty as an 

alternative structure of U, which retains the degree of the original linear problem1.  

Similar to Ben-Tal and Nemirovski, Bertsimas and Sim’s model was also less 

conservative than Soyster’s model and allowed the user to control the following: 1) 

the level of guaranteed robustness and 2) the optimal value of the solution with 

respect to the nominal problem.  Unlike Soyster and Ben-Tal & Nemirovski, they did 

not guarantee feasibility for all uncertain parameters in U; instead they guaranteed 

feasibility given that no more than Γ uncertain parameters changed (recall that 

[ ]J,1∈Γ  is a user defined parameter).  However, Bertsimas and Sim show that there 

is a probabilistic guarantee that decisions will remain feasible and that the robust 

optimal objective will be achieved or exceeded, even if more than Γ parameters 

change.  This probabilistic guarantee (i.e. the probability of constraint violation), 

given by the confidence term γ, is greater than 0 and bounded above by J
e

2/2Γ−  

(Table 2.1), which is a function of the user defined parameter Γ and the number of 

uncertain parameters J .  The difference between the upper bound of γ in Ben-Tal 

and Nemirovski, and Bertsimas and Sim’s formulation are due to the differences in 

how uncertainty sets were defined, both in structure and scale, as well as in how their 

models allowed for the relationship between the guaranteed robustness of the 

solution and optimality of the objective (with respect to the optimal objective value 

of the nominal problem) to be adjusted.  Table 2.1 provides a comparison of the 

guaranteed robustness of the models given by Soyster, Ben-Tal and Nemirovski, and 

Bertsimas and Sim.  In the following section we consider ellipsoidal and polyhedral 

uncertainty sets in more detail. 

 

                                                 
1 In many cases the same is true for SOCPs, although exceptions exist, but Bertsimas, Brown and 
Caramanis (2008) highlight a work by Nemirovski (1993) which shows that even with polyhedral 
uncertainty, the robust counterpart of an SDP is NP-hard. 
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Table 2.1.  Comparison of robust optimisation models; x* is the optimal solution vector.   
 
 

2.1.1 The structure of Uncertainty Sets 

 

In the robust optimisation framework, the structure of U determines the complexity 

of the robust counterpart of an uncertain LP, and must be convex in order to preserve 

computational tractability (the underlying model must also be convex).  Throughout 

the literature there are a handful of possible convex representations of U: the general 

conic representation, in which U is given by a closed convex pointed cone with a 

nonempty interior; and more specific representations of U such as ellipsoidal, 

polyhedral, or budgeted uncertainty sets (Ben-Tal, Nemirovski and El Ghaoui and 

Bertsimas, Brown and Caramanis, 2008)2.  In this section, we are mainly interested 

in the similarities and differences between ellipsoidal and polyhedral/budgeted 

polyhedral uncertainty sets and the relationship between these structures and the 

corresponding upper bound on the confidence term γ, which is the probability of 

constraint violation.   

 

Recall from Section 2.1 that Ben-Tal and Nemirovski (1998) modelled uncertainty 

sets by ellipsoids and intersections of ellipsoids, which increases the complexity of 

the problem, while Bertsimas and Sim modelled uncertainty by polyhedral sets 

which preserves the degree of the problem – the robust counterpart of an LP remains 

an LP.  To illustrate the relationship between these two types of structures consider 

the example given previously in Section 2.1 in which the uncertainty is in vector 

U∈A .  The uncertain parameters A∈ia , i∀ , are unknown, mutually independent 

                                                 
2 We refer the interested reader to Ben-Tal, Nemirovski and El Ghaoui (2009) and Bertsimas, Brown 
and Caramanis (2008) for a detailed comparison of uncertainty sets and their corresponding robust 
counterparts of uncertain LPs as well as uncertain SOCPs, SDPs, QCQPs (quadratically constrained 
quadratic programs), etc…. 

Soyster (’73) Ben-Tal & Nemirovski (’98) Bertsimas & Sim (’04) 
Pr( bxa >*' ) = 0 
For all possible a. 

Pr( bxa >*' ) <  γ 
For all possible a, where 

0 < γ < 2/2Ω−
e  

Pr( bxa >*' ) <  γ 
For up to Γ ai values, where  

0 <  γ  < J
e

2/2Γ−  

Where J is the cardinality 

of the subset of uncertain 
parameters ai. 



21 

 

parameters given by (2.3) and symmetrically distributed with respect to ia  on the 

interval ]ˆ,ˆ[ iiii aaaa +− . 

 

It follows that ellipsoidal uncertainty sets (Ben-Tal and Nemirovski, 1998) are given 

by the following: 

 

}1,
ˆ

)(
:{ 2

2

2

≤Ω≤
−

∈=
∞

Ω
∑ η

i

iin

a

aa
RaU ,           (2.6) 

 

where Ω is a user defined parameter and adjusts the trade-off between robustness and 

optimality.  As Ω increases, the area of the ellipsoid defining the uncertainty set also 

increases (see Figure 2.1).  Hence, the upper bound on the probability of constraint 

violation, 2/2Ω−
e  (Table 2.1), decreases (i.e. the model is more robust).  Therefore, 

the scale of the uncertainty sets (or ellipsoids) and the probability of constraint 

violation are determined by the parameter Ω, which is dependent upon the user’s risk 

preference.  Ben-Tal and Nemirovski (1998) suggested ellipsoidal uncertainty sets 

because ellipsoids can approximate more complicated uncertainty sets well, they can 

represent stochastic uncertainty sets deterministically and they have a convenient 

mathematical structure.  However, ellipsoidal uncertainty means that the robust 

counterpart of an LP becomes a SOCP, but the authors argue that this is not a 

problem because large SOCPs can be solved efficiently3 in polynomial time (Ben-Tal 

and Nemirovski, 1998).  Typically, SOCPs are solved via interior-point methods 

which are polynomial time iterative solution procedures. 

 

A simpler structure of U is given by polyhedral sets, sometimes referred to as 

interval or box uncertainty: 

 

}1,ˆ:{ ≤≤−∈=
∞

ηiii

n
aaaRaU .             (2.7) 

                                                 
3 We refer the interested reader to a text book by Boyd and Vandenberghe (2004) on convex 
optimisation as well as a textbook containing a series of lectures on modern convex optimisation by 
Ben-Tal and Nemirovski (2001) for more information on efficient solution methods for linear and 
nonlinear convex robust counterparts. 
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Bertsimas and Sim (2004) modelled uncertainty by budgeted polyhedral uncertainty 

sets given by the following modification of (2.7): 

 

},1,ˆ:{
1

Γ≤≤≤−∈=
∞

ηηiii

n
aaaRaU ,           (2.8) 

 

where Γ≤
1

η  is equivalent to (2.4) and Γ is a user defined parameter interpreted as 

the maximum number of uncertain parameters allowed to take their worst case value.  

We can see from (2.8) that changing Γ will change the number of bounds, which 

define the polyhedron, thus changing the structure of U and adjusting the robustness 

of the model.  Bertsimas and Sim prove that the probability of constraint violation is 

bounded above by J
e

2/2Γ−  (Table 2.1).  Thus, as Γ increases, more protection is 

given and the solution is more robust.  In contrast to the parameter Ω, introduced by 

Ben-Tal and Nemirovski (1997), Γ does not affect the scale of the uncertainty set, 

shown in (2.6) and (2.8).   

 

Figure 2.1 illustrates the relationship between ellipsoidal and box uncertainty sets 

with a simple two-dimensional example.  Let A∈21 , aa , be the uncertain parameters 

which are symmetrically distributed with respect to ia  and bounded by the interval 

]ˆ,ˆ[ iiii aaaa +− , where i = 1, 2.  Values for the parameters ia  and iâ , for i = 1, 2 

and n as well as the equations for the ellipse and box uncertainty set are given in 

Figure 2.1; there are only two uncertain parameters, thus n = 2.  The bounds of the 

box uncertainty sets are shown by dashed lines.  Two ellipsoidal uncertainty sets, 

corresponding to two values of Ω are plotted with the box.  The inner ellipse, which 

fits just inside the box, defines the bounds of the uncertainty set when Ω = 1.  The 

outer ellipse, which just contains the box, defines the bounds of the uncertainty set 

when Ω = n ; in this case Ω = 2 .  The relationship between polyhedral uncertainty 

sets and the inner and outer ellipsoidal sets, for any dimension, was mentioned in a 

1999 paper by Ben-Tal and Nemirovski.   
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Figure 2.1.  Example of the relationship between box and ellipsoid uncertainty sets in 2 
dimensions.   
 
 

Within the last five years, several approaches have been proposed in an effort to 

address the two main criticisms of how uncertainty sets are constructed in a linear 

robust optimisation framework.  Chen, Sim and Pang (2007) state that the two main 

criticisms are: 1) any available distributional information of uncertain parameters is 

not utilised as much as it could be and 2) uncertain parameters are rarely 

symmetrically distributed.  Chen, Sim and Pang (2007), Bienstock (2007) and 

Bertsimas and Brown (2008) propose different approaches for determining the 

structure of U which address both criticisms.   

 

In 2007 Chen, Sim and Pang proposed a generalised form of the approaches of Ben-

Tal and Nemirovski (1997), and Bertsimas and Sim (2004).  Recall the random 

variable iη  which is bounded by and symmetrically distributed within the interval 

[ ]1,1− .  In the generalised form, iη  is bounded by the interval ],[ ii
ηη , where 

i
η  and 

iη  are forward and backward deviation measures which capture the distributional 

asymmetry of uncertain parameters.  In addition, instead of the ∞l  and the 1l  norm, 

used to construct ellipsoidal and polyhedral uncertainty sets, respectively, they 

introduce the use of the regular norm.  They prove that their generalised uncertainty 
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set, using the regular norm in the context of their general framework of deviation 

measures, which capture asymmetry, preserves convexity and tractability as well as 

provides an upper bound on the probability of constraint violation of 2/2Ω−
e , 

equivalent to that of Ben-Tal and Nemirovski. 

 

Recent work by Bertsimas and Brown (2008) proposed a data-driven approach for 

the construction of an uncertainty set.  By data-driven they mean that only the 

historical observations of the data are used to construct the uncertainty set.  No 

assumptions were made about the probability distributions, such as symmetric but 

bounded, as is common in a robust optimisation framework; thus, they do not choose 

a structure first, i.e. ellipsoidal or polyhedral.  Alternatively, they first choose a 

coherent risk measure reflecting the decision-maker’s desired level of guaranteed 

robustness (i.e. 1-γ).  The authors show that coherent risk measures provide some 

level of control over the robustness (and conservativeness) of the solution while 

retaining the convexity of the problem.  The authors argue that uncertainty sets 

constructed using a data-driven approach yield more accurate structures representing 

the uncertain parameters; hence, they result in better robust optimal solutions.  

Lastly, Bienstock (2007) also proposed a data-driven approach for constructing U, 

within which are two types of uncertainty sets:  1) a histogram model which 

constructs a distribution of shortfalls obtained by taking the difference between each 

data point in the available time series and the expectation of that series; 2) also a 

histogram model of deviations, but incorporates additional information about the 

correlation among those deviations. 

 

2.1.2 The scale of Uncertainty Sets 

 

There are two main aspects of uncertainty sets: structure and scale.  In Section 2.1.1 

we discussed the most common structures, ellipsoidal and polyhedral.  In this section 

we address the question of scale.  For the purpose of clarity, we redefine the 

uncertain parameter ia , which was given by (2.3) earlier in this chapter.  Introducing 

a scaling factor c, we redefine ia  by the following equation: 
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iiii acaa ηˆ+= ,    i∀ .           (2.9) 

 

In this form we have factored out the coefficient c from iâ  to distinguish between the 

deviation measure iâ  from its scaling factor c.  Intuitively, iâ  tells us how ia  

deviates from the point estimate ia , while c tells us by how much.  Therefore, ia  lies 

on the interval ]ˆ,ˆ[ iiii acaaca +− .  For example, if we determine that the distribution 

of ia  is best represented by defining iâ  as the standard deviation of ia , then c would 

represent the number of standard deviations ia  can deviate from ia .  Thus, ia  would 

lie on the interval ],[ iiii caca σσ +− . 

 

Consequently, when we speak of scale, we are concerned with how ia  and iâ  are 

defined, how their values are estimated and how iâ  is scaled (the value of c).  There 

is very little research published that addresses these questions.  Almost all of the 

literature in robust optimisation only mentions the structure, but not the scale of U.  

The only work we are aware of that discusses scale is by Tütüncü and Koenig 

(2004), in which ia  and iâ  are defined as the 50th percentile and estimated using a 

bootstrapped sample.  The deviation measure iâ  was scaled by c = 47.5%.  Thus, ia  

lies between the 2.5 and 97.5 percentile values estimated from the bootstrap sample.  

Moreover, the authors conclude that the scale of U should be dependent upon the risk 

preferences of the decision-maker.  Our empirical investigation of cost and 

robustness (further in Chapter 4) suggest that defining both ia  and iâ  as the 50th 

percentile yield portfolios which are counterintuitive with respect to the relationship 

between c and the trade-off between cost and robustness; such portfolios increased in 

cost and decreased in robustness when the scale of uncertainty set U was increased. 

 

As a consequence of the lack of literature regarding the scale of U, we investigate 

different definitions of ia  and iâ , estimated from a historical dataset, combined with 

different values of c, further in Chapter 4.  We evaluate the corresponding 

uncertainty sets by evaluating the cost and robustness of a budgeted robust 
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counterpart of the portfolio selection problem, where the structure of U is polyhedral.  

Our results suggest, that for this problem, the most appropriate definitions of ia  and 

iâ  are a measure of central tendency and a measure of spread, respectively, while c 

depends on the risk preferences of the investor. 
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Chapter 3 

 

Robust Optimisation and Portfolio 
Selection   

 
In the portfolio selection problem an investor chooses the proportion of capital to be 

invested in each of N assets such that a desired set of goals is achieved.  For example, 

an investor will want to maximise return and minimise risk, but may also have views 

on the number of assets in a portfolio.  One significant reason why portfolio selection 

continues to be a challenging mathematical problem is due to the variability of asset 

returns and the uncertainty of their distributions.  In other words, not only is the 

future value of each asset unknown, but it is very difficult to estimate.  Capturing 

variability and uncertainty within a portfolio optimisation model has been shown to 

be very difficult ever since portfolio selection was first considered as a mathematical 

problem.  Up until the 1990s, when stochastic programming approaches were 

applied, variability was not explicitly addressed in the optimisation model.  Instead 

the focus was on uncertainty which was defined by a measure of risk, typically in the 

model’s objective function.  A tremendous amount of research has been done in this 

area.  The most common ways of defining risk include variance, standard deviation, 

value-at-risk, utility functions and lower partial moments.  A particular hindrance to 

the progress of research in this area has been computing power.  Although 

technology has greatly improved since the turn of the 21st century, there are still 

limitations on the formulation and size of the problem that can be considered, which 

means there are limitations on how risk is defined and to what extent variability is 

addressed. 
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3.1 Expected Value - Variance Models 

 

The first notable work to consider risk in portfolio optimisation was published in 

1952, when Markowitz presented the well-known Expected value - Variance (E-V) 

model for portfolio optimisation, in which a portfolio that achieves a specified 

expected return at minimum risk (defined by portfolio variance) is determined.  

Typically, short selling is not permitted, hence the proportions of capital invested in 

each asset must be greater than or equal to zero and sum to one.  Consider the 

following model which minimises risk, as measured by the variance of the portfolio’s 

return, subject to achieving a specified expected return:  

 

Minimise ∑∑
= =

N

i

N

j

ijji ww
1 1

σ  

Subject to ∑
=

N

i

iiw
1

µ ≥ Target Return, 

  ∑
=

=
N

i

iw
1

1, 

0≥iw , Ni ..1=∀ , 

 

where µi is the expected return on asset i, σij is the covariance of assets i and j and wi 

is the fraction of total wealth invested in asset i.   

 

Alternatively, we may maximise expected return given a specified upper limit on 

risk.  Now, let E be expected portfolio return, V portfolio variance and S represent 

the set of all possible (E,V) combinations.  Markowitz’s E-V model assumes that an 

investor would only consider the subset of portfolios which he termed “efficient.”  

An efficient portfolio is one that yields the highest expected return for a specific 

variance or has the least variance for a specific expected return.  The above model 

only yields “efficient” portfolios.  When solved for all possible values of Target 
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Return it produces an efficient frontier, from which an investor can select an optimal 

portfolio according to their risk and return preferences. 

 

The portfolio selection problem is essentially multi-objective.  According to 

Markowitz’s E-V model, which has formed the foundations of Modern Portfolio 

Theory (MPT), an investor would ideally wish to maximise expected return whilst 

minimising risk.  However, the two objectives conflict and it is not generally possible 

to simultaneously optimise on both.  Maximising expected return would tend to 

result in a high risk portfolio whilst minimising risk would tend to produce a low 

expected return.  In addition, Markowitz highlights the attractiveness of diversity, 

with respect to cardinality.  Again, there is a trade off: the greater the number of 

assets in a portfolio (i.e. the more diverse), the lower the risk; however, a lower risk 

typically corresponds to lower expected return.  In practice, compromise is required.  

 

An underlying assumption of Markowitz’s model is that precise estimates of µi and 

σij have been obtained.  Hence, E-V optimisation is only concerned with the 

optimisation of a portfolio and does not address the issue of how to obtain estimates 

for µi and σij nor does it consider the possibility of those estimates being imprecise.  

As seen by the E-V model discussed above, µi and σij are treated as known constants; 

however, asset returns are variable.  Therefore, as Bienstock (2007) suggested, µi and 

σij are, in practice, not known constants, but soft quantities.  It is reasonable to 

conclude that a model which treats returns as known constants will produce a 

portfolio whose realised return is different from the optimal portfolio return given by 

the objective function value.  In particular, when the realised asset returns are less 

than the estimates used to optimise the model, the realised portfolio return will be 

less than the optimal portfolio return given by the objective. 

 

E-V optimisation has encountered other criticisms as well, particularly with respect 

to the composition of efficient portfolios.  Michaud (1989) suggested that E-V 

portfolios “don’t make investment sense” because they maximise estimation error.  

He states that efficient portfolios give too much weight to assets whose µi and σij 

estimates are more likely to be furthest from their true values.  Ceria and Stubbs 

(2006) agreed, suggesting that E-V optimisation is “counterintuitive” and too 
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sensitive to fluctuations in the first and second moments of asset returns.  That is, 

small changes in µi and σij yield very different efficient (E,V) combinations.  Ceria 

and Stubbs also suggested that there are two approaches to overcome estimation 

error in E-V optimisation: better estimation techniques or better techniques for 

optimisation under uncertainty (2006).  The authors argued that even though there 

are estimation techniques for µi and σij that may produce a more stable E-V portfolio, 

statistical methods are driven by underlying distributions, and this is problematic.  

Therefore, in addition to uncertainty, variability should be incorporated into the 

optimisation process, creating a need for methods such as robust optimisation, which 

treat uncertain parameters as soft quantities in the optimisation process, i.e. instead of 

using a single value such as µi, asset returns can take any value within a defined set 

of possible outcomes. 

 
 

3.2 Alternative Measures of Risk in Portfolio Selection 

Models 

 

What is risk and how should it be measured in portfolio selection?  The terms risk, 

volatility, uncertainty and variance are frequently used interchangeably in the 

context of portfolio selection, but are these terms truly synonymous?  What is 

actually meant by minimising the risk of a portfolio?  Throughout the literature, it is 

evident that there is no universally agreed correct answer as to how to measure risk 

in portfolio selection.  Thus, the term minimise risk is a bit fuzzy.   

 

As shown in the E-V model, Markowitz (1952) defined risk as the variance or 

standard deviation of a portfolio.  Because standard deviation measures the spread of 

a distribution with respect to its mean, risk in this context can be thought of as an 

indicator of how frequently and by how much the true portfolio return is likely to 

deviate from its mean.  An obvious difficulty is that one must make three 

assumptions: 1) the expected return of the portfolio is the true mean of the 

distribution of portfolio returns, 2) the distribution is symmetric and close to normal 

and 3) there is no distinction between the spread of returns above the mean versus the 

spread of returns below the mean.  This last assumption has caused the most concern, 
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particularly when the second assumption does not hold.  Practitioners argue that 

portfolio return distributions are rarely normal and that risk should only be associated 

with “bad” returns (Sortino and Price, 1994), (Rom and Ferguson, 2003); thus, 

standard deviation is not an adequate measure of risk (Sortino, 2003). 

 

There is a wide body of literature for alternatives to standard deviation, commonly 

known as downside risk measures.  To cover the breadth of research in this area is 

beyond the scope of interest here, hence we will briefly mention three measures, just 

to provide an idea of how researchers and practitioners incorporate risk into the 

optimisation stage of portfolio selection: Value-at-Risk (VaR), Conditional Value-at-

Risk (CVaR) and Downside Deviations (DD). 

 

Value-at-Risk and Conditional Value-at-Risk consider the tail of the portfolio returns 

distribution – how much of an investors wealth is “at risk”?  The VaR is defined as 

the minimum amount of wealth an investor is at risk of losing with a probability of α.  

An obvious limitation of VaR is that it only considers one point (α) on the 

distribution.  VaR tells us nothing about the rest of the tail, such as the shape or the 

spread of the distribution of losses associated with smaller values of α.  An 

alternative to VaR is CVaR, which provides more insight into the tail of the 

distribution. The CVaR is defined as the expected amount of wealth an investor is at 

risk of losing with a probability of α.  In other words, it is the expectation of losses in 

the tail of the distribution to the left of the VaR.  While both measure potential losses 

and are indicators of risk, they only focus on a certain type of risk – the risk of 

extreme events (generally α ≤ 5%).  Extremely bad portfolio returns are only part of 

the risk picture.  Recent research suggests that whilst extreme events are a concern, 

they are not the primary concern – investors are more interested in whether or not 

they will achieve their investment goals (Sortino, 2003).  The risk measure downside 

deviation (DD), introduced by Sortino and van der Meer (1991), attempts to convey 

this type of risk. 

 

Downside deviation (DD) is the portfolio semivariance below a target return.  The 

target return separates what Sortino and Price call the “good” returns from the “bad” 

returns (1994).  They argue that risk should only be associated with “bad” returns, 
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thus, the DD only measures the variance of returns below an investors target return.  

Several authors, including Sortino (2003), Balzer (2003) and Nawrocki (1999), point 

out that in later works Markowitz discussed below-mean semivariance and below-

target semivariance as alternatives to variance.  They comment that computing power 

was a key factor influencing his choice of variance to define and measure a 

portfolio’s risk. 

 
 

3.3 Robust Portfolio Selection 

 

As previously mentioned, the main reason for applying a robust optimisation 

framework to the portfolio selection problem is because asset returns are unknown 

and variable.  Although the distributions of asset returns are uncertain, we may assert 

that µ or σ, or both, belong to an uncertainty set, the bounds of which we can define.  

Most robust portfolio models describe asset returns by ellipsoidal uncertainty sets, 

based on the methodology of Ben-Tal and Nemirovski (1998) and El Ghaoui and 

Lebret (1997), in which the user defined parameter Ω adjusts the guaranteed and 

achieved robustness of the portfolio.  Previously, robustness has been evaluated 

based upon performance, particularly worst case performance, then compared to the 

worst case performance of a non-robust model such as the E-V model.  In addition to 

worst case performance, we suggest that it is also important to evaluate robustness 

based upon whether a model yields portfolios that achieve their guaranteed 

robustness in practice (see Chapters 4 and 5). 

 

In 2000, Lobo & Boyd presented two robust portfolio models:  the first gave an 

upper-bound on the risk associated with a portfolio, given a set of decisions; the 

second, minimised the upper-bound on risk.  They presented several different 

methods for modelling the uncertainty sets for the expected returns vector and 

covariance matrices, such as box or ellipsoidal sets.  Each robust model was a semi-

definite program solved via interior point methods.  Their results focused on the 

performance of the solution method rather than on the robustness of the optimal 

portfolios. 
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Goldfarb and Iyengar (2003) defined asset returns by robust factor models in which 

uncertainty was modelled by ellipsoidal sets.  The robustness of a robust Sharpe 

Ratio problem was evaluated based on performance, particularly in worst case 

scenarios, and compared to the E-V portfolio model.  Results showed the worst case 

performance of the robust model was approximately 200% better than the non-robust 

model; thus, they concluded that robust portfolios were more apt to withstand noisy 

data. 

 

El Ghaoui, Oks and Oustry (2003), introduced and evaluated the robustness of a 

worst case VaR model in which the uncertainty (of both µ and σ) was modelled by 

ellipsoidal sets.  Results showed that the non-robust model ‘wins’ if there is no 

uncertainty, but the robust model ‘wins’ in the worst case scenario, as one would 

expect. 

 

Tütüncü and Koenig (2004) describe µ and σ by uncertainty sets in order to optimise 

a model which seeks to find the “best worst case” portfolio and compare its 

performance to E-V portfolios.  Results showed that robust portfolios are only 

“marginally inefficient” when returns take their expected value but E-V portfolios are 

“severely inefficient” when returns take their worst case values (as defined by their 

uncertainty set).  In addition, robust portfolios tended to concentrate on a small set of 

asset classes, having chosen mostly large capital value stocks. 

 

Ceria and Stubbs (2006) presented a model which minimised the difference between 

the estimated and actual efficient frontiers while maximising portfolio return.  

Typically the true frontier lies between the estimated and actual frontiers, hence, 

minimising their distance will bring them closer to the true frontier.  Results showed 

that the robust model yielded greater “realised returns” in most cases. 

 

Kim and Boyd (2007) presented the robust efficient frontier analysis method to 

address the problem of poor performance by E-V optimisation resulting from the use 

of estimates of µ and σ.  Their main focus was to construct a worst case efficient 

frontier representing the optimal trade-off between worst case risk-return pairs in 

which the uncertainty in µ and σ are independent.  They analyse the basic properties 
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of a worst case robust efficient frontier and present several models of uncertainty 

which are computationally tractable. 

 

Pflug and Wozabal (2007) took a slightly different perspective on modelling 

uncertainty by considering the probability model of an asset to be unknown.  They 

constructed a robust portfolio selection problem in which a ‘confidence set’ 

described the probability distribution of asset returns.  In addition, they evaluated the 

trade-off between risk, robustness and portfolio return.  Their results showed that as 

robustness increased, risk and portfolio return decrease, and portfolios were more 

diversified. 

 

Robust optimisation techniques have been criticised for giving equal weight to all 

possible values of the uncertain parameters, specified within their respective 

uncertainty sets, which may not be a realistic assumption (Bienstock, 2007).  

Bienstock (2007) addresses this criticism by defining two types of uncertainty sets 

that give higher weight to more significant data realisations.  The first type defines 

returns based on a histogram of shortfalls from a point estimate, and the second type 

models correlations among deviations.  Cutting-plane algorithms were introduced to 

solve the robust models resulting from both types of uncertainty sets. 

 

More recently, Bertsimas and Pachamonova (2008) suggested a multi-period 

portfolio optimisation model built upon the approach of Ben-Tal, Margalit and 

Nemirovski (1999), but with polyhedral, instead of ellipsoidal, uncertainty sets.  

They compared the computational performance of their linear robust models with a 

single period mean-variance model using simulations of future returns of 3 assets.  

Results suggested that a robust multi-period approach should be considered as an 

alternative to single period E-V models. 

