1,394 research outputs found

    The Single Period Coverage Facility Location Problem: Lagrangean heuristic and column generation approaches

    Get PDF
    In this paper we introduce the Single Period Coverage Facility Location Problem. It is a multi-period discrete location problem in which each customer is serviced in exactly one period of the planning horizon. The locational decisions are made independently for each period, so that the facilities that are open need not be the same in different time periods. It is also assumed that at each period there is a minimum number of customers that can be assigned to the facilities that are open. The decisions to be made include not only the facilities to open at each time period and the time period in which each customer will be served, but also the allocation of customers to open facilities in their service period. We propose two alternative formulations that use different sets of decision variables. We prove that in the first formulation the coefficient matrix of the allocation subproblem that results when fixing the facilities to open at each time period is totally unimodular. On the other hand, we also show that the pricing problem of the second model can be solved by inspection. We prove that a Lagrangean relaxation of the first one yields the same lower bound as the LP relaxation of the second one. While the Lagrangean dual can be solved with a classical subgradient optimization algorithm, the LP relaxation requires the use of column generation, given the large number of variables of the second model. We compare the computational burden for obtaining this lower bound through both models

    Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

    Get PDF
    In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient solution approach. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm. These assumptions are general enough and cover all problems with column-dependent-rows studied in the literature up until now to the best of our knowledge. We then introduce in detail a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This is followed by a formal discussion on the optimality of the algorithm. To illustrate the proposed approach, the paper is concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems

    Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

    Get PDF
    In this paper, we develop a simultaneous column-and-row generation algorithm for a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints. These constraints are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on the fly within an efficient solution method. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm and then introduce the associated set of pricing subproblems in detail. The proposed methodology is demonstrated on numerical examples for the multi-stage cutting stock and the quadratic set covering problems

    Solution Methods for the \u3cem\u3ep\u3c/em\u3e-Median Problem: An Annotated Bibliography

    Get PDF
    The p-median problem is a graph theory problem that was originally designed for, and has been extensively applied to, facility location. In this bibliography, we summarize the literature on solution methods for the uncapacitated and capacitated p-median problem on a graph or network

    Genetic algorithm for the continuous location-routing problem

    Get PDF
    This paper focuses on the continuous location-routing problem that comprises of the location of multiple depots from a given region and determining the routes of vehicles assigned to these depots. The objective of the problem is to design the delivery system of depots and routes so that the total cost is minimal. The standard location-routing problem considers a finite number of possible locations. The continuous location-routing problem allows location to infinite number of locations in a given region and makes the problem much more complex. We present a genetic algorithm that tackles both location and routing subproblems simultaneously.Web of Science29318717

    A Genetic Algorithm Approach for the Capacitated Single Allocation P-Hub Median Problem

    Get PDF
    In this paper the Capacitated Single Allocation p-Hub Median Problem (CSApHMP) is considered. This problem has a wide range of applications within the design of telecommunication and transportation systems. A heuristic method, based on a genetic algorithm (GA) approach, is proposed for solving the CSApHMP. The described algorithm uses binary encoding and modified genetic operators. The caching technique is also implemented in the GA in order to improve its effectiveness. Computational experiments demonstrate that the GA method quickly reaches optimal solutions for hub instances with up to 50 nodes. The algorithm is also benchmarked on large scale hub instances with up to 200 nodes that are not solved to optimality so far

    Clustering search

    Get PDF
    This paper presents the Clustering Search (CS) as a new hybrid metaheuristic, which works in conjunction with other metaheuristics, managing the implementation of local search algorithms for optimization problems. Usually the local search is costly and should be used only in promising regions of the search space. The CS assists in the discovery of these regions by dividing the search space into clusters. The CS and its applications are reviewed and a case study for a problem of capacitated clustering is presented.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal do MaranhãoUniversidade Federal de São Paulo (UNIFESP)Instituto Nacional de Pesquisas EspaciaisUNIFESPSciEL

    Facility Location Planning Under Disruption

    Get PDF
    Facility Location Problems (FLPs) such as the Uncapacitated Facility Location (UFL) and the Capacitated Facility Location (CFL) along with the k-Shortest Path Problem (k-SPP) are important research problems in managing supply chain networks (SCNs) and related operations. In UFL, there is no limit on the facility serving capacity while in CFL such limit is imposed. FLPs aim to find the best facility locations to meet the customer demands within the available capacity with minimized facility establishment and transportation costs. The objective of the (k-SPP) is to find the k minimal length and partial overlapping paths between two nodes in a transport network graph. In the literature, many approaches are proposed to solve these problems. However, most of these approaches assume totally reliable facilities and do not consider the failure probability of the facilities, which can lead to notably higher cost. In this thesis, we investigate the reliable uncapacitated facility location (RUFL)and the reliable capacitated facility location (RCFL) problems, and the k-SPP where potential facilities are exposed to disruption then propose corresponding solution approaches to efficiently handle these problems. An evolutionary learning technique is elaborated to solve RUFL. Then, a non-linear integer programming model is introduced for the RCFL along with a solution approach involving the linearization of the model and its use as part of an iterative procedure leveraging CPLEX for facility establishment and customer assignment along with a knapsack implementation aiming at deriving the best facility fortification. In RUFL and RCFL, we assume heterogeneous disruption with respect to the facilities, each customer is assigned to primary and backup facilities and a fixed fortification budget allows to make a subset of the facilities totally reliable. Finally, we propose a hybrid approach based on graph partitioning and modified Dijkstra algorithm to find k partial overlapping shortest paths between two nodes on a transport network that is exposed to heterogeneous connected node failures. The approaches are illustrated via individual case studies along with corresponding key insights. The performance of each approach is assessed using benchmark results. For the k-SPP, the effect of preferred establishment locations is analyzed with respect to disruption scenarios, failure probability, computation time, transport costs, network size and partitioning parameters
    corecore