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Abstract

In a combinatorial auction, multiple items are for sale simultaneously
to a set of buyers. These buyers are allowed to place bids on subsets
of the available items. A special kind of combinatorial auction is the
so-called matrix bid auction, which was developed by Day (2004). The
matrix bid auction imposes restrictions on what a bidder can bid for a
subsets of the items. This paper focusses on the winner determination
problem, i.e. deciding which bidders should get what items. The winner
determination problem of a general combinatorial auction is NP-hard and
inapproximable. We discuss the computational complexity of the winner
determination problem for a special case of the matrix bid auction. We
present two mathematical programming formulations for the general ma-
trix bid auction winner determination problem. Based on one of these
formulations, we develop two branch-and-price algorithms to solve the
winner determination problem. Finally, we present computational results
for these algorithms and compare them with results from a branch-and-
cut approach based on Day & Raghavan (2006).

Keywords: Combinatorial auction, matrix bids, winner deter-
mination, computation complexity, branch-and-price

1 Introduction

In an auction where multiple bidders are interested in multiple items, it is often
the case that the value of a set of items is higher or lower than the sum of the
values of the individual items. These so-called complementarity or substitution-
effects, respectively, may be bidder-specific. A combinatorial auction is a way
to make use of this synergy phenomenon. In such an auction a buyer is allowed
to place bids on a subset of the items, sometimes called a bundle. The auction
is concluded when the auctioneer decides to accept some of the bids and to
allocate the items accordingly to the bidders.

In a combinatorial auction in its most general form, bidders can bid whatever
amount they please on any subset of items. The problem of deciding which
bidders should get what items in order to maximize the auctioneer’s revenue
is called the winner determination problem. This problem is NP-hard since
(Rothkopf, Pekeç & Harstad 1998) and cannot be approximated to a ratio of
max(Kε−1,mε−1/2) in polynomial time for any fixed ε > 0 (unless P=ZPP ),

∗This research was partially supported by FWO Grant No. G.0114.03.
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where K is the number of bundles on which a bid has been made, and m is the
number of items (Sandholm 2002). This result holds even if every item occurs
in at most two bids and all prices are equal to 1.

Numerous attempts to cope with this computational complexity can be found in
literature. One approach is to impose restrictions on what a bidder can bid for
these sets. A common restriction on a bidder’s preferences is that they should
be non-decreasing, i.e. the valuation for a set S1 can not be higher than the
valuation for a set S2 if S1 is a subset of S2. Another restriction can be that the
preferences should be supermodular. This means that the sum of valuations for
two sets should not be higher than the sum of the valuation of the union of both
sets and the valuation of the intersection of both sets. If there are only two bid
functions a bidder can have, both of them non-decreasing, integer valued and
supermodular, then de Vries & Vohra (2003) point out that the winner deter-
mination problem of this auction can be solved in polynomial time. For other
results based on restricting preferences, we refer to Nisan (2000) and Tennen-
holtz (2002).

The matrix bid auction, which was developed by Day (2004), is also a combi-
natorial auction in which restrictions are imposed on what a bidder can bid. In
the matrix bid auction, each bidder must submit a strict ordering (or ranking)
of the items in which he1 is interested. We assume that for each bidder, the
extra value an item adds to a set is determined only by the number of higher
ranked items in that set, according to the ranking of that bidder. Let G be the
set of items, indexed by i and B the set of bidders, indexed by j. The ordering
of the items is denoted by rij , which is item i’s position in bidder j’s ranking,
for each i ∈ G and j ∈ B. This ordering should be strict in the sense that for
each bidder j, ri1j 6= ri2j for any pair of distinct items i1 and i2. For instance,
if rij = 2, item i is bidder j’s second highest ranked item. Furthermore, each
bidder j specifies values bijk, which correspond to the value the bidder is pre-
pared to pay for item i given that it is the k-th highest ranked item in the set
that bidder j is awarded. The bijk values allow to determine the value bidder
j attributes to any set S ⊆ G. Indeed, bidder j’s bid on a set S is denoted as
bj(S) and can be computed as:

bj(S) =
∑

i∈S

bi,j,k(i,j,S) (1)

where k(i, j, S) is the ranking of item i amongst the items in the set S, according
to bidder j’s ranking. Notice that equation (1) assumes that no externalities are
involved, i.e. a bidder’s valuation depends only on the items he wins, and not
for instance on the identity of the bidders to whom the other items are allocated.
Furthermore, the matrix bid auction is a multi-item, single-unit combinatorial
auction. This means that for each item that is auctioned, only one unit of this
item is available. The winner determination problem is, given the bids bj(S)
for each set S and each bidder j, to determine which bidder is to receive which
items, such that the total winning bid value is maximized. Notice that we as-
sume that each bidder pays what he bids for the subsets he wins.

1he can be replaced by she (and his by her)
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Observe that the value for index k of item i in bidder j’s bid can never be higher
than the rank rij . This allows us to arrange the values bijk as a lower triangular
matrix for each bidder j, where the rows correspond to the items, ordered by
decreasing rank and the columns correspond to values for k. Hence the name
matrix bid (with order). Notice also that bidder j’s ranking rij does not nec-
essarily reflect a preference order of the items. If an item is highly ranked, this
merely means that its added value to a set depends on less items than the added
value of a lower ranked item. Furthermore, we make no assumption regarding
the bijk values. Indeed, these values may be negative, e.g. to reflect the dis-
posal cost of an unwanted item. Specifying a sufficiently large negative value
can also keep the bidder from winning this item in the first place. For a more
elaborate discussion of the expressiveness of matrix bids and their relation to
well-known micro-economic properties, we refer to Goossens & Spieksma (2006).

There are several reasons for investigating a combinatorial auction with matrix
bids. First, bids in any practical combinatorial auction are likely to posses some
structure. In literature, we find references of both theoretical structures (see e.g.
Rothkopf et al. (1998), Nisan (2000), and Leyton-Brown & Shoham (2005)) and
structures in practice (see e.g. Bleischwitz & Kliewer (2005) and Goossens,
Maas, Spieksma & van de Klundert (2007)). Capturing and understanding this
structure is important, not only since it allows to develop algorithms that can
be more efficient than algorithms for a general combinatorial auction, but also
because it improves our understanding of various properties of an auction. The
matrix bid auction, where the incremental value an item adds to a bid on a set is
determined only by the number of higher ranked items in that set, imposes one
such structure. Thus, the matrix bid auction offers a way of capturing structure
that may be present in combinatorial auctions. Second, matrix bid auctions
allow for a faster computation due to the restriction on the preferences that is
assumed. Indeed, Day & Raghavan (2006) show that the computation time for
the general combinatorial auction is higher and grows much faster than for the
matrix bid auction. Finally, the matrix bid auction also offers a compact way
of representing preferences. Indeed, each bidder only needs to communicate an
ordered list of m items and m(m+1)

2 matrix bid entries, which is far less than
bids for each of the 2m possible sets of items in a general combinatorial auction.
These arguments are explored in more detail in Goossens & Spieksma (2006).

The remainder of this paper is organized as follows. In section 2, we discuss the
computational complexity of the special case of the matrix bid auction winner
determination problem that arises if all bidders have the same ranking of the
items. Section 3 deals with two mathematical programming formulations for
the general matrix bid auction winner determination problem. Based on one
of these formulations, we develop two branch-and-price algorithms to solve the
winner determination problem in section 4. Finally, in section 5, we present
computational results for these algorithms and compare them with results from
the branch-and-cut approach by Day (2004).