 

As is evident from the literature, nearly all robust portfolio models construct 

uncertainty sets as ellipsoids, based on the work of Ben-Tal and Nemirovski (1998) 

and El Ghaoui and Lebret (1997).  Typically, solution robustness is evaluated by 

comparing the worst case performance of the robust model with that of a non-robust 

model.  In addition, there is not an explicit evaluation of the cost of robustness.  In 
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this next section, we consider the robust portfolio model of Bertsimas and Sim 

(2004), which results from modelling uncertainty by budgeted polyhedral uncertainty 

sets.  In Chapters 4 and 5 we investigate the guaranteed and achieved robustness of 

the solution as well as the cost of robustness.  Furthermore, by altering model 

parameters, we evaluate the stability of the model itself.  In other words, as model 

parameters change, how much do our decisions change? 

 
 

3.4 Linear Robust Counterpart to Portfolio Optimisation   

 

In this section, we discuss the formulation of the linear robust counterpart to the 

portfolio optimisation problem, first from a duality perspective (introduced by 

Bertsimas and Sim (2004)) and then we explain the rationale for the model. 

 

3.4.1 Robust Counterpart by Duality  

 

The basic portfolio optimisation problem is defined as follows: 

 

Maximise  ∑i ii wr .              (3.1) 

Subject to 1≤∑i iw , 

    0≥iw , i∀ . 

 

Asset returns, ri, are uncertain parameters with unknown distributions defined as 

bounded and symmetric with respect to a point estimate ir : 

 

]ˆ,ˆ[ iiiii rrrrr +−∈ .                        (3.2) 

 

Even though the true distribution of ri is unknown, historical data can be used to 

estimate the mean log return of asset i, which is substituted for the point estimate ir .  
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A new stochastic variable iη  (Bertsimas and Thiele, 2006) measures the deviation of 

parameter ri from ir and takes values in [ ]1,1− , 

 

i

ii

i
r

rr

ˆ

−
=η . 

 

By rearranging this equation, ri can be expressed as: 

 

iiii rrr ηˆ+= .                         (3.3) 

 

Let J  be the number of parameters, ri, that are uncertain; then for Soyster’s and 

Ben-Tal & Nemirovski’s model 

 

J
r

rr

i
i

ii
=

−
∑ ˆ

 or  J
i i =∑ η . 

 

Bertsimas and Sim (2004) relaxed this condition by defining a new parameter Γ (the 

budget of uncertainty) as the number of uncertain parameters that take their worst 

case value ii rr ˆ− .  Therefore, 

 

Γ≤∑i iη , such that ],0[ J∈Γ . 

 

Rewrite the initial portfolio optimisation problem, given by (3.1), by substituting 

(3.3) for ri: 

 

iw
Max   ∑ +

i iiii wrr )ˆ( η .                        (3.4) 

Subject to 1≤∑i iw  
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    0≥iw ,  i∀ , 

    11 ≤≤− iη ,    i∀ . 

 

We wish to minimise the worst case portfolio return, therefore, (3.4) is rewritten as 

follows: 

 

iw
Max         (∑ ∑+

i i iiiii wrMinwr
i

η
η

ˆ ).            (3.5) 

Subject to 1≤∑i iw , 

       Γ≤∑i iη , 

       0≥iw , 11 ≤≤− iη , i∀ . 

 

Expressing iη  as a non-negative variable, we rewrite (3.5) as follows: 

 

iw
Max    (∑ ∑

+−
i i iiiii wrMaxwr

i

)ˆη
η

.                       (3.6) 

Subject to 1≤∑i iw , 

Γ≤∑
+

i iη , 

0≥iw ,   10 ≤≤ +
iη ,   i∀ . 

 

By duality (Bertsimas and Sim, 2004), the inner maximisation problem subject to the 

stochastic constraints becomes: 

 

iqp ,
Min      ∑+Γ

i iqp . 

Subject to iii wrqp ˆ≥+ ,  i∀ , 
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       p ≥ 0, 

      qi ≥ 0,    i∀ . 

 

Substituting this result back into (3.6), we obtain the following robust counterpart: 

 

iw
Max   ( ∑∑ +Γ−

i i
qpi ii qpwr

i

)(Min
,

)     ≡  
iw

Max  ( ∑∑ −Γ−
i ii ii qpwr ). 

 Subject to    1≤∑i iw , 

         iii wrqp ˆ≥+ , i∀ , 

          p ≥ 0,  

         wi, qi ≥ 0,  i∀ . 

 

3.4.2 Interpretation of Robust Counterpart 

 

The robust counterpart of an uncertain linear problem is a max-min or min-max 

model; the objective is to optimise the worst case performance.  Soyster’s and Ben-

Tal & Nemirovski’s model stipulate that every constraint be feasible for every 

uncertain parameter defined within a bounded symmetric set (an uncertainty set).  

That is, their models are optimised for every uncertain parameter taking its worst 

case value. 

 

Bertsimas and Sim (2004) introduced a budgeted robust counterpart that assumes at 

most Γ uncertain parameters will take their worst case values, not every parameter.  

Applying this concept, consider the basic portfolio model stated in Section 3.1, but 

using the definition of ri in (3.3). 

 

We desire the portfolio with the best worst case return given that Γ assets take their 

worst case values, ii rr ˆ− .  Therefore,  
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Max   (Min ∑ ∑ ∈
−

i Tt ttii wrwr ˆ ).     ≡      Max ii i wr∑ – Min(Max∑ ∈Tt tt wr̂ ). 

Subject to     1≤∑i iw ,          

 

where }1{ NiiI ≤≤= , IT ⊆ , T = Γ, that is, T is the subset of Γ assets that take 

their worst case values, tt rr ˆ− , Tt ∈ .  The min-max term in the objective seeks to 

minimise the worst case.  The inner maximisation term seeks to choose Γ assets with 

the largest ii wr̂  as the subset T whilst the outer minimisation term seeks to make the 

sum as small as possible with respect to wi.  For the moment, assume that the 

quantity tt wr̂  is the same for all t, and denoted by p.  Then the term 

∑ ∈Tt tt wr̂ becomes Γp.   

 

Now consider the possibility that ppt ≠  for some t, where ttt wrp ˆ=  for all t.  

Clearly, at optimality, the term ∑ ∈Tt tt wr̂ will be greater than or equal to zero, hence, 

we will only consider the case when ppt ≥ .  Therefore, the difference ppt − , for 

all t, needs to be added onto Γp and the quantity Min(Max∑ ∈Tt tt wr̂ ) becomes: 

 

Min[ ∑ −+Γ
t t ppp )( ],  }0)({ ≥−=∀ pptt t .          (3.7) 

 

We can restrict the difference ppt −  to be greater than or equal to zero if we 

introduce a new variable qt given by the following equation: 

 

),0max( ppq tt −= .                          (3.8) 

 

Thus, qt is defined by the following constraints: 

 

ppq tt −≥ ,    t∀ , 
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0≥tq ,   t∀ . 

 

Therefore (3.7) can be rewritten as: 

 

Min( ∑+Γ
t tqp ),  t∀ .                  (3.9) 

 

The question now is:  Which pt is chosen as our p value?  Recall that the min-max 

term in the objective seeks to maximise the quantity ∑ ∈Tt tt wr̂ by choosing the Γ 

largest ii wr̂  as the subset T and that the quantity ∑t tq is greater than zero only when 

ppt > .  Thus, p is chosen as the smallest tt wr̂ , over all t, which means it is the Γth 

largest ii wr̂ , over all i.   

 

The final portfolio optimisation model becomes: 

 

Max   ( ii i wr∑  ∑−Γ−
i iqp ).                     (3.10) 

Subject to 1≤∑i iw . 

     pwrq iii −≥ ˆ ,  i∀ , 

     0≥iq , 0≥iw , i∀ , 

     0≥p . 

 

Remark: ∑ ∈Ii iq can be substituted for ∑ ∈Tt tq  and ii wr̂  substituted for tt wr̂ , 

because every ii wr̂ , where Ti ∉ , will be less than p.  Therefore, ppi −  will be less 

than zero, and the corresponding qi will be zero. 
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3.5 Robust Portfolio Model for Uncorrelated Asset 

Returns     

 

3.5.1  The Linear Robust Portfolio Model 

 

Bertsimas and Sim (2004) reformulated a maximum expected return portfolio model 

as a linear robust optimisation problem, as shown in Section 3.3: 

 

Max  ∑∑ ==
−Γ−

n

i i

n

i ii qpwr
11

                     (3.11) 

Subject to 1
1

≤∑ =

n

i iw , 

  pwrcq iii −≥ ˆ , i∀ , 

  0, ≥ii qw ,  i∀ , 

  0≥p , 

 

where ir  is the point estimate for the log return on asset i (e.g. the median or mean 

log return), iw  is the proportion of total wealth invested in asset i and ri is the true 

log return of asset i.  The true log return of asset i, ri, belongs to the interval 

]ˆ,ˆ[ iiii rcrrcr +− , where ir̂  is chosen by the user and determines how the uncertainty 

set defines ri and +ℜ∈c defines the magnitude of the range of the set U, as discussed 

in Section 2.1.2.  For example, if ir̂  is the standard deviation of asset i, then c would 

determine the width of the interval in terms of the number of standard deviations.  

Alternatively, if ii rr =ˆ , where ir  is the mean log return, then c would determine the 

width of the interval in terms of the percentage of ir  that the true log return deviates 

from ir .  The user defined parameter Γ is given a value between 0 and n.  As Γ 

increases, the  probability of underperforming the robust optimal objective decreases.  

At optimality, p is the Γth largest ii wrcˆ  and )ˆ,0max( pwrcq iii −=  for each asset i.  

The focus of the Bertsimas and Sim’s paper was to present their robust approach and 
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not portfolio optimisation per se; their experimental results were for a set of 150 

stocks with ir  and ir̂  generated by arithmetic progressions. 

 

3.5.2  Extending the Linear Robust Portfolio Model 

 

We extend the simple portfolio selection model in Section 3.5.1 to a more 

comprehensive model that includes conditions imposed by investors such as 

threshold and cardinality constraints.  Threshold constraints specify the minimum 

proportion of total capital to be invested in an asset if it is selected for the portfolio.  

Cardinality constraints specify the maximum number of assets selected for the 

portfolio.  We consider the following linear optimisation problem: 

 

Max  ∑∑ ==
−Γ−

n

i i

n

i ii qpwr
11

                     (3.12) 

Subject to 1
1

≤∑ =

n

i iw , 

  k
n

i i ≤∑ =1
δ , 

  pwrcq iii −≥ ˆ , i∀ , 

  { }1,0=iδ ,  i∀ , 

  iiw αδ≥ ,  i∀ , 

  0, ≥ii qw ,  i∀ , 

  iiw δ≤ ,  i∀ , 

  0≥p ,  

 

where ir , iw , ir̂ , p and qi are defined as before, α is the buy-in threshold on asset 

weights and k is the maximum number of assets selected.   
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3.6 Computational Platform   

 

We chose to optimise this particular linear robust portfolio model using the solver 

CPLEX version 10.1, a common computational platform, within the modelling 

language AMPL.  Other specialised modelling languages, such as CVX (Grant, Boyd 

and Ye, 2008) which is implemented in Matlab, may be chosen for solving convex 

problems such as (3.11).  However, CVX does not have discrete features and (3.12) 

is a mixed-integer program, and thus not convex. 
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Chapter 4 

 

The Cost of Robustness   

 
Robustness, viewed as a performance guarantee, comes at a cost.  In the case of 

portfolio optimisation, it is the probability guarantee that the portfolio return will be 

at least equal to that of the optimal robust solution.  One would expect that in order 

to achieve robustness, a sacrifice, in terms of optimal objective value, will occur.  

But how much does this sacrifice cost? And is it worth it?  There is a two-fold 

motivation to the investigation detailed in this section.  Firstly, to provide a measure 

for the cost of robustness and determine if the robust methodology in Chapter 3 is, in 

reality, robust. Secondly, to examine how the cost and robustness (both guaranteed 

and achieved robustness) are affected when the following are changed:  i) the point 

estimate of asset i ( ir ), the deviation parameter ( ir̂ ) which indicates the maximum 

amount the true return of asset i may deviate from its point estimate, and scaling 

factor c defining the uncertainty set U, of ir , given by ]ˆ,ˆ[ iiiii rcrrcrr +−∈  and/or ii) 

the size of the set of historical data used to estimate ir  and ir̂ .   

 

Recall from Chapter 2 the two aspects of an uncertainty set U: structure and scale.  

Throughout this chapter, the structure remains constant in that it is polyhedral.  

However, because we allow the possibility for Γ to be different, the dimension of the 

polyhedral set can change.  With respect to the scale of U, ir  and ir̂  are estimated 

from the historical data set in the same manner for each model, but the definition of 

ir  and ir̂ ,  and the scaling factor c do change (see Table 4.1). 

 



45 

 

The data set used in this investigation consists of 120 monthly log returns of 68 

assets from the FTSE 100 starting 1 February 1996 through to 1 January 2007. A set 

of Mm ∈  months, where M = {20, 40, 60}, was randomly selected and used to 

generate 10 robust models, Rj, where j = 1..10 (Table 4.1), each with a different 

uncertainty set defining ri, the true log return of asset i, which is unknown and 

variable.  For each model, 100 instances (henceforth referred to as trials, t) were 

generated by randomly selecting m months from the sample period, in order to obtain 

a distribution for both measures of cost and both measures of robustness detailed in 

Sections 4.1 and 4.2.  Thus for each t, from 1 to 100, a set of m randomly selected 

months (which was different for each trial) was considered as the set of available 

historical data and used to optimise 10 robust models, for a total of 1000 optimal 

portfolios.  The set of m months was also used for in-sample back-testing in the 

evaluation of robustness. 

 
 

Model Rj ir  ir̂  c 
j = 1..3 Mean Log Return Standard Deviation 1, 2, 3 
j = 4..7 Mean Log Return Mean Log Return 0.90, 0.95, 0.98, 1 
j = 8..10 Median Log Return Standard Deviation 1, 2,3 

Table 4.1.  Summary of robust models.   
 
 

For each trial t, the m randomly selected months were used to estimate the value ir  

and ir̂ ; each robust optimal solution, Opt

mtjZ ,, , was obtained using (3.11) from Section 

3.5.  The Γ value that yielded the most robust diversified portfolio (i.e. the portfolio 

with the smallest probability of underperformance and consisting of more than one 

asset) was chosen as the optimal robust portfolio for model Rj, for each trial t and 

each set of Mm ∈ months.  A characteristic of the robust models, which we discuss 

further in Chapter 6, is that as Γ increases from an initial value of 0, the number of 

assets in each corresponding portfolio also increases until all but one asset are 

suddenly dropped, which corresponds to Γ = Γdrop.  Results show that when 

1−Γ=Γ drop , the resulting portfolio is the most robust diversified portfolio consisting 

of at least as many assets as each portfolio corresponding to all other values of Γ.  

This value of Γ and hence, the probability of underperformance, given by (4.1), may 

not be the same for all of the 1000 portfolios, for each set m.  However, since there 
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are only N = 68 possible values of Γdrop, many of the portfolios will have the same 

probability of underperformance.  Bertsimas and Thiele (2006) define the probability 

of underperformance as follows: 

 

ε≤≤ )Pr( ,,,,,
Opt

mtj

true

lmtj ZZ ,                        (4.1) 

where, 

 

)/)1((1 N−ΓΦ−=ε .  

 

true

lmtjZ ,,,  is the realised portfolio return for model Rj, during trial t, given the set of m 

months, evaluated at month l such that l = 1..m.  Opt

mtjZ ,,  is the robust optimal objective 

function value for Γ and N is the total number of assets. 

 
 

4.1 Measures of Cost 

 

For each trial t and set m, robust model Rj yields a n-vector of optimal asset weights, 

*
,, mtjw .  Therefore, the total portfolio return of Rj for each t and m, is given by Total

mtjP ,,  

in (4.2): 

 

Total

mtjP ,,  = ∑ =

n

i mtjimti wr
1

*
,,,,, ,  mtj ,,∀             (4.2) 

 

where mtir ,,  is the mean log return of asset i over a set of m months for trial t.  We 

introduce two measures for the cost of robustness.  Let MMax

mtr ,  denote the return of the 

asset with the largest mean log return for trial t and set of m months.  Cost1 and 

Cost2 measure the cost of the robust optimal portfolio, Total

mtjP ,, , with respect to MMax

mtr , .  

Cost1 measures the deviation between the value of the non-robust solution (i.e. with 

just a single asset) and the value of the robust solutions, whereas Cost2 measures the 
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deviation as a ratio with respect to MMax

mtr , .  In other words, Cost2 can be thought of as 

a cost-to-maximum potential reward ratio.   

 

Cost1j,t,m = MMax

mtr ,  - Total

mtjP ,, ,   mtj ,,∀ .                     (4.3) 

Cost2j,t,m = ( MMax

mtr ,  - Total

mtjP ,, ) / MMax

mtr , ,  mtj ,,∀ .                     (4.4) 

 

Clearly, Total

mtjP ,,  will be in the interval ],1[ ,
MMax

mtr− , therefore, Cost1 and Cost2 will be 

in the interval ],0[ ∞ . 

 

Bertsimas and Sim (2004) introduced the concept “price of robustness” as the 

difference between the robust optimal objective value and that of the nominal 

problem.  The measures of cost given by (4.3) and (4.4) differ from the price of 

robustness in that they measure the difference between the optimal objective of the 

nominal problem and the objective function value of the nominal problem evaluated 

at the robust optimal solutions. 

 

4.1.1 Measures of Cost: Results   

 

The motivation for the cost analysis is to determine 1) the distributions of the cost of 

Total

mtjP ,,  for each model and 2) observe how changing the definitions of ir , ir̂  and the 

scaling factor c and/or the size of the data set Mm ∈ , where M = {20, 40, 60}, 

affects cost. 

 

First, consider the distribution of Cost1 for each model, Rj, when 20=m  months 

(Figure 4.1) and 60=m  months (Figure 4.2).  For each model, the minimum, 

maximum, median and mean costs are plotted; each set of piecewise linear functions 

corresponds to a different scaling factor c, for fixed definitions of ir  and ir̂  (detailed 

in Table 4.1).  Observe the effect of changing c on each statistic and distribution 

(Figures 4.1 and 4.2).  For example, consider models R1, R2 and R3 when m = 20 

months (Figure 4.1).  As c increased from 1 to 2 (R1 to R2), the value of each statistic 
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of Cost1 also increased; as c increased from 2 to 3 (R2 to R3), the value of each 

statistic of Cost1 did not change.  Similar behaviour was observed between models 

R8, R9 and R10.  Models R4 to R7, showed an increase in the value of each statistic of 

Cost1 corresponding to an increase in c, particularly noticeable in maximum cost.  

Moreover, the histograms of Cost1, for m = 20, show that the distribution of each Rj 

was close to Normal, but with slightly higher peaks and positively skewed, with one 

outlier (the maximum).  An example of these characteristics is given in Figure 4.3, 

which shows the histograms of Cost1 for models R1, R6 and R10.  Lastly, as c 

increased, the distribution of Cost1 maintained a similar shape but was shifted up 

(Figure 4.1).  In other words, as the uncertainty set increased in scale, the cost of 

robustness also tended to increase. 

 
 

 
Figure 4.1.  Distribution of Cost1 for each 

model Rj, when 20=m  months. 

Figure 4.2.  Distribution of Cost1 for each 

model Rj, when 60=m  months.  
 
 

Consider when m = 60 months (Figure 4.2).  An increase in c did not affect the min, 

max, median, or mean of Cost1 for R1 to R3 or R8 to R10; however, as when m = 20, 

models R4 to R7 showed an increase in the value of each statistic of Cost1 

corresponding to an increase in c, and again, this was particularly noticeable for the 

maximum cost.  In addition, the distributions of Cost1 were close to Normal, but 

with higher peaks and positively skewed, with either 2 or 3 outliers (the 2 or 3 largest 

values); this is observed in Figure 4.4, which shows the histograms of Cost1 for 

models R1, R6 and R10.  Finally, Figure 4.2 shows that when m = 60, in contrast to 
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20=m , an increase in c had a minuscule effect on cost for models R1 to R3 and R8 to 

R10.  Therefore, increasing the range of the uncertainty set did not significantly 

increase the cost of robustness for these 6 models.  However, the cost of robustness 

for models R4 to R7 did tend to increase. 

 
 

 

 
Figure 4.3.  Histograms of Cost1 for Models R1, R6 and R10, where 20=m  months. 

 
 

As observed previously, there are instances in which an increase in c does not appear 

to affect the distribution of Cost1 (Figures 4.1 and 4.2).  For m = 20 months, the 

composition of portfolios for c = 2 and c = 3 reveal that the strong similarity between 

the distributions of the corresponding portfolios, R2 & R3 and R9 & R10, is because 

their optimal weights were either identical or very similar in many of the trials.  For 
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example, both R2 and R3 yielded the same decisions for trial 1.  The same is true 

when m = 60 months, but for c = 1, 2 and 3. 

 
 

 

 
Figure 4.4.  Histograms of Cost1 for Models R1, R6 and R10, where 60=m  months. 

 
 

We have observed how the scaling factor c affected the distribution of Cost1.  

Second, observe the effect of changing either the definition of ir , ir̂  or the number of 

months m (Figures 4.1 and 4.2).  For example, compare the distributions of R1, R2 

and R3 with those of R4, R5, R6 and R7.  The latter set of models, in which both ir  and 

ir̂  are defined as the mean log return of asset i, tended to cost less than the former 

(with the exception of R7) as their distributions are shifted down; however, they 
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tended to have larger outliers (maxima).  A similar comparison can be made between 

the distributions of R8 to R10 and R4 to R7.  Next, compare the distributions of Cost1 

when m = 20 and m = 60 months, for R1, R2 and R3; an increase in the number of 

months of historical data resulted in lower costs.  There are several possible causes:  

1) increasing the size of the dataset results in more precise estimates of ir  and ir̂ , 

which yield more cost effective solutions, 2) MMax

mtr ,  may be significantly larger for 

each trial when m = 20, or 3) a combination of both 1) and 2).  Results for m = 40 

months (not shown) suggest that it is the first cause, because the distributions for 

Cost1 fell between those for 20 and 60 months.  Cost2 provides a more accurate 

indication of the effect of changing m (Figures 4.5 and 4.6) 

 
 

 
Figure 4.5.  Distributions of Cost2 for each 

model Rj, when 20=m  months. 

Figure 4.6.  Distributions of Cost2 for each 

model Rj, when 60=m  months.  

 
 

The distribution of Cost2 for each model, Rj, is shown in Figure 4.5 (m = 20 months) 

and Figure 4.6 (m = 60 months).  As with Cost1, the minimum, maximum, median 

and mean are plotted for each model; each set of piecewise linear functions 

correspond to a different scaling factor c, for fixed definitions of ir  and ir̂ .  Observe 

the effect of changing c on each statistic and distribution (Figures 4.5 and 4.6).  As 

with Cost1, an increase in c tended to correspond to an increase in Cost2, and, with 

the exception of the maximum for R1 to R3, each model tended to cost less when 

60=m  than when 20=m , although only slightly.   
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Figure 4.7.  Histograms of Cost2 for Models R3, R4 and R10, where 20=m  months. 

 
 

One distinction from Cost1 is that models R4 to R7 tended to cost less than the other 

six models.  Observed by their distributions and histograms, R4 to R7 had a much 

smaller spread and were closer to being Normally distributed, with means close to 

the other six models, but without any outliers.  The histograms of Cost2 (m = 20, 60) 

for each Rj, j = 1..3, 8..10, were close to Normal, but with slightly higher peaks and 

positively skewed (Figure 4.7 shows the histograms of Cost2 for models R3, R4 and 

R10, when m = 20 months and Figure 4.8 shows the histograms of Cost2 for models 

R3, R6 and R10, when m = 60 months).  Models R1 to R3 had 1 or 2 outliers which 

were maxima whereas R8 had an outlier that was a minimum, but only for 20=m  
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months.  From an analysis of Figures 4.5 and 4.6, we conclude that one can expect 

models R1 to R3  and R8 to R10 to cost approximately 75-83% on average, and models 

R4 to R7 to cost approximately 70-85% on average, when the number of months in 

the historical data set is between 20 and 60 months.  It is possible that further 

increasing the number of months in the historical data set would result in decreased 

costs, however, further investigations not presented here suggest that the mean of 

Cost2 would not decrease significantly. 

 
 

 

 
Figure 4.8.  Histograms of Cost2 for Models R3, R6 and R10, where 60=m  months. 
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To summarise, the distribution of the loss in portfolio return with respect to MMax

mtr ,  

for all ten models was very similar, with none having a significant advantage over 

the others, particularly with respect to the mean and median of both Cost1 and Cost2.  

The mean percentage loss for each model, regardless of ir , ir̂ , m or c, was 

approximately 70-85%.  However, the distributions of the percentage loss in 

portfolio return with respect to MMax

mtr ,  showed that models R4 to R7 had a more 

consistent percentage loss and were closer to a Normal distribution without outliers.  

In addition, results suggest that increasing the scaling factor c, i.e. increasing the 

scale (or size) of the structure the uncertainty set U defining ri, tended to increase 

costs whereas increasing the number of months in the set of historical data tended to 

decrease costs. 

 
 

4.2 Measures of Robustness   

 

Robustness is measured by 1) the probability of underperformance, which is 

dependent upon Γ, and 2) the proportion of evaluated portfolios that underperform 

the robust optimal objective (PLO: Proportion of portfolios Less than Objective), 

given by (4.5) and (4.6) respectively. 

 

Max

mtjPLO ,,  = ))Pr(1( ,,,,,
Opt

mtj

true

lmtj ZZ ≥−  = ))/)1((1( N−ΓΦ− ,   mtj ,,∀ .     (4.5) 

Eval

mtjPLO ,,  = ∑l lmtj ,,,δ / m,        mtj ,,∀ ,     (4.6) 

 

where lmtj ,,,δ  is 1 if Opt

mtj

true

lmtj ZZ ,,,,, <  and 0 otherwise.  Because both (4.5) and (4.6) are 

measures of underperformance, as they decrease, robustness increases and as they 

increase, robustness decreases. Comparing the distributions of Max

mtjPLO ,,  and 

Eval

mtjPLO ,, , mj,∀ , we can evaluate the robustness of this methodology for the stated 

definitions of ri, c and m. 
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4.2.1 Measures of Robustness: Results   

 

The motivation of the robust analysis is to determine 1) if the robustness guaranteed 

by each model is actually achieved and 2) how changing the definition of ir , ir̂ , the 

scaling factor c and/or the size of the data set Mm ∈ , affects the robustness of the 

solution (guaranteed and achieved). 

 
 

 
Figure 4.9.  Distributions of 

Max

mtjPLO ,,  for 

each model Rj, when 20=m  months.   

Figure 4.10.  Distributions of 
Max

mtjPLO ,,  for 

each model Rj, when 60=m  months.

