132,709 research outputs found

    Exact algorithms for the matrix bid auction.

    Get PDF
    In a combinatorial auction, multiple items are for sale simultaneously to a set of buyers. These buyers are allowed to place bids on subsets of the available items. A special kind of combinatorial auction is the so-called matrix bid auction, which was developed by Day (2004). The matrix bid auction imposes restrictions on what a bidder can bid for a subsets of the items. This paper focusses on the winner determination problem, i.e. deciding which bidders should get what items. The winner determination problem of a general combinatorial auction is NP-hard and inapproximable. We discuss the computational complexity of the winner determination problem for a special case of the matrix bid auction. We present two mathematical programming formulations for the general matrix bid auction winner determination problem. Based on one of these formulations, we develop two branch-and-price algorithms to solve the winner determination problem. Finally, we present computational results for these algorithms and compare them with results from a branch-and-cut approach based on Day & Raghavan (2006).Algorithms; Bids; Branch-and-price; Combinatorial auction; Complexity; Computational complexity; Exact algorithm; Mathematical programming; Matrix; Matrix bids; Research; Winner determination;

    Computational complexity of reconstruction and isomorphism testing for designs and line graphs

    Get PDF
    Graphs with high symmetry or regularity are the main source for experimentally hard instances of the notoriously difficult graph isomorphism problem. In this paper, we study the computational complexity of isomorphism testing for line graphs of tt-(v,k,λ)(v,k,\lambda) designs. For this class of highly regular graphs, we obtain a worst-case running time of O(vlogv+O(1))O(v^{\log v + O(1)}) for bounded parameters t,k,λt,k,\lambda. In a first step, our approach makes use of the Babai--Luks algorithm to compute canonical forms of tt-designs. In a second step, we show that tt-designs can be reconstructed from their line graphs in polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound structural knowledge in design theory is required. Our results extend earlier complexity results about isomorphism testing of graphs generated from Steiner triple systems and block designs.Comment: 12 pages; to appear in: "Journal of Combinatorial Theory, Series A

    Lower Bounds on the Oracle Complexity of Nonsmooth Convex Optimization via Information Theory

    Full text link
    We present an information-theoretic approach to lower bound the oracle complexity of nonsmooth black box convex optimization, unifying previous lower bounding techniques by identifying a combinatorial problem, namely string guessing, as a single source of hardness. As a measure of complexity we use distributional oracle complexity, which subsumes randomized oracle complexity as well as worst-case oracle complexity. We obtain strong lower bounds on distributional oracle complexity for the box [1,1]n[-1,1]^n, as well as for the LpL^p-ball for p1p \geq 1 (for both low-scale and large-scale regimes), matching worst-case upper bounds, and hence we close the gap between distributional complexity, and in particular, randomized complexity, and worst-case complexity. Furthermore, the bounds remain essentially the same for high-probability and bounded-error oracle complexity, and even for combination of the two, i.e., bounded-error high-probability oracle complexity. This considerably extends the applicability of known bounds

    Algorithms for Combinatorial Systems: Well-Founded Systems and Newton Iterations

    Get PDF
    We consider systems of recursively defined combinatorial structures. We give algorithms checking that these systems are well founded, computing generating series and providing numerical values. Our framework is an articulation of the constructible classes of Flajolet and Sedgewick with Joyal's species theory. We extend the implicit species theorem to structures of size zero. A quadratic iterative Newton method is shown to solve well-founded systems combinatorially. From there, truncations of the corresponding generating series are obtained in quasi-optimal complexity. This iteration transfers to a numerical scheme that converges unconditionally to the values of the generating series inside their disk of convergence. These results provide important subroutines in random generation. Finally, the approach is extended to combinatorial differential systems.Comment: 61 page

    A Quantitative Study of Pure Parallel Processes

    Full text link
    In this paper, we study the interleaving -- or pure merge -- operator that most often characterizes parallelism in concurrency theory. This operator is a principal cause of the so-called combinatorial explosion that makes very hard - at least from the point of view of computational complexity - the analysis of process behaviours e.g. by model-checking. The originality of our approach is to study this combinatorial explosion phenomenon on average, relying on advanced analytic combinatorics techniques. We study various measures that contribute to a better understanding of the process behaviours represented as plane rooted trees: the number of runs (corresponding to the width of the trees), the expected total size of the trees as well as their overall shape. Two practical outcomes of our quantitative study are also presented: (1) a linear-time algorithm to compute the probability of a concurrent run prefix, and (2) an efficient algorithm for uniform random sampling of concurrent runs. These provide interesting responses to the combinatorial explosion problem
    corecore