3



2 Computational complexity

The key assumption in the matrix bid auction is that for each bidder, the extra
value an item adds to a set depends only on the number of higher ranked items
in that set, according to the ranking of that bidder. Despite this restriction,
the winner determination problem of the matrix bid auction remains NP -hard
(Day 2004). Even if each bidder has the same ranking of the items, the matrix
bid auction winner determination problem remains NP -hard. Moreover, unless
P = NP , there exists no polynomial-time approximation scheme (PTAS) for
this problem.

Theorem 1. There exists no polynomial-time approximation scheme for the
winner determination problem for the matrix bid auction where all bidders have
an identical ranking of the items, unless P = NP .

Proof. We consider the winner determination problem for the matrix bid auc-
tion where all bidders have an identical ranking. We refer to this problem as
MBI. The reduction is from the 3-dimensional matching (3DM) problem. The
3DM problem is described as follows: given a set M ⊆ X × Y × Z of triples,
where each of the sets X, Y and Z has exactly q elements, find the largest
matching in M . Kann (1991) shows that it is NP -hard to decide whether there
exists a matching of size q, or whether every matching has a size of at most
(1− δ)q for some fixed δ > 0 (see also Petrank (1994)).

Every instance of 3DM can be reduced to an MBI instance in polynomial time.
Suppose that the 3q elements of the sets X, Y , and Z correspond to 3q items and
that each 3-element subset in M corresponds to a bidder. We pick an arbitrary
ordering of the items and let this be the ranking of the items for each bidder.
Each bidder thus has a matrix bid with this ranking and with the following
entries. The highest ranked item of the triple corresponding to the bidder gets
a value of 1 in the first column, the second highest ranked item gets a value of
2 in the second column, and the third highest ranked item gets a value of 3 in
the third column. All other entries get a value of zero.

If an instance of 3DM has a matching of size q, then the corresponding instance
of MBI has a solution of value 6q. Indeed, a solution of 3DM consists of q
pairwise disjoint 3-element subsets, corresponding to q bidders in MBI. Each
supplier has a bid of 6 for the 3 items represented by the 3-element subset.
Accepting these bids leads to a sum of winning bids equal to 6q. Since every
element of X ∪ Y ∪ Z occurs exactly once in the solution of 3DM, every item
will also be auctioned exactly once in the MBI solution.

If our instance of 3DM has a matching of size at most (1− δ)q, at most (1− δ)q
entries with value 3 in the matrix bids can be used, resulting in a MBI solution
value of (1 − δ)6q. Notice that for a maximal solution value, we need to use
a maximal number of entries with value 3. The number of items remaining is
3q − 3(1 − δ)q = 3δq. Each pair of these items adds at most 3 to the solution
value, resulting in a maximal solution value for MBI of

(1− δ)6q +
9δq

2
= (6− 3

2
δ)q.
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Consequently, a polynomial-time approximation scheme for MBI would imply
that we could distinguish between instances of 3DM with a matching of size q
and instances where every matching has a size of at most (1− δ)q, which is an
NP -hard problem (Kann 1991). ¤

Notice that it follows from theorem 1 that the winner determination problem
for the matrix bid auction where bidders have an identical ranking of the items
is NP -hard. In this theorem, the number of bidders is part of the input. In the
case that the number of bidders is fixed (and we still assume identical rankings),
the winner determination problem can be solved in polynomial time.

Theorem 2. The winner determination problem for a matrix bid auction with
a fixed number of bidders, all having an identical ordering of the items, can be
solved in polynomial time.

Proof. We will show that the winner determination problem for a matrix bid
auction with a fixed number of bidders, say n, all having an identical ranking r
of the items, say 1, 2, ..., m, can be solved by solving a longest path problem on
an acyclic graph involving O(mn+2) nodes and O(nmn+2) arcs.

This graph contains nodes indexed by (i, s1, s2, ..., sn, k), a source, and a sink.
The index i refers to item i and ranges from 1 to m. The indices sj , with
j ∈ {1, 2, ..., n}, and k range from 0 to ri, with

∑
j sj + k = ri. There are

arcs from each node (i, s1, s2, ..., sn, k) to (i + 1, s′1, s
′
2, ..., s

′
n, k′), provided that

s′j > sj for all j ∈ {1, 2, ..., n}, and that k′ > k. Furthermore, there is an
arc from the source to each node (1, s1, s2, ..., sn, k), and an arc from each
node (m, s1, s2, ..., sn, k) to the sink. The arc from node (i, s1, s2, ..., sn, k) to
(i + 1, s′1, s

′
2, ..., s

′
n, k′) has a cost of bi+1,j,s′j where j is the index for which

s′j = sj + 1, if k′ = k. If k′ = k + 1, then this arc has a cost of zero. All arcs to
the sink also have a cost of zero. The graph is depicted in Figure 1 for a setting
with 2 items and 2 bidders. All arcs without indication of the corresponding
cost have a cost equal to zero.

The graph described above should be interpreted as follows. Each node (i, s1, s2,
..., sn, k) corresponds to a state where a decision has been made on the alloca-
tion of item i and all items ranked higher than i, with each bidder j receiving
sj items and k items remaining with the auctioneer. Selecting an arc from
(i, s1, s2, ..., sn, k) to (i + 1, s′1, s

′
2, ..., s

′
n, k′) therefore corresponds to allocating

item i+1 to that bidder j for which s′j = sj +1. If there is no such bidder, then
item i + 1 remains with the auctioneer (and k′ = k + 1). In this way, each path
from source to sink determines how the items are to be allocated, and there is
a path from the source to the sink for each possible allocation.

We now sketch the equivalence between the length of a path in the graph and
the value of an allocation of the items. We know that in a matrix bid, the value
of adding an item i to a set is determined only by the number of higher ranked
items. Since the graph contains only arcs from higher ranked items to lower
ranked items, the effect of adding an item i to a set on the bid for this set can
be determined, regardless of whatever items are added to the set further down
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(1,1,0,0)

(1,0,1,0)

(1,0,0,1)

(2,2,0,0)

(2,0,2,0)

(2,0,0,2)

(2,1,1,0)

(2,1,0,1)

(2,0,1,1)

source
sink

b1,1,1

b1,2,1

b2,1,2

b2,1,1

b2,2,1

b2,2,2

b2,1,1

b2,2,1

Figure 1: Illustration of the graph for 2 items and 2 bidders

the path. The cost of an arc is nothing else but the appropriate entry from
the matrix bid of the bidder receiving the item. This means that the length
of any path from source to sink corresponds to

∑
j bj(Sj), where Sj is the set

of items allocated to bidder j, according to that path. Therefore, the winner
determination problem for a matrix bid auction with a fixed number of bidders,
all having an identical ordering of the items, can be solved by solving a longest
path problem. This can be done in polynomial time, since the underlying graph
is acyclic. ¤

3 Mathematical formulations

In this section, we present two mathematical formulations for the matrix bid
auction winner determination problem. The first formulation (see also Day
(2004)) is inspired by the assignment problem, the second by the set packing
problem. We show that the LP-relaxations of both formulations are equally
strong.