 
 

The distribution of the guaranteed robustness, Max

mtjPLO ,, , is shown in Figure 4.9 

( 20=m  months) and Figure 4.10 ( 60=m  months).  For each model, the minimum, 

maximum, median and mean probability of underperformance is plotted; each set of 

piecewise linear functions corresponds to different values of c for fixed values of ir  

and ir̂ .  For both 20 months and 60 months, an increase in c corresponded to a 

decrease in the probability of underperformance; the distributions became tighter and 

means and medians were closer to 0 (Figures 4.9 and 4.10).  In addition, the 

maximum for each model when 20=m  (Figure 4.9) was much higher than the 

maximum when 60=m  (Figure 4.10) which suggests that an increase in m also 

tended to result in a decrease in the probability of underperformance, thus, greater 

guaranteed robustness.  For example, R1 had a max close to 0.30 when m = 20 but a 
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max of about 0.02 when m = 60.  In addition, when 60=m  months, the distribution 

of each model had a much smaller spread and a mean and median closer to 0.  Recall 

that the probability of underperformance, Max

mtjPLO ,, , is dependent upon 1−Γdrop , as 

larger 1−Γdrop  yield a smaller Max

mtjPLO ,, .  Therefore, a larger data set of m months 

yielded diversified portfolios for larger values of Γ (i.e. portfolios with greater 

guaranteed robustness).  Lastly, although there is not one type of model that 

guaranteed significantly more robustness, those which define ir  as the mean log 

return and ir̂  as the standard deviation of asset i (R1 to R3 and R8 to R10), were 

characterised by tighter distributions and smaller maximum values (Figures 4.9 and 

4.10), suggesting that these models are slightly more advantageous (for both 20 and 

60 months). 

 
 

 
Figure 4.11.  Distribution of 

Eval

mtjPLO ,,  for 

each model Rj, when 20=m  months.   

Figure 4.12.  Distribution of 
Eval

mtjPLO ,,  for 

each model Rj, when 60=m  months.  

 
 

The distribution of the proportion of portfolios that actually underperform the robust 

optimal objective ( Eval

mtjPLO ,, ), is shown for model Rj, for m = 20 months (Figures 

4.11) and m = 60 months (Figure 4.12).  For each Rj, the minimum, maximum, 

median and mean underperformance are plotted; each set of piecewise linear 

functions correspond to a different scaling factor c for fixed definitions of ir  and ir̂ .  

When ir  was defined as the mean or median log return and ir̂  as the standard 
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deviation of asset i, increasing c also increased robustness (Figure 4.11, Figure 4.12 

and Table 4.2).  However, when both ir  and ir̂  were defined as the mean log return 

(R4 to R7), increasing c tended to decrease robustness, shown by an increase in the 

mean and median.  Recall that an increase in c resulted in higher costs for models R4 

to R7, thus, as these models increased in cost, they were also less robust.   

 

Table 4.2 shows the number of trials in which the proportion of portfolios that 

underperformed the optimal objective was less than the probability of 

underperformance (i.e. the number of instances in which Eval

mtjPLO ,,  was less than 

Max

mtjPLO ,, ).  Models R3 and R10, in which c = 3, had the largest percentage of trials 

that achieved or exceeded the guaranteed level of robustness, i.e. in over 60% of the 

trials the percentage of portfolios that underperformed the robust optimal objective 

was less than the probability of underperformance.  Conversely, for models R4 to R7, 

not one trial achieved or exceeded the guaranteed level of robustness for any set m. 

 
 

 
Table 4.2.  The number of trials (out of 100) in which the guaranteed level of robustness was 
achieved or exceeded, for each model Rj for a given set of m months.   
 
 

Lastly, increasing m tended to decrease the probability of underperformance, shown 

by decreased max values and tighter distributions for the same model (Figures 4.11 

and 4.12).  However, this did not necessarily correspond to an increase in the number 

of trials that achieved or exceeded the guaranteed robustness (Table 4.2).  In 

addition, an increase in m also decreased the probability of underperformance 

(Figures 4.9 and 4.10), which in most cases was less than 1%.  In order for the actual 

percentage of portfolios that underperform to be less than 1%, for any given trial, the 

portfolio return for every month l (l = 1..m) must be greater than the robust optimal 

objective – not one out of the m months can underperform.  For models R2, R3, R9 

and R10, when m = 40 or 60 months, many trials did not achieve guaranteed 
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robustness because only one portfolio, out of the 40 or 60, underperformed the robust 

optimal objective. 

 

In summary, the distributions of the probability of underperformance suggest that 

increasing the scale of the structure of uncertainty set U, defining ri, decreases the 

probability that the actual portfolio return will underperform the robust optimal 

objective ( Max

mtjPLO ,, ).  Likewise, when  ir  was the mean or median log return and ir̂  

was the standard deviation of asset i, the actual proportion of portfolios that 

underperform ( Eval

mtjPLO ,, ) also decreases, i.e. they were more robust.  However, when 

both ir  and ir̂  were the mean log return of asset i, the actual proportion of portfolios 

that underperform tended to increase, which means portfolios were less robust than 

they were guaranteed to be; these models were also much less robust than the other 

six models. 

 
 

4.3 Discussion   

 

Given that the mean log return of asset i is uncertain and lies on the interval 

]ˆ,ˆ[ iiii rcrrcr +− , and applying the robust portfolio model given in (3.11), we have 

provided measures to assess the cost of robustness and examined how the cost and 

robustness (both guaranteed and achieved robustness) are affected when the 

following are changed:  i) ir , ir̂  and scaling factor c, defining the uncertainty set of 

ir , and/or ii) the size of the set of historical data used to estimate ir  and ir̂ .  When ir  

and ir̂  were both specified as the mean log return of asset i (R4 to R7), portfolios were 

slightly less costly, with respect to Cost1 (difference between the non-robust and 

robust total portfolio return) and Cost2 (cost-to-maximum potential reward ratio), but 

also less robust than the other models, particularly with respect to achieved 

robustness.  In addition, when ir  and ir̂ were both specified as the mean log return of 

asset i, an increase in the scale of uncertainty set U not only increased cost but 

decreased robustness, which is counterintuitive.  One would expect that in exchange 

for a sacrifice in portfolio return there would be an increase in achieved robustness, 
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i.e. fewer portfolios would underperform the optimal objective function value.  For 

the other six models, increasing the range of the uncertainty set also increased cost, 

but that was in exchange for increased robustness.  The results suggest that models 

which define ir  as the mean or median log return and ir̂ as the standard deviation of 

asset i have the most desirable trade-off between cost and achieved robustness as 

well as guaranteed and achieved robustness. 
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Chapter 5 

 

Computational Investigation   

 
The purpose of this investigation is to evaluate the cost and robustness of robust 

portfolios compared to E-V portfolios.  One would expect that robust portfolios will 

cost more, but that is in exchange for greater achieved robustness.  We investigate 

whether this expectation is true for the robust portfolio models detailed in Chapter 3, 

by applying the measures of cost and robustness introduced in Chapter 4 to the 

robust and E-V solutions, both in-sample and out-of-sample.  The motivations of our 

investigation are as follows: 

 
1. Analysis of cost:  How costly is robustness?  What is the relationship between 

c and the conservativeness of the total portfolio return evaluated using the 

optimal weights of the robust solution (recall that ]ˆ,ˆ[ iiiii rcrrcrr +−∈ )? 

2. Analysis of robustness:  Is the guaranteed probability of optimality achieved?  

What is the relationship between c and the robustness of the optimal objective 

value?   

 

The dataset consists of the monthly log returns of 30 stocks selected at random from 

the FTSE 100 index beginning 1 January 1992 through to 1 December 2006.  This 

time interval includes 2001-02, a period of economic stress and increased stock 

market volatility; therefore, two sets of experiments were carried out, referred to as 

Case 1 and Case 2.  In Case 1, of the 180 time periods, the first 132 (1 January 1992 

– 1 December 2002) were used to construct the optimal portfolio for each model 

tested.  The last 48 time periods (1 January 2003 – 1 December 2006) were reserved 

for the out-of-sample analysis.  In Case 2, of the 180 time periods, the first 108 (1 
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January 1992 – 1 December 2000) were used to construct the optimal portfolio for 

each model tested.  The last 72 time periods (1 January 2001 – 1 December 2006) 

were reserved for the out-of-sample analysis.  For each month, logarithmic returns 

were used.  Each model was solved using the CPLEX 10.1 solver. 

 

In our experiments, only 30 assets, randomly selected from the FTSE 100 were used.  

The rationale for this choice is as follows.  The threshold and cardinality constrained 

models are Mixed Integer Programs, and, for more than 30 assets, these models take 

too long to solve.  Since the purpose of our investigation is not computational 

efficiency, or to improve the MIP solution technology, we have simply chosen this 

restricted number of assets in order to obtain computationally tractable models for 

our empirical study. 

 
 

5.1 Model Descriptions  

 

In each set of experiments nine portfolio optimisation models were tested: eight 

robust models and one Expected value – Variance model (Table 5.1).  The E-V 

optimisation model minimised portfolio variance subject to the expected portfolio 

return achieving a target return, as described in Chapter 3.  The first robust model 

(R1) is given by (3.11) in Section 3.5.  The seven remaining robust models, given by 

the extended model (3.12) in Section 3.6, were subject to a buy-in threshold, an 

upper limit on cardinality or both. 

 
 

Model Rj Description Threshold (α) Cardinality (k) 
R1 Robust None None 
R2 Robust None ≤ 20 
R3 Robust 0.02 None 
R4 Robust 0.02 ≤ 20 
R5 Robust 0.03 None 
R6 Robust 0.03 ≤ 20 
R7 Robust 0.04 None 
R8 Robust 0.04 ≤ 20 

REV Expected value -Variance None None 

Table 5.1.  Summary of models and model constraints, for each jR , where EVj ,8..1= .  
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An upper limit of 20=k  was small enough to impose a restriction on cardinality 

because robust models tend to diversify both in terms of the number of assets and in 

the distribution of weights.  In addition, the buy-in threshold α belongs to the set 

{ }04.0,03.0,02.0  because an α less than 0.01 did not affect the optimal decisions 

(with a pool of 30 assets, those selected were given a weight greater than 0.01) and 

an α greater than 0.05 imposed a cardinality restriction of 20 assets. 

 

Each robust model was optimised for integer values of Γ from 0 to N, where N = 30.  

The E-V model was optimised for 31 equidistant points (with respect to target return) 

between the minimum variance portfolio and maximum total return portfolio.  In 

addition, for each model it was assumed that the covariance matrix was known but 

asset returns were unknown and variable.  The sensitivity of the robust model to 

changes in the uncertainty set defining asset returns was investigated by optimising 

each robust model for five uncertainty sets defined by ri ∈[ iiii rcrrcr ˆ,ˆ +− ].  Where 

ir  was the mean log return of asset i, ir̂  was the standard deviation of asset i and the 

scaling factor c was an integer between one and five, inclusive.  That is, we 

considered the true log return of asset i, ri, to be within one to five standard 

deviations of its mean.  We chose to investigate beyond three standard deviations in 

order to observe robust optimal solutions when the scaling factor c results in a very 

conservative uncertainty set U. 

 

For both Case 1 and Case 2 a total of 1240 robust portfolios (5 uncertainty sets, 8 

models and 31 values of Γ) and 31 E-V portfolios were optimised.  The number of 

portfolios evaluated was reduced in order to analyse cost and robustness: for each 

robust model, portfolios resulting from Γ = 8, 10, 18 and 1−Γdrop  were chosen.  

These Γ values correspond, respectively, to the )Pr( ,,,
Opt

cj

true

cmj ZZ ≥  ≈ 0.90, 0.95, 0.999 

and the maximum guaranteed probability of optimality.  We have not specified a 

numerical value for the maximum guaranteed probability of optimality because 

1−Γdrop  was not the same for all models.  In addition, for several models, 

specifically those with cardinality constraints, 1−Γdrop  was less than 18, thus, Γ = 18 
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resulted in a portfolio consisting of 1 asset.  For those models we only considered 

three values of Γ: 8, 10 and 1−Γdrop .   

 

One of the motivations of this section is to assess the robustness of the robust models 

compared with the E-V models, therefore, we have chosen five portfolios from the 

VE −  efficient frontier from a possible 31.  Starting with the minimum variance 

portfolio, every fourth efficient point was selected, resulting in the set of points P = 

{EV.31, EV.27, EV.23, EV.19, EV.15} (see Figure 5.1).  Points EV.14 through to 

EV.1 represent portfolios consisting of less than 7 assets; although these portfolios 

would have cost less than those in set P, in general, they also would have been less 

robust.  Thus, to compare the robust methodology with the most robust E-V 

portfolios we have limited our set of evaluated portfolios to that of set P. 

 
 

 
Figure 5.1.  Representation of the 5 E-V portfolios selected as the set P. 

 
 

The measures of cost introduced in Chapter 4 have been adjusted and are given in 

(5.1) & (5.2).  Likewise, the measures of robustness introduced in Chapter 4 were 

adjusted and are given in (5.3) & (5.4). 

 

Cost1j,c = MMax
r  - Total

cjP , ,    cj,∀ .                     (5.1) 
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Cost2j,c = ( MMax
r - Total

cjP , ) / MMax
r ,   cj,∀ .                     (5.2) 

Max

cjPLO ,  = ))Pr(1( ,,,
Opt

cj

true

cmj ZZ ≥−   

   = ))/)1((1( N−ΓΦ− ,     cmEVjj ,,: ≠∀      (5.3) 

Eval

cjPLO ,  = ∑ =

M

m cmj1 ,,δ / M,     cj,∀ ,               (5.4) 

 

where parameter c determines the magnitude of the range of the uncertainty set 

defining ri, j is the set of models and m = 1..M, where M is the number of months in 

the respective in-sample or out-of-sample period.  Recall that MMax
r  denotes the 

return of the asset with the largest mean log return over a given set of M months, 

Total

cjP ,  is the total portfolio return of model Rj for each value of c, true

cmjZ ,,  is the true 

portfolio return of model Rj, for each value of c, at month m, Opt

cjZ ,  is the optimal 

objective function value of model Rj for each value of c and cmj ,,δ  is a 0-1 variable 

which takes a value of 1 if true

cmjZ ,,  < Opt

cjZ ,  and 0 otherwise.  For the evaluation of cost 

and robustness for the E-V models, (5.1), (5.2) and (5.4) are similar, only the 

subscript c is removed, and (5.3) is not applicable because E-V models do not 

guarantee robustness. 

 
 

5.2 Case 1   

 

For Case 1, the in-sample dataset, consisting of 132 monthly log returns for 30 assets 

from the FTSE 100 from 1 January 1992 through to 1 December 2002, was used to 

estimate ir  (the mean log return of each asset), ir̂  (the standard deviation of asset i) 

and the covariance matrix for the E-V model.  Case 1 captures 2001 through to 2002 

within the in-sample set; thus we observe how each model responds to periods of 

loss in the modelling stage.  The out-of-sample dataset consisted of 48 monthly log 

returns from 1 January 2003 through to 1 December 2006.  We optimised 1240 
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robust portfolios and 31 E-V portfolios, and evaluated 120 robust portfolios and 5 E-

V portfolios.     

 

5.2.1 Analysis of Cost   

 

Cost1 (Figure 5.2) and Cost2 (Figures 5.3 and 5.4) were calculated for each Rj for Γ 

values of 8, 10, 18 and 1−Γdrop ; the scale markers along the x-axis at every Rj and 

between successive Rj represent each value of Γ.  As mentioned in Section 5.1, 

1−Γdrop  was less than 18 for robust models with cardinality constraints; thus, for 2R , 

4R , 6R  and 8R  only three values of Γ (8, 10 and 1−Γdrop ) are shown for Cost1 and 

Cost2.  Cost1, both in-sample and out-of-sample, is shown in Figure 5.2 for each 

value of c.  Cost2 is shown in Figure 5.3 (in-sample) and Figure 5.4 (out-of-sample), 

for each value of c.  In each Figure, if either respective cost is the same for two or 

more values of c, or two or more values of Rj and Γ, it indicates that the robust 

optimal decisions were the same.  For example, Cost1 for R1 is the same for all c and 

all Γ, which indicates that the optimal decision vector w* was the same for each of 

those 20 portfolios (4 values of Г and 5 values of c). 

 

First, we consider the effect that c has on cost.  An increase in the magnitude of the 

range of the uncertainty set for each asset i means that the worst case value of each 

asset will decrease and the robust optimal objective will deteriorate.  Thus, as c 

increases, we would expect the total portfolio return to be more conservative, 

corresponding to greater costs.  Observe that for a given jR , an increase in c 

corresponded to either the same costs or an increase in costs (Figures 5.2, 5.3 and 

5.4).  More specifically,  

 

Cost1j,c ≤ Cost1j,c+1,    4..1,8..1 ==∀ cj ,                     (5.5) 

Cost2j,c ≤ Cost2j,c+1,   4..1,8..1 ==∀ cj .                     (5.6) 
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Second, we compare the cost of model 1R  to robust portfolios with cardinality and/or 

buy-in threshold constraints.  In comparison to 1R , cardinality constraints tended to 

decrease costs for values of c ≤ 2, but increase costs for values of c ≥ 3 (Figure 5.2).  

Threshold constraints that did not constrain the cardinality of the portfolio (i.e. α = 

0.02, 0.03, corresponding to models 1R  and 5R , respectively) tended to result in very 

similar costs as R1 (Figures 5.2, 5.3 and 5.4).  In addition, because the plot of Cost1 

out-of-sample has the same shape as that of in-sample (Figure 5.2), it is a very good 

indication of which models will be more costly in the future, and an investor can act 

accordingly.  Thus, with this particular set of data, in-sample results for Cost1 

(Figure 5.2) and Cost2 (Figure 5.3) indicate that a more risk seeking investor, one 

who restricts the true log return of asset i to lie within a smaller interval (indicated by 

smaller values of c), should include cardinality constraints in order to reduce costs 

out-of-sample.  However, a risk-averse investor, one who defines the true log return 

of asset i to lie within a larger interval (indicated by larger values of c), should either 

use model R1, which is unconstrained, or only include threshold constraints which do 

not impose cardinality restrictions in order to avoid increasing costs out-of-sample. 

 
 

 
Figure 5.2.  Cost1 for all robust models at specific values of Γ, for all c, both in-sample and out-of-
sample.   
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Figure 5.3.  Cost2 for all robust models at specific values of Γ, for all c, in-sample. 

 
 

 
Figure 5.4.  Cost2 for all robust models at specific values of Γ, for all c, out-of-sample.   

 
 

Third, we compare in-sample and out-of-sample costs.  Both Cost1 and Cost2 were 

greater out-of-sample than they were in-sample (Figures 5.2, 5.3 and 5.4).  At first, 
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this may appear to suggest that all jR  performed poorly out-of-sample; however 

further investigation shows differently.  Recall that the in-sample dataset included a 

period of higher volatility and poorer returns for many assets compared to the out-of-

sample dataset.  In addition, both costs were measured with respect to MMax
r , which 

was greater for the out-of-sample period, and both in-sample and out-of-sample costs 

were calculated using the same Total

cjP , , cj,∀ ; thus, it follows that all jR  would cost 

more out-of-sample.  Further results (Section 5.2.2) strongly suggest that jR  are 

more robust out-of-sample, in exchange for higher costs. 

 

Lastly, we compare the costs of the unconstrained robust model ( 1R ) to the costs of 

E-V portfolios.  Recall that portfolio EV.31 corresponds to the minimum variance 

portfolio which also has the smallest portfolio return.  Each subsequent portfolio, 

EV.27-EV.15 from the efficient frontier (Figure 5.5), has a greater portfolio return, 

greater variance and less cost.  In-sample and out-of-sample results show that all five 

E-V portfolios cost less than R1 (Table 5.2).  However, R1 only costs approximately 

.008 (Cost1) and 3% (Cost2) more than EV.31; in a robust framework, we are willing 

to accept higher costs, if increased robustness is achieved, discussed further in the 

following section. 

 
 

 
Figure 5.5.  E-V portfolios selected from the efficient frontier. 
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Cost1  Cost2  

In-Sample Out-of-Sample  In-Sample Out-of-Sample 

R1 0.0198 0.0256  0.7826 0.8237 

EV.31 0.0190 0.0248  0.7507 0.7978 

EV.27 0.0164 0.0223  0.6506 0.7166 

EV.23 0.0139 0.0198  0.5505 0.6354 

EV.19 0.0114 0.0173  0.4504 0.5542 

EV.15 0.0089 0.0147  0.3503 0.4730 

Table 5.2.  Cost1 & Cost2 in-sample and out-of-sample for all E-V portfolios and robust model R1. 

 
 

5.2.2 Analysis of Robustness   

 

First, we evaluate whether guaranteed robustness was achieved and how robustness 

is affected by the scaling factor c.  The realised portfolio return of 1R  ( true

cmZ ,,1 ), for all 

c, was the same for each Γ ∈  {8, 10, 18, 22 ( 1−Γdrop )} , both in-sample (Figure 5.6) 

and out-of-sample (Figure 5.7).  In addition, for a given Γ and scaling factor c, the 

robust optimal objective value of 1R  ( Opt

cZ ,1 ) was held constant over a sample period; 

thus only one horizontal line is plotted for each c (Figures 5.6 and 5.7).  The same 

scale was used for all four in-sample time-series (Figure 5.6), likewise for all four 

out-of-sample time-series (Figure 5.7).   

 

Recall that larger Γ values correspond to greater probabilities of optimality, hence, 

portfolios should be more robust.  The actual robustness of each portfolio was 

measured by comparing the percentage of returns that dipped below the line Opt

cZ ,1  for 

each c, with the probability of underperformance (1 – [Probability of optimality]).  

Observe that an increase in c, Γ or both, increased achieved robustness (Figures 5.6 

and 5.7 and Tables 5.3 and 5.4)).  In addition, more robust portfolios achieved their 

guaranteed probability of optimality out-of-sample. 
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Figure 5.6.  1R  in-sample plots of 

true

cmZ ,,1  and 
Opt

cZ ,1 for Γ = 8, 10, 18 and 22, c∀ . 



71 

 

 
Figure 5.7.  1R  out-of-sample plot of 

true

cmZ ,,1  and 
Opt

cZ ,1 for Γ = 8, 10, 18 and 22, c∀ . 

 
 

The guaranteed robustness and achieved robustness of model 1R  as well as the 

achieved robustness of the E-V portfolios are given in Table 5.3 (in-sample) and 

Table 5.4 (out-of-sample).  Numerical figures shaded grey denote instances in which 

the percentage of portfolios that underperformed their respective robust optimal 

objective function value ( Eval

cPLO ,1 ) was less than their guaranteed probability of 

underperformance ( Max

cPctLO ,1 ), for corresponding c and Γ.  For Case 1, a greater 

number of portfolios achieved or exceeded their guaranteed robustness out-of-sample 

than in-sample (recall that the in-sample period includes a period of poorer returns).  

Moreover, for every c and Γ, the actual percentage of underperformance out-of-
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sample was less than or equal to that of the corresponding in-sample portfolio.  For 

example, for 8=Γ  and 3=c , the actual percentage of portfolios that 

underperformed out-of-sample was 2.08% (Table 5.4) whereas that of in-sample is 

7.63% (Table 5.3).   

 
 
 

Max

cPLO ,1   
Eval

cPLO ,1   
Eval

EVPLO  

Γ c = 1..5  c = 1 c = 2 c = 3 c = 4 c = 5 

 

EV.31 43.51% 

8 10.06%  21.37% 12.21% 7.63% 3.82% 3.05%  EV.27 45.80% 

10 5.02%  16.79% 9.16% 6.11% 3.05% 0.76%  EV.23 48.85% 

18 0.10%  10.69% 3.05% 0.76% 0.00% 0.00%  EV.19 49.62% 

22 0.01%  8.40% 2.29% 0.00% 0.00% 0.00%  EV.15 51.91% 

Table 5.3.  Guaranteed and achieved robustness for model 1R  and achieved robustness for E-V 

models, in-sample.   
 
 
 

Max

cPLO ,1   
Eval

cPLO ,1   
Eval

EVPLO  

Γ c = 1..5  c = 1 c = 2 c = 3 c = 4 c = 5 

 

EV.31 35.42% 

8 10.06%  20.83% 6.25% 2.08% 2.08% 0.00%  EV.27 39.58% 

10 5.02%  16.67% 2.08% 2.08% 0.00% 0.00%  EV.23 39.58% 

18 0.10%  2.08% 0.00% 0.00% 0.00% 0.00%  EV.19 39.58% 

22 0.01%  2.08% 0.00% 0.00% 0.00% 0.00%  EV.15 43.75% 

Table 5.4.  Guaranteed and achieved robustness for model 1R  and achieved robustness for E-V 

models, out-of-sample.   
 
 
 

Second, we consider whether larger c yielded portfolios that were too robust.  By too 

robust we mean that Opt

cjZ ,  was too far below true

cmjZ ,,  for a given Γ.  For example, 

consider the time series for 22=Γ .  The worst realised portfolio return out-of-

sample (Figure 5.7) was just above -0.09 and true

cmZ ,,1  for the remaining months was 

never below 05.0− ; in-sample (Figure 5.6), true

cmZ ,,1  was never below 16.0− .  

However, when 5=c , 28.05,1 −≈Opt
Z .  Is an investor interested in being protected 

against (with a high degree of probability) realised returns 12% less than the worst 

true

cmZ ,,1 ?  Whilst investors do seek downside protection, many do not require 

protection against the absolute worst return that could ever happen, i.e. a rare and 

extreme event.  Alternatively, they want protection against worst case returns that are 
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more likely to occur during the investment period.  The robust methodology allows 

an investor to scale the uncertainty sets such that there is protection against what they 

consider to be worst case returns.  It follows then, that robust portfolios in which 

4≥c  may have been too robust when Г ≥ 18, particularly out-of-sample.  On the 

other hand, when c was less than or equal to one, robust portfolios were not robust 

enough (Tables 5.3 and 5.4).  Thus, the uncertainty set defining ri should be 

symmetric with respect to ir  by more than one standard deviation, in order to achieve 

the robustness guaranteed by the model out-of-sample; results suggest that an 

investor may wish to choose a value of c greater than or equal to 2.  A risk-averse 

investor may well wish to choose c to equal a value of at least 3; regardless, the 

investor may choose to optimise the portfolio for 18≥Γ .  Although one can 

deliberate over the value of c to be chosen in order to yield portfolios out-of-sample 

that are robust, but not too robust, in the end, the decisions were the same for all c 

and 8 ≤ Г ≤ 22.  In other words, selecting c and Γ (on the interval [8, 22]) is more a 

matter of trying to accurately assess risk, than it is trying to select the most robust 

portfolio. 

 
 
 

 
Figure 5.8.  Time series of in-sample returns 
for all 5 E-V portfolios versus optimal objective 
function value (horizontal black lines).   
 

Figure 5.9.  Time series of out-of-sample 
returns for all 5 E-V portfolios versus optimal 
objective function value (horizontal black 
lines).
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Third, we compare the robustness of robust model 1R  and E-V portfolios.  A time 

series of E-V portfolio returns shows that the actual portfolio return, in-sample 

(Figure 5.8) and out-of-sample (Figure 5.9), was less than the optimal objective 

function value (horizontal black lines in each figure) much more often than for robust 

model 1R .  Moreover, every E-V portfolio underperformed its optimal objective 

value over 40% of the time in-sample (Table 5.3) and over 35% of the time out-of-

sample (Table 5.4), while the least robust robust portfolio underperformed no more 

than 22% of the time ( 8,1 =Γ=c ), in both samples. 