We define the binary variable xijk to be 1 if bidder j receives item i as the k-th
best item, and 0 otherwise. This leads to the formulation below, to which we
refer as the assignment formulation.
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maximize

∑

i∈G

∑

j∈B

rij∑

k=1

bijkxijk (2)

subject to

∑

j∈B

rij∑

k=1

xijk 6 1 ∀i ∈ G (3)

∑

i∈G:rij≥k

xijk 6 1 ∀j ∈ B,∀k ∈ {1, ..., rij} (4)

∑

l∈G:k≤rlj≤rij

xljk 6
∑

l∈G:k−1≤rlj<rij

xljk−1 ∀i ∈ G, ∀j ∈ B,∀k ∈ {2, ..., rij}

(5)
xijk ∈ {0, 1} ∀i ∈ G, ∀j ∈ B,∀k ∈ {1, ..., rij}

(6)

Constraints (3) enforce that each item can be assigned to at most one bidder,
while constraints (4) make sure that for each bidder, at most one item is the
k-th best item in the set this bidder gets. Finally, constraints (5) impose that a
bidder cannot get an item as the k-th best item in a set, unless a higher ranked
item was assigned to this bidder as his (k − 1)-th best item in this set. Con-
straints (6) are the integrality constraints.

Notice that the formulation (2)-(6) is not the minimal correct formulation for
the matrix bid winner determination problem. Indeed, constraints (4) for
k ∈ {2, ..., rij} are redundant in (2)-(6), since they are already enforced by
constraints (4) for k = 1 and constraints (5). Also, replacing constraints (5)
with the following (weaker) constraints still results in a correct formulation:

xijk 6
∑

l∈G:k−1≤rlj<rij

xljk−1 ∀i ∈ G,∀j ∈ B, ∀k ∈ {2, ..., rij}.

However, with this formulation, all constraints (4) remain necessary.

The set packing formulation below makes use of binary variables y(S, j), which
equals 1 if bidder j wins set S, and 0 otherwise. The first set of constraints
(8) enforces that each item is awarded to at most one bidder. The second set
of constraints guarantees (9) that no bidder receives more than one set. The
integrality constraints are (10).

maximize
∑

j∈B

∑

S⊆G

bj(S)y(S, j) (7)
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subject to
∑

S⊇{i}

∑

j∈B

y(S, j) 6 1 ∀i ∈ G (8)

∑

S⊆G

y(S, j) 6 1 ∀j ∈ B (9)

y(S, j) ∈ {0, 1} ∀S ⊆ G,∀j ∈ B (10)

Notice that this set packing formulation can also be used for the winner deter-
mination problem of a general combinatorial auction. Indeed, the matrix bid
auction only differs from a general combinatorial auction in the way bj(S) is
computed. Notice also that the assignment formulation is polynomially sized in
the number of bidders and the number of items. This is not the case for the set
packing formulation. In the following theorem, we prove that the LP-relaxation
of the set packing formulation and the LP-relaxation of the assignment formu-
lation are equally strong.

Theorem 3. The LP relaxation of the assignment formulation and the LP
relaxation of the set packing formulation are equally strong. Moreover, if the
assignment formulation has an integral solution that is optimal with respect to
the LP-relaxation, this is also the case for the assignment formulation, and vice
versa.

Proof. In order to prove the first part of this theorem, we need to show that
the LP-relaxation of the set packing formulation is at least as strong as the LP-
relaxation of the assignment formulation and vice versa. In order to prove the
first relation, we need to show that any solution ŷ of the LP-relaxation of the
set packing formulation can be transformed to a solution x̂ of the LP-relaxation
of the assignment formulation with the same objective function value. This is
accomplished by the following procedure. For the remainder of this proof, if we
mention a formulation, we mean in fact its LP-relaxation.

First, we initialize all variables x̂ijk to 0, for all i ∈ G, j ∈ B, and k ∈ {1, ..., rij}.
We consider each variable ŷ(S, j), with S ⊆ G and j ∈ B once, and set for each
item i in S

x̂i,j,k(i,j,S) ← x̂i,j,k(i,j,S) + ŷ(S, j). (11)

Thus, in this procedure, the value of each variable ŷ(S, j) is added to |S| x̂ijk

variables, namely those with item i ∈ S, and k = k(i, j, S). It follows that the
following equality is valid:

rij∑

k=1

x̂ijk =
rij∑

k=1

∑

S:i∈S∧k=k(i,j,S)

ŷ(S, j) =
∑

S⊇{i}
ŷ(S, j) ∀i ∈ G, j ∈ B. (12)

Using this equality, we verify that (3) holds for x̂:
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∑

j∈B

rij∑

k=1

x̂ijk =
∑

j∈B

∑

S⊇{i}
ŷ(S, j) 6 1. (13)

Notice that the last inequality follows from the feasibility of ŷ (see (8)). We also
establish for j ∈ B, and k ∈ {1, ..., rij}:

∑

i∈G:rij>k

x̂ijk =
∑

i∈G

∑

S:i∈S∧k(i,j,S)=k

ŷ(S, j)

=
∑

S:|S|>k

ŷ(S, j)

6
∑

S⊆G

ŷ(S, j) 6 1, (14)

which shows that x̂ satisfies (4). Finally, we have that for each i ∈ G, j ∈ B,
and k = 1, ..., rij :

∑

l∈G:k≤rlj≤rij

x̂ljk =
∑

l∈G:rlj6rij

∑

S:l∈S∧k(l,j,S)=k

ŷ(S, j). (15)

Thus we can write for each i ∈ G, j ∈ B, and k = 2, ..., rij :

∑

l∈G:k≤rlj≤rij

x̂ljk −
∑

l∈G:k−1≤rlj<rij

x̂ljk−1 =

∑

l∈G:rlj6rij

∑

S:l∈S∧k(l,j,S)=k

ŷ(S, j)−
∑

l∈G:rlj6rij

∑

S:l∈S∧k(l,j,S)=k−1

ŷ(S, j).

(16)

Consider some ŷ(S, j) occurring in the first term. The corresponding set S has
at the k-th position (k > 2) some item l, rlj 6 rij . It follows that there must
be some other item, say l′ with rl′j 6 rlj at position k − 1. Hence this ŷ(S, j)
also occurs in the second term. It follows that the expression (16) cannot have
a positive value, and hence (5) is satisfied. Notice also that the transformation
procedure (11) does not affect the objective function value. Moreover, it trans-
forms any integral solution ŷ to an integral solution x̂.