 
 
 

Analysis of Robustness, In-Sample 

  
Max

cjPLO ,  
  

Eval

cjPLO ,  
 

Model Γ c = 1..5  c = 1 c = 2 c = 3 c = 4 c = 5 
8 10.06%  15.27% 8.40% 3.05% 1.53% 0.76% 

10 5.02%  13.74% 6.11% 1.53% 0.76% 0.00% 

R2 

Гdrop - 1 0.30%  16.79% 3.05% 0.00% 0.00% 0.00% 

         
8 10.06%  21.37% 12.21% 7.63% 3.82% 3.05% 

10 5.02%  16.79% 9.16% 6.11% 3.05% 0.76% 

18 0.10%  10.69% 3.05% 0.76% 0.00% 0.00% 

R3 

Гdrop - 1 0.01%  8.40% 2.29% 0.00% 0.00% 0.00% 

         
8 10.06%  15.27% 8.40% 3.05% 1.53% 0.76% 

10 5.02%  13.74% 6.11% 1.53% 0.76% 0.00% 

R4 

Гdrop - 1 0.30%  16.79% 3.05% 0.00% 0.00% 0.00% 

         
8 10.06%  19.08% 9.92% 5.34% 2.29% 1.53% 

10 5.02%  16.03% 7.63% 3.05% 1.53% 0.76% 

18 0.10%  9.92% 3.05% 0.76% 0.00% 0.00% 

R5 

Гdrop - 1 0.01%  9.16% 2.29% 0.00% 0.00% 0.00% 

         
8 10.06%  15.27% 8.40% 3.05% 1.53% 0.76% 

10 5.02%  13.74% 6.11% 1.53% 0.76% 0.00% 

R6 

Гdrop - 1 0.30%  16.79% 3.05% 0.00% 0.00% 0.00% 

         
8 10.06%  18.32% 9.16% 3.05% 1.53% 1.53% 

10 5.02%  15.27% 6.87% 1.53% 1.53% 0.00% 

18 0.10%  8.40% 1.53% 0.00% 0.00% 0.00% 

R7 

Гdrop - 1 0.01%  8.40% 1.53% 0.00% 0.00% 0.00% 

         
8 10.06%  17.56% 8.40% 3.05% 1.53% 0.00% 

10 5.02%  14.50% 3.82% 1.53% 0.76% 0.00% 

R8 

Гdrop - 1 0.30%  16.79% 3.05% 0.00% 0.00% 0.00% 

Table 5.5.  Guaranteed and achieved robustness for model jR , for 8..2=j , in-sample. 
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Analysis of Robustness, Out-of-Sample 

  
Max

cjPLO ,  
  

Eval

cjPLO ,  
 

Model Γ c = 1..5  c = 1 c = 2 c = 3 c = 4 c = 5 
8 10.06%  14.58% 2.08% 2.08% 0.00% 0.00% 

10 5.02%  8.33% 2.08% 0.00% 0.00% 0.00% 

R2 

Гdrop - 1 0.10%  6.25% 0.00% 0.00% 0.00% 0.00% 

         
8 10.06%  20.83% 6.25% 2.08% 2.08% 0.00% 

10 5.02%  16.67% 2.08% 2.08% 0.00% 0.00% 

18 0.10%  2.08% 0.00% 0.00% 0.00% 0.00% 

R3 

Гdrop - 1 0.01%  2.08% 0.00% 0.00% 0.00% 0.00% 

         
8 10.06%  14.58% 2.08% 2.08% 0.00% 0.00% 

10 5.02%  8.33% 2.08% 0.00% 0.00% 0.00% 

R4 

Гdrop - 1 0.10%  6.25% 0.00% 0.00% 0.00% 0.00% 

         
8 10.06%  14.58% 2.08% 2.08% 0.00% 0.00% 

10 5.02%  10.42% 2.08% 2.08% 0.00% 0.00% 

18 0.10%  2.08% 0.00% 0.00% 0.00% 0.00% 

R5 

Гdrop - 1 0.01%  2.08% 0.00% 0.00% 0.00% 0.00% 

         
8 10.06%  14.58% 2.08% 2.08% 0.00% 0.00% 

10 5.02%  8.33% 2.08% 0.00% 0.00% 0.00% 

R6 

Гdrop - 1 0.10%  6.25% 0.00% 0.00% 0.00% 0.00% 

         
8 10.06%  12.50% 2.08% 2.08% 0.00% 0.00% 

10 5.02%  8.33% 2.08% 0.00% 0.00% 0.00% 

18 0.10%  2.08% 0.00% 0.00% 0.00% 0.00% 

R7 

Гdrop - 1 0.01%  2.08% 0.00% 0.00% 0.00% 0.00% 

         
8 10.06%  12.50% 2.08% 2.08% 0.00% 0.00% 

10 5.02%  6.25% 2.08% 0.00% 0.00% 0.00% 

R8 

Гdrop - 1 0.10%  6.25% 0.00% 0.00% 0.00% 0.00% 

Table 5.6.  Guaranteed and achieved robustness for model jR , for 8..2=j , out-of-sample. 

 
 

Finally, we compare the robustness of 1R  with robust portfolios constrained by 

cardinality and/or a buy-in threshold ( 2R  to 8R ).  For non-cardinality constrained 

models ( 3R , 5R  and 7R )  we considered portfolios corresponding to Γ values of 8, 

10, 18 and 1−Γdrop .  For cardinality constrained models ( 2R , 4R , 6R  and 8R ), 

1−Γdrop  was less than 18; thus, we only considered portfolios corresponding to Γ 

values of 8, 10 and 1−Γdrop .  Numerical figures shaded grey in Table 5.5 (in-sample) 

and Table 5.6 (out-of-sample) indicate instances in which the percentage of 
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portfolios that underperformed the optimal objective ( Eval

cjPLO , ) was less than the 

probability of underperformance ( Max

cjPLO , ).   

 

Observe that in-sample (Table 5.5), cardinality constrained models were more robust 

than those without cardinality constraints.  On the other hand, out-of-sample (Table 

5.6), there was not much difference between the achieved robustness of each model 

for corresponding values of c.  A comparison with 1R  in-sample (Tables 5.3) and 

out-of-sample (Table 5.4) shows that the inclusion of cardinality constraints 

improved achieved robustness ( Eval

cPLO ,1 ), for all values of c.  Similarly, the inclusion 

of threshold constraints improved achieved robustness in all instances when c ≥ 3, 

but only a few instances when c ≤ 2. 

 
 

5.3 Case 2   

 

For Case 2, the in-sample dataset, consisting of 108 monthly log returns for 30 assets 

from the FTSE 100 from 1 January 1992 through to 1 December 2000, was used to 

estimate ir  (the mean log return of each asset), ir̂  (the standard deviation of asset i) 

and the covariance matrix for the E-V model.  The out-of-sample dataset consisted of 

72 monthly log returns from 1 January 2001 through to 1 December 2006.  Case 2 

reserves the time period spanning from 2001 through to 2002 for the out-of-sample 

analysis.  We optimised 1240 robust portfolios and 31 E-V portfolios, and evaluated 

120 robust portfolios and 5 E-V portfolios. 

 

5.3.1 Analysis of Cost   

 

Cost1 (Figure 5.10) and Cost2 (Figure 5.11) were calculated for each Rj for Γ values 

of 8, 10, 18 and 1−Γdrop ; the scale markers along the x-axis at every Rj and between 

successive Rj represent each value of Γ.  As in Case 1, 1−Γdrop  was less than 18 for 

robust models with cardinality constraints; thus for 2R , 4R , 6R  and 8R  only three 
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values of Γ (8, 10 and 1−Γdrop ) are shown for Cost1 and Cost2.  Cost1, both in-

sample and out-of-sample, is shown in Figure 5.10 for each value of c.  Cost2 is 

shown in Figure 5.3 (in-sample) and Figure 5.4 (out-of-sample), for each value of c.  

In each Figure, if either respective cost is the same for two or more values of c, or for 

two or more values of jR  and Γ, it indicates that the robust optimal decisions were 

the same.  For example, Cost1 for R3 is the same for all c and all Γ, which indicates 

that the optimal decision vector w* was the same for each of those 20 portfolios (4 

values of Г and 5 values of c). 

 
 

 
Figure 5.10.  Cost1 for all robust models at specific values of Γ, for all c, both in-sample and out-
of-sample.   
 
 

First, we consider the effect that c has on cost.  As stated in Case 1, an increase in the 

magnitude of the range of the uncertainty set for each asset i means that the worst 

case value of each asset will decrease and the robust optimal objective will 

deteriorate.  Thus, as c increases, we would expect the total portfolio return to be 

more conservative, corresponding to greater costs.  Observe that for a given jR , an 

increase in c corresponded to either the same costs or an increase in costs (Figures 
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5.10, 5.11, and 5.12).  This is a similar relationship to that observed in Case 1, given 

by (5.5) and (5.6) in Section 5.2.1. 

 
 

 
Figure 5.11.  Cost2 for all robust models at specific values of Γ, for all c, in-sample. 

 

 
Figure 5.12.  Cost2 for all robust models at specific values of Γ, for all c, out-of-sample. 
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Second, we compare the cost of model 1R  with robust models constrained by 

cardinality and/or a buy-in threshold.  In comparison to 1R , cardinality constraints 

tended to decrease costs for values of c ≤ 1, but increase costs for values of c ≥ 2 

(Figure 5.10).  Threshold constraints that do not constrain the cardinality of the 

portfolio (i.e. α = 0.02, 0.03, corresponding to models 3R  and 5R  respectively) 

tended to result in very similar costs as obtained for model 1R  (Figures 5.10, 5.11 

and 5.12).  In addition, because the out-of-sample plot of Cost1 has the same shape 

as that of Cost1 in-sample (Figure 5.10), it is a very good indication of which models 

will be more costly in the future, and an investor can act accordingly.  Thus, with this 

particular set of data, in-sample results for Cost1 (Figure 5.10) and Cost2 (Figure 

5.11) indicate that in order to reduce costs out-of-sample, a more risk seeking 

investor, one who restricts the true log return of asset i to lie within a smaller interval 

(indicated by smaller values of c), should only include cardinality constraints if c = 1.  

However, a risk-averse investor, one who defines the true log return of asset i to lie 

within a larger interval (indicated by larger values of c), should either use the 

unconstrained model ( 1R ), or only include threshold constraints which do not impose 

cardinality restrictions, in order to avoid increasing costs out-of-sample.   

 
 

Third, we compare in-sample and out-of-sample costs.  Both Cost1 and Cost2 were 

greater in-sample than they were out-of-sample (Figures 5.10, 5.11 and 5.12).  Recall 

that the out-of-sample dataset included a period of higher volatility and poorer 

returns for many assets compared to the in-sample dataset.  In addition, both costs 

are measured with respect to MMax
r , which was greater for the in-sample period, and 

both in-sample and out-of-sample costs were calculated using the same Total

cjP , , cj,∀ ; 

thus, it follows that all Rj would cost more in-sample. 

 

Finally, we compare the costs of the unconstrained robust model ( 1R ) to the costs of 

E-V portfolios.  Recall that portfolio EV.31 corresponds to the minimum variance 

portfolio, which also has the smallest portfolio return.  Each subsequent portfolio, 

EV.27-EV.15 from the efficient frontier (Figure 5.13), has a greater portfolio return, 

greater variance and less cost.  In addition, these four portfolios cost less than 1R , 
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whereas the minimum variance portfolio, EV.31, costs more (although by a very 

small margin), both in-sample and out-of-sample (Table 5.7).  The analysis of 

robustness in Section 5.3.2, will help to determine whether incurring greater costs 

(associated with 1R ) has been in exchange for greater achieved robustness. 

 
 

 
Figure 5.13.  E-V portfolios selected from the efficient frontier. 

 
 

Cost1  Cost2  
In-Sample Out-of-Sample  In-Sample Out-of-Sample 

R1 0.0272 0.0173  0.7593 0.6668 

EV.31 0.0274 0.0174  0.7642 0.6737 

EV.27 0.0237 0.0138  0.6623 0.5327 

EV.23 0.0201 0.0101  0.5604 0.3916 

EV.19 0.0164 0.0065  0.4586 0.2506 

EV.15 0.0128 0.0028   0.3567 0.1096 

Table 5.7.  Cost1 and Cost2, in-sample and out-of-sample, for all 5 E-V portfolios and model R1. 

 
 

5.3.2 Analysis of Robustness   

 

First, we evaluate whether guaranteed robustness was achieved as well as how 

robustness is affected by the scaling factor c.  As in Case 1, the realised portfolio 

return of 1R  ( true

cmZ ,,1 ), for all c, was the same for each Γ ∈  {8, 10, 18, 22 ( 1−Γdrop )} , 

both in-sample (Figure 5.14) and out-of-sample (Figure 5.15).  In addition, for a 
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given Γ and scaling factor c, the robust optimal objective value of 1R  ( Opt

cZ ,1 ) was 

held constant over a sample period; thus only one horizontal line is plotted for each c 

(Figures 5.14 and 5.15).  The same scale is used for all four in-sample time-series 

(Figure 5.14), likewise for all four out-of-sample time-series (Figure 5.15). 

 
 

 
Figure 5.14.  1R  in-sample plots of 

true

cmZ ,,1  and 
Opt

cZ ,1 for Γ = 8, 10, 18 and 22, c∀ . 
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Figure 5.15.  1R  out-of-sample plot of 

true

cmZ ,,1  and 
Opt

cZ ,1 for Γ = 8, 10, 18 and Γdrop – 1, c∀ .   

 
 

As larger Γ correspond to greater probabilities of optimality, it was expected that 

larger Γ would yield more robust portfolios.  The actual robustness of each portfolio 

was measured by comparing the percentage of returns that dipped below the line 

Opt

cZ ,1  for each c, with the probability of underperformance (1 – [Probability of 

optimality]).  Observe that an increase in c, Γ or both, increased achieved robustness 

(Figures 5.14 and 5.15 and Tables 5.8 and 5.9).  In addition, more robust portfolios 

achieved their guaranteed probability of optimality in-sample. 

 

The guaranteed robustness and achieved robustness of model 1R  as well as the 

achieved robustness of the E-V portfolios are given in Table 5.8 (in-sample) and 
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Table 5.9 (out-of-sample).  Numerical figures shaded grey denote instances in which 

the percentage of portfolios that underperformed their respective robust optimal 

objective function value ( Eval

cPLO ,1 ) was less than their guaranteed probability of 

underperformance ( Max

cPctLO ,1 ), for corresponding c and Γ.  For Case 2, a greater 

number of portfolios achieved or exceeded their guaranteed robustness in-sample 

than out-of-sample.  Moreover, for every c and Γ, the actual percentage of 

underperformance in-sample was less than or equal to that of the corresponding out-

of-sample portfolio.  For example, for Г = 10 and c = 4, the actual percentage of 

portfolios that underperformed in-sample was 1.87% (Table 5.8) whereas that of out-

of-sample was 2.78% (Table 5.9). 

 
 

Max

cPLO ,1   
Eval

cPLO ,1   
Eval

EVPLO  

Γ c = 1..5  c = 1 c = 2 c = 3 c = 4 c = 5   

8 10.062%  27.10% 11.21% 6.54% 3.74% 1.87% EV.31 46.73% 

10 5.017%  17.76% 9.35% 3.74% 1.87% 0.93% EV.27 46.73% 

18 0.096%  9.35% 1.87% 0.00% 0.00% 0.00% EV.23 44.86% 

22 0.003%  7.48% 1.87% 0.00%   EV.19 49.53% 

23 0.006%     0.00% 0.00%  EV.15 49.53% 

Table 5.8.  Guaranteed versus achieved robustness for model 1R  and achieved robustness for E-V 

models, in-sample.  Note 1−Γdrop  is different for c = 1..3 versus c = 4..5.   

 
 

Max

cPLO ,1   
Eval

cPLO ,1   
Eval

MVPLO  

Γ c = 1..5 
 

c = 1 c = 2 c = 3 c = 4 c = 5   

8 10.062%  29.17% 12.50% 6.94% 6.94% 2.78% EV.31 47.22% 

10 5.017%  22.22% 6.94% 6.94% 2.78% 1.39% EV.27 52.78% 

18 0.096%  11.11% 4.17% 1.39% 0.00% 0.00% EV.23 55.56% 

22 0.003%  6.94% 1.39% 0.00%   EV.19 59.72% 

23 0.006%     0.00% 0.00% 

 

EV.15 68.06% 

Table 5.9.  Guaranteed versus achieved robustness for model 1R  and achieved robustness for E-V 

models, out-of-sample.  Note 1−Γdrop  is different for c = 1..3 and c = 4..5. 

 
 

Second, we consider whether larger c yield portfolios that were too robust.  As 

discussed in Section 5.2.2, by too robust we mean that Opt

cjZ ,  was too far below true

cmjZ ,,  

for a given Γ.  It follows that robust portfolios in which 4≥c  may have been too 

robust when 18≥Γ .  On the other hand, when 2≤c , robust portfolios were not 
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robust enough (Tables 5.8 and 5.8).  Thus, the uncertainty set defining ri should be 

symmetric with respect to ir  by at least three standard deviations, in order to achieve 

the robustness guaranteed by the model out-of-sample.  Results suggest that an 

investor would wish to choose a value of c greater than 2.  A risk-averse investor 

may well wish to choose c to equal a value of at least 2; regardless, the investor may 

choose to optimise the portfolio for 18≥Γ .  Just as in Case 1, although one can 

deliberate over the value of c to be chosen in order to yield portfolios out-of-sample 

that are robust, but not too robust, in the end, the decisions were the same for all c 

and 228 ≤Γ≤ .  In other words, selecting c and Γ (on the interval [8, 22]) is more a 

matter of trying to accurately assess risk, than it is trying to select the most robust 

portfolio. 

 
 

 

Figure 5.16.  Time series of in-sample 
returns for all 5 E-V portfolios versus optimal 
objective function value (horizontal black 
lines). 

Figure 5.17.  Time series of out-of-sample 
returns for all 5 E-V portfolios versus optimal 
objective function value (horizontal black 
lines).

 

Third, we compare the robustness of robust model 1R  and E-V portfolios.  A time 

series of E-V portfolio returns shows that the actual portfolio return, in-sample 

(Figure 5.16) and out-of-sample (Figure 5.17), was less than the optimal objective 

function value (horizontal black lines in either figure) much more often than for 

robust model 1R .  Every E-V portfolio underperformed its optimal objective value 

over 46% of the time in-sample (Table 5.16) and over 37% of the time out-of-sample 
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(Table 5.17), while the least robust robust portfolio underperformed no more than 

30% of the time, in both samples. 

 
 

Analysis of Robustness, In-Sample 

  
Max

cjPLO ,  
  

Eval

cjPLO ,  
 

Model Γ c = 1..5  c = 1 c = 2 c = 3 c = 4 c = 5 
8 10.06%  16.82% 7.48% 2.80% 0.93% 0.00% 

10 5.02%  14.95% 4.67% 0.93% 0.00% 0.00% 

R2 

Гdrop - 1 0.10%  14.02% 1.87% 0.00% 0.00% 0.00% 

         
8 10.06%  27.10% 11.21% 5.61% 3.74% 1.87% 

10 5.02%  16.82% 9.35% 3.74% 1.87% 0.93% 

18 0.10%  9.35% 1.87% 0.00% 0.00% 0.00% 

R3 

Гdrop - 1 0.01%  7.48% 1.87% 0.00% 0.00% 0.00% 

         
8 10.06%  16.82% 7.48% 2.80% 0.93% 0.00% 

10 5.02%  14.95% 4.67% 0.93% 0.00% 0.00% 

R4 

Гdrop - 1 0.10%  14.02% 1.87% 0.00% 0.00% 0.00% 

         
8 10.06%  19.63% 9.35% 2.80% 1.87% 1.87% 

10 5.02%  18.69% 7.48% 1.87% 1.87% 0.00% 

18 0.10%  9.35% 1.87% 0.00% 0.00% 0.00% 

R5 

Гdrop - 1 0.01%  7.48% 1.87% 0.00% 0.00% 0.00% 

         
8 10.06%  17.76% 7.48% 2.80% 0.93% 0.00% 

10 5.02%  14.95% 4.67% 0.93% 0.00% 0.00% 

R6 

Гdrop - 1 0.10%  14.02% 1.87% 0.00% 0.00% 0.00% 

         
8 10.06%  17.76% 7.48% 2.80% 0.93% 0.93% 

10 5.02%  15.89% 4.67% 1.87% 0.93% 0.00% 

18 0.10%  6.54% 0.93% 0.00% 0.00% 0.00% 

R7 

Гdrop - 1 0.01%  6.54% 0.93% 0.00% 0.00% 0.00% 

         
8 10.06%  17.76% 6.54% 2.80% 0.93% 0.00% 

10 5.02%  14.02% 4.67% 0.93% 0.00% 0.00% 

R8 

Гdrop - 1 0.10%  14.02% 1.87% 0.00% 0.00% 0.00% 

Table 5.10.  Guaranteed and achieved robustness for model jR , for j = 2..8, in-sample. 

 
 

Finally, we compare the robustness of 1R  to that of robust portfolios constrained by 

cardinality and/or a buy-in threshold ( 2R  to 8R ).  For non-cardinality constrained 

models ( 3R , 5R  and 7R ) we considered portfolios corresponding to Γ values of 8, 

10, 18 and 1−Γdrop .  For cardinality constrained models ( 2R , 4R , 6R  and 8R ), 

1−Γdrop  was less than 18, thus, we only considered portfolios corresponding to Γ 
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values of 8, 10 and 1−Γdrop .  Numerical figures shaded grey in Table 5.10 (in-

sample) and Table 5.11 (out-of-sample) indicate instances in which the percentage of 

portfolios that underperformed the optimal objective ( Eval

cjPLO , ) was less than the 

probability of underperformance ( Max

cjPLO , ). 

 
 

Analysis of Robustness, Out-of-Sample 

  
Max

cjPLO ,  
  

Eval

cjPLO ,  
 

Model Γ c = 1..5  c = 1 c = 2 c = 3 c = 4 c = 5 
8 10.06%  19.44% 6.94% 5.56% 1.39% 1.39% 

10 5.02%  11.11% 6.94% 1.39% 1.39% 0.00% 

R2 

Гdrop - 1 0.10%  9.72% 1.39% 0.00% 0.00% 0.00% 

         
8 10.06%  29.17% 12.50% 6.94% 6.94% 2.78% 

10 5.02%  22.22% 6.94% 6.94% 2.78% 1.39% 

18 0.10%  11.11% 4.17% 1.39% 0.00% 0.00% 

R3 

Гdrop - 1 0.01%  6.94% 1.39% 0.00% 0.00% 0.00% 

         
8 10.06%  19.44% 6.94% 5.56% 1.39% 1.39% 

10 5.02%  11.11% 6.94% 1.39% 1.39% 0.00% 

R4 

Гdrop - 1 0.10%  9.72% 1.39% 0.00% 0.00% 0.00% 

         
8 10.06%  22.22% 8.33% 6.94% 4.17% 1.39% 

10 5.02%  16.67% 6.94% 5.56% 1.39% 1.39% 

18 0.10%  6.94% 4.17% 1.39% 0.00% 0.00% 

R5 

Гdrop - 1 0.01%  6.94% 1.39% 1.39% 0.00% 0.00% 

         
8 10.06%  16.67% 6.94% 5.56% 1.39% 1.39% 

10 5.02%  11.11% 6.94% 1.39% 1.39% 0.00% 

R6 

Гdrop - 1 0.10%  9.72% 1.39% 0.00% 0.00% 0.00% 

         
8 10.06%  19.44% 6.94% 5.56% 1.39% 1.39% 

10 5.02%  13.89% 6.94% 2.78% 1.39% 1.39% 

18 0.10%  6.94% 1.39% 0.00% 0.00% 0.00% 

R7 

Гdrop - 1 0.01%  6.94% 1.39% 0.00% 0.00% 0.00% 

         
8 10.06%  15.28% 6.94% 2.78% 1.39% 1.39% 

10 5.02%  9.72% 6.94% 1.39% 1.39% 0.00% 

R8 

Гdrop - 1 0.10%  9.72% 1.39% 0.00% 0.00% 0.00% 

Table 5.11.  Guaranteed and achieved robustness for model jR , for j = 2..8, out-of-sample. 

 
 

Observe that in-sample (Table 5.10) and out-of-sample (Table 5.11), cardinality 

constrained portfolios were more robust than models without cardinality constraints.  

A comparison with 1R  in-sample (Table 5.8) and out-of-sample (Table 5.9) shows 
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that the inclusion of cardinality constraints improved achieved robustness ( Eval

cjPLO , ), 

for all values of c.  Similarly, the inclusion of buy-in threshold constraints improved 

achieved robustness in all instances when 3≥c , but in only a few instances when 

2≤c . 

 
 

5.4 Discussion   

 

Increasing c increases the magnitude of the range of the uncertainty set; thus, 

decreasing the worst case log return of each asset.  It makes sense then that an 

increase in c corresponded to a decrease in the robust optimal objective function 

value, resulting in increased costs (measures of cost were introduced in Section 5.2.1 

in (5.5) and (5.6)).  In addition, an increase in c decreased the actual probability of 

underperformance.  Therefore, the likelihood that a portfolio would achieve the 

robustness guaranteed by the model increased as the magnitude of the range of the 

uncertainty set was increased.   

 

While a change in c affects achieved robustness, a change in Γ affects both 

guaranteed and achieved robustness.  Results show that as Γ increased, given that 

1−Γ≤Γ drop , the probability of underperformance decreased, as well as the actual 

proportion of portfolios which underperformed the robust optimal objective function 

value.  Results also showed that smaller Γ (e.g. 8 or 10) required larger values of c in 

order to achieve guaranteed robustness. 

 

The inclusion of threshold and cardinality constraints proved advantageous with 

respect to model 1R , in terms of robustness.  Both in-sample and out-of-sample 

results suggest that models constrained by cardinality, a buy-in threshold, or both, 

were at least as robust as the unconstrained model 1R .  In other words, the 

probability of underperformance was equal to or less than that of model 1R , for 

corresponding values of c and Γ.  With respect to cost, we observed that threshold 

constraints which did not limit cardinality had costs similar to those of model R1; but 
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if the threshold constraint did limit cardinality, then the costs were similar to those of 

the cardinality constrained models.  In addition, unlike model 1R , the costs of 

cardinality constrained models were greatly affected by changing c; in-sample and 

out-of-sample, the two or three smallest values of c resulted in lower costs (except 

when 1−Γ=Γ drop ) and the two or three largest values of c resulted in higher costs. 

 

Although the relationship between the costs of each model can be somewhat difficult 

to explain in brief, a plot of Cost1 and Cost2 effectively depicts their relationship.  

Because Cost1 is measured with respect to Total

cjP , , which is the same in-sample and 

out-of-sample, the shape of the plot will be the same for both samples; only the 

position of the plot will change out-of-sample (seen by a parallel shift up or down).  

Similarly, Cost2 has a similar shape in-sample and out-of-sample, but because it is a 

proportion measured with respect to MMaxr , which is different for each sample, the 

out-of-sample plot will not only be shifted to be parallel, but also will be vertically 

skewed with respect to the in-sample plot. 

 

Results suggest that the unconstrained robust model ( 1R ) has costs similar to those of 

the minimum variance E-V portfolio (in-sample and out-of-sample).  In Case 1, 

Cost2 of the robust model was only approximately 3% more, and in Case 2 

approximately 0.5% less, than the minimum variance portfolio.  Although the costs 

of model 1R  and EV.31 were similar, the robust model was much more robust, both 

in-sample and out-of-sample.  Results showed that, in-sample, the most robust E-V 

portfolio underperformed its optimal objective function value 40% of the time (Case 

1) and 46% of the time (Case 2).  Likewise, out-of-sample, the most robust E-V 

portfolio underperformed 35% of the time (Case 1) and 37% of the time (Case 2).  

Compare these results with the least robust of the robust portfolios (Γ = 8, c = 1), 

which underperformed its robust optimal objective function value less than 22% of 

the time (Case 1) and 30% of the time (Case 2) in both samples.  Our results strongly 

suggest that the unconstrained robust model is both cost-effective and much more 

robust than E-V portfolios. 
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Back-testing for each Case provided insight into how robust models perform given 

different sets of historical data for both the modelling and evaluation time periods.  

In Case 1, 2001 through to 2002 was captured within the in-sample period and we 

observed that this resulted in portfolios which were more costly, but also more robust 

(with respect to Eval

cjPLO , ) out-of-sample.  In Case 2, 2001 through to 2002 was 

reserved for the out-of-sample period.  We observed that this resulted in portfolios 

which were less costly and also slightly less robust (with respect to Eval

cjPLO , ) out-of-

sample, however, all portfolios achieved their guaranteed robustness when c ≥ 3.  

 

Lastly, we consider whether robust portfolios are too robust for any particular values 

of Γ and c.  That is, is there too much of a difference between the optimal objective 

function value and the actual portfolio returns within a sample period?  Results 

suggest that a value of c greater than one and a value of Γ corresponding to a 

probability of optimality of at least 99% should be chosen.  Results also suggest that 

if c ≥ 4 the portfolio will likely be too robust, particularly if the in-sample period 

used to optimise the model includes an economic downturn.  We also observed that 

when Γ was on the interval [8,22], regardless of the choice of c, every portfolio was 

the same.  Therefore, if decisions are the same for corresponding Γ for different 

values of c, increasing c may not affect the composition of the portfolios, but will 

result in a more robust solution.  This is an important property of this robust 

methodology.  It suggests that for both a risk-averse and more risk seeking investor, 

it is likely that the selected portfolio will be the same.  It is only the robust optimal 

objective function value, which is the standard by which portfolio robustness is 

measured, that is affected by an investor’s disposition towards risk. 
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Chapter 6 

 

Properties of Robust Portfolios   

 
In this chapter we discuss the properties of robust portfolios.  We investigate the 

components of a portfolio and its return with respect to diversity based on the total 

number of assets, the size of the historical dataset (or number of observations) and 

desired level of guaranteed probability of optimality.  We also examine whether 

these properties hold when threshold or cardinality constraints are included.    

 

In Sections 6.1, 6.2 and 6.3 we discuss the properties of unconstrained robust models 

and in Section 6.4 we discuss the differences and similarities in these properties 

when threshold and/or cardinality constraints are introduced.  Five different sets of 

assets, taken from four indices, were used to investigate the properties of 

unconstrained robust models (Table 6.1).  From each stock market index, only assets 

that had prices available for the entire time period were chosen; hence, the number of 

assets in each dataset is less than the size of the corresponding index.  In one case, 

dataset 1, we consider a subset of 30 out of a possible 68 assets from the FTSE 100.  

This dataset was used to investigate threshold and cardinality constrained robust 

models, since these models are mixed integer programs, which are difficult to solve 

with larger sets of assets.  In addition, for the sake of simplicity we have primarily 

used dataset 1 to illustrate the properties of robust models when their properties are 

the same for all five datasets. 
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Dataset 1 2 3 4 5 

Index FTSE 100 FTSE 100 FTSE250 FTSE350 S&P500 
No. Assets 30 68 169 248 441 

Time 

Period 

1 Jan 1992- 
1 Dec 2002 

1 Feb 1996- 
1 Jan 2007 

1 Oct 1998- 
1 Sept 2008 

1 Oct 1998- 
1 Sept 2008 

1 Oct 1998- 
1 Sept 2008 

Table 6.1.  Summary of datasets.   

 
 

6.1 Portfolio Composition 

 

Within the framework of robust optimisation, asset returns are bounded by an 

uncertainty set U.  Throughout this chapter the interval for the true return of asset i, 

ir , was given as [ ]iiiii rcrrcrr ˆ,ˆ +−∈ .  In addition, we defined ir  as the mean log 

return of asset i and ir̂  as the standard deviation of asset i.  In some instances, the 

scaling factor c, for which the model was optimised, is specified.  However, in many 

instances it is not, because the particular value of c used is not relevant. 

 

Diversification.  Consider N + 1 consecutive portfolios corresponding to integer 

values of Γ from 0 to N.  When 0=Γ , the portfolio consisted of 1 asset; this is 

simply the maximum return problem with no robustness.  As Γ increased, the number 

of assets increased until a maximum number of assets was reached, which in most 

cases was N.  From this point, the composition of portfolios for successive values of 

Γ remained constant until all but 1 asset were dropped, corresponding to Γ = Γdrop.  

Lastly, for Γ ≥ Γdrop the optimal portfolio consisted of the asset with the largest risk-

adjusted return, ii rcr ˆ− .  This behaviour is shown for dataset 1 in Figure 6.1 ( 30=N  

assets from the FTSE 100), and dataset 4 in Figure 6.2 ( 248=N  assets from the 

FTSE 350).   

 

In Figure 6.2, a plot of the number of assets held at each Γ is shown for three 

different models (corresponding to c = 2, 3 and 4) which were optimised using 

dataset 4.  As c increased from 2 to 4, the number of assets selected converged to N 

(248) sooner (i.e. at a smaller value of Γ) and the portfolio with N assets was held for 

larger values of 1−Γdrop .  Thus, when c was larger, more portfolios consist of all N 
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assets.  These results suggest that when assets are defined by smaller uncertainty sets 

a wider variety of portfolios are offered, particularly for smaller values of Γ.  In 

addition, for all three values of c, the portfolios which consisted of all 248 assets had 

exactly the same composition. 

 
 

 
Figure 6.1.  Number of assets selected for the portfolio at each Γ, when N = 30. 

 
 

 
Figure 6.2.  Number of assets selected for the portfolio at each Γ (dataset 4, N = 248, c = 2, 3 & 4). 
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Lastly, in Chapter 4, having used dataset 2, we observed that for trials consisting of 

larger sets of historical data (i.e. 60 months), the maximum number of assets held in 

a portfolio was almost always N.  In contrast, when the dataset was smaller 

(composed of 20 or 30 months) the maximum number of assets held in a portfolio 

rarely reached N, although in many trials the number of assets held was within five 

of N.   

 

Selection & Weights.  In Figure 6.3, the assets along the x-axis are in descending 

order by ir  (mean log return);  asset 1 has the largest ir  and asset 30 has the smallest 

ir .  Figure 6.3 has two purposes: Firstly, to show the assets held in each portfolio 

when Γ = 0 through to Γ = 5 and secondly, to show how the weight of each asset 

changed when Γ increased to Γ + 1.  Again, consider N + 1 consecutive optimal 

portfolios corresponding to integer values of Γ from 0 to N.  As Γ increased, the 

number of assets held also increased until a maximum number of assets (in this case 

N) was reached.  In addition, those with a larger ir  were selected first.  For example, 

when Γ = 0, the portfolio consisted of the asset with the largest ir  (Figure 6.3).  

When Γ = 1, the 17 assets with the largest ir  were held and when Γ = 2, seven more 

assets are added to the portfolio (the seven with the next largest ir ).   

 
 

 
Figure 6.3.  Assets in descending order by ir .  An example of how assets are selected and how 

weights change as more assets are included in the portfolio.   
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An interesting relationship exists between the weights of each asset held in 

successive portfolios, i.e. from Γ to Γ + 1 (Figure 6.3).  Let ΓNumA  be the number of 

assets selected in a portfolio, for N..0=Γ .  If 1+ΓNumA  ≥ ΓNumA  then every asset 

held at Γ decreased by the same percentage in order to include additional assets at 

1+Γ  (Figure 6.3).  For example, all 17 assets held at Γ = 1 decreased in weight by 

the same percentage, approximately 31%, so that 7 more assets could be added to the 

portfolio at Γ = 2.  This is seen when Γ increased from two to three, three to four and 

four to five (Figure 6.3).  When Γ increased from 5 to 6, the percentage decrease in 

asset weights was zero because all N assets were held in the same proportions when 

5=Γ  and 6=Γ . 

 
 

 
Figure 6.4.  Assets in ascending order by ir̂ .  An example of how robust models weight assets, 

when N = 30.  Portfolio weights shown for Γ = 1..5. 
 
 

We have shown that assets with a larger ir  are the first to be added to a robust 

portfolio, but how is weight distributed amongst the chosen assets?  In Figures 6.4 

and 6.5, the assets along the x-axis are in ascending order by ir̂  (standard deviation); 

asset 1 has the smallest ir̂  and asset 30 has the largest ir̂ .  Observe that once selected, 

the assets with the smallest ir̂  were given the most weight, hence, the plot in Figure 
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6.4 and 6.5 are monotonically decreasing4.  Asset weights are only shown for values 

of Γ from one to five because at 0=Γ  only one asset is held, at 6=Γ through to 

1−Γ=Γ drop  the portfolio composition and weights are the same as at 5=Γ  and at 

dropΓ=Γ  through to N=Γ  where only the asset with the largest ii rcr ˆ−  is held. 

 
 

 
Figure 6.5.  Assets in ascending order by ir̂ .  An example of how robust models weight assets, 

when N = 248.  Portfolio weights shown for Г = 1..21, 26. 
 
 

6.2 Model Parameters   

 

As discussed in Chapter 5, robust optimal decisions are more sensitive to the 

definitions of parameters ir  and ir̂  than the scaling factor c, which define the scale of 

the uncertainty set for ri.  However, in addition to ir  and ir̂ , the robust optimal 

objective function value is sensitive to c.  For example, consider the total portfolio 

return, ∑ =

n

i ii wr
1

* , where *
iw  is the optimal decision vector, and the robust optimal 

objective, given by (3.11) in Chapter 3, for c = 2 and c = 5 (Figure 6.6).  The total 

return of the two portfolios was the same at almost every Γ; in those instances, the 

                                                 
4 In Figure 6.5 it may appear that the plots for each Γ are not monotonically decreasing over the 
interval [1, 248], however, it is due to the resolution of the figure and not the numerical results. 
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weight of each asset was also the same.  Thus, the optimal decisions (asset weights) 

were fairly insensitive to the value of c.  However, the robust optimal objective 

function value was worse when 5=c  and decreased at a faster rate than when 2=c , 

as expected (Figure 6.6). 

 

There were observable factors which may explain the observed insensitivity of the 

total portfolio return to changes in c.  Let ii rcr ˆ−  define the risk-adjusted return of 

asset i (Bertsimas and Sim, 2004), this is simply the worst case return.  Now consider 

N assets in descending order by their risk-adjusted return; thus, the asset ranked 1st 

has the best worst case return and the asset ranked N
th has the worst worst case 

return.  We observed that the optimal decisions for models optimised using different 

values of c were the same if the descending order of the assets by risk-adjusted return 

was the same.  For example, consider the optimal decisions when 2=c  and 3=c , 

respectively.  The optimal decisions when 3=c  was the same for corresponding 

values of Γ when 2=c  if the rankings of assets in descending order by ii rcr ˆ−  are 

the same; likewise for any other two values of c.  In addition, when the order of 

assets was different, decisions were only different for the first several values of Γ 

and/or a few values of Γ around Γdrop.  For example, consider the composition of 

portfolios corresponding to 2=c  and 5=c , respectively, whose total portfolio 

return and robust optimal objective value are plotted in Figure 6.6.  For values of Γ ≥ 

4, the optimal decisions were the same for both 2=c  and 5=c : for 4 ≤ Γ ≤ 22 each 

portfolio consisted of all 30 assets and when Γ ≥ 23 each portfolio consisted of a 

single asset.  It was only values of Γ less than 4 that yielded different portfolios. 

 

These results suggest that increasing the scaling factor of the uncertainty set U will 

likely yield very similar decisions (if not the same decisions), particularly for values 

of Γ yielding fully diversified portfolios (i.e. the max number of assets is selected), 

which typically correspond to a probability of optimality of 90%-99.9%.  However, 

the robust optimal objective function value will deteriorate. 
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Figure 6.6.  Total portfolio return and robust optimal objective when c = 2 and c = 5. 

 
 
 

 
Figure 6.7.  Plot of p ( pwr ii =ˆ , i∀ ) with ∑i iq  for N..1=Γ . 

 
 

Note on p and qi’s:  Recall from Section 3.3 we deduced that p is chosen as the Γth 

largest ii wr̂ , over all i.  In our empirical results, not only was p the Γth largest ii wr̂ , 

but pwr ii =ˆ  for all i, given that 0≥iw  and Γ ≤ Γdrop – 1.  Consequently, 0=iq  for 

all i.  When Γ ≥ Γdrop, each portfolio held only 1 asset, thus, p = 0 and iii wrq ˆ=  
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(which is 0 for all but one i).  The relationship between p and qi is illustrated in 

Figure 6.7 using dataset 1.  Only p and ∑i iq  are plotted for all Γ instead of plotting 

pi and qi for all i because pwr ii =ˆ (for all i) and when 0≠∑i iq , qi for the asset with 

the largest risk-adjusted return is the only qi that does not equal zero; thus, 

∑i iq equals ii wr̂  of the asset with the largest worst case return. 

 
 

6.3 Robust Efficient Frontier 

 

As described in Markowitz’s model (Section 3.1), if S represents the set of all 

possible E-V combinations, then an investor is interested in the subset of efficient 

portfolios.  When plotted, this subset of E-V combinations is known as the efficient 

frontier.  A similar plot can be obtained for the robust model by adding the following 

constraint to (3.11) in Section 3.5: 

 

∑ =

N

i iiw
1

µ = Target Return, 

 

where Target Return takes C equidistant values between the minimum and maximum 

mean log return.  A robust E-V efficient frontier (red dots) is plotted with a 

Markowitz E-V efficient frontier (blue dots) in Figure 6.8.  For every Γ from 0 to N 

the robust model was optimised for each of 31=C  Target Return values.  As in the 

Markowitz model, an investor would be interested in the subset of efficient points.  

Therefore, for each Target Return, the desired portfolio was the one with the smallest 

variance over all Γ (denoted by the red dots in Figure 6.8). 

 

The robust E-V efficient frontier is useful for comparison with the Markowitz model.  

However, it is not the best representation of the robust model because many of the 

efficient portfolios will not be generated without the target return constraint.  

Without this constraint, the robust optimal portfolios for almost all Γ are clustered 

within a small interval of portfolio variance and total portfolio return (denoted by 
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black x’s in Figure 6.8).  Note that the robust optimal portfolio consists of the asset 

with the largest mean log return when 0=Γ  and the asset with the largest risk-

adjusted return, ii rcr ˆ− , when Ndrop ..Γ=Γ  (see Figure 6.8). 

 

The Markowitz model measures risk by portfolio variance whereas the robust model 

measures risk as the probability of the actual portfolio return being less than the 

robust optimal objective, also known as the probability of underperformance.  

Therefore, it is more accurate to represent the robust efficient frontier as the 

probability of underperformance versus the robust optimal objective (Figure 6.9).  

Notice that the sacrifice, in terms of optimal objective function value, becomes 

significantly larger when the probability of underperformance is less than 1.5%.  By 

this representation of the robust efficient frontier, an investor can clearly see the 

trade-off between guaranteed robustness and the optimal objective function value. 

 
 

 
Figure 6.8.  Plot of the E-V efficient frontier, robust E-V efficient frontier and optimal robust 
portfolios using dataset 1.   
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Figure 6.9.  Robust Efficient Frontier: Probability of Underperformance versus Robust Portfolio 
Return.  Constructed using dataset 1, N = 30, Γ = 1..N.   
 
 

6.4 Threshold and Cardinality Constrained Robust 

Models 

 

In this section, we discuss the similarities and differences in the properties of robust 

portfolios when threshold and/or cardinality constraints are introduced.  The results 

in this section are based upon the observations of the models studied in Chapter 5.  

For a summary of the threshold and cardinality constrained robust models, please 

refer to Table 5.1 in Section 5.1. 

 

The following is a brief summary of the properties of an unconstrained robust model, 

which were given in Sections 6.1 and 6.2: 

 
1. Assets with the largest ir  were chosen first. 

2. Of those chosen, assets with the smallest ir̂  were given the most weight. 

3. Assets were added to successive portfolios (in terms of incrementing Γ), until 

a maximum number of assets was reached.  The same number of assets was 

held until Γdrop, when all but one asset were dropped. 
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4. Robust optimal decisions were sensitive to c, whereas total portfolio return 

tended to be insensitive. 

5. All assets included in the portfolio at Γ decreased in weight by the same 

percentage if more assets are added to the portfolio at Γ + 1. 

6. Given a value of Γ on the interval [1, Γdrop - 1], then the following is true:  

if 0>iw , then pwr ii =ˆ (hence, 0=∑i iq ). 

 

We state that some properties of threshold and/or cardinality constrained models hold 

“without exception”, however, we recognise that they may be so only for dataset 1.  

It is possible that for larger datasets, these properties may not hold “without 

exception” but may only be observed as a “general rule”. 

 

Threshold constraints.  We observed that properties 1, 3 and 4 held without 

exception, whereas properties 2, 5 and 6 held most of the time (some models had one 

or two exceptions); there were instances when an asset with a larger ir̂  was given 

more weight than an asset with a smaller ir̂ , and/or an asset did not decrease by the 

same percentage as all other assets when Γ increased to 1+Γ , or and/or pwr ii ≠ˆ  for 

an asset i.  Typically, those exceptions corresponded to assets whose weight equalled 

the threshold (i.e. α=iw ). 

 

Cardinality Constraints.  We observed that properties 2, 3, 4 and 6 held without 

exception.  Property 1 tended to hold, but only for the first few values of Γ.  For 

example, consider a list of assets in descending order by ir ; say 20 assets were 

selected at Γ = 1, then it is possible that the 23rd ranked asset is selected instead of an 

asset whose ir  ranked in the top 20.   

 

As a result of the cardinality restriction, when Γ ≥ 3, portfolios tended to drop assets 

previously held in favour of those with larger risk-adjusted returns.  In addition, 

although property 3 held, unlike the unconstrained models, assets selected at Γ may 

not be held at 1+Γ .  Thus, once a value of Γ was reached that held k assets (the max 

number allowed), the number of assets remained constant (as with the unconstrained 
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models), but the composition tended to change.  Consequently, an amendment to 

property 5 must be made: all assets included in the portfolio at Γ decreased in weight 

by the same percentage at Γ + 1, unless an asset was dropped altogether. 

 

Both Threshold and Cardinality Constraints.  We observed that only properties 3 

and 4 held without exception; property 4 is illustrated in Figure 6.10 ( 03.0=α  and 

20=k ).  Similar to portfolios with only cardinality constraints, property 1 only held 

for 1=Γ .  When Γ ≥ 2, previously held assets may be dropped in order to include 

those with larger risk-adjusted returns.  In addition, similar to cardinality constrained 

portfolios, property 3 held, although the composition of portfolios from Γ to Γ + 1 

tended to change, even if the same number of assets was held.  Finally, properties 2, 

6 and the amended version of property 5 tended to hold with only a few exceptions at 

each Γ, which typically corresponded to assets whose weight equalled the threshold 

(i.e. α=iw ). 

 

 
Figure 6.10.  Total portfolio return and robust optimal objective when c = 2 and c = 5. 

 

These results suggest that threshold and cardinality constraints do not significantly 

change the properties of robust portfolios.  There are instances in which certain 

properties will not hold and there are certain instances in which a new property 

exists, however, the properties of unconstrained models give insight into the 

properties of threshold and cardinality constrained models.  
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Chapter 7 

 

Evaluation of Portfolio Performance  

 
In this chapter we analyse the performance of robust and E-V portfolios by 

evaluating the actual return these portfolios achieved over the out-of-sample period.  

Whilst robust portfolios may be more robust in terms of achieved and guaranteed 

robustness, examined previously, in Chapter 5, here we are interested in their 

performance in terms of portfolio return and the associated risk, compared to non-

robust E-V portfolios.  Each portfolio is evaluated using performance statistics, such 

as risk-adjusted return measures and reward and downside risk statistics, applied to 

two subsets of data taken from the two datasets (Case 1 and Case 2) described in 

Chapter 5: 1) the out-of-sample period and 2) a non-parametric bootstrap sample 

drawn from the out-of-sample period.   

 

Non-parametric bootstrapping is a common statistical tool for generating an 

approximate sampling distribution of a statistic from one sample, in order to estimate 

a parameter.  Bootstrapping is particularly helpful when the sampling distribution of 

the desired statistic is unknown.  Since the distribution of an asset’s return is 

uncertain, and in particular, its mean log return is unknown and variable, we applied 

the bootstrap method to generate a sampling distribution of the mean log return of 

each asset, which was used as a set of asset return scenarios for back-testing.  The 

bootstrap distributions were generated using the out-of-sample returns of each asset 

as the original sample. 
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Risk-adjusted return measures are composite measures of portfolio performance 

which combine both risk (which differs depending on the measure) and portfolio 

return.  Typically, risk-adjusted return measures are expressed as a ratio of excess 

return to risk and interpreted as the amount of excess return received per unit of risk.  

We have chosen to use the Sharpe ratio (Sharpe, 1966) and Sortino ratio (Sortino and 

Price, 1994).  Furthermore, we present statistics for reward and downside risk which 

can provide additional insight into the sources of risk and reward, especially when 

the distributions of portfolio returns are asymmetric. 

 

The robust and E-V portfolios evaluated in this chapter were a subset of the optimal 

portfolios resulting from the robust and E-V models detailed in Chapter 5.  Recall, 

there were eight robust models and one E-V model, referred to as models Rj, where 

},8..1{ EVj = .  Robust models were optimised based on a specified uncertainty set 

defining the true log return of each asset, ]ˆ,ˆ[ iiiii rcrrcrr +−∈ .  Throughout this 

chapter, c = 3, ir  is the mean log return of asset i and ir̂  is the standard deviation of 

asset i.  Thus, the robust portfolios are those resulting from models Rj, for }8..1{=j , 

being optimised for the following uncertainty set ]3,3[ iiiii rrr σσ +−∈ , i.e. the true 

log return of asset i, ri, lies within three standard deviations of its mean log return.  

The E-V portfolios are those resulting from model REV being optimised for a fixed 

target return whilst minimising portfolio variance.  Of the 31 efficient portfolios 

generated, we selected the following five: portfolios 31, 27, 23, 19 and 15, as 

detailed in Chapter 5 (starting with portfolio 31, which simply minimised portfolio 

variance with no constraint on total return, we selected every 4th efficient portfolio).  

As mentioned before, we chose portfolios from the efficient frontier associated with 

lower variance and lower total return because they are more robust than those 

associated with higher variance and higher total return.   

 

In addition to the robust and E-V portfolios, we consider an Index portfolio, which 

was obtained using the same 30 assets from the FTSE 100 used to optimise the 

robust and E-V portfolios.  We estimated the weights for our Index portfolio by 

normalising the market capitalisation weights of each asset for the first month of the 

out-of-sample period.  Due to the gap between the time we first acquired our 
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historical data and when we acquired the market capitalisation weights, five of the 

assets in our original dataset were no longer in the FTSE 100.  However, we were 

able to individually acquire the weights for these five dead assets from Datastream. 

 

To distinguish the difference between the specific portfolio optimised using each 

model and the model itself, we refer to the portfolios being evaluated as portfolio Pl, 

where l = { } { } }{31.,27.,23.,19.,15.8..1 IndexEVEVEVEVEV ∪∪ .  The set {1..8} 

represents the robust portfolios obtained by model Rj,  j = {1..8}, where ri is defined 

as set out above.  The set { }31.,27.,23.,19.,15. EVEVEVEVEV  are the E-V 

portfolios obtained by model REV.  Lastly, the set {Index} is the Index portfolio.   

 

The dataset is the same as that used in Chapter 5.  It consists of the monthly 

logarithmic returns of 30 stocks selected at random from the FTSE 100 index 

beginning 1 January 1992 through to 1 December 2006.  In this chapter, we are only 

concerned with the out-of-sample periods for Case 1 and Case 2.  For Case 1, of the 

180 time periods, the last 48 months (1 January 2003 – 1 December 2006) were 

reserved for the out-of-sample analysis.  For Case 2, of the 180 time periods, the last 

72 months (1 January 2001 – 1 December 2006) were reserved for the out-of-sample 

analysis. 

 

In Section 7.1 we describe the non-parametric bootstrap back-test and evaluate the 

robust and E-V portfolios by generating a sampling distribution consisting of 1000 

scenarios for the mean log return of each asset.  In Section 7.2 we compare risk-

adjusted return measures for the out-of-sample periods and bootstrap samples.  

Lastly, in Section 7.3 we carry out a worst case analysis using four worst case 

scenarios. 

 
 

7.1 Bootstrap Procedure 

 

The Sharpe and Sortino ratios require two different bootstrap samples, best obtained 

by two different bootstrap sampling procedures: 1) Bootstrapping a sample of 1000 
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monthly log returns and 2) Bootstrapping a sample of 1000 annual log returns.  Both 

use the out-of-sample monthly log returns as the original sample.   

 

Sharpe (1994) in his paper The Sharpe Ratio suggested that the returns used to 

calculate the Sharpe ratio should be taken over shorter time periods, such as month 

long periods, in order to “maximise information content”.  In addition, Sortino and 

Forsey (1996) suggested that to generate a bootstrap sample, the original sample 

should consist of at least 5 years of monthly or 10 years of quarterly data.  Following 

with these and other such suggestions, a sample of 1000 monthly log return scenarios 

were bootstrapped and used to evaluate each portfolio from which the Sharpe ratio is 

calculated.  The procedure for bootstrapping monthly log returns is described further 

in Section 7.1.1. 

 

Calculating downside risk and the Sortino ratio require annualised portfolio returns.  

To generate annualised returns Riddles (2003) suggests bootstrapping annual log 

returns, using a sample of monthly log returns, by repeatedly summing 12 randomly 

selected months.  Applying this technique, a sample of 1000 annual return scenarios 

were bootstrapped and used to evaluate each portfolio; portfolio returns were 

annualised before calculating downside risk and the Sortino ratio.  The procedure for 

bootstrapping annual log returns is described further in Section 7.1.2.   

 

Through the evaluation of portfolios using the bootstrap samples of monthly and 

annual asset returns, we observed that the bootstrap sample of monthly asset returns 

yielded portfolio returns that were less volatile than the bootstrap sample of annual 

asset returns.  The effect of the sample consisting of higher returns is evidenced by 

the risk-adjusted return ratios and reward and downside risk statistics in Section 7.2.  