Hence, we have shown that the set packing formulation is at least as strong as
the assignment formulation and if the set packing formulation has an integral
solution that is optimal with respect to the LP-relaxation, this is also the case
for the assignment formulation. In the remainder of this proof, we show that
the assignment formulation is at least strong as the set packing formulation.
In order to prove this second relation, we show that any solution x̂ of the
LP-relaxation of the assignment formulation can be transformed to a solution
ŷ of the LP-relaxation of the set packing formulation with the same objective
function value. This is accomplished by the following procedure, CONVERT(x̂).
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Algorithm 1 CONVERT(x̂)

for (j ∈ B) do
Initialize ŷ(S, j) ← 0 for all S ⊆ G;

Step 1:
for (i ∈ G) do

ŷ({i}, j) ← x̂ij1

end for

Step 2:
for (k = 2 to m) do

for (i ∈ G: rij = k to m) do
Step 2a:
T = {S ⊆ {i′ : ri′j < rij} : |S| = k − 1};
while (x̂ijk > 0) do

Pick a set S from T and remove S from T ;
if (x̂ijk > ŷ(S, j)) then

ŷ(S ∪ {i}, j) ← ŷ(S, j);
x̂ijk ← x̂ijk − ŷ(S, j);
ŷ(S, j) ← 0;

else
ŷ(S ∪ {i}, j) ← x̂ijk;
ŷ(S, j) ← ŷ(S, j)− x̂ijk;
x̂ijk ← 0;

end if
end while

end for
end for

end for

10



The CONVERT procedure translates any solution for the assignment formula-
tion to a solution for set packing formulation. First, we argue that the CON-
VERT algorithm terminates.

The crucial step in the CONVERT algorithm is step 2a, which has to be per-
formed for each bidder j, for each k from 2 to m, and for each i ∈ G with
rij > k. Let us consider now a bidder j, item i, and rank k, for which step 2a
is to be performed, and let ỹ(S, j) be the solution as it is constructed by the
CONVERT algorithm so far. In order to guarantee that the while loop in step
2a terminates, we need:

x̂ijk 6
∑

S:S⊆{i′:ri′j<rij}∧|S|=k−1

ỹ(S, j). (17)

Notice that in CONVERT, so far, each variable ỹ(S, j), with |S| = k − 1 and
l being the lowest ranked item in S, has been increased at most once, namely
with (a fraction of) x̂l,j,k−1. Furthermore, the total value of x̂l,j,k−1 has been
added exclusively over variables ỹ(S, j) with |S| = k−1 and l the lowest ranked
item in S. Therefore, we have that the total fraction that has been added to
variables ỹ(S, j) with S containing k − 1 items ranked higher than i equals:

∑

i′:k6ri′j<rij

x̂i′,j,k−1. (18)

Notice that the value of each variable ỹ(S, j) may also have been decreased in
CONVERT. Indeed, variables ỹ(S, j) with S containing k − 1 items and the
one with the lowest rank being l, can be decreased only with (a fraction of)
variables x̂i′,j,k with i′ ranked higher than l, and lower than i (since step 2a has
not yet been performed for rank k and item i or items ranked lower than i).
Furthermore, the total value of x̂l,j,k has been subtracted only from variables
ỹ(S, j), with S containing k − 1 items, all ranked higher than l. Therefore, we
have that the total fraction that has been subtracted from variables ỹ(S, j) with
S containing k − 1 items ranked higher than i equals:

∑

i′:k6ri′j<rij

x̂i′,j,k. (19)

Thus,

∑

S:S⊆{i′:ri′j<rij}∧|S|=k−1

ỹ(S, j) =
∑

i′:k6ri′j<rij

x̂i′,j,k−1 −
∑

i′:k6ri′j<rij

x̂i′,j,k. (20)

Further, it follows from (5) that

x̂ijk 6
∑

i′:k6ri′j<rij

x̂i′,j,k−1 −
∑

i′:k6ri′j<rij

x̂i′,j,k (21)

for each bidder j, for each k from 2 to m, and for each i ∈ G with rij > k. From
(20) and (21) we conclude that (17) is true and hence the CONVERT algorithm
terminates.
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We now argue that solution ŷ is indeed feasible with respect to constraints (8),
(9), and the relaxation of (10).

For each bidder j and each item i, it is clear that after step 1,
∑

S⊇{i} ŷ(S, j) =
x̂ij1. In step 2, each value x̂ijk is spread over one or more variables ŷ(S, j)
with S containing item i. Also, for each variable ŷ(S, j) that is increased, a
variable ŷ(S \ {i}, j) is decreased with the same value. Therefore, after step 2,∑

S⊇{i} ŷ(S, j) 6
∑rij

k=1 x̂ijk. Summing over the bidders gives

∑

j∈B

∑

S⊇{i}
ŷ(S, j) 6

∑

j∈B

rij∑

k=1

x̂ijk.

Given (3), this implies that constraints (8) are satisfied.

For each bidder j, it is clear that after step 1 of CONVERT,
∑

S⊆G ŷ(S, j) =∑
i∈G x̂ij1. In step 2, for every variable ŷ(S, j) whose value is increased, there is

some other variable ŷ(S′, j) whose value is reduced by the same amount. Given
(4), this implies that constraints (9) are satisfied.

Each variable ŷ(S, j) is increased by at most one variable x̂ijk. Therefore, it
follows from the relaxation of constraints (6) that ŷ(S, j) 6 1 for all S ⊆ G and
each bidder j. By construction of the algorithm, no variable ŷ(S, j) will have a
value less than zero. Thus, ŷ satisfies the relaxation of constraints (10).

Further, the objective function value of both solutions x̂ and ŷ is the same. Con-
sider any bidder j. After step 1, the objective function of solution ŷ has a value
equal to

∑
i∈G bij1x̂ij1, since b({i}, j) = bij1. Every time step 2a is performed,

the objective function value is increased by (b(S∪{i}, j)−b(S, j))x̂ijk. Since set
S contains only items ranked higher than item i, we have b(S∪{i}, j)−b(S, j) =
bijk, where k is the number of items in S plus one. Therefore, after step 2 the ob-
jective function equals

∑
i∈G

∑rij

k=1 bij1x̂ij1. Summing over all bidders j shows
that the CONVERT(x̂) procedure produces a solution ŷ with the same objective
function value as x̂.

Finally, it is easy to see that if the CONVERT procedure is confronted with
an integral solution x̂, it will produce an integral solution ŷ. Thus, we can
conclude that the assignment formulation and the set packing formulation are
equally strong, and that if one formulation has an integral optimal solution, this
is also the case for the other formulation. ¤

4 Branch-and-price algorithms for solving the

matrix bid auction

Theorem 3 shows that the set packing formulation (7)-(10) is equally strong
as the assignment formulation (2)-(6). Here we outline an algorithm based
on the set packing formulation. Solving the LP-relaxation of the set packing
formulation is however not trivial, given the huge amount of variables (n2m).

12



Considering that only a small percentage of these variables are nonzero in an
optimal solution, column generation suggests itself as an efficient solution tech-
nique. Column generation was proposed by Dantzig & Wolfe (1960) and starts
by solving the LP-relaxation considering only a restricted subset of the vari-
ables. This problem is also called the restricted master problem. Notice that
this problem can be restricted to m + n variables, whereas the assignment for-
mulation requires nm(m + 1)/2 variables, which may still be large. The next
step is to verify whether any of the variables that were not considered could
improve the current solution. In other words, we search for a variable with a
non-negative reduced cost. This problem is called the pricing problem. If we
find such a variable, we add it to the restricted master problem and solve it
again. This re-optimizing and pricing is to be repeated until the pricing prob-
lem fails to produce new variables, indicating that the LP-relaxation has been
solved to optimality.

Notice that the column generation procedure does not guarantee to find an in-
tegral solution. In case of a fractional solution, a branching decision needs to
be made, partitioning the solution space in order to create a number of smaller
subproblems. With branch-and-price, this results in a search tree where col-
umn generation has to be applied in every node. In this way, branch-and-price
can be seen as a generalization of the column generation technique for integer
programming. Combining the column generation approach with a branching
scheme may not be straightforward. The key to an efficient branch-and-price
algorithm is an easy-to-solve pricing problem. The branching rule should there-
fore not destroy the structure of the pricing problem or increase its complexity
when moving deeper down the search tree.

Branch-and-price has proven to be successful for solving huge integer programs
arising from a number of combinatorial problems (for an overview, we refer
to Barnhart, Johnson, Nemhauser, Savelsbergh & Vance (1998)). We refer to
Vanderbeck & Wolsey (1996) for a more elaborate description of the branch-
and-price technique. In section 4.1, we show how the LP-relaxation of the set
packing formulation for the matrix bid auction winner determination problem
can be solved efficiently using column generation. Next, the column generation
approach is used as a building block for two branch-and-price algorithms to solve
the matrix bid auction. The algorithm in section 4.2 makes use of a branching
rule based on assigning items to bidders, whereas in section 4.3, branching is
done by deciding on the succession of items in a winning set. Finally, in section
4.4, we comment on some issues that turn out to be important while implement-
ing both branch-and-price algorithms.

4.1 Column generation for the matrix bid auction

In this section, we show how the LP-relaxation of the set packing formulation
of the matrix bid winner determination problem can be solved using column
generation. We also prove that the pricing problem can be solved in polynomial
time, since it can be solved by solving a shortest path problem.
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If we define ui for each item i ∈ G as the dual price associated with the cor-
responding constraint of (8), and vj for each bidder j ∈ B as the dual price
associated with the corresponding constraint of (9), we can write the dual of
the set packing formulation (7)-(10) as follows:

minimize
∑

i∈G

ui +
∑

j∈B

vj (22)

subject to
∑

i∈S

ui + vj > bj(S) ∀S ⊆ G,∀j ∈ B (23)

ui > 0, vj > 0 ∀i ∈ G, ∀j ∈ B (24)

We start by finding an optimal solution for the restricted master problem, i.e.
the LP-relaxation of (7)-(10) considering only a limited number of variables
y(S, j). This solution is also an optimal solution for the (unrestricted) LP-
relaxation of (7)-(10) if its corresponding dual variables form a feasible solution
for (22)-(24), which has a constraint for every variable y(S, j). Consequently,
we need to add a new column or variable to the restricted master problem
if a constraint of (23) is violated. The pricing problem thus boils down to
determining the existence of a set S of items and a bidder j such that

∑

i∈S

ui < bj(S)− vj . (25)

Theorem 4. The pricing problem, i.e. finding a set S of items and a bidder
j such that a constraint of (23) is violated, can be solved by solving a shortest
path problem.

Proof. We construct a graph with a source and a sink, and a subgraph for
each bidder j. Such a subgraph contains rij nodes for each item i, called item
nodes. We will refer to an item node as (i, j, k), where i stands for the item
and k ranges from 1 to rij . There are arcs from each node (i, j, k) to each node
(i′, j, k + 1) where item i′ is ranked lower than item i (i.e., ri′j > rij). These
arcs have a cost equal to ui′ − bi′,j,k+1. Notice that there are no arcs between
nodes corresponding to different subgraphs. Furthermore, for each subgraph,
there are arcs from the source node to node (i, j, 1) for each item i with a cost
equal to ui − bij1 and there are arcs from each item node (i, j, k) to the sink
with cost vj . A schematic representation of this graph is given in Figure 2 for
a setting with a single bidder j and three items.

From the structure of this graph, it follows that all nodes of a path from the
source to the sink correspond to the same bidder and each path contains at
most one node per item. Moreover, exactly one arc with cost vj is included in
the path. Therefore, the length of a path containing nodes (i, j, k) of the items
i ∈ S of bidder j in this graph equals
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item 1

item 2

item 3

source

sink

(1,j,1)

(2,j,1) (2,j,1)

(3,j,1) (3,j,2) (3,j,3)

vj

u1-b1j1

u3-b3j2

Figure 2: The pricing problem as a shortest path problem

∑

i∈S

(ui − bijk) + vj (26)

Furthermore, the graph ensures that an item i is in the path using its k-th node
only if a higher ranked item is in the path through its (k − 1)-th node. We
can therefore state that

∑
i∈S bijk = bj(S) and it follows that the existence of

a path with negative length corresponds to a violated constraint in the dual.
Consequently, we need to solve a shortest path problem on an acyclic graph in
order to solve the pricing problem.

Thus, if the shortest path has a negative length, we can add a column for the
corresponding bidder j containing the items in set S determined by the item
nodes traversed in the path. Naturally, bidder j’s bid for this set S is bj(S).
Notice that since the pricing problem is solvable in polynomial time, the LP-
relaxation of the set packing formulation for the matrix bid auction can also be
solved in polynomial time.

Corollary 1. The LP-relaxation of the set packing formulation (7)-(10) for the
matrix bid auction winner determination problem can be solved in polynomial
time.

4.2 Branching on an item-bidder pair

The solution of the LP-relaxation of the matrix bid winner determination prob-
lem found by column generation may not be integral. If this is the case, we

15



need to partition the solution space to eliminate this fractional solution. In this
approach, we partition the solution space by the branching decision whether or
not to assign an item to a bidder. We first prove that in a fractional solution,
there always exists an item that has been fractionally assigned to one or more
bidders.

Lemma 1. For any fractional solution to the relaxation of (7)-(10),

∃i ∈ G, j ∈ B : 0 <
∑

S:S⊇{i}
y(S, j) < 1 (27)

Proof. We will prove this theorem by showing that a solution must be integral
if it does not satisfy (27). Consider a solution for which property (27) is not
valid. This means that each item has been assigned fully or not at all to each
bidder. In this case, no items are split over multiple bidders. An item p for
which

∑
S:S⊇{p} y(S, j) = 1 could, however, still be split over multiple sets of

the same bidder j. It is easy to see that if bidder j is awarded a set S con-
taining next to p any other item q, that this item then should occur in each set
containing p in order to have the sum of the fractions of sets containing p equal
1. In other words, the sets of bidder j are identical, and we have, in fact, an
integral solution.

The branch-and-price algorithm can, however, only be valid if in every node of
the search tree, all generated columns satisfy the previously made branching
decisions. Prohibiting that an item is awarded to a certain bidder in the pricing
problem can be done by simply removing the vertices corresponding to that item
for that bidder from the graph. Enforcing that an item is awarded to a certain
bidder in the pricing problem is less obvious. For that bidder, the arcs from the
source to any lower ranked item need to be removed. Also the arcs from any
higher ranked item to any item ranked lower than that item need to be deleted.
Finally, the arcs from the higher ranked items to the sink must be removed as
well. Clearly, all nodes that can no longer be reached as a consequence of these
removals can now also be deleted, as are the arcs leaving those nodes, and so
on. For all other bidders, we need to remove the vertices of that item from
the graph. Figure 3 shows the pricing problem where item 2 is forced to be
awarded to the bidder whose item nodes are depicted. In this graph, we made
sure that every path from the source to the sink of that bidder must include a
node corresponding to item 2.

Notice that this branching rule does not destroy the structure of the pricing
problem: in all branches, the pricing problem remains a shortest path problem.
It is easy to see that this shortest path problem can be adjusted to produce
columns that comply with a series of branching decisions. Moreover, when
moving deeper down the tree, more and more arcs and nodes will be removed.
Thus, we have described a valid branching rule where the pricing problem re-
mains solvable as a shortest path problem throughout the search tree.