In addition, the robust portfolios were less affected by the volatility of either 

bootstrap sample compared to E-V portfolios.  We discuss further the observed 

differences between the two samples in Appendix A. 
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7.1.1 Bootstrap Sampling of Monthly Returns 

 

The purpose of generating the bootstrap sample of monthly log returns is to obtain S 

estimates of the mean monthly log return for each asset i, in order to calculate S 

scenarios of the total return of each portfolio.  First, S bootstrap samples, 

{ }
isMis xx

**
1 ,...,=Β , were generated for each asset i, where *

mx  was randomly chosen 

with replacement from the out-of-sample dataset { }Mxx ,...,1 , m = 1..M and M is the 

number of out-of-sample months.  Second, estimates of the mean monthly log return 

for each asset i, isθ̂ , were calculated for scenario s: 

 

∑ =
=

M

m simis x
M 1

*
,,

1
θ̂ ,   SsNi ..1,..1 ==∀ ,                     (7.1) 

 

where M is the number of out-of-sample months, N is the number of assets and S is 

the number of scenarios.  Lastly, the total return was calculated for each portfolio Pl 

and scenario s: 

 

∑ =
=

N

i ilis

B

sl wnTotalRetur
1

*θ̂ ,                         (7.2) 

 { } { } }{31.,27.,23.,19,15.8..1,..1 IndexEVEVEVEVEVlSs ∪∪==∀          

 

where *
ilw  was the optimal weight of asset i, in portfolio Pl.   

 

Using a discrete distribution, in which all M out-of-sample monthly log returns were 

given an equal probability (
M

1
) of occurring, s random scenarios, each with M 

randomly selected monthly log returns, were generated for each asset i.  Thus, for 

asset i, each column s of M random observations comprised a bootstrap sample isΒ .  

Using (7.1), isθ̂  was calculated by taking the average of all M random observations 
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in column s.  Once the log return of each asset for every scenario s had been 

estimated, the total return, B

slnTotalRetur , was calculated for every portfolio Pl.   

 

7.1.2 Bootstrap Sampling of Annual Returns   

 

The purpose of generating the bootstrap sample of annual log returns was to obtain S 

estimates of the annual log return for each asset i, in order to calculate S scenarios of 

the total return of each portfolio Pj.  First, S bootstrap samples, { }
isKis xx

**
1 ,...=Α , 

were generated for each asset i, where *
kx  was randomly chosen with replacement 

from the out-of-sample dataset { }Mxx ,...1 , Mm ..1= , M is the number of out-of-

sample months), K..1=k and 12K =  (the sum of 12 monthly log returns is one 

annual log return).  Second, estimates of the annual log return of each asset i, isΘ̂ , 

were calculated for scenario s: 

 

∑ =
=Θ

K

k sikis x
1

*
,,

ˆ ,  SsNi ..1,..1 ==∀ , K = 12,               (7.3) 

 

where N is the number of assets and S is the number of scenarios.  Lastly, the total 

return for each portfolio Pl under scenario s was calculated: 

 

∑ =
Θ=

N

i ilis

A

sl wnTotalRetur
1

*ˆ ,                   (7.4) 

 { } { } }{31.,27.,23.,19,15.8..1,..1 IndexEVEVEVEVEVlSs ∪∪==∀ , 

 

where *
ilw  was the optimal weight of asset i, in portfolio Pl. 

 

Again, using a discrete distribution, in which all M out-of-sample monthly log 

returns were given an equal probability (
M

1
) of occurring, s random scenarios, each 

with K randomly selected returns, were generated for each asset i.  Thus, for asset i, 
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each column s of K random observations comprised a bootstrap sample isΑ .  

Estimates of the annual log return of each asset, isΘ̂  in (7.3), were calculated by 

summing all K random observations in column s.  Once the annual log return of each 

asset for every scenario s had been estimated, the total return, A

slnTotalRetur , was 

calculated for every portfolio Pl.   

 
 

7.2 Analysis of Performance Statistics 

 

In this section we evaluate the total portfolio return of the robust and E-V models by 

applying two risk-adjusted return measures as well as additional statistics which 

provide further insight into the downside risk and reward of each portfolio’s return 

using the out-of-sample periods for Case 1 (48 months) and Case 2 (72 months). 

 

Jones, in his book Investments: Analysis and Management (2007), states that there 

are three aspects of portfolio performance to be considered: the adequacy of the 

portfolio’s return, the ‘riskiness’ of the portfolio (via a risk measure), and the 

expectations of the investor with respect to the risks taken?  In previous chapters, we 

have considered both the riskiness of the decisions and investor’s expectations, from 

a robust optimisation perspective.  The riskiness of a portfolio and whether or not the 

investor’s expectations of realised return were met, were evaluated based upon a 

portfolio’s guaranteed (only applicable for robust models) and achieved robustness.  

In this section we consider the adequacy of the portfolio’s return.  This requires more 

than simply looking at a time series of returns.  It requires an evaluation of the 

portfolio’s return which has been adjusted such that it accounts for the risk associated 

with not meeting a specified level of return, or benchmark; this is known as a risk-

adjusted return5.  The definitions of the risk and benchmark are what differentiate 

risk-adjusted return measures.  For example, we have chosen to apply the Sharpe 

ratio (Sharpe, 1966) and Sortino ratio (Sortino and Price, 1994).  The Sharpe ratio 

defines the benchmark as the risk-free rate (Sharpe, 1994) and risk as the portfolio’s 

                                                 
5 Risk-adjusted return, as defined in this chapter, is different from the term “risk-adjusted return”, 
given by Bertsimas and Sim (2004), used in previous chapters.   The former refers to a performance 
measure, whereas the later refers to the worst-case return of an asset. 



110 

 

standard deviation.  Typically, a benchmark is a reference portfolio comprising assets 

from the same asset classes, in the same proportions, and tracked over the same time 

period as the invested portfolio.  This naturally leads to the selection of an index as 

the benchmark.  Sharpe (1994) originally specified the benchmark in the Sharpe ratio 

to be the risk-free rate, but noted that, by the early 1990s, works were being 

published which used a passive benchmark portfolio instead.  The Sortino ratio 

replaces the benchmark with a minimal accepted return (MAR), which is simply the 

minimum return necessary for an investor to achieve their goals, and defines risk as 

the semi-standard deviation of portfolio returns below the MAR.  The MAR is 

similar to a benchmark in that it is a target return, but it differs in that it is not 

necessarily a benchmark portfolio nor is it determined in the same fashion.  The 

MAR is more dependent upon the goals of the investor; it is the minimum return an 

investor is willing to accept in order to achieve their objectives. 

 

The Sharpe ratio, introduced by William Sharpe (1966) as the reward-to-variability 

ratio (R/V), is defined as follows: 

 

Ex Post Sharpe Ratio = 
p

p RFR

σ

−
,                 

 

where pR  is the average portfolio return, RF is the risk-free rate and σp is the 

standard deviation of the difference between the portfolio return at time t and RF 

(Sharpe calls this difference the differential return).  The Sharpe ratio is interpreted 

as the amount of excess return received, above the benchmark, per unit of risk.  It 

was derived from the capital market line (CML) which is a line tangent to the E-V 

efficient frontier passing through the point (0, RF).  Thus, the CML consists of all 

possible combinations of the optimal E-V portfolio (E-V, σ) and the risk-free rate.  If 

the assumptions of the Capital Asset Pricing Model (CAPM) hold, and if portfolio 

standard deviation is an appropriate measure of risk, then clearly, as Sharpe stated, 

the “best” portfolio is that which has the largest Sharpe ratio (1966).   
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However, if portfolio standard deviation is not an appropriate measure of risk and 

return distributions are not symmetric, then, as Sortino (2003) observed, the Sharpe 

ratio is likely to rank portfolios incorrectly.  Sortino and Price (1994) argued that the 

measure of risk should not include both good and bad portfolio returns, but only 

those below the MAR (minimal accepted return).  Thus, instead of using standard 

deviation, they suggested a measure of risk known as downside deviation (DD), 

which is the semi-standard deviation of portfolio returns below the MAR.  In 

addition, Sortino (2003) stated that in the case of asymmetric return distributions, 

DD more accurately ranks portfolios than does variance.  The Sortino ratio is defined 

as follows: 

 

Sortino Ratio = 
p

p

DD

MARR −
~

,                 

 

where pR
~

 is the portfolio’s annualised rate of return, the MAR is the minimum 

return necessary for an investor to achieve their goals and pDD  is the below-MAR 

semi-deviation of portfolio p.  The Sortino ratio can be interpreted as the amount of 

excess return received above the MAR per unit of risk associated with not achieving 

the MAR.  The pDD  can be calculated using either a continuous or discrete 

formulation.  A continuous formulation estimates the true distribution of the total 

portfolio return by fitting a continuous probability distribution to an approximate 

distribution of the total portfolio return generated using a large bootstrap sample of 

asset returns.  The pDD  is then calculated using the continuous probability 

distribution which has been fitted to the sample distribution.   

 

Alternatively, a discrete formulation simply calculates pDD  as the below-MAR 

semi-standard deviation of the total portfolio return using either a historical dataset 

or a large bootstrap sample of asset returns (Riddles, 2003).  For practical purposes, 

we have chosen to calculate pDD  using a discrete formulation.  We are aware of the 

work by Sortino and Forsey (1996) entitled On The Use and Misuse of Downside 

Risk in which they strongly discourage the use of a discrete formulation because it 
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only captures what did happen, whereas a continuous formulation captures what 

could have happened.  However, we are only concerned with an ex post evaluation 

and are not optimising our portfolios with respect to the Sortino ratio, therefore we 

believe a discrete formulation is sufficient. 

 

One of the advantages of the Sortino ratio is that it gives rise to several reward and 

downside risk statistics; we will consider four: volatility skewness, downside 

deviation (DD), average upside return and the downside frequency.  Volatility 

skewness is the ratio of the upside deviation (UD) to the downside deviation (DD).  

Similar to DD, UD is the semi-standard deviation of the portfolio returns above the 

MAR.  The average downside return is the average portfolio return below the MAR 

and the downside frequency is the number of portfolio returns less than the MAR.  If 

we were solely interested in ranking portfolio performance we may only be 

interested in the risk-adjusted return ratios.  However, we are also interested in the 

distribution of each portfolio’s total return which provides additional insight into the 

stability and characteristics of returns over time; therefore, we have included 

additional statistics.  We are cautious of including an excess of statistics, but feel that 

those provided are relevant and beneficial to the analysis of each portfolio. 

 

It is important to recognise that the choice of the benchmark and MAR will have an 

impact on the rankings of both the Sharpe and Sortino ratio, respectively.  As a 

result, Sharpe ratios calculated using different benchmarks are not comparable and 

likewise Sortino ratios calculated using different MARs are not comparable (Riddles, 

2003).  For the Sharpe ratio, changing the benchmark does not change the measure of 

variation σp, i.e. the shape of the distribution of differential returns, but it does shift 

that distribution either to the right (benchmark decreases) or to the left (benchmark 

increases).  For the Sortino ratio, changing the MAR moves the reference point from 

which the DD is calculated, but does not change the shape or shift the distribution of 

portfolio returns.  That is, increasing the MAR, increases the size of the tail of the 

distribution, which corresponds to an increase in DD.  Likewise, decreasing the 

MAR decreases the size of the tail of the distribution, which corresponds to a 

decrease in DD.  The nature of the relationship between the MAR and DD make it 

possible to have a DD of zero, which corresponds to the MAR being less than the 
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entire distribution of portfolio returns.  Instances such as this occurred in the 

evaluation of the bootstrapped annual returns, which will be discussed in the 

following two sections (7.2.1 and 7.2.2). 

 

The Sharpe ratio and Sortino ratio require a risk-free rate and a MAR, respectively.  

The risk-free rate was estimated using the UK 3 month Treasury Bill and we specify 

two instances for the MAR: 1) MAR = the risk-free rate and 2) MAR = 0.  We have 

chosen a MAR of zero because we are primarily evaluating robust portfolios, in 

which our objective is to minimise the worst case performance and not outperform a 

benchmark.  We have associated the worst case with negative portfolio returns; thus, 

our main interest is in the distribution of and risk associated with negative portfolio 

returns. 

 

Lastly, the Sharpe ratio was only calculated for portfolio returns generated using the 

out-of-sample monthly returns and the bootstrap sample of monthly returns; the 

Sortino ratio was only calculated for portfolio returns generated using the out-of-

sample monthly asset returns and the bootstrap sample of annual asset returns; and 

the reward and downside risk statistics were calculated for portfolio returns 

generated using all three samples, respectively.  In addition, calculating the Sharpe 

ratio, Sortino ratio and reward and downside risk statistics required different forms of 

a portfolio’s return.  The Sharpe ratio was calculated using the same form of the 

portfolio’s return as the data set over which it was calculated; i.e. using monthly 

returns for the out-of-sample and bootstrap sample of monthly asset returns.  

Conversely, the Sortino ratio and the reward and downside risk statistics were 

calculated after first annualising the portfolio’s return. 

 

7.2.1 Case 1:  Results 

 

In this section, the results of the analysis of performance are given for Case 1.  With 

respect to Case 2, Case 1 is characterised by a larger in-sample period (132 months) 

used to optimise the portfolios being evaluated, and a smaller out-of-sample period 

(48 months) used to analyse portfolio performance.  Recall that the in-sample data 

set for Case 1 included monthly returns from 2001-02, a time period characterised by 
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lower asset returns and increased stock market volatility, hence, the out-of-sample 

mean log return of each asset tended to be greater than that of the in-sample. 

 

The results in this section are presented in five tables.  The Sharpe and Sortino ratios 

for portfolio lP  are given in Table 7.2 (out-of-sample) and Table 7.4 (bootstrap 

samples); in each table the robust portfolios are shaded grey and the Index portfolio 

is italicised.  In each table portfolios are ranked in descending order for each ratio.  

In Table 7.4, the Sharpe ratio has been calculated using B

slnTotalRetur  and 

A

slnTotalRetur  was used to calculate the Sortino ratios (MAR = Risk-free rate and 

MAR = Zero).  The reward and downside risk statistics for portfolio lP  are given in 

Table 7.3 (out-of-sample), Table 7.5 (bootstrap of annual asset returns), and Table 

7.6 (bootstrap of monthly asset returns).  A legend for Tables 7.3, 7.5, and 7.6 is 

given in Table 7.1. 

 
 

Legend for Tables of Reward and Downside Risk Statistics 

N < MAR  Downside Frequency (Number of returns less than the MAR) 

DD  Downside Deviation 

ADR  Average Downside Return (Avg. of returns less than the MAR) 

VS  Volatility Skewness 

Table 7.1.  Legend for reward and downside risk statistics Tables 7.3, 7.5, 7.6, 7.8, 7.10 and 7.11.   
 
 

Out-of-sample evaluation.  The results show that all portfolios have a positive 

Sharpe ratio and positive Sortino ratio (Table 7.2), which indicates that the average 

portfolio return over the out-of-sample period was greater than zero and greater than 

the risk-free rate; thus, each portfolio yielded a positive excess return per unit of risk.  

Contrary to expectation, robust portfolios were ranked highest by the Sharpe ratio as 

opposed to the Sortino ratios.  Additional statistics (Table 7.3) show that when the 

MAR was the risk-free rate, the Index had the smallest DD and highest average 

downside return (ADR) and that robust portfolios tended to have a smaller DD and 

higher ADR than the E-V portfolios.  Although E-V portfolios tended to have a larger 

DD and smaller ADR, they have a larger volatility skewness (VS), an indication that 

more of the variation in portfolio returns is due to returns above the risk-free rate.  

These additional statistics indicate that the E-V portfolios are ranked highest by the 
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Sortino ratio because of larger average portfolio returns (to counter larger downside 

deviations) and that the distribution of returns above the risk-free rate is more varied.  

In addition, the VS tends to be closer to 1 for robust portfolios which indicates that 

the variation of returns above the risk-free rate is similar to (although slightly more 

than) the variation of returns below the risk-free rate.  Similar conclusions are 

reached when the MAR is zero.  The difference between the two sets of results is that 

the Index does not have the smallest DD nor the largest ADR when the MAR is zero. 

 
 

Ranking of portfolio lP  by Sharpe and Sortino Ratio, Bootstrap Sample 

Benchmark = Risk-free rate MAR = Risk-free rate MAR = Zero 

lP  Sharpe Ratio 

 

lP  Sortino Ratio 

 

lP  Sortino Ratio 

7 0.299  EV.15 0.763  EV.15 0.869 
8 0.297  EV.19 0.686  EV.19 0.855 
2 0.291  EV.23 0.657  EV.23 0.807 
4 0.291  5 0.591  5 0.796 
6 0.291  EV.31 0.588  7 0.794 
5 0.288  1 0.585  1 0.788 

EV.31 0.279  3 0.584  3 0.787 
EV.27 0.278  7 0.581  EV.27 0.738 

1 0.275  EV.27 0.564  EV.31 0.708 
3 0.274  2 0.528  2 0.686 

EV.23 0.263  4 0.528  4 0.686 
EV.19 0.245  6 0.528  6 0.686 
Index 0.228  Index 0.511  8 0.633 
EV.15 0.223  8 0.498  Index 0.628 

Table 7.2.  Case 1 out-of-sample portfolio rankings for the Sharpe ratio (using monthly portfolio 
returns) and Sortino Ratios (using annualised monthly portfolio returns).   
 
 

Reward and Downside Risk Statistics for Portfolio lP , Out-of-Sample 

  MAR = Risk-free rate (RF)  MAR = 0 

lP   
N < RF DD ADR   VS  N < 0 DD ADR   VS 

1  15 0.320 -0.249 1.602  15 0.286 -0.249 1.899 
2  15 0.290 -0.195 1.369  13 0.279 -0.225 1.494 
3  15 0.321 -0.249 1.603  15 0.287 -0.249 1.899 
4  15 0.290 -0.195 1.369  13 0.279 -0.225 1.494 
5  15 0.315 -0.237 1.553  15 0.282 -0.237 1.846 
6  15 0.290 -0.195 1.369  13 0.279 -0.225 1.494 
7  15 0.302 -0.222 1.503  15 0.270 -0.222 1.803 
8  13 0.317 -0.230 1.232  11 0.311 -0.271 1.324 
           

EV.15  16 0.405 -0.293 2.109  14 0.400 -0.334 2.142 
EV.19  15 0.387 -0.286 1.800  15 0.355 -0.286 2.044 
EV.23  15 0.358 -0.253 1.701  14 0.338 -0.271 1.859 
EV.27  13 0.354 -0.256 1.416  13 0.323 -0.256 1.646 
EV.31  16 0.306 -0.192 1.574  13 0.308 -0.237 1.590 

           
Index  19 0.271 -0.171 1.610  14 0.281 -0.233 1.537 

Table 7.3.  Case 1 reward and downside risk statistics for the out-of-sample period.  All calculations 
made having annualised the monthly portfolio returns.   
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Lastly, considering robust portfolios only, those with a cardinality constraint (l = 2, 

4, 6 and 8) are ranked higher by the Sharpe ratio than those without a cardinality 

constraint, whereas the Sortino ratio (for both MARs) ranks them lower (Table 7.2).  

In addition, cardinality constrained robust portfolios had smaller DDs and ADRs 

below the benchmark as well as smaller DDs and ADRs below zero (Table 7.3).  

Their VS was also smaller, which shows that in addition to less variation of returns 

below the MAR, they also had less variation of returns above the MAR. 

 

Bootstrap Evaluation.  As in the out-of-sample results, the Sharpe ratio and Sortino 

ratios (Table 7.4) were positive for all portfolios, which indicates that the average 

return of each portfolio over both bootstrap samples was greater than zero and the 

risk-free rate.  However, unlike the out-of-sample results, the Sharpe and Sortino 

ratio ranks the portfolios very similarly, with all eight robust portfolios ranked higher 

than all E-V portfolios and the Index.  In addition, the ratios were rather large, 

particularly for the Sortino ratios of the robust portfolios, which were ranked higher 

than all E-V portfolios and the Index.  The Sortino ratios were calculated using 

portfolio returns generated from A

slnTotalRetur ; when the MAR was the risk-free rate 

(Table 7.5), the downside frequency was considerably less for robust portfolios (<10) 

than for E-V portfolios (52-160) or the Index (169).  Likewise, robust portfolios had 

smaller DDs and larger ADRs; in other words, there was less variation of robust 

returns below the risk-free rate and those returns tended to be larger than for E-V or 

Index returns.  In addition, the VS indicates that there was more variation in robust 

returns above the risk-free rate than below; this is also true for E-V portfolios and the 

Index, but more so for robust portfolios.  Thus, the Sortino ratio is quite large for 

robust portfolios resulting from very small DDs and larger average returns over all 

A

slnTotalRetur  (l = 1..8), particularly for 1P , 3P  and 5P  (non-cardinality constrained 

portfolios). 

 

Consider the Sortino ratio when the MAR is zero (Table 7.4); three robust portfolios 

have a ratio of 44.38 and the remaining robust portfolios do not have a ratio, while 

the E-V portfolios and the Index are between two and six.  The additional statistics 

(Table 7.5) show that the DD, ADR and VS do not exist for the top five ranked 

robust portfolios, thus, the Sortino ratio does not exist.  The remaining three 
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portfolios only had one return less than zero, resulting in a very small DD, and thus, 

a very large Sortino ratio.  The E-V portfolios and the Index have much smaller ratios 

because more of their returns were below zero, hence, a larger DD and smaller 

Sortino ratio. 

 
 

Ranking of portfolio lP  by Sharpe and Sortino Ratio, Bootstrap Sample 

Benchmark = Risk-free rate MAR = Risk-free rate MAR = Zero 

lP  Sharpe Ratio 

 

lP  Sortino Ratio 

 

lP  Sortino Ratio 

5 5.251  5 13.453  5  –  
1 5.242  1 11.916  1  –  
3 5.236  3 11.352  3  –  
7 4.892  8 6.984  8  –  
8 4.687  7 6.376  7  –  
2 4.558  2 6.150  2 44.383 
4 4.558  4 6.150  4 44.383 
6 4.558  6 6.150  6 44.383 

EV.31 3.251  EV.31 3.447  EV.31 5.313 
EV.27 3.059  EV.27 3.095  EV.27 4.886 
EV.23 2.676  EV.23 2.336  EV.23 3.586 
EV.19 2.288  EV.19 1.871  Index 3.155 

Index 2.076  EV.15 1.699  EV.19 2.814 
EV.15 2.002  Index 1.549  EV.15 2.392 

Table 7.4.  Case 1 portfolio rankings for the Sharpe ratio (using monthly portfolio returns, from 
bootstrap of monthly asset returns) and Sortino Ratios (using annualised annual portfolio returns, from 
bootstrap of annual asset returns). 
 
 
 

Reward and Downside Risk Statistics for Portfolio lP , Bootstrap of Annual Returns 

  MAR = Risk-free rate (RF)  MAR = 0 

lP   
N < RF DD ADR   VS  N < 0 DD ADR   VS 

1  7 0.010 0.030 12.866  0 –  –   –  

2  9 0.017 0.027 6.736  1 0.003 -0.003 46.569 
3  7 0.010 0.030 12.258  0  –   –   –  

4  9 0.017 0.027 6.736  1 0.003 -0.003 46.569 
5  7 0.009 0.032 14.530  0  –   –   –  

6  9 0.017 0.027 6.736  1 0.003 -0.003 46.569 
7  8 0.018 0.024 6.939  0  –   –   –  

8  9 0.015 0.025 7.650  0  –   –   –  

           
EV.15  160 0.088 -0.029 2.603  98 0.078 -0.061 3.218 
EV.19  123 0.076 -0.021 2.664  73 0.064 -0.049 3.573 
EV.23  92 0.058 -0.007 3.085  42 0.048 -0.037 4.274 
EV.27  68 0.040 0.009 3.845  21 0.033 -0.024 5.540 
EV.31  52 0.033 0.014 4.144  12 0.029 -0.017 5.876 

           
Index  169 0.045 0.003 2.113  64 0.034 -0.024 3.592 

Table 7.5.  Case 1 reward and downside risk statistics for portfolios evaluated using the bootstrap 
sample of 1000 annual asset returns.  All calculations made having annualised the annual portfolio 
returns.   
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Reward and Downside Risk Statistics for Portfolio lP , Bootstrap of Monthly Returns 

  MAR = Risk-free rate (RF)  MAR = 0 

lP   
N < RF DD ADR   VS  N < 0 DD ADR   VS 

1  0  –   –   –   0  –   –   –  

2  0  –   –   –   0  –   –   –  

3  0  –   –   –   0  –   –   –  

4  0  –   –   –   0  –   –   –  

5  0  –   –   –   0  –   –   –  

6  0  –   –   –   0  –   –   –  

7  0  –   –   –   0  –   –   –  

8  0  –   –   –   0  –   –   –  

           
EV.15  25 0.029 0.016 5.740  5 0.014 -0.013 14.562 
EV.19  13 0.021 0.021 7.400  1 0.006 -0.006 28.890 
EV.23  3 0.022 0.019 6.518  0  –   –   –  

EV.27  3 0.012 0.029 10.337  0  –   –   –  

EV.31  2 0.005 0.035 22.498  0  –   –   –  

           
Index  37 0.013 0.028 4.979  0  –   –   –  

Table 7.6.  Case 1 reward and downside risk statistics for portfolios evaluated using the bootstrap 
sample of 1000 monthly asset returns.  All calculations made having annualised the monthly portfolio 
returns.   
 
 

When portfolios were evaluated using the bootstrap sample of monthly returns, Table 

7.6 shows that the returns of all robust portfolios was greater than the risk-free rate 

(and zero) for every scenario.  This is partially due to the composition of robust 

portfolios and partially due to the bootstrap sample.  As illustrated further in 

Appendix A, the bootstrap sample of monthly returns generally consisted of larger 

returns than did the out-of-sample period or the bootstrap sample of annual returns; 

this resulted in larger portfolio returns ( B

slnTotalRetur ) for all lP , most of which were 

above the MAR (Table 7.6).  Since the Sharpe ratio (Table 7.4) was calculated using 

B

slnTotalRetur , and B

slnTotalRetur  was never less than the risk-free rate for the robust 

portfolios, 1P  to 8P  were ranked above the E-V portfolios and the Index. 

 

Comparing only robust portfolios, in contrast to the out-of-sample results, cardinality 

constrained portfolios (l = 2, 4, 6 and 8) were ranked lower than portfolios not 

constrained by cardinality for the Sharpe ratio and both Sortino ratios (Table 7.4); 

when the MAR is zero, portfolios 2P , 4P  and 6P  are the only robust portfolios with a 

Sortino ratio (due to a downside frequency of one).  Also contrary to the out-of-

sample results, cardinality constrained robust portfolios tend to have larger DDs and 

smaller ADRs (Table 7.5).  However, similar to the case with out-of-sample results, 
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their VS was smaller than robust portfolios not constrained by cardinality, which, 

considering the large difference in VS, indicates, that in addition to less variation of 

returns below the MAR, they also had less variation of returns above the MAR. 

 

7.2.2 Case 2:  Results 

 

In this section, the results of the analysis of performance are given for Case 2.  With 

respect to Case 1, Case 2 is characterised by a smaller in-sample period (108 months) 

used to optimise the portfolios being evaluated, and a larger out-of-sample period (72 

months) used to analyse portfolio performance.  Recall that the out-of-sample data 

set for Case 2 included monthly returns from 2001-02, a time period characterised by 

lower asset returns and increased stock market volatility, hence, the out-of-sample 

mean log return of each asset tended to be less than that of the in-sample and also 

less than that of Case 1. 

 

The results in this section are presented in five tables.  The Sharpe and Sortino ratios 

for portfolio lP  are given in Table 7.7 (out-of-sample) and Table 7.8 (bootstrap 

samples); the robust portfolios are shaded grey and the Index portfolio is italicised.  