4.3 Branching on a pair of successive items

Ryan & Foster (1981) suggest a branching rule for the set partitioning problems
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item 1

item 2

item 3

source

sink

(1,j,1)

(2,j,1) (2,j,1)

(3,j,2) (3,j,3)

Figure 3: The pricing problem where the bidder must get item 2

where two constraints are covered together or not at all by the variables in one
branch, whereas in the other branch, each variable can cover at most one of
these constraints. This rule can easily be generalized to set packing problems
and can be translated to a combinatorial auction context as two items needing
to go to the same bidder in one branch and to different bidders in the other
branch. However, forcing two arbitrary items to go to the same bidder, but
also forbidding that these items go to the same bidder, is not straightforward
to achieve in the shortest path problem described in section 4.1. Therefore,
we modify this branching rule, such that it takes into account the ranking of
the items specified in the bidder’s matrix bid. A similar modification has been
applied for example in a pallet loading application (Moonen 2005).

We partition the solution space by branching on a pair of items p and q. In one
branch, we enforce that if item p is present in a bidder’s set, then item q must
be directly successive to p in this set, when the set is sorted according to this
bidder’s ranking of the items. In the other branch, no bidder can have items p
and q as direct successors in a set, according to his ranking. We first prove that
there always exists a pair of items such that the sets in which these items occur
as direct successors according to the corresponding bidder’s ranking, have been
fractionally assigned to one or more bidders. We introduce the notation p →j q
to denote that item p is directly succeeded by item q in a set, according to the
ranking of bidder j.

Lemma 2. For any optimal, extreme fractional solution to the relaxation of
(7)-(10),

∃p, q ∈ G : 0 <
∑

j∈B

∑

S:S⊇{p,q}∧p→jq

y(S, j) < 1 (28)
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Proof. Assume that we have an optimal, extreme fractional solution for which
(28) is not satisfied. This means that for each pair of items, each bid on a set in
which these items are direct successors according to ranking of the bidder that
made the bid, has been assigned to that bidder for a total fraction of 0 or 1.
Thus, for any items p and q for which

∑
j∈B

∑
S:S⊇{p,q}∧p→jq y(S, j) = 1, we

can conclude that if item p is present in a set, that then also item q is present
in this set. Therefore, each pair of sets to which a positive fraction has been as-
signed is disjoint or identical. Since there is a single variable y(S, j) representing
identical sets of the same bidder j, we conclude that identical sets must be split
over multiple bidders. This leaves us with the problem of assigning a number
of disjoint sets among one or more bidders, where each assignment of a set to
a bidder has its profit, namely the bid of this bidder for this set. This problem
is a maximum weighted assignment problem on a bipartite graph, where each
node on one side of the partition represents a set, and each node on the other
side of the partition represents a bidder. It follows that each optimal, extreme
solution is integral. Consequently, for any optimal, extreme fractional solution
to the relaxation of (7)-(10), property (28) is true.

The above theorem shows that it is always possible to find a pair of items p and
q on which to branch. However, we still need to enforce that the pricing prob-
lem will generate columns that satisfy the constraint imposed by the branching
decision. In the branch where we impose p →j q, for each bidder j, we need to
remove all arcs from nodes corresponding to p to any node not corresponding
to q. Notice that for a bidder that ranks q higher than p, this comes down to
removing all nodes related to p from the graph. This leaves us with a graph
where if one arrives in a node related to p, the only option is to take an arc to a
node related to q. In the branch where p should not be directly succeeded by q,
it suffices, for each bidder, to remove the arcs going from a p-node to a q-node,
if they exist.

Notice this branching rule does not destroy the structure of the pricing problem
either, even when we consider a sequence of branching decisions. Indeed, it is
not hard to verify that when going deeper into the search tree, the pricing prob-
lem can still be solved as a shortest path problem on an increasingly smaller
graph.

4.4 Implementation issues

Both branch-and-price algorithms were implemented using Visual C++ 6.0.
The set packing problems were solved using Ilog Cplex 8.1. The LEDA libraries
(version 5.0.1) allowed us to solve the shortest path problems in linear time.
In the remainder of this section, some of the most important implementation
issues are discussed.

4.4.1 Solving the root node

A first issue that needs to be solved is determining which columns will be used
in the very first restricted master problem. Using many columns obviously in-
creases the computation time needed to solve the restricted master problem. On
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the other hand, this may result in a solution that is closer to the optimal solu-
tion, such that less iterations for solving the pricing problem and re-optimizing
are needed. In our case, after experimenting with a number of settings, it turned
out that including a rather large number of variables to start the column genera-
tion process pays off. We constructed a set for every strictly positive entry in the
matrix bid by taking the item corresponding to this entry and completing the set
with the k highest ranked items, where k is the entry’s column in the matrix bid.

After the restricted master problem has been solved and the corresponding dual
solution has been obtained, new columns with a non-negative reduced cost need
to be added. The question remains how many such columns we should add.
Again, adding too many new variables increases the computation time for solv-
ing the resulting restricted master problem, whereas adding too few variables
can result in a large number of iterations for solving the pricing problem and
re-optimizing. The strategy that proved to be the most efficient consists of
adding for each bidder those variables whose reduced cost is at most 2% less
than the most positive reduced cost for a variable from that bidder. Further-
more, the number of such variables that is added for each bidder cannot exceed
the number of items. Notice that finding these variables demands very little
extra computation time, since the LEDA libraries provide the distance from the
source to each node in the graph, after having solved the shortest path problem.

Finally, when re-optimizing the restricted master problem, we start from the
optimal base of the previous iteration. In order not to drag along too many
columns for the remainder of the search tree, those columns that were added
at some iteration, but never made part of any base solution are removed from
the model. We keep the other columns, assuming that they will be useful again
later.

4.4.2 A selection rule when branching on an item-bidder pair

The major issue in implementing this branching rule is to choose the item on
which to branch and the bidder(s) to assign it to. We chose to branch on the
item that is fractionally assigned to the highest number of bidders. For each
of these bidders, a branch is constructed in which the bidder is assigned the
item. A final branch is added where none of these bidders is allowed to receive
the item. We opted for a depth-first strategy, where the branch where the item
is assigned to the bidder with the highest fraction is explored first. Thus, the
branch where bidders are disallowed to receive an item always comes last.

4.4.3 A selection rule when branching on a pair of successive items

With this branching rule, each node that needs further partitioning of the solu-
tion space leads to two branches. In the first branch, we enforce that for each
bidder, if item p is present in a bid, q should be the next item in that bid,
according to the ranking of that bidder. The second branch considers only bids
for which p and q are no direct successors according to the bidder’s ranking. We
again chose a depth-first strategy, where the branch where p →j q is imposed is
explored first. The question remains how to select the items p and q. We opted
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to pick those items p and q for which
∑

j∈B

∑
S:S⊇{p,q}∧p→jq y(S, j) is closest

to 0.5.

4.4.4 Solving a tree node

Before we can start solving a node of the tree, we remove all columns that do
not satisfy the latest branching decision. In case of backtracking, this branch-
ing decision expires and those columns are re-entered into the model, since we
experienced that they often turn out to be useful in other branches of the tree.

The LP objective value of the node can be used as an upper bound to the
integral solution that could be found further down the tree. Clearly, if this
value is lower than the incumbent found so far, the node can be pruned. It
may, however, require a large number of iterations to prove LP optimality.
Vanderbeck & Wolsey (1996) show that the Lagrangian relaxation can also be
used as an upper bound. The Lagrangian upper bound can be computed as (see
e.g. Beliën (2006))

δ +
∑

j∈B

max
S⊆G

(RC(S, j), 0) (29)

where δ is the objective value of the restricted master and RC(S, j) is the
reduced cost of variable y(S, j). Notice that the computation of this bound
requires little additional computational effort, since the pricing problem, which
is solved for every bidder j anyway, finds the variable with the highest reduced
cost. This upper bound is referred to as the Lagrangian upper bound, since
it equals the bound obtained by Lagrange relaxation (Lasdon 1970). If at any
iteration in the column generation process, the Lagrangian upper bound is lower
than the incumbent, we can prune the node, without any risk of missing the
optimal solution.

Obviously, when we re-optimize the restricted master problem, we also start
from the optimal base of the previous iteration. The first restricted master
problem is solved starting from the base solution of the parent node. Further-
more, as in the root node, we delete the added columns that turned out not to
be useful.

5 Computational results

In this section, we elaborate on how we generated the instances on which the
branch-and-price algorithms were tested. We also give an overview of the com-
putational results and compare them with results from a branch-and-cut ap-
proach performed on the assignment formulation.
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5.1 Structure of the instances

Unfortunately, real-life data for combinatorial auctions are not abundantly avail-
able for the public. It is therefore not uncommon in combinatorial auction lit-
erature to turn to randomly generated data (see for instance Leyton-Brown,
Shoham & Tennenholtz (2000), Sandholm (2002), and Parkes (1999)). For a
thorough discussion on the empirical hardness of several data distributions com-
monly used for combinatorial auctions, we refer to Leyton-Brown, Nudelman &
Shoham (2005).

For our instances, each matrix bid is composed according to a bid type, ran-
domly chosen out of the six possibilities discussed in Day (2004) (additive pref-
erence bids, single-minded bids, nested flat bids, nested k-of bids, partition bids,
and add-on bids) and a bid type that has non-increasing rows and columns. In
order to avoid auctions for which the exact solution of the winner determination
problem is obvious, the matrix bids are constructed such that they are competi-
tive. Furthermore, there is a parameter H that bounds the highest incremental
value an item brings to a set. For more details on the bid types or on how the
instances were generated, we refer to Day (2004).

We performed experiments on matrix bid auctions with 5, 10, 25 or 50 items
and 5, 10, 25, 50, 75 or 100 bidders. For each combination, 10 instances were
generated and solved to optimality. The highest incremental value per item (H)
was limited to 10. We have no indication that the branch-and-price algorithm
performs differently with other settings for H. All computational experiments
were done on a desktop computer with a Pentium IV 2 GHz processor, with
512 MB RAM.

5.2 Results

Tables 1 and 2 give an overview of the average computation times needed to
solve the matrix bid auction winner determination problem using branch-and-
price with branching on an item-bidder pair (BOI) and branch-and-price with
branching on a pair of successive of items (BOS) respectively. In Table 3, we
give the average computation times that resulted from solving the assignment
based formulation (2)-(6) with the Ilog Cplex 8.1 branch-and-cut algorithm
with standard settings (B&C), which is basically the approach followed in Day
& Raghavan (2006). Horizontally, the number of bidders n varies from 5 to
100, while the number of items m auctioned ranges from 5 to 50 vertically. All
computation times are expressed in seconds.

As could be expected, the computation time is determined more by the number
of items in the auction, than by the number of bidders. All instances with up
to 10 items are solved in less than a second by all algorithms; here the branch-
and-price algorithms clearly perform better. Auctions with 50 items are also
solved in less than 20 minutes on average by all algorithms. The branch-and-cut
algorithm seems on average the fastest way to solve these instances. Perhaps
surprisingly, for the branch-and-price algorithms, the computation times for the
25 and 50 item instances do not always increase when more bidders come into
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n = 5 10 25 50 75 100

m = 5 0.005 0.007 0.008 0.017 0.027 0.038
10 0.027 0.038 0.053 0.088 0.118 0.169
25 0.636 0.597 1.157 4.292 12.704 49.155
50 247.224 60.711 437.951 557.083 622.591 802.483

Table 1: Average computation times [s] for n bidders and m items using BOI

n = 5 10 25 50 75 100

m = 5 0.005 0.006 0.006 0.018 0.027 0.038
10 0.033 0.037 0.044 0.067 0.104 0.182
25 0.698 0.767 1.194 3.814 16.300 97.122
50 76.598 67.584 843.435 259.079 645.632 983.539

Table 2: Average computation times [s] for n bidders and m items using BOS

n = 5 10 25 50 75 100

m = 5 0.030 0.027 0.049 0.052 0.070 0.102
10 0.050 0.069 0.140 0.278 0.524 0.748
25 0.757 1.391 3.598 10.689 17.584 31.940
50 57.676 28.333 91.230 215.083 355.785 811.960

Table 3: Average computation times [s] for n bidders and m items using B&C

play. This can be explained by the fact that the computation times for the
individual instances tend to vary considerably.

One way to get a more accurate view on what the underlying trend is, is to
consider a larger sample set. Also, it is not uncommon in literature on combi-
natorial auctions to study the median instead (see for instance Sandholm, Suri,
Gilpin & Levine (2005) and Hoos & Boutilier (2000)). Tables 4 to 6 give an
overview of the median computation times needed to solve the winner determi-
nation problem. The tables shows a clear trend of how the computation times
rise with the number of bidders and the number of items, since the median is
less affected by extreme values. It is also confirmed that the branch-and-price
algorithms manage to solve the majority of the instances with many items a
lot faster than reflected by the average computation times. The branch-and-cut
algorithm seems to suffer less from instances with extreme computation times,
since the median computation time is much closer to the average computa-
tion time. The results show that computation times for the branch-and-price
algorithm with branching on an item-bidder pair rise more severely with an in-
creasing number of items than those of the branch-and-cut algorithm. On the
other hand, the branch-and-price algorithm with branching on an item-bidder
pair handles an increasing number of bidders better than the branch-and-cut
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n = 5 10 25 50 75 100

m = 5 0.000 0.010 0.010 0.020 0.030 0.040
10 0.015 0.020 0.055 0.055 0.105 0.130
25 0.480 0.460 0.760 2.445 9.480 16.825
50 20.855 29.105 45.605 129.870 227.370 353.970

Table 4: Median computation times [s] for n bidders and m items using BOI

n = 5 10 25 50 75 100

m = 5 0.000 0.010 0.010 0.020 0.030 0.040
10 0.015 0.020 0.040 0.055 0.100 0.130
25 0.485 0.495 0.815 2.445 6.790 13.605
50 20.855 29.215 37.970 129.870 238.785 514.370

Table 5: Median computation times [s] for n bidders and m items using BOS

n = 5 10 25 50 75 100

m = 5 0.020 0.025 0.040 0.050 0.070 0.105
10 0.040 0.060 0.140 0.260 0.535 0.740
25 0.530 1.235 3.245 10.595 18.120 28.960
50 14.665 22.615 73.035 191.670 350.340 589.940

Table 6: Median computation times [s] for n bidders and m items using B&C

algorithm. Furthermore, apart from a couple of exceptions, the median compu-
tation times are lower with branch-and-price than with branch-and-cut.