In each table portfolios are ranked in descending order for each ratio.  In Table 7.9, 

the Sharpe ratio has been calculated using B

slnTotalRetur , while A

slnTotalRetur  was 

used to calculate the Sortino ratios (MAR = Risk-free rate and MAR = Zero).  The 

reward and downside risk statistics for portfolio lP  are given in Table 7.8 (out-of-

sample), Table 7.10 (bootstrap of annual asset returns), and Table 7.11 (bootstrap of 

monthly asset returns). 

 

Out-of-sample Evaluation.  First, consider the Sharpe ratio (Table 7.7).  The bottom 

five portfolios have negative ratios suggesting that on average those portfolios 

underperformed the benchmark.  In addition, the Index and the three E-V portfolios 

corresponding to the bottom of the efficient frontier (smaller portfolio variance) are 

ranked the highest; their Sharpe ratio suggests they provide more excess return per 

unit of risk than the other portfolios and 4 to 7 times more excess return per unit of 

risk than the highest ranked robust portfolio.  The statistics in Table 7.8 indicate that 



120 

 

these portfolios are ranked higher due larger average returns, and not lower standard 

deviations of returns, over the out-of-sample period.   

 
 

Ranking of portfolio lP  by Sharpe and Sortino Ratio, Out-of-Sample 

Benchmark = Risk-free rate MAR = Risk-free rate MAR = Zero 

lP  Sharpe Ratio 

 

lP  Sortino Ratio 

 

lP  Sortino Ratio 

EV.31 0.035  EV.15 0.451  EV.15 0.613 
EV.27 0.027  EV.19 0.346  EV.19 0.500 
Index 0.023  EV.23 0.288  Index 0.478 

EV.23 0.017  Index 0.285  EV.23 0.477 
2 0.004  EV.31 0.283  EV.27 0.453 
4 0.004  EV.27 0.274  EV.31 0.433 
6 0.004  5 0.257  5 0.433 
8 0.004  3 0.248  3 0.424 
5 0.002  1 0.248  1 0.424 
1 -0.002  7 0.223  2 0.376 
3 -0.002  2 0.195  4 0.376 

EV.19 -0.004  4 0.195  6 0.376 
EV.15 -0.008  6 0.195  8 0.376 

7 -0.012  8 0.195  7 0.373 

Table 7.7.  Case 2 out-of-sample portfolio rankings for the Sharpe ratio (using monthly portfolio 
returns) and Sortino Ratios (using annualised monthly portfolio returns). 
 
 
 

Reward and Downside Risk Statistics for Portfolio lP , Out-of-Sample 

  MAR = Risk-free rate (RF)  MAR = 0 

lP   
N < RF DD ADR   VS  N < 0 DD ADR   VS 

1  26 0.423 -0.300 1.119  25 0.383 -0.312 1.341 
2  26 0.383 -0.247 0.941  25 0.352 -0.279 1.133 
3  26 0.423 -0.300 1.120  25 0.383 -0.312 1.342 
4  26 0.383 -0.247 0.941  25 0.352 -0.279 1.133 
5  26 0.423 -0.299 1.137  25 0.383 -0.311 1.360 
6  26 0.383 -0.247 0.941  25 0.352 -0.279 1.133 
7  26 0.388 -0.283 1.124  25 0.386 -0.320 1.176 
8  26 0.383 -0.247 0.941  25 0.352 -0.279 1.133 
           

EV.15  26 0.443 -0.356 2.132  25 0.419 -0.319 2.263 
EV.19  26 0.405 -0.305 1.641  25 0.396 -0.294 1.688 
EV.23  26 0.397 -0.271 1.251  25 0.360 -0.261 1.488 
EV.27  26 0.376 -0.240 1.178  25 0.355 -0.250 1.335 
EV.31  26 0.361 -0.231 1.239  25 0.368 -0.273 1.243 

           
Index  26 0.377 -0.271 1.348  25 0.345 -0.261 1.567 

Table 7.8.  Case 2 reward and downside risk statistics for the out-of-sample period.  All calculations 
made having annualised the monthly portfolio returns.   
 
 

The Sortino ratio (MAR is the risk-free rate), in contrast to the Sharpe ratio, suggests 

that every portfolio yields a positive return per unit of risk and has inverted the 
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rankings of the E-V portfolios and the Index (with one exception) as well as ranked 

all six of them above the eight robust portfolios (Table 7.7).  When the MAR was 

equal to zero or the risk-free rate, the Sortino ratio ranked portfolios very similarly.  

Table 7.8 shows that the downside frequencies, DDs and ADRs are similar for all 

portfolios when the MAR was the risk-free rate and when the MAR was zero.  

However, for both MARs, the E-V portfolios and the Index almost always had a 

larger VS, indicating that they had more variation of returns above the MAR than the 

robust portfolios.  In addition, when the MAR was the risk-free rate, these portfolios 

had more variation of returns above the MAR, than below, as opposed to the 

cardinality constrained robust portfolios which had more variation of returns below 

the MAR. 

 

Comparing only robust portfolios, just as in Case 1, the Sharpe ratio ranked 

cardinality constrained portfolios highest whereas the Sortino ratio ranked non-

cardinality constrained portfolios highest (Table 7.7).  The DDs, ADRs and VS 

(Table 7.8) indicate why conflicting ranks were given by the Sharpe and Sortino ratio 

(when the MAR was the risk-free rate).  Smaller VS combined with DDs less than 

one indicate that the returns of cardinality constrained portfolios were less varied 

out-of-sample; thus, the Sharpe ratios were larger because their average monthly 

portfolio returns were larger.  In addition, the smaller DDs of the cardinality 

constrained portfolios indicate that the Sortino ratio ranked them at the bottom 

because their average annualised portfolio return was less than that of the non-

cardinality constrained portfolios. 

 

Bootstrap Evaluation.  The Sharpe ratio, which corresponds to the bootstrap sample 

of monthly asset returns (Table 7.9), ranked portfolios similarly to the out-of-sample 

Sharpe ratio rankings (Table 7.7): the Index and the E-V portfolios with the least 

variance were highest and their ratios gave an excess return 3 to 7 times larger per 

unit of risk than the highest ranked robust portfolio.  In addition, the Sharpe ratio of 

portfolios 1P , 3P , 5P  and 15.EVP  were negative, indicating that their average return 

over all scenarios was less than the risk-free rate, resulting in a loss per unit of risk.  

The additional statistics (Table 7.11) show that the robust portfolios performed 

poorly compared to E-V portfolios and the index.  Although their DDs and ADRs 
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were smaller, indicating less variance of returns and higher returns, on average, 

below the risk-free rate, they had larger downside frequencies, i.e. fatter tails. 

 
 

Ranking of portfolio lP  by Sharpe and Sortino Ratio, Bootstrap Samples 

Benchmark = Risk-free rate MAR = Risk-free rate MAR = Zero 

lP  Sharpe Ratio 

 

lP  Sortino Ratio 

 

lP  Sortino Ratio 

Index 0.615  Index 0.330  5 2.241 
EV.31 0.593  EV.31 0.279  1 2.227 
EV.27 0.469  EV.27 0.174  3 2.214 
EV.23 0.286  5 0.089  2 1.931 

2 0.089  EV.23 0.076  4 1.931 
4 0.089  2 0.064  6 1.931 
6 0.089  4 0.064  8 1.931 
8 0.089  6 0.064  EV.31 1.769 
5 0.063  8 0.064  7 1.645 

EV.19 0.016  1 0.018  Index 1.510 

EV.15 -0.021  3 0.014  EV.27 1.471 
1 -0.042  EV.19 -0.038  EV.23 1.027 
3 -0.048  EV.15 -0.040  EV.19 0.569 
7 -0.291  7 -0.074  EV.15 0.426 

Table 7.9.  Case 2 portfolio rankings for the Sharpe ratio (using monthly portfolio returns, from 
bootstrap of monthly asset returns) and Sortino Ratios (using annualised annual portfolio returns, from 
bootstrap of annual asset returns). 

 
 
 

Reward and Downside Risk Statistics for Portfolio lP , Bootstrap of Annual Returns 

  MAR = Risk-free rate (RF)  MAR = 0 

lP   
N < RF DD ADR   VS  N < 0 DD ADR   VS 

1  529 0.044 0.022 3.959  112 0.026 -0.019 1.169 
2  479 0.047 0.020 3.276  101 0.031 -0.024 1.075 
3  529 0.044 0.022 3.940  112 0.026 -0.019 1.162 
4  479 0.047 0.020 3.276  101 0.031 -0.024 1.075 
5  490 0.046 0.021 3.863  108 0.027 -0.021 1.197 
6  479 0.047 0.020 3.276  101 0.031 -0.024 1.075 
7  541 0.052 0.015 3.194  145 0.033 -0.026 1.009 
8  479 0.047 0.020 3.276  101 0.031 -0.024 1.075 
           

EV.15  520 0.147 -0.064 1.654  380 0.121 -0.098 1.033 
EV.19  522 0.116 -0.036 1.786  326 0.093 -0.076 1.016 
EV.23  474 0.085 -0.011 2.302  252 0.062 -0.049 1.095 
EV.27  460 0.064 0.007 2.777  166 0.047 -0.035 1.236 
EV.31  413 0.057 0.012 3.006  121 0.042 -0.033 1.292 

           
Index  374 0.071 0.000 2.828  165 0.051 -0.039 1.304 

Table 7.10.  Case 2 reward and downside risk statistics for portfolios evaluated using the bootstrap 
sample of 1000 annual asset returns.  All calculations made having annualised the annual portfolio 
returns.   
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The rankings given by the Sortino ratio, which corresponds to the bootstrap sample 

of annual asset returns, were similar to those given by the Sharpe ratio, when the 

MAR was the risk-free rate.  The Index and E-V portfolios 31.EVP  and 27.EVP  gave an 

excess return 2 to 4 times larger, per unit of downside risk, than the top ranked robust 

portfolio (Table 7.9).  In addition, the Sortino ratios of the bottom three ranked 

portfolios, 19.EVP , 15.EVP  and 7P , were negative, indicating that their average return 

over all scenarios was less than the risk-free rate.  Although the robust portfolios 

were outperformed by at least two E-V portfolios and the Index, their DDs were 

between 1% and 10% less and their ADRs were larger, and all positive (Table 7.10).  

These statistics indicate that robust portfolios had less variation of returns and greater 

returns, on average, below the risk-free rate.  In addition, their VS was larger (Table 

7.10); thus, most of the variation of robust returns was attributed to returns above, 

than below, the risk-free rate, even more so than for the other portfolios. 

 

The Sortino Ratio, for a MAR of zero, suggests that robust portfolios were more 

advantageous if the investor’s goal was simply to have nonnegative returns (Table 

7.9).  In addition to greater excess return per unit of downside risk, robust portfolios 

had less downside frequency, smaller DDs and greater ADRs (Table 7.10).  In other 

words, robust portfolios had smaller tails, less variation of returns and greater 

returns, on average, below zero.  Lastly, the VS indicates that the UDs were only 

slightly higher than the DDs for all portfolios, thus, all lP  had close to the same 

variability above zero as they did below zero.  Since the DDs were smaller for robust 

portfolios and the VS was close to one for all portfolios, we can conclude that the E-

V portfolios and the Index had higher UDs and thus, more variation in returns both 

above and below zero. 

 

Comparing only robust portfolios, cardinality constrained portfolios were ranked 

highest by the Sharpe ratio (as they were in the out-of-sample analysis) and by the 

Sortino ratio when the MAR was the risk-free rate (with the exception of 5P ), but 

were ranked lowest by the Sortino ratio when the MAR was zero (with the exception 

of 7P ).  The additional statistics in Table 7.10 show mixed results for both MARs: 

cardinality constrained portfolios have less downside frequency, but more variation 
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and smaller returns, on average, below the MAR, and all robust portfolios had a VS 

close to one. 

 
 
Reward and Downside Risk Statistics for Portfolio lP , Bootstrap of Monthly Returns 

  MAR = Risk-free rate (RF)  MAR = 0 

lP   
N < RF DD ADR   VS  N < 0 DD ADR   VS 

1  528 0.019 0.042 1.029  0  –   –   –  

2  454 0.020 0.042 1.068  0  –   –   –  

3  530 0.020 0.042 1.023  0  –   –   –  

4  454 0.020 0.042 1.068  0  –   –   –  

5  479 0.019 0.042 1.113  0  –   –   –  

6  454 0.020 0.042 1.068  0  –   –   –  

7  611 0.024 0.038 0.805  2 0.011 -0.008 5.128 
8  454 0.020 0.042 1.068  0  –   –   –  

           
EV.15  501 0.060 0.010 1.008  162 0.046 -0.035 1.959 
EV.19  492 0.047 0.021 1.025  95 0.037 -0.029 2.159 
EV.23  371 0.034 0.031 1.199  35 0.022 -0.017 3.592 
EV.27  303 0.026 0.037 1.380  7 0.013 -0.009 6.104 
EV.31  273 0.022 0.040 1.604  5 0.007 -0.006 11.801 

           
Index  246 0.023 0.039 1.912  5 0.011 -0.010 8.095 

Table 7.11.  Case 2 reward and downside risk statistics for portfolios evaluated using the bootstrap 
sample of 1000 monthly asset returns.  All calculations made having annualised the monthly portfolio 
returns.   
 
 

7.2.3 Discussion 

 

We set out to determine the adequacy of the total return of a robust portfolio.  We 

evaluated the risk-adjusted return measures (the Sharpe and Sortino ratio) of robust 

portfolios and ranked them against E-V portfolios and an Index portfolio.  The same 

evaluation was carried out on two datasets, Case 1 and Case 2 (Table 7.12); the in-

sample period was used to optimise the portfolios and the out-of-sample period was 

used for back-testing and served as the ‘original sample’ from which the bootstrap 

samples were generated. 

 
 

Dataset  In-Sample Out-of-Sample  
Sample containing 

2001-2002 

Case 1  132 months 48 months  In-sample 
Case 2  108 months 72 months  Out-of-sample 

Table 7.12.  Summary of Case 1 and Case 2.   
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Case 1 Summary of Results.  Out-of-sample, the Sharpe ratio ranked the robust 

portfolios higher than E-V portfolios, in general, with the Index and the cardinality 

constrained robust portfolios tending to be ranked highest.  The Sortino ratio (for 

both MARs) tended to rank E-V portfolios highest and cardinality constrained robust 

portfolios lowest.  With respect to the bootstrap samples, the Sharpe ratio and both 

Sortino ratios ranked all eight robust portfolios higher than E-V portfolios and the 

Index, with non-cardinality constrained robust portfolios ranking highest.  In 

addition, the bootstrap sample of monthly asset returns resulted in robust portfolios 

which had no returns below zero or the risk-free rate and the bootstrap sample of 

annual asset returns yielded robust portfolios which had less than 10 returns below 

the risk-free rate and one or no returns below zero.  This is in contrast to E-V 

portfolios and the Index which had between 52 and 169 returns each below the risk-

free rate and between 12 and 98 returns each below zero. 

 

Case 2 Summary of Results.  Out-of-sample, the Sharpe ratio ranked three of the 

five E-V portfolios and the Index highest with the cardinality constrained robust 

portfolios ranking higher than those without cardinality constraints.  The Sortino 

ratio (for both MARs) ranked all E-V portfolios and the Index highest and the 

cardinality constrained robust portfolios lowest.  With respect to the bootstrap 

samples, both the Sharpe ratio and Sortino ratio (MAR = risk-free rate) tended to 

rank the Index and E-V portfolios highest, with non-cardinality constrained robust 

portfolios tending to rank lowest, whilst the Sortino ratio when the MAR was zero 

ranked all but one robust portfolio above all E-V portfolios and the Index, with the 

non-cardinality constrained robust portfolios ranking highest.  In addition, bootstrap 

samples resulted in seven robust portfolios having no returns below zero and one 

robust portfolio with two returns below zero.  In contrast, two E-V portfolios and the 

Index had less than seven returns below zero, whilst the remaining three E-V 

portfolios had between 35 and 16. 

 

Comments on the portfolio rankings given by the Sharpe and Sortino Ratio.  

According to Sortino and Price (1994) and Nawrocki (1999), if the distribution of 

asset returns is asymmetric, then the Sortino ratio will provide a more accurate 

ranking than the Sharpe ratio.  In addition, Sortino (2003) observed that not only is it 



126 

 

likely that the Sharpe ratio will rank portfolios incorrectly, but they will be ranked 

nearly the reverse to the ranking given by the Sortino ratio (when the MAR is the 

benchmark).  We observed this also for Case 1 in the out-of-sample back-test, but not 

in the bootstrap sample back-test.  For Case 2, we observed this to be partially true 

for the out-of-sample back-test, but not for the bootstrap sample back-test.  By 

partially true, we mean that the rankings given by the Sortino ratio of robust 

portfolios tended to reverse the rankings of the robust portfolios given by the Sharpe 

ratio.  Likewise, the rankings given by the Sortino ratio of E-V portfolios tended to 

reverse the rankings of E-V portfolios given by the Sharpe ratio.  The combined 

rankings of E-V and robust portfolios given by the Sortino ratio did not, however, 

reverse the combined rankings given by the Sharpe ratio.  In addition, the portfolio 

rankings given by the Sharpe and Sortino ratio in the bootstrap back-test, for Case 1 

and Case2, were almost identical. 

 

Evaluation of Performance.  With respect to the Sharpe and Sortino ratios, results 

show that in general, E-V portfolios and the Index performed better than robust 

portfolios in Case 2, in both out-of-sample and bootstrap back-testing.  However, the 

robust portfolios significantly outperformed E-V portfolios and the Index in Case 1 

bootstrap back-testing.  Case 1 out-of-sample back-testing showed mixed results; the 

Sharpe and Sortino ratio gave conflicting rankings.  In the instances when the ratios 

give different rankings, we consider the arguments of Sortino and Price (1994) and 

Nawrocki (1999), and chose the Sortino ratio because the distribution of asset returns 

was asymmetric.  Thus, we conclude that E-V portfolios and the Index outperformed 

the robust portfolios out-of-sample in Case 1 and Case 2.  Likewise, the non-

cardinality constrained robust portfolios out-performed those with cardinality 

constraints.  Lastly, we observed that in both Case 1 and Case 2, nearly all portfolios’ 

risk-adjusted returns were nonnegative for each ratio.  Thus, those portfolios (with 

nonnegative ratios) yielded a positive excess return above the benchmark/MAR per 

unit of risk (standard deviation/below-MAR semi-deviation).   

 

Was the return of the robust portfolios ‘adequate’?  Results suggest they were.  

Although the robust portfolios were out-performed out-of-sample, their positive 

Sharpe and Sortino ratios suggest that they yield an excess return per unit of 
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downside risk (with a couple of exceptions).  In addition, they significantly 

outperformed E-V portfolios and the Index in the bootstrap back-test for all ratios in 

Case 1 and the Sortino ratio, when the MAR was zero, in Case 2.    

 
 

7.3 Worst case Analysis   

 

In the analysis of worst case events we evaluate the total return of each portfolio 

assuming that the realised return of each asset is its worst case value; we have 

estimated four worst case scenarios based upon the out-of-sample data and the 

monthly and annual bootstrap samples.  In the robust portfolio literature, back-testing 

has not been carried out very frequently, but the majority of authors who have 

published back-testing results have included a comparison of the worst case 

performance of their robust model(s) with that of an E-V based model (see El 

Ghaoui, Oks and Oustry (2003), Tütüncü and Koenig (2004), Kim and Boyd (2007) 

and Gülpinar and Rustem (2007)).  We have adopted the same approach. 

 

The motivation for our analysis is as follows: 

 
1. Is a robust portfolio beneficial in a worst case event?  That is, how much, in 

terms of portfolio return, is gained or lost with respect to E-V portfolios? 

2. How close is the worst case total portfolio return to its optimal objective 

function value?  How does that compare to E-V portfolios? 

3. How do threshold and cardinality constrained robust models compare to the 

unconstrained robust model in a worst case scenario? 

 

The worst case value of each asset was estimated in two ways using three datasets, 

leading to four worst case scenarios.  The first scenario, called Out_Min, was 

determined by taking the worst return of each asset over the entire out-of-sample 

period.  The remaining three scenarios were determined by taking the lower bound of 

each asset given by ii rr ˆ3− , where ir  and ir̂  are the mean log return and standard 

deviation, respectively, of the dataset.  We have used a lower bound of ii rr ˆ3−  
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because the robust models evaluated were optimised using ]3,3[ iiiii rrr σσ +−∈  as 

the bounds for the uncertainty set where ir  and ir̂  are the mean log return and 

standard deviation, respectively, of the in-sample period.  The second scenario, 

called Out_LB, was determined by the lower bound of each asset, where ir  and ir̂  

were estimated from the out-of-sample period.  The third scenario, called 

Annual_LB, is determined by the lower bound of each asset, where ir  and ir̂  were 

estimated from the bootstrap sample of 1000 annual returns.  The fourth scenario, 

called Monthly_LB, was determined by the lower bound of each asset, where ir  and 

ir̂  were estimated from the bootstrap sample of 1000 monthly returns.  We evaluated 

the worst case total portfolio return for every portfolio within each model, jR  

( EVj ,8..1= ), by comparing the optimal and worst case efficient frontiers of the 

robust and E-V models.  A summary of models jR  can be found at the beginning of 

Chapter 5 (Table 5.1). 

 

7.3.1 Case 1 

 

First, we consider the benefits (if any) of a robust portfolio in a worst case event with 

respect to E-V portfolios by comparing the returns of each worst case scenario given 

by the robust and E-V models.  The range of portfolio return for each model, under 

each worst case scenario, is given in Table 7.13.  The maximum return E-V portfolio 

(EV.01) and the non-robust portfolio corresponding to 0=Γ  are not taken into 

account in determining these ranges.  Both portfolios were the same, consisting of 

the asset with the largest mean log return.  Neither portfolio would be chosen by an 

investor.   

 
 

Range of Worst Case Portfolio Returns for E-V and 1R  Portfolios 

Worst Case Scenarios  E-V portfolios  1R  portfolios 

Out_Min  -19%  to -12%  -15%  to -6% 

Out_LB  -31%  to -20%  -23.5%  to -17% 

Annual_LB  -56%  to -41%  -47%  to -17% 

Monthly_LB  -1.7%  to -0.1%  -1.4%  to 0.3% 

Table 7.13.  Case 1: Range in portfolio return for E-V portfolios (efficient points 2 to 31) and 1R  

portfolios (Γ=1..30) under each worst case scenario.  Returns are expressed as percentages. 
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Results show that robust portfolios from model 1R  resulted in a range of higher 

returns under every worst case scenario (Table 7.13).  For example, under scenario 

Out_Min, the worst worst case robust portfolio return resulted in a 15% loss whilst 

the worst worst case E-V portfolio return resulted in a 19% loss.  Likewise, the best 

worst case robust portfolio return resulted in a loss of 6% whilst the best worst case 

E-V portfolio return resulted in a loss of 12%.  Similar results were observed for the 

remaining worst case scenarios (Table 7.13).  Thus, the robust portfolios were 

generally more beneficial than E-V portfolios in a worst case event with respect to 

the range of portfolio returns. 

 
 

 
Figure 7.1.  Case 1, the robust optimal 
objective value plotted with four worst case 

return scenarios for model 1R , for 30..0=Γ .   

 

Figure 7.2.  Case 1, the robust optimal 
objective value and four worst case return 
scenarios for the E-V model, for all 31 efficient 
points.   

 
 

Second, we consider the distance between the optimal objective function value and 

each worst case scenario for the robust portfolios (Figures 7.1 and 7.3) and E-V 

portfolios (Figures 7.2 and 7.4).  Plots of the optimal objective function value with 

each scenario show that the worst case returns of all E-V portfolios were less than the 

corresponding optimal objective under every scenario (Figure 7.1), whilst a number 

of robust portfolios resulted in worst case returns greater than the corresponding 

optimal objective under scenario Monthly_LB; similarly for a handful of portfolios 

under scenario Out_Min (Figure 7.2).  In addition, plots showing the difference 
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between the optimal objective and worst case for each portfolio, under every 

scenario, show that robust portfolios tended to be closer to their optimal objective 

function value (Figure 7.3) compared to E-V portfolios (Figure 7.4).  Thus, losses 

resulting from a worst case event, with respect to the optimal objective function 

value, were generally less for robust portfolios than for E-V portfolios. 

 
 
 

 
Figure 7.3.  Case 1, the worst case robust 
return minus the robust optimal objective value 

for model 1R , for 30..0=Γ .  This difference 

is plotted for all four worst case scenarios.   
 

Figure 7.4.  Case 1, the worst case return 
minus the optimal objective value for all 31 
efficient points optimised using the E-V model.  
This difference is plotted for all four worst case 
scenarios.   

 
 

Lastly, under scenario Out_LB, we compare the worst case returns of robust 

portfolios constrained by cardinality, a buy-in threshold or both to the worst case 

returns of unconstrained robust portfolios (Figures 7.5 and 7.6).  Observe that models 

with the worst worst case returns also had the greatest optimal objective function 

value (Figure 7.5); thus, they also had the greatest difference in portfolio return 

(Figure 7.6).  In addition, models 1R  and 3R  had the greatest difference whilst model 

8R  had the least difference in portfolio return with respect to their optimal objective 

function values (Figure 7.6).  Thus, portfolios constrained by cardinality, a buy-in 

threshold ( 03.0≠α ) or both, tended to have better worst case returns (Figure 7.5) 

and those worst case returns tended to be closer to their optimal objective function 
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value (Figure 7.6).  Moreover, the model with the highest buy-in threshold 

( 04.0=α ) in conjunction with a cardinality constraint of 20 assets had the best 

worst case return and was the closest to its optimal objective function value over all 

Γ.  Similar results were observed under scenarios Out_Min, Annual_LB and 

Monthly_LB, and are given in Appendix B. 

 
 
 

 
Figure 7.5.  Case 1, the robust optimal 
objective value and worst case return for 

scenario Out_LB for model jR , 8..1=j , and 

30..0=Γ .   
 

Figure 7.6.  Case 1, the worst case robust 
return, under scenario Out_LB, minus the 

robust optimal objective value for models jR , 

8..1=j , and 30..0=Γ . 

 
 

7.3.2 Case 2 

 

As before, we first consider the benefits (if any) of a robust portfolio in a worst case 

event with respect to E-V portfolios by comparing the returns of each worst case 

scenario given by the robust and E-V models.  The range in portfolio return for each 

model, under each worst case scenario, is given in Table 7.14.  As in Case 1, these 

ranges do not include the maximum return E-V portfolio (EV.01) nor the non-robust 

portfolio corresponding to 0=Γ .  Both portfolios consisted of the asset with the 

largest mean log return; thus, including their worst case return in the ranges may 

cause the results to be misleading. 
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Range of Worst Case Portfolio Returns for E-V and 1R  Portfolios 

Worst Case Scenarios  E-V portfolios  1R  portfolios 

Out_Min  -39%  to -18%  -21%  to -12% 

Out_LB  -29%  to -21%  -23%  to -17% 

Annual_LB  -52%  to -41%  -65%  to -45% 

Monthly_LB  -1.7%  to -0.1%  -2.4%  to -1.3% 

Table 7.14.  Case 2: Range in portfolio return for E-V portfolios (efficient points 2 to 31) and 1R  

portfolios ( )30..1=Γ  under each worst case scenario.  Returns are expressed as percentages. 