Tables 7 and 8 give the average computation times for solving the LP-relaxation
of the set packing formulation (7)-(10) and the assignment formulation (2)-(6)
respectively. Recall that the former is used in both branch-and-price algorithms,
while the latter is used in the branch-and-cut algorithm. The tables might be
influenced by the fact that the LP-relaxation of both formulations can be solved
in polynomial time. Furthermore, with two exceptions, the LP-relaxation of the
set packing formulation is solved faster than the the LP-relaxation of the as-
signment formulation. Between brackets, the number of instances out of 10 for
which the LP-relaxation resulted in an integral solution is indicated. Notice
that Theorem 3 does not imply that these numbers should be at least as high
for the assignment formulation than for the set packing formulation. Indeed, if
there exists an integral optimal solution, the algorithms may not find it as there
may be fractional solutions with the same objective value. Further, the num-
ber of instances for which an integral optimal solution was found remains more
or less constant over the bidders, while it drops for instances with more items.
Not surprisingly, instances with an integral LP-relaxation have low computation
times. Therefore, the figures in Table 7 partially explain the fluctuations in aver-
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n = 5 10 25 50 75 100

m = 5 0.01 [8] 0.01 [8] 0.01 [7] 0.02 [9] 0.03 [10] 0.04 [10]
10 0.01 [6] 0.02 [9] 0.03 [4] 0.05 [8] 0.09 [8] 0.14 [7]
25 0.31 [3] 0.41 [7] 0.80 [8] 2.12 [8] 3.29 [5] 4.71 [4]
50 14.02 [5] 14.96 [6] 32.93 [4] 74.46 [7] 124.29 [5] 116.19 [4]

Table 7: Average computation times [s] for the LP-relaxation of the set packing for-

mulation for n bidders and m items

n = 5 10 25 50 75 100

m = 5 0.01 [8] 0.02 [9] 0.02 [8] 0.03 [8] 0.04 [10] 0.04 [9]
10 0.02 [6] 0.03 [9] 0.05 [5] 0.09 [7] 0.14 [7] 0.20 [8]
25 0.28 [5] 0.51 [8] 1.61 [7] 4.47 [9] 6.03 [5] 8.35 [5]
50 9.40 [5] 20.01 [6] 43.93 [3] 159.46 [6] 313.76 [4] 461.91 [4]

Table 8: Average computation times [s] for the LP-relaxation of the assignment for-

mulation for n bidders and m items

age computation times for the instances with 25 or 50 items (see Tables 1 and 2).

Finally, Table 9 gives an overview of the performance details of the three al-
gorithms. Column A gives the average number of nodes in the branching tree
that were explored. Column B represents the average number of pricing rounds,
and column C gives the average number of variables that were generated (these
columns are not applicable for the branch-and-cut algorithm). On the rows, we
find the instances, where the first number indicates the number of items and
the second gives the number of bidders. There seems to be no systematic differ-
ence between the branch-and-price algorithms for any of the three parameters
described in this table. The branch-and-cut algorithm solves very little nodes
in its branching tree, compared to the branch-and-price algorithms. In many
cases, the branch-and-cut algorithm prefers generating valid inequalities in the
root node to branching.

6 Conclusion

In this paper, we studied the winner determination problem for the matrix bid
auction. We first looked at a special case of the matrix bid auction, namely
where all bidders have an identical ranking of the items. For this auction, we
found that that there exists no polynomial-time approximation scheme for the
winner determination problem, unless P = NP . However, there exists a poly-
nomial time algorithm in the case the number of bidders is fixed. Then, we
compared two mathematical formulations for the winner determination prob-
lem of the general matrix bid auction. One assignment is based on the assign-
ment problem, while the other is based on the set packing problem. We found
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BOI BOS B&C

Inst. A B C A B C A

5-5 2.2 3.9 33.3 2.4 4.7 34.4 1.0
5-10 1.3 3.7 68.4 1.4 3.4 68.3 1.0
5-25 2.5 4.5 142.2 1.6 3.2 141.6 1.0
5-50 1.3 3.2 266.9 1.2 3.1 266.9 1.0
5-75 1.0 2.4 435.9 1.0 2.4 435.9 1.0

5-100 1.0 2.0 565.0 1.0 2.0 565.0 1.0

10-5 7.6 18.3 124.2 9.4 27.5 93.7 1.2
10-10 7.6 16.5 201.8 5.4 16.8 193.8 1.5
10-25 4.9 10.2 363.8 2.8 8.4 352.0 1.0
10-50 3.7 8.0 788.9 1.8 5.4 782.2 1.0
10-75 2.3 6.9 1,117.7 1.6 6.0 1,113.8 1.0

10-100 2.3 7.0 1,459.5 2.6 8.4 1,455.4 1.0

25-5 7.7 72.3 1,017.7 6.4 89.4 723.1 1.2
25-10 2.0 37.8 990.7 6.8 51.7 864.5 1.5
25-25 4.4 31.2 1,793.3 3.8 33.2 1,752.1 1.0
25-50 8.6 59.7 3,703.2 5.2 55.1 3,602.4 1.0
25-75 30.0 123.5 5,402.7 32.8 143.1 5,412.7 1.0

25-100 96.8 349.3 7,564.0 163.0 635.3 7,895.2 1.3

50-5 21.4 3,095.8 4,745.9 37.9 1,279.2 2,872.6 11.8
50-10 12.2 592.6 3,963.3 27.9 611.7 4,112.8 1.0
50-25 315.1 1,494.0 11,752.4 1,029.6 2,806.7 10,141.0 1.2
50-50 361.6 938.5 16,278.1 67.6 468.4 14,359.3 1.0
50-75 102.5 828.5 20,773.4 106.7 852.0 20,776.0 1.0

50-100 96.0 839.5 30,538.0 100.4 995.4 31,120.3 5.7

Table 9: Performance details for the three algorithms (BOI, BOS, B&C)
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that both formulations are equally strong. Moreover, an integral solution for
one formulation can always be translated to an integral solution for the other
formulation. We used the set packing formulation as a basis for a column gen-
eration approach where the pricing problem can be solved as a shortest path
problem. This means that we are able to solve the LP-relaxation of the set
packing formulation in polynomial time. We then extended this approach to
two branch-and-price algorithms. In one algorithm, we branch on the items,
while in the other, branching is done on the succession of the items. The pric-
ing problem for these branch-and-price algorithms remains solvable as a short-
est path problem throughout the search tree. These algorithms are tested on
randomly generated instances with up to 50 items and 100 bidders, which they
solved within 20 minutes (on average). Finally, the branch-and-price algorithms
withstood the comparison with a branch-and-cut algorithm, based on Day &
Raghavan (2006). The algorithms perform better on instances with up to 10
items, but are outperformed by the branch-and-cut algorithm on some of the
larger instances. The increase in computation time, however, seems favorable
for the branch-and-price algorithms, which indicates that they form at least a
viable approach to solve instances of the matrix bid auction winner determina-
tion problem.
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