 
 
 

 
Figure 7.7.  Case 2, the robust optimal 
objective value and four worst case return 

scenarios for model 1R , all 30..0=Γ .   

 

Figure 7.8.  Case 2, the robust optimal 
objective value and four worst case return 
scenarios for the E-V model, for all 31 efficient 
points.   

 
 

Second, we consider the distance between the optimal objective function value and 

each worst case scenario for the robust portfolios (Figures 7.7 and 7.9) and E-V 

portfolios (Figures 7.8 and 7.10).  As in Case 1, plots of the optimal objective 

function value with each scenario show that the worst case returns of all E-V 

portfolios were less than the corresponding optimal objective under every scenario 

(Figure 7.8), whilst a number of robust portfolios resulted in worst case returns 

greater than the corresponding optimal objective under scenario Monthly_LB; 

similarly for a handful of portfolios under scenario Out_Min (Figure 7.7).  In 

addition, plots showing the difference between the optimal objective and worst case 

for each portfolio, under every scenario, show that robust portfolios tended to be 
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closer to their optimal objective function value (Figure 7.9) compared to E-V 

portfolios (Figure 7.10).  Thus, losses resulting from a worst case event, with respect 

to the optimal objective function value, were generally less for robust portfolios than 

for E-V portfolios. 

 
 
 

 
Figure 7.9.  Case 2, the worst case robust 
return minus the robust optimal objective value 

for model 1R , for 30..0=Γ .  This difference 

is plotted for all four worst case scenarios.   
 

Figure 7.10.  Case 2, the worst case return 
minus the optimal objective value for all 31 
efficient points optimised using the E-V model.  
This difference is plotted for all four worst case 
scenarios.   

 
 

Lastly, under scenario Out_LB, we compare the worst case returns of robust 

portfolios constrained by cardinality, a buy-in threshold or both to the worst case 

returns of unconstrained robust portfolios (Figures 7.11 and 7.12).  Observe that 

models with the worst worst case returns also had the greatest optimal objective 

function value (Figure 7.11); thus, they also had the greatest difference in portfolio 

return (Figure 7.12).  In addition, model 1R  had the greatest difference whilst model 

8R  had the least difference in portfolio return (Figure 7.12).  Thus, portfolios 

constrained by cardinality, a buy-in threshold or both, tended to have better worst 

case returns (Figure 7.11) and those worst case returns tended to be closer to their 

optimal objective function value (Figure 7.12).  Moreover, the model with the 

highest buy-in threshold ( 04.0=α ) in conjunction with a cardinality constraint of 20 
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assets had the best worst case return and was the closest to its optimal objective 

function value over all Γ.  Similar results were observed under scenarios Out_Min, 

Annual_LB and Monthly_LB, and are given in Appendix B. 

 
 
 

 
Figure 7.11.  Case 2, the robust optimal 
objective value and worst case return for 

scenario Out_LB for model jR , 8..1=j , and 

30..0=Γ .   
 

Figure 7.12.  Case 2, the worst case robust 
return, under scenario Out_LB, minus the 

robust optimal objective value for models jR , 

8..1=j , and 30..0=Γ . 

 
 

7.3.3 Discussion 

 

The purpose of the worst case analysis was to evaluate and compare the total 

portfolio return of each model assuming that the realised return of each asset was its 

worst case value.  Thus, for each Case, we generated four worst case scenarios: two 

from the out-of-sample period (Out_Min and Out_LB), one from the bootstrap 

sample of monthly returns (Monthly_LB) and one from the bootstrap sample of 

annual returns (Annual_LB).  Case 1 and Case 2 yielded similar results, from which 

the same conclusions can be drawn.  Their results showed that under every scenario, 

the robust portfolios (optimised using model 1R ) tended to be closer to their optimal 

objective function value compared to E-V portfolios.  Thus, losses, with respect to 

the optimal objective function value, resulting from a worst case event, were less for 

robust portfolios.  In addition, compared to E-V portfolio returns, Case 1 robust 
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portfolios (using 1R ) resulted in a range of higher returns under all scenarios, whilst 

Case 2 robust portfolios (using 1R ) resulted in a range of higher returns under the 

out-of-sample based scenarios (Out_Min and Out_LB), but a range of lower returns 

under the scenarios generated from the bootstrap samples.  We showed that, although 

they resulted in a range of lower returns under scenarios Monthly_LB and 

Annual_LB, the difference from the range of E-V portfolio returns under scenario 

Monthly_LB was within 2% and the difference under scenario Annual_LB was in 

large part due to robust portfolios which would not be chosen as an investment, as 

they consist of only one asset. 

 

Lastly, results from Case 1 and Case 2 showed that robust portfolios optimised by 

model 1R  had worse worst case returns and the greatest losses with respect to their 

optimal objective function values than did the other seven robust portfolios.  Thus, 

portfolios constrained by cardinality, a buy-in threshold or both, tended to have 

better worst case returns and those worst case returns tended to be closer to their 

optimal objective function value compared to unconstrained portfolios.  Moreover, 

the model with the highest buy-in threshold ( 04.0=α ) in conjunction with a 

cardinality constraint of 20 assets had the best worst case return and was the closest 

to its optimal objective function value over all Γ. 
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Chapter 8 

 

Conclusions and Future Research  

 
8.1 Thesis Summary 

 

In many real-world decision problems, a deterministic formulation is not sufficient 

since data may be characterised as either high precision or stochastic and thus, not 

known exactly.  Consequently, not incorporating information about uncertainty, such 

as the interval within which the true value is likely to fall or characteristics about the 

variability and uncertainty of the data, can be misleading, and in many cases costly, 

depending upon the area of application.  Therefore, there is a need for the 

development and application of methodologies for decision making under 

uncertainty.  In Chapter 1, we discussed two of the most common methodologies, 

which treat variability and uncertainty in the modelling stage: stochastic optimisation 

and robust optimisation.  While stochastic optimisation approaches have the potential 

to generate quality solutions, they are restricted by the computational demands of 

optimising over a set of scenarios for each uncertain parameter; thus limiting the size 

of the problem.  In addition, they assume that the distributions of the uncertain 

parameters are either known or can be estimated with high precision; these 

distributions are then used to estimate the value of model parameters as well as 

generate scenarios.  In contrast, robust optimisation makes very few assumptions 

regarding the distribution of uncertain parameters and does not require knowing the 

point estimate for any parameter value.  Consequently, robust optimisation is widely 

considered as a practical alternative to stochastic optimisation approaches in the area 

of portfolio selection. 
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In this thesis we have investigated a specific robust optimisation approach to the 

portfolio selection problem in which the unknown and variable return of an asset is 

modelled by budgeted polyhedral uncertainty sets (introduced by Bertsimas and Sim, 

2004).  In particular, we have evaluated the corresponding budgeted robust 

counterpart of the Expected value – Variance portfolio selection model (E-V).  Our 

aim was to determine whether or not this methodology forms a suitable foundation 

upon which to build real-world portfolio selection models.  We did this through an 

extensive empirical investigation examining the trade-off between the robustness of 

robust portfolios and the sacrifice in optimality as well as the properties of robust 

portfolios from a practical perspective; that is, we wanted to assess whether robust 

portfolios make investment sense. 

 

In Chapter 2, we established a basic understanding of how parameter uncertainty is 

modelled (both in structure and scale) in a robust optimisation framework.  With 

respect to structure, our main focus was on a budgeted polyhedral representation of 

the uncertainty set U, and how it relates to ellipsoidal and polyhedral structures.  In 

addition, we clearly defined the different aspects relating to the scale of U, 

highlighting recent work in this area. 

 

In Chapter 3, we presented the portfolio selection problem.  We argued that the 

assumptions of the E-V model are problematic because asset returns are not known 

constants.  Robust portfolio selection, which treats the distribution of asset returns as 

uncertain, was presented as an alternative approach.  In particular, the budgeted 

robust counterpart, resulting from budgeted polyhedral uncertainty sets, was 

presented in detail.  The main contributions of this chapter included an interpretation 

of the robust portfolio selection model and the extension of that model to include a 

buy-in threshold constraint and cardinality constraint. 

 

In Chapter 4, we investigated the cost and robustness of the unconstrained robust 

portfolio selection model given in Chapter 3, and we computed optimal solutions of 

the model for different descriptions of the uncertainty set U.  In each instance, the 

structure of U remained constant (a budgeted polyhedral uncertainty set), but the 

scale of that structure changed.  With respect to scale, we considered different 
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definitions of the parameters specifying how the bounds of the uncertainty set are 

defined, as well as different values of the scaling factor c (which determines the 

magnitude of the structure of U).  That is, we considered different definitions of the 

point estimate ( ir ) and deviation parameter ( ir̂ ) of asset i defining the interval on 

which the true return ( ir ) of asset i lies, i.e. [ ]iiiii rcrrcrr ˆ,ˆ +−∈ .  In addition, we 

investigated the effect of changing the size of the historical dataset from which the 

specific value of each parameter was estimated.  The main objective of this chapter 

was to evaluate the cost and robustness of the robust models corresponding to these 

changes, both in the scale of U and in the size of the historical dataset.    

 

In Chapter 5, we compared the cost and robustness of the unconstrained robust 

portfolio selection model to that of the E-V model and to the constrained robust 

portfolio models which included either a buy-in threshold, an upper limit on 

cardinality or both.  For both the unconstrained and constrained robust models, we 

choose fixed definitions for the parameters ir  and ir̂ , which were established in 

Chapter 4.   

 

In Chapter 6, we discussed the properties of robust models with respect to 

diversification, asset selection and the distribution of asset weights amongst selected 

assets, based upon the total number of assets available, the size of the historical 

dataset (or number of observations) and the desired level of guaranteed probability of 

optimality.  In addition, we examined whether these properties held when threshold 

and/or cardinality constraints are included. 

 

Lastly, in Chapter 7, we compared the performance of the unconstrained robust 

portfolio, in terms of portfolio return, to that of E-V portfolios and an Index portfolio 

and to robust portfolios constrained by a buy-in threshold and/or cardinality.  For two 

sets of data (Case 1 and Case 2), we back-tested these portfolios over the out-of-

sample period as well as over two bootstrap samples which were generated using the 

out-of-sample period as the original sample, and evaluated their returns based upon 

two risk-adjusted return measures (the Sharpe and Sortino ratio) as well as downside 

risk and reward statistics (downside deviation (DD), volatility skewness (VS), 
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downside frequency and average downside return (ADR)).  In addition, we evaluated 

the worst-case performance of each model under four worst-case scenarios which 

were estimated using the out-of-sample period and both the monthly and annual 

bootstrap samples. 

 
 

8.2 New Insights and Contributions  

 

In this thesis we first provide insights into the robust formulation of an uncertain 

linear program, in which parameter uncertainty is defined by budgeted polyhedral 

uncertainty sets.  We consider the robust counterpart as applied to portfolio selection, 

originally derived by duality, and show that it can be formulated by approaching an 

uncertain LP as a min-max problem.  We further explain the properties of robust 

optimal decisions and model parameters, and examine the distinction between the 

structure and scale of an uncertainty set, with particular focus on scale.  We suggest 

that the scale of the uncertainty set U, defining an uncertain parameter, has three 

aspects:  first, how the bounds of the uncertainty set are defined (i.e. the point 

estimate ir  and the deviation parameter ir̂ ); second, once defined, how these bounds 

are estimated (i.e. historical data, bootstrapping, etc…), and third, the scaling factor 

c, which determines the magnitude of the structure of U.  This again, provides further 

insights into the properties of this robust optimisation decision model.  We have 

presented an empirical investigation of the cost and robustness of the robust 

counterpart to the portfolio selection problem, optimised for various definitions of 

the scale of U.  We have re-defined the scale of U by changing how the bounds of the 

uncertainty set were defined and by changing the scaling factor c.  Our results 

suggest that, of the definitions of ir  and ir̂  considered, the portfolios with the best 

trade-off between cost and robustness resulted from defining ir  as a measure of 

central tendency and ir̂  as a measure of spread, with respect to the distribution of the 

ith uncertain parameter.  Results also suggest that the value of c is dependent upon 

the risk preferences of the modeller, as larger values of c may not affect the 

decisions, but will result in a more robust solution.   
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We have reported the application of robust optimisation to portfolio selection 

through an extensive empirical investigation of cost, robustness and performance 

with respect to risk-adjusted return measures and worst case portfolio returns.  

Furthermore, we proposed an extension of the robust portfolio selection model, 

which included a buy-in threshold and an upper limit on cardinality.  We compared 

the unconstrained robust models to E-V models and to robust models constrained by 

a buy-in threshold, an upper limit on cardinality or both.  The findings of our 

empirical study reinforces the intuitive view that robust solutions do come at a cost, 

but that is in exchange for a guaranteed probability of optimality on the objective 

function value and significantly greater achieved robustness.  In addition, robust 

decisions generally yielded better realisations under worst case scenarios.  Robust 

models constrained by a buy-in threshold and/or cardinality yielded solutions that 

were at least as robust, but at the same time decisions that were at least as costly, as 

the solutions and decisions of unconstrained robust models.  In addition, the 

decisions of constrained robust models almost always yielded better realisations 

under worst case scenarios. 

 

The research reported in this thesis offers new insights into the properties and 

behaviour of robust formulations of uncertain linear programmes. In particular, the 

role and construction of bounded convex sets to describe parameter uncertainty and 

the expected trade-off between cost and robustness are examined in detail. These 

insights enable more accurate descriptions of uncertainty with respect to budgeted 

polyhedral uncertainty to be constructed and, as a result, a better application of the 

robust methodology. 

 
 

8.3 Future Directions   

 

Through an extensive empirical investigation, we have established that a robust 

portfolio selection model formulated by modelling asset returns by budgeted 

polyhedral uncertainty sets is a suitable foundation on which to further build real-

world portfolio selection models.  By ‘suitable’ we mean that they provide an 

attractive trade-off between cost and robustness, the optimal solution achieves the 
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robustness guaranteed by the model when the scaling factor c is chosen appropriately 

and their composition makes “investment sense”.  In a real-world portfolio selection 

problem, additional considerations, beyond the scope of this thesis, need to be made.  

First, we consider how the scale of the uncertainty set U may be defined in further 

investigations.  In terms of defining the scale of U, we suggest the use of downside 

deviation, instead of standard deviation, as the deviation parameter ir̂ .  In addition, it 

would be interesting to consider the point estimate ir  as the MAR (minimum 

accepted return) of asset i, by which the value of the downside deviation ( ir̂ ) was 

calculated.  In this capacity, the MAR would be less influenced by an investor’s 

goals as it would be by the distribution of returns for each asset.  That is, the MAR of 

asset i would be in large part dependent upon the minimum return an investor is 

willing to accept from that asset rather than the minimum return an investor is 

willing to accept from the optimal portfolio.  Based upon the evidence given 

throughout the literature, in support of below-target semi-variance as a more accurate 

measure of downside risk as well as the Sortino ratio as a more appropriate risk-

adjusted return measure when distributions are asymmetric, we suggest that defining 

ir  and ir̂  as the downside deviation and the MAR of asset i, respectively, may yield 

more precise estimates of the worst case return of each asset.  As assets are weighted 

by their worst case return, more precise estimates would correspond to an improved 

portfolio composition.   

 

We consider how the parameters ir  and ir̂ , which define the bounds of the 

uncertainty set U, are estimated.  Throughout our empirical investigations we used 

raw market data, in the sense that, we did not apply any techniques to improve the 

estimates of these parameters.  In practice, an investor would want the best estimates 

possible for ir  and ir̂ ; thus, they may wish to apply estimation techniques such as 

bootstrapping, moving averages, simulation,  or forecasting. 

 

We consider the weaknesses of using such a simplistic model.  One critique is that 

the model is based on the assumption that asset returns are uncorrelated.  Thus, one 

could incorporate asset correlations into the model; Bertsimas and Sim (2004) give 

one possible way of doing this.  In addition, the model only considers one time-
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period and no recourse.  Current research in the area of portfolio selection is moving 

toward two-stage and multi-stage problems, which leads to the inclusion of 

additional constraints on the costs incurred from recourse decisions.  Furthermore, 

we only treated asset returns as uncertain, but not the covariance matrix of those 

returns.  This did not have an effect on our solutions as the covariance between assets 

was not included in the optimisation of the model.  However, if in further research 

the covariance of returns was included in the model’s objective or constraints, then 

one would want to consider including uncertain parameters representing the 

variance/covariance of assets and modelling these parameters by uncertainty sets. 

 

Lastly, our mixed-integer robust portfolio selection models, constrained by a buy-in 

threshold and/or an upper limit on cardinality, were limited in terms of the number of 

decision variables.  Since the results showed these models to yield better portfolios 

than the unconstrained robust model, it would be interesting to further investigate 

more efficient solution methods for mixed-integer robust portfolio selection models 

such that a larger pool of assets can be used in the optimisation of the portfolio.   
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Appendix A 

 

Illustration of the Behaviour of 
Bootstrap Samples 

 
In Section 7.1 we discussed the bootstrap sampling procedures used to generate two 

samples, which were used for back-testing portfolio returns in Sections 7.2 and 7.3.  

A bootstrap sample of 1000 monthly log returns was used in the evaluation of the 

Sharpe ratio and a sample of 1000 annual log returns was used in the evaluation of 

the Sortino ratio.  In addition, the following downside risk and reward statistics were 

given for each sample: downside deviation (DD), volatility skewness (VS), downside 

frequency and average downside return (ADR).  In Section 7.1 we mentioned that the 

bootstrap sample of monthly asset returns yielded portfolio returns that were less 

volatile than the bootstrap sample of annual asset returns, the effect of which was 

evidenced, in Section 7.2, by the risk-adjusted return ratios and reward and downside 

risk statistics.  In addition, observe that, compared to the time series of E-V portfolio 

returns, the time series of robust portfolio returns is much less volatile.  We illustrate 

this phenomenon for Case 1, in Section A.1, and Case 2, in Section A.2, through a 

time series of portfolio returns (for each sample) for robust models 1R  to 8R  

( 1−Γ=Γ drop  for each model) and the E-V model for efficient points EV.31, EV.27, 

EV.23, EV.19 and EV.15.   
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A.1 Case 1 

 

In Figures A1.1 and A1.2 the time series of annualised monthly portfolio returns and 

annual portfolio returns, respectively, are shown using the same scale in order to 

show the marked difference between the returns resulting from the two bootstrapped 

samples.  In addition to illustrating the difference between portfolio returns resulting 

from each bootstrap sample, Figures A1.1 and A1.2 show that the robust model 

resulted in more stable portfolio returns, for both bootstrapped samples. 

 
 
 

 
Figure A1.1.  Case 1:  Time series of portfolio returns from models 1R  to 8R  ( 1−Γ=Γ drop ) 

and model EVR  (for efficient points EV.31, EV.27, EV.23, EV.19 and EV.15) evaluated using the 

bootstrap sample of annual asset returns.  Robust time series are in red, E-V time series are in black. 
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Figure A1.2.  Case 1:  Time series of annualised portfolio returns from models 1R  to 8R  

( 1−Γ=Γ drop ) and model EVR  (for efficient points EV.31, EV.27, EV.23, EV.19 and EV.15) 

evaluated using the bootstrap sample of monthly asset returns.  Robust time series are in red, E-V time 
series are in black. 
 
 

A.2 Case 2 

 

In Figures A2.1 and A2.2 the time series of annualised monthly portfolio returns and 

annual portfolio returns, respectively, are shown using the same scale in order to 

show the marked difference between the returns resulting from the two bootstrapped 

samples.  In addition to illustrating the difference between portfolio returns resulting 

from each bootstrap sample, Figures A2.1 and A2.2 show that the robust model 

resulted in more stable portfolio returns, for both bootstrapped samples. 
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Figure A2.1.  Case 2:  Time series of portfolio returns from models 1R  to 8R  ( 1−Γ=Γ drop ) 

and model EVR  (for efficient points EV.31, EV.27, EV.23, EV.19 and EV.15) evaluated using the 

bootstrap sample of annual asset returns.  Robust time series are in red, E-V time series are in black. 
 
 
 

 
Figure A2.2.  Case 2:  Time series of annualised portfolio returns from models 1R  to 8R  

( 1−Γ=Γ drop ) and model EVR  (for efficient points EV.31, EV.27, EV.23, EV.19 and EV.15) 

evaluated using the bootstrap sample of monthly asset returns.  Robust time series are in red, E-V time 
series are in black. 
 
 

A.3 Discussion 

 

Similar observations are made for Case 1 and Case 2.  Recall that the period of 

returns from 2001 through to 2002 was included in the out-of-sample period for Case 
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2; thus, the time series of returns generated using the monthly and annual 

bootstrapped samples tended to be less in Case 2 than in Case 1.   

 

The bootstrap methodology selected should be carefully considered, as vastly 

different samples can result.  Ideally, one would want to generate a sample that is 

representative of the possible behaviour of asset returns.  A comparison between the 

out-of-sample returns of robust and E-V portfolios for both data sets (Chapter 5), 

shows that whilst portfolio returns generated using the monthly bootstrap sample 

captured the positive returns, it did not adequately capture the negative returns 

observed out-of sample.  This undesirable feature did not arise with the returns 

generated using the bootstrap of annual returns, which captured both positive and 

negative returns beyond those observed out-of-sample.  This suggests that the 

bootstrap of annual returns may yield a more desirable description of the distribution 

of asset returns as it captured the possible behaviour.  
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Appendix B 

 

Further Worst Case Analysis of 
Robust Models 

 
B.1 Case 1 

 

In Section 7.3.1 we investigated the returns of robust models 1R  to 8R and the 

Expected value – Variance model ( EVR ), under four worst case scenarios: Out_Min, 

Out_LB, Annual_LB, and Monthly_LB, for Case 1.  More specifically we compared 

the optimal objective for the portfolios within each model to the corresponding worst 

case returns, under every scenario.  We illustrated results for the comparison of 

robust model 1R  to E-V model EVR  for all four scenarios.  In addition, we illustrated 

results for the comparison of robust model 1R  to robust models 2R  to 8R  for one 

scenario (Out_LB).  In this section, we illustrate the results for the comparison of 

robust model 1R  to robust models 2R  to 8R  for the remaining three scenarios, 

Annual_LB, Out_Min and Monthly_LB, for Case 1.   
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Figure B1.1.  Case 1, the robust optimal 
objective value and worst case return for 

scenario Annual_LB for model jR , 8..1=j , 

and 30..0=Γ .   
 

Figure B1.2.  Case 1, the worst case robust 
return, under scenario Annual _LB, minus the 

robust optimal objective value for models jR , 

8..1=j , and 30..0=Γ . 

 
 
 

 
Figure B1.3.  Case 1, the robust optimal 
objective value and worst case return for 

scenario Out_Min for model jR , 8..1=j , 

and 30..0=Γ .   
 

Figure B1.4.  Case 1, the worst case robust 
return, under scenario Out_ Min, minus the 

robust optimal objective value for models jR , 

8..1=j , and 30..0=Γ . 
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Figure B1.5.  Case 1, the robust optimal 
objective value and worst case return for 

scenario Monthly_LB for model jR , 8..1=j , 

and 30..0=Γ .   
 

Figure B1.6.  Case 1, the worst case robust 
return, under scenario Monthly_LB, minus the 

robust optimal objective value for models jR , 

8..1=j , and 30..0=Γ . 

 
 

Under scenarios Annual_LB (Figures B1.1 and B1.2), Out_Min (Figures B1.3 and 

B1.4) and Monthly_LB (Figures B1.5 and B1.6) we compare the worst case returns 

of robust portfolios constrained by cardinality, a buy-in threshold or both to the worst 

case returns of unconstrained robust portfolios.  Observe that under all three 

scenarios, models with the worst worst case returns also had the greatest optimal 

objective function value (Figures B1.1, B1.3 and B1.5); thus, they also had the 

greatest difference in portfolio return (Figures B1.2, B1.4 and B1.6).  In addition, 

models 1R  and 3R  had the greatest difference whilst models 2R , 4R , 6R , 7R  and 8R  

had the least difference in portfolio return, with respect to their optimal objective 

function values (Figures B1.2, B1.4 and B1.6).  Thus, portfolios constrained by 

cardinality, a buy-in threshold ( 03.0≠α ) or both, tended to have better worst case 

returns (Figures B1.1, B1.3 and B1.5) and those worst case returns tended to be 

closer to their optimal objective function value (Figures B1.2, B1.4 and B1.6). 
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B.2 Case 2 

 

In Section 7.3.2 we investigated the returns of robust models 1R  to 8R and the 

Expected value – Variance model ( EVR ), under four worst case scenarios: Out_Min, 

Out_LB, Annual_LB, and Monthly_LB, for Case 2.  More specifically we compared 

the optimal objective for the portfolios within each model to the corresponding worst 

case returns, under every scenario.  We illustrated results for the comparison of 

robust model 1R  to E-V model EVR  for all four scenarios.  In addition, we illustrated 

results for the comparison of robust model 1R  to robust models 2R  to 8R  for one 

scenario (Out_LB).  In this section, we illustrate the results for the comparison of 

robust model 1R  to robust models 2R  to 8R  for the remaining three scenarios, 

Annual_LB (Figures B2.1 and B2.2), Out_Min (Figures B2.3 and B2.4) and 

Monthly_LB (Figures B2.5 and B2.6), for Case 2. 

 
 
 

 
Figure B2.1.  Case 2, the robust optimal 
objective value and worst case return for 

scenario Annual_LB for model jR , 8..1=j , 

and 30..0=Γ .   

 

Figure B2.2.  Case 2, the worst case robust 
return, under scenario Annual_LB, minus the 

robust optimal objective value for models jR , 

8..1=j , and 30..0=Γ . 
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Figure B2.3.  Case 2, the robust optimal 
objective value and worst case return for 

scenario Out_Min for model jR , 8..1=j , 

and 30..0=Γ .   

 

Figure B2.4.  Case 2, the worst case robust 
return, under scenario Out_Min, minus the 

robust optimal objective value for models jR , 

8..1=j , and 30..0=Γ . 

 
 
 

 
Figure B2.5.  Case 2, the robust optimal 
objective value and worst case return for 

scenario Monthly_LB for model jR , 8..1=j , 

and 30..0=Γ .   
 

Figure B2.6.  Case 2, the worst case robust 
return, under scenario Monthly_LB, minus the 

robust optimal objective value for models jR , 

8..1=j , and 30..0=Γ . 

 

Under scenarios Annual_LB (Figures B2.1 and B2.2), Out_Min (Figures B2.3 and 

B2.4) and Monthly_LB (Figures B2.5 and B2.6) we compare the worst case returns 
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of robust portfolios constrained by cardinality, a buy-in threshold or both to the worst 

case returns of unconstrained robust portfolios.  Observe that under all three 

scenarios, models with the worst worst case returns tended to also have the greatest 

optimal objective function values (Figures B2.1, B2.3 and B2.5); thus, they tended to 

have the greatest difference in portfolio return (Figures B2.2, B2.4 and B2.6).  In 

addition, models 1R  consistently had the greatest difference whilst models 2R  and 

6R  tended to have the least difference in portfolio return, with respect to their 

optimal objective function values (Figures B2.2, B2.4 and B2.6).  Moreover, 

portfolios constrained by cardinality, a buy-in threshold ( 03.0≠α ) or both, tended 

to have better worst case returns (Figures B2.1, B2.3 and B2.5) and those worst case 

returns tended to be closer to their optimal objective function value (Figures B2.2, 

B2.4 and B2.6). 

